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ABSTRACT

The notions of rectifying subspaces and of rectifying submanifolds were introduced in [B.-Y. Chen,
Int. Electron. J. Geom 9 (2016), no. 2, 1–8]. More precisely, a submanifold in a Euclidean m-space Em
is called a rectifying submanifold if its position vector field always lies in its rectifying subspace.
Several fundamental properties and classification of rectifying submanifolds in Euclidean space
were obtained in [B.-Y. Chen, op. cit.].
In this present article, we extend the results in [B.-Y. Chen, op. cit.] to rectifying space-
like submanifolds in a pseudo-Euclidean space with arbitrary codimension. In particular, we
completely classify all rectifying space-like submanifolds in an arbitrary pseudo-Euclidean space
with codimension greater than one.
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1. Introduction

Let E3 denote the Euclidean 3-space with its inner product 〈 , 〉. Consider a unit-speed space curve x : I →
E3, where I = (α, β) is a real interval. Let x denote the position vector field of x and x′ be denoted by t.

It is possible, in general, that t′(s) = 0 for some s; however, we assume that this never happens. Then we can
introduce a unique vector field n and positive function κ so that t′ = κn. We call t′ the curvature vector field, n
the principal normal vector field, and κ the curvature of the curve. Since t is of constant length, n is orthogonal to
t. The binormal vector field is defined by b = t× n, which is a unit vector field orthogonal to both t and n. One
defines the torsion τ by the equation b′ = −τn.

The famous Frenet-Serret equations are given by
t′ = κn

n′ = −κt + τb

b′ = −τn.
(1.1)

At each point of the curve, the planes spanned by {t,n}, {t,b}, and {n,b} are known as the osculating plane,
the rectifying plane, and the normal plane, respectively.

From elementary differential geometry it is well known that a curve in E3 lies in a plane if its position vector
lies in its osculating plane at each point, and it lies on a sphere if its position vector lies in its normal plane
at each point. A curve in the Euclidean 3-space is called a rectifying curve if if its position vector field always
lies in its rectifying plane (cf. [3]). Rectifying curves have many interesting properties. Such curves have been
studied by many authors, see for instance, [1, 3, 10, 9, 13, 14, 15] among many others.

In [6], the first author introduced the notion of rectifying subspaces for Euclidean submanifolds. As a natural
extension of rectifying curves, the first author defined the notion of rectifying submanifolds as Euclidean
submanifolds whose position vector field always lie in its rectifying subspace [6]. Many fundamental properties
of rectifying submanifolds are obtained in [6, 7]. In particular, the first author proved that a Euclidean
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submanifold is rectifying if and only if the tangential component of its position vector field is a concurrent
vector field. Furthermore, he completely determined rectifying submanifolds in a Euclidean space with
arbitrary codimension.

In this article we extend the results of [6] to rectifying space-like submanifolds in a pseudo-Euclidean space
with arbitrary codimension as a supplement to [6]. In particular, we completely classify all rectifying space-like
submanifolds in an arbitrary pseudo-Euclidean space.

2. Preliminaries

For general references on submanifolds in pseudo-Riemannian manifolds, we refer to [5, 8, 16].
Let Emi denote the pseudo-Euclidean m-space equipped with the canonical pseudo-Euclidean metric g0 of

index i given by

g0 = −
i∑

r=1

du2r +

m∑
t=i+1

du2t , (2.1)

where (u1, . . . , um) is a rectangular coordinate system of Emi .
Let x : M → Emi be an isometric immersion of a pseudo-Riemannian n-manifold M into Emi . For a point

p ∈M , we denote by TpM and T⊥p M the tangent and the normal spaces at p. There is a natural orthogonal
decomposition:

TpEmi = TpM ⊕ T⊥p M. (2.2)

Denote by ∇ and ∇̃ the Levi-Civita connections of M and Emi , respectively. The formulas of Gauss and
Weingarten are given respectively by

∇̃XY = ∇XY + h(X,Y ), (2.3)

∇̃Xξ = −AξX +DXξ (2.4)

for vector fields X, Y tangent to M and ξ normal to M , where h is the second fundamental form, D the normal
connection, and A the shape operator of M .

For a given point p ∈M , the first normal space, of M in Emi , denoted by Imhp, is the subspace defined by

Imhp = Span{h(X,Y ) : X,Y ∈ TpM}. (2.5)

For each normal vector ξ at p, the shape operator Aξ is an endomorphism of TpM . The second fundamental
form h and the shape operator A are related by

〈AξX,Y 〉 = 〈h(X,Y ), ξ〉 , (2.6)

where 〈 , 〉 denotes the scalar product on M as well as on the ambient space.
The equation of Gauss of M in Emi is given by

R(X,Y ;Z,W ) = 〈h(X,W ), h(Y,Z)〉 − 〈h(X,Z), h(Y,W )〉 (2.7)

for X,Y, Z,W tangent to M , where R denotes the curvature tensors of M .
The covariant derivative ∇̄h of h with respect to the connection on TM ⊕ T⊥M is defined by

(∇̄Xh)(Y, Z) = DX(h(Y,Z))− h(∇XY,Z)− h(Y,∇XZ). (2.8)

The equation of Codazzi is

(∇̄Xh)(Y, Z) = (∇̄Y h)(X,Z). (2.9)

It follows from the definition of a rectifying curve x : I → E3 that the position vector field x of x satisfies

x(s) = λ(s)t(s) + µ(s)b(s) (2.10)

for some functions λ and µ.
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For a curve x : I → E3 with κ(s0) 6= 0 at s0 ∈ I , the first normal space at s0 is the line spanned by the principal
normal vector n(s0). Hence, the rectifying plane at s0 is nothing but the plane orthogonal to the first normal
space at s0. Therefore, for a submanifold M of Emi and a point p ∈M , we call the subspace of TpEmi , orthogonal
complement to the first normal space Imhp, the rectifying space of M at p (see [6]).

We make the following definition as in [6].

Definition 2.1. A pseudo-Riemannian submanifold M of a pseudo-Euclidean space Emi is called a rectifying
submanifold if the position vector field x ofM always lies in its rectifying space. In other words,M is a rectifying
submanifold if and only if

〈x(p), Imhp〉 = 0 (2.11)

holds at every p ∈M .

3. Lemmas

A tangent vector v of a pseudo-Riemannian manifold M̃m
i is called space-like (respectively, time-like) if v = 0

or 〈v, v〉 > 0 (respectively, 〈v, v〉 < 0). A vector v is called light-like or null if v 6= 0 and 〈v, v〉 = 0.
The light cone LC of Emi is defined by

LC = {v ∈ Emi : 〈v, v〉 = 0}. (3.1)

Let r be a positive number. We put

Ski (r2) =
{
x ∈ Ek+1

i : 〈x,x〉 = r2
}
, i > 0, (3.2)

Hk
i (−r2) =

{
x ∈ Ek+1

i+1 : 〈x,x〉 = −r2
}
, i > 0, (3.3)

Hk(c) =
{
x ∈ Ek+1

1 : 〈x,x〉 = −r2 and x1 > 0
}
, (3.4)

Ski (r2) (respectively, Hk
i (−r2)) is a pseudo-Riemannian manifolds of curvature 1/r2 (respectively, −1/r2) with

index i. The Ski (r2) (respectively, Hk
i (−r2)) is known as a pseudo-sphere (respectively, pseudo-hyperbolic space).

The pseudo-Riemannian manifolds Eki , Ski (r2), Hk
i (−r2) are the standard models of the indefinite real space

forms. In particular, Ek1 , Sk1 (c), Hk
1 (c) are the standard models of Lorentzian space forms

A submanifold M of Emi is called space-like if each tangent vector of M is space-like.
By a cone in Emi with vertex at the origin o ∈ Emi we mean a ruled submanifold generated by a family of half

lines initiated at o. A submanifold of Emi is called a conic submanifold with vertex at o if it is an open portion of
a cone with vertex at o.

For a space-like submanifoldM of Emi , there exists a natural orthogonal decomposition of the position vector
field x at each point; namely,

x = xT + xN , (3.5)

where xT and xN denote the tangential and normal components of x, respectively.
We put

|xT |2 =
〈
xT ,xT

〉
, |xN |2 =

〈
xN ,xN

〉
.

Lemma 3.1. Let M be a pseudo-Riemannian submanifold of the pseudo-Euclidean space Emi . If the position vector field
x of M in Emi is either space-like or time-like, then x = xT holds identically if and only if M is a conic submanifold with
the vertex at the origin.

Proof. Let M be a pseudo-Riemannian submanifold of Emi . Assume that the position vector field x of M in Emi
is either space-like or time-like. If x = xT holds identically, then e1 = x/|x| is a unit vector field.

Put x = ρe1. Then we get
∇̃e1x = e1, ∇̃e1x = (e1ρ)e1 + ρ∇̃e1e1. (3.6)

Since ∇̃e1e1 is perpendicular to e1, we find from (3.6) that ∇̃e1e1 = 0. Therefore the integral curves of e1 are
some open portions of generating lines in Em. Moreover, because x = xT , the generating lines given by the
integral curves of e1 pass through the origin. Consequently, M is a conic submanifold with the vertex at the
origin.

The converse is clear.
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We recall the following definition of concurrent vector fields.

Definition 3.1. A non-trivial vector field C on a Riemannian (or more generally, on a pseudo-Riemannian)
manifold M is called a concurrent vector field if it satisfies

∇XC = X (3.7)

for any vector X tangent to M , where ∇ is the Levi-Civita connection of M .

Remark 3.1. Since the position vector field of the pseudo-Euclidean space Emi is a concurrent vector field, it
follows that the position vector field x of any pseudo-Riemannian submanifold M in Emi satisfies

∇̃Zx = Z (3.8)

for any Z ∈ TM , where ∇̃ is the Levi-Civita connection of Emi .

Lemma 3.2. Let M be a pseudo-Riemannian submanifold of Emi . If the position vector field x is either space-like or
time-like, then the position vector field x of M satisfies x = xN identically if and only if M lies in one of the following
hypersurfaces of Emi :

(1) a pseudo-sphere Sm−1i (c2); or
(2) a pseudo-hyperbolic space Hm−1

i−1 (−c2) whenever i > 1; or
(3) a hyperbolic space Hm−1(−c2) whenever i = 1,

where c is a positive number.

Proof. Let x : M → Emi be an isometric immersion of a pseudo-Riemannian n-manifold into Emi with space-like
or time-like position vector field. If x = xN holds identically, then we get from (3.8) that

Z〈x,x〉 = 2 〈∇̃Zx,x 〉 = 2
〈
Z,xN

〉
= 0

for any Z ∈ TM . Thus M lies in one of the three hypersurfaces of Emi .
The converse is easy to verify.

In views of Lemma 3.1 and Lemma 3.2 we make the following.

Definition 3.2. A rectifying submanifold M of Emi is called proper if its position vector field x satisfies x 6= xT

and x 6= xN at every point on M .

In this article, we are only interested on proper rectifying submanifolds of Emi in views of Lemma 3.1 and
Lemma 3.2.

For the proof of our main theorem we also need the following lemma.

Lemma 3.3. Let M be a pseudo-Riemannian submanifold of Emi . If M is proper rectifying, then
〈
xN ,xN

〉
is constant

on M .

Proof. Let x : M → Emi be an isometric immersion of a Riemannian n-manifold into Emi . Consider the
orthogonal decomposition

x = xT + xN (3.9)

of the position vector field x of M in Emi . It follows from (3.9) and the formula of Gauss and the formula of
Weingarten that

Z = ∇̃Zx = ∇ZxT + h(Z,xT )−AxNZ +DZx
N (3.10)

for any Z ∈ TM . By comparing the normal components in (3.10), we find

DZx
N = −h(Z,xT ). (3.11)

Therefore we obtain

Z
〈
xN ,xN

〉
= 2

〈
DZx

N ,xN
〉

= −
〈
h(Z,xT ),x

〉
= 0, (3.12)

where we have used (2.11) in Definition 2.1. Since (3.12) holds identically for any Z ∈ TM , we conclude that〈
xN ,xN

〉
is constant on M .

Remark 3.2. A submanifold M of Emi is called a T -submanifold (respectively, N -submanifold) if its position
vector field x satisfies

〈
xT ,xT

〉
= constant (respectively,

〈
xN ,xN

〉
= constant) (cf. [2, 4]). Obviously, Lemma

3.3 implies that every proper rectifying pseudo-Riemannian submanifold of Emi is an N -submanifold.
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4. Characterization of rectifying submanifolds in Emi

The following result provides a very simple characterization of rectifying submanifolds.

Theorem 4.1. If the position vector field x of a pseudo-Riemannian submanifold M in Emi satisfies xN 6= 0, then M is a
proper rectifying submanifold if and only if xT is a concurrent vector field on M .

Proof. Let M be a space-like submanifold of Emi . Then (3.10) holds. After comparing the tangential components
in (3.10), we obtain

AxNZ = ∇ZxT − Z. (4.1)

Assume that M is a proper rectifying submanifold of Emi . Then we have xT 6= 0 and xN 6= 0 . Moreover, it
follows from the Definition 2.1 that

〈AxNX,Y 〉 = 〈x, h(X,Y )〉 = 0 (4.2)

for X,Y ∈ TM . Since M is space-like, we find from (4.1) that AxN = 0. Therefore (3.8) yields

∇ZxT = Z, (4.3)

for any Z ∈ TM . Consequently, xT is a concurrent vector field on M .
Conversely, if xT is a concurrent vector field on M , then (3.7) and (4.1) give AxN = 0. Therefore we obtain

(4.3). Consequently, M is a proper rectifying submanifold due to xN 6= 0 by assumption.

The next result shows that every proper rectifying space-like submanifold is a warped product.

Theorem 4.2. Let M be a proper rectifying space-like submanifold M of Emi . Then M is a warped product manifold
I ×s F with warping metric

g = ds2 + s2gF , (4.4)

such that xT = s∂/∂s and gF is the metric tensor of a Riemannian manifold F .

Proof. Let M be a proper rectifying space-like submanifold of Emi . Then we have xT 6= 0 and xN 6= 0. Thus we
may put

xT = ρe1, ρ = |xT | > 0, (4.5)

where e1 is a space-like unit vector field. We may extend e1 to a local orthonormal frame e1, e2, . . . , en on M .
Obviously, it follows from (4.5) that ρ = 〈x, e1〉. Thus, by taking the derivative of ρ with respect to ej for

j = 1, . . . , n and using (2.3) and (3.8), we find

ejρ = δ1j + 〈x, h(e1, ej)〉 , (4.6)

where δij = 1 or 0 depending on i = j or i 6= j. Combining (2.11) and (4.6) gives

e1ρ = 1, e2ρ = · · · = enρ = 0.

Therefore we get ρ = ρ(s) and ρ′(s) = 1,which imply ρ(s) = s+ b for some real number b. Hence, after applying
a suitable translation on s if necessary, we have ρ = s. Therefore, we obtain

xT = se1 = s
∂

∂s
. (4.7)

Since M is a proper rectifying space-like submanifold, Theorem 4.1 implies that xT = se1 is a concurrent
vector field. Thus we find from (4.3) that

e1 = ∇e1xT = ∇e1se1 = e1 + s∇e1e1, (4.8)

which implies∇e1e1 = 0. Therefore the integral curves of e1 are geodesics of M . Consequently, the distribution
D⊥ spanned by e1 is a totally geodesic foliation.
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From (4.3) we also find
ei = ∇eixT = s∇eie1, i = 2, . . . , n, (4.9)

which gives

ωj1(ei) =
δij
s
, i, j = 2, . . . , n. (4.10)

We conclude from (4.10) that the distribution D is integrable whose leaves are totally umbilical hypersurfaces
of M . Moreover, it follows from (4.10) that the mean curvature of leaves of D are given by s−1. Since the leaves
of D are hypersurfaces, it follows that the mean curvature vector field of the leaves of D2 is parallel in the
normal bundle in M . Therefore the distribution D is a spherical foliation. Consequently, by applying a result
of [12] (or Theorem 4.4 of [5, page 90]) we conclude that M is locally a warped product I ×s F , where F is a
Riemannian (n− 1)-manifold. Therefore the metric tensor g of M takes the form (4.4).

5. Main result

The main result of this article is the following classification theorem.

Theorem 5.1. LetM be a proper rectifying space-like submanifold of the pseudo-Euclideanm-space Emi with index i > 0.
If codimM ≥ 2, then one of the following four cases occurs:

(a) There exist a positive number c and local coordinate systems {s, u2, . . . , un} on M such that the immersion of M
in Emi is given by

x(s, u2, . . . , un) =
√
s2 + c2 Y (s, u2, . . . , un), (5.1)

where Y = Y (s, u2, . . . , un) defines a space-like submanifolds of the unit pseudo-sphere Sm−1i (1) ⊂ Emi such that
the induced metric gY of Y is given by

gY =
c2

(s2 + c2)2
ds2 +

s2

s2 + c2

n∑
j,k=2

gjk(u2, . . . , un)dujduk. (5.2)

(b) There exist local coordinate systems {s, u2, . . . , un} on M such that the immersion of M in Emi is given by

x(s, u2, . . . , un) = sW (s, u2, . . . , un), s 6= 0, (5.3)

where W = W (s, u2, . . . , un) lies in the unit pseudo-sphere Sm−1i (1) ⊂ Emi such that Ws is a light-like normal
vector field of M and the induced metric tensor of W is of the following degenerate form:

gW =

n∑
j,k=2

gjk(u2, . . . , un)dujduk (5.4)

with positive definite (gjk), j, k = 2, . . . , n.
(c) There exist a positive number c and local coordinate systems {s, u2, . . . , un} on M such that the immersion of M

in Emi is given by
x(s, u2, . . . , un) =

√
s2 − c2 U(s, u2, . . . , un), s2 > c2, (5.5)

where U = U(s, u2, . . . , un) lies in the unit pseudo-sphere Sm−1i (1) ⊂ Emi such that the induced metric gU of U is
given by

gU =
−c2

(s2 − c2)2
ds2 +

s2

s2 − c2
n∑

j,k=2

gjk(u2, . . . , un)dujduk. (5.6)

(d) There exist a positive number c and local coordinate systems {s, u2, . . . , un} on M such that the immersion of M
in Emi is given by

x(s, u2, . . . , un) =
√
c2 − s2 V (s, u2, . . . , un), c2 > s2, (5.7)

where V = V (s, u2, . . . , un) lies in the pseudo-hyperbolic spaceHm−1
i−1 (−1) ⊂ Emi for i > 1 (respectively, hyperbolic

space Hm−1(−1) ⊂ Em1 for i = 1) such that the induced metric gV of V is given by

gV =
c2

(c2 − s2)2
ds2 +

s2

c2 − s2
n∑

j,k=2

gjk(u2, . . . , un)dujduk. (5.8)
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Conversely, each of the four cases above gives rise to a proper rectifying space-like submanifold of Emi .

Proof. Assume that M is a proper rectifying space-like submanifold of Emi with m ≥ 2 + dimM . Then we have
xT 6= 0 and xN 6= 0. Thus we may put

xT = ρe1, ρ = |xT | > 0, (5.9)

where e1 is a space-like unit vector field. We may extend e1 to a local orthonormal frame e1, e2, . . . , en on M .
Clearly, we have 〈x, ej〉 = 0 for j = 2, . . . , n.

Define the connection forms ωji , i, j = 1, . . . , n, by

∇Xei =

n∑
j=1

ωji (X)ej , i = 1, . . . , n, (5.10)

where ∇ is the Levi-Civita connection of M .
For j, k = 2, . . . , n, we find

0 = ek〈x, ej〉 = δjk + 〈x,∇ekej〉+ 〈x, h(ej , ek)〉 = δjk + 〈x,∇ekej〉 , (5.11)

where we have applied (2.11) from Definition 2.1, (2.3) and (3.8).
Since h(X,Y ) is symmetric in X and Y , we derive from (5.10) and (5.11) that

ω1
j (ek) = ω1

k(ej), j, k = 2, . . . , n. (5.12)

It follows from (5.10), (5.12) and the Frobenius theorem that the distribution D spanned by e2, . . . , en is an
integrable distribution.

On the other hand, the distribution D⊥ = Span {e1} is also integrable since it is of rank one. Therefore, there
exists a local coordinate system {s, u2, . . . , un} on M such that

e1 =
∂

∂s
and D = Span

{
∂

∂u2
, . . . ,

∂

∂un

}
.

Obviously, it follows from (5.9) that ρ = 〈x, e1〉. Now, by taking the derivative of ρ with respect to ej for
j = 1, . . . , n and using (2.3) and (3.8), we find

ejρ = δ1j + 〈x, h(e1, ej)〉 . (5.13)

After combining (2.11) and (5.13) we find e1ρ = 1 and e2ρ = · · · = enρ = 0. Therefore we have

ρ = ρ(s), ρ′(s) = 1

which imply
ρ(s) = s+ b. (5.14)

for some real number b. Consequently, after applying a suitable translation on s if necessary, we obtain ρ = s.
Consequently, (5.9) implies that the position vector field satisfies

x = se1 + xN . (5.15)

Moreover, since M is a proper rectifying submanifold, Lemma 3.3 implies that
〈
xN ,xN

〉
is constant on M .

Therefore we find

〈x,x〉 =


s2 + c2, if

〈
xN ,xN

〉
> 0,

s2, if
〈
xN ,xN

〉
= 0,

s2 − c2, if
〈
xN ,xN

〉
< 0,

(5.16)

where c is a positive number.
Now, we divide the proof of the theorem into three cases.

Case (1): 〈x,x〉 = s2 + c2 with c > 0. In this case, we may put

x(s, u2, . . . , un) =
√
s2 + c2 Y (s, u2, . . . , un), (5.17)
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for some Emi -valued function Y = Y (s, u2, . . . , un) satisfying 〈Y, Y 〉 = 1. Therefore the image of Y lies in the
pseudo-sphere Sm−1i (1) ⊂ Em−1i . It follows from (5.17) that

∂x

∂s
=

s√
s2 + c2

Y +
√
s2 + c2 Ys,

∂x

∂uj
=
√
s2 + c2 Yuj

, j = 2, . . . , n.

(5.18)

Using (5.18) together with the fact that e1 = ∂x/∂s is a unit vector field orthogonal to the distribution D, we
derive that

〈Ys, Ys〉 =
c2

(s2 + c2)2
,
〈
Ys, Yuj

〉
= 0, j = 2, . . . , n. (5.19)

Therefore the metric tensor gY of Y induced from Sm−1i (1) takes the following form:

gY =
c2

(s2 + c2)2
ds2 +

s2

s2 + c2

n∑
j,k=2

gjk(s, u2, . . . , un)dujduk, (5.20)

where (gjk) is positive definite. In particular, (5.17) and (5.20) show that the submanifold defined by Y is also
space-like.

Now, by applying (5.18) and (5.20) we know that the metric tensor g of M is of the form:

g = ds2 + s2
n∑

j,k=2

gjk(s, u2, . . . , un)dujduk. (5.21)

After a straight-forward long computation we find from (5.21) that the Levi-Civita connection of M satisfies

∇ ∂
∂s

∂

∂s
= 0,

∇ ∂
∂uj

∂

∂s
=

1

s

∂

∂uj
+

1

2

n∑
k=2

(
n∑
t=2

gkt
∂gjt
∂s

)
∂

∂uk
, j = 2, . . . , n,

(5.22)

where (gjk) is the inverse matrix of (gij). Because M is a proper rectifying space-like submanifold of Emi , it
follows from Theorem 4.1 that

∇ ∂
∂uj

xT =
∂

∂uj
, j = 2, . . . , n. (5.23)

Therefore, after applying (4.7), (5.22) and (5.23) we obtain

n∑
t=2

gkt
∂gjt
∂s

= 0, j, k = 2, . . . , n. (5.24)

Because (gjk) is positive definite, system (5.24) implies

∂gjk
∂s

= 0, j, t = 2, . . . , n.

Therefore (5.31) must take the form of (5.4). Consequently, (5.20) reduces to (5.2).

Conversely, let us consider a space-like submanifold M of Emi defined by (5.1) satisfying 〈Y, Y 〉 = 1 such that
the metric tensor gY is given by (5.2). Then we obtain (5.18) and (5.19) from (5.1). It follows from (5.2), (5.18)
and (5.19) that the metric tensor g of M is given by

g = ds2 + s2
n∑

j,k=2

gjk(u2, . . . , un)dujduk. (5.25)

Now, it is straight-forward to verify from (5.25) that the Levi-Civita connection of M satisfies

∇ ∂
∂s

∂

∂s
= 0, ∇ ∂

∂uj

∂

∂s
=

1

s

∂

∂uj
, j = 2, . . . , n. (5.26)
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Since 〈Y, Y 〉 = 1, (5.1) implies
〈
x, Yuj

〉
= 0 for j = 2, . . . , n. Thus we find from (5.18) that

〈x,xuj
〉 = 0, j = 2, . . . , n. (5.27)

Therefore, we obtain xT = s ∂∂s . Now, by applying (5.26) it is easy to verify that xT is a concurrent vector field
on M . Moreover, it is direct to show that the normal component of x is given by

xN =
c2√

s2 + c2
Y − s

√
s2 + c2 Ys,

which is alway non-zero everywhere on M . Consequently, the immersion defined by case (a) gives rise to a
proper rectifying space-like submanifold of Emi .

Case (2): 〈x,x〉 = s2, s 6= 0. In this case, xN is a light-like normal vector field of M .
We put

x(s, u2, . . . , un) = sW (s, u2, . . . , un), s 6= 0, (5.28)

for some Emi -valued function W = W (s, u2, . . . , un) satisfying 〈W,W 〉 = 1. Therefore the image of W lies in the
pseudo-sphere Sm−1i (1) ⊂ Em−1i .

It follows from (5.28) that

∂x

∂s
= W + sWs,

∂x

∂uj
= sWuj

, j = 2, . . . , n. (5.29)

Using (5.29), 〈W,W 〉 = 1 and the fact that e1 = ∂x/∂s is a unit vector field orthogonal to the distribution D, we
derive that

〈Ws,Ws〉 = 0,
〈
Ws,Wuj

〉
= 0, j = 2, . . . , n. (5.30)

If we put gjk =
〈
Wuj ,Wuk

〉
, then it follows from (5.29) and (5.30) that the metric tensor gY of W is a generate

one given by

gW =

n∑
j,k=2

gij(s, u2, . . . , un)dujduk. (5.31)

Then it follows from (5.28) and (5.31) that the induced metric g of M is given by

g = ds2 + s2
n∑

j,k=2

gjk(s, u2, . . . , un)dujduk. (5.32)

Since M is a proper rectifying space-like submanifold of Emi , it follows from Theorem 4.1 that xT is a
concurrent vector field. Therefore, we may apply the same argument as in Case (1) to conclude that ∂gjk/∂s = 0
for j, t = 2, . . . , n. Therefore (5.31) must take the form of (5.4).

Conversely, let us consider an immersion x : M → Emi of a Riemannian n-manifold M into Emi given by

x(s, u2, . . . , un) = sW (s, u2, . . . , un), 〈W,W 〉 = 1, s 6= 0, (5.33)

such that Ws is a light-like normal vector field and the metric tensor of W is of the following degenerate form:

gW =

n∑
j,k=2

gjk(u2, . . . , un)dujduk (5.34)

with positive definite matrix (gjk), j, k = 2, . . . , n. Then it follows from (5.33) and (5.34) that the induced metric
g of M is given by

g = ds2 + s2
n∑

j,k=2

gjk(u2, . . . , un)dujduk. (5.35)

From (5.34) we get
xs = W + sWs, xuj

= sWuj
, j = 2, . . . , n. (5.36)
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Thus we find from (5.33) and (5.36) that

x = sxs − s2Ws. (5.37)

Because Ws is a light-like normal vector field and xs is tangent to M , we obtain from (5.37) that

xT = sxs and xN = −s2Ws 6= 0. (5.38)

Now, we may derive from (5.35) and (5.38) as before that xT is a concurrent vector field on M . Consequently,
M is a rectifying space-like submanifold of Emi according to Theorem 4.1. This gives Case (b) of the theorem.

Case (3): 〈x,x〉 = s2 − c2 6= 0. By applying a method similar to Case (1), we will obtain either Case (c) or Case
(d) according to s2 > c2 or s2 < c2, respectively.

References

[1] Cambie, S., Goemans, W. and Van den Bussche, I., Rectifying curves in the n-dimensional Euclidean space. Turkish J. Math., 40 (2016), no.
1, 210-223.

[2] Chen, B.-Y., Geometry of position functions of Riemannian submanifolds in pseudo-Euclidean space, J. Geom., 74 (2002), 61-77.
[3] Chen, B.-Y., When does the position vector of a space curve always lie in its rectifying plane? Amer. Math. Monthly, 110 (2003), no. 2,

147–152.
[4] Chen, B.-Y., Constant-ratio space-like submanifolds in pseudo-Euclidean space. Houston J. Math., 29 (2003), no. 2, 281-294.
[5] Chen, B.-Y., Riemannian geometry, δ-invariants and applications. World Scientific, Hackensack, NJ, 2011.
[6] Chen, B.-Y., Differential geometry of rectifying submanifolds. Int. Electron. J. Geom., 9 (2016), no. 2, 1-8.
[7] Chen, B.-Y., Addendum to : Differential geometry of rectifying submanifolds. Int. Electron. J. Geom., 10 (2017), no. 1, 81-82.
[8] Chen, B.-Y., Differential geometry of warped product manifolds and submanifolds. World Scientific, Hackensack, NJ, 2017.
[9] Chen, B.-Y., Rectifying curves and geodesics on a cone in the Euclidean 3-space. Tamkang J. Math., 48 (2017) (to appear).

[10] Chen, B.-Y. and Dillen, F., Rectifying curves as centrodes and extremal curves. Bull. Inst. Math. Acad. Sinica 33 (2005), no. 2, 77-90.
[11] Kim, D.-S., Chung, H.-S. and Cho, K.-H., Space curves satisfying τ/κ = as+ b. Honam Math. J., 15 (1993), 1-9.
[12] Hiepko, S., Eine innere Kennzeichnung der verzerrten Produkte. Math. Ann. , 241 (1979), no. 3, 209-215.
[13] Ilarslan, K., Nesovic, E. and Petrovic-Torgasev, M., Some characterizations of rectifying curves in the Minkowski 3-space. Novi Sad J.

Math., 33 (2003), no. 2, 23-32.
[14] Ilarslan, K. and Nesovic, E., On rectifying curves as centrodes and extremal curves in the Minkowski 3-space. Novi Sad J. Math. 37 (2007),

no. 1, 53-64.
[15] Ilarslan, K. and Nesovic, E., Some relations between normal and rectifying curves in Minkowski space-time. Int. Electron. J. Geom. 7 (2014),

no. 1, 26-35.
[16] O’Neill, B., Semi-Riemannian geometry with applications to relativity. Academic Press, New York, 1983.

Affiliations

BANG-YEN CHEN
ADDRESS: Michigan State University, Department of Mathematics, 619 Red Cedar Road, East Lansing,
Michigan 48824, U.S.A.
E-MAIL: bychen@math.msu.edu

YUN MYUNG OH
ADDRESS: Andrews University, Department of Mathematics, Berrien Spring, Michigan 49104, U.S.A.
E-MAIL: ohy@andrews.edu

95 www.iejgeo.com

http://www.iej.geo.com

	1 Introduction
	2 Preliminaries
	3 Lemmas
	4 Characterization of rectifying submanifolds in Emi
	5 Main result

