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ABSTRACT

We prove that there exist no proper biharmonic Lorentz hypersurface M} in E}'*' with at most
three distinct principal curvatures of non-diagonal shape operator having minimal polynomial

(y— N2y — M)y — An)-

Keywords: Pseudo-Euclidean space; Biharmonic submanifolds; Mean curvature vector.
AMS Subject Classification (2010): Primary: 53D12 ; Secondary: 53C40; 53C42.

1. Introduction

Let M” be an n-dimensional, connected submanifold of the pseudo-Euclidean space E!*. Denote by # and A
respectively the position vector field and the Laplace operator on A" with respect to the induced metric g on
M7, from the indefinite metric on the ambient space E7". It is well known that

—

AT = —nH,

where H is the mean curvature vector of M. An immersion is minimal (H = 0) if and only if AZ =0 and is
called biharmornic if A2Z = 0i.e. AH = 0. Of course, for an immersion, minimality implies biharmonicity.

The study of submanifolds with harmonic mean curvature vector field was initiated by Chen in 1985 and
arose in the context of his theory of submanifolds of finite type. A survey on submanifolds of finite type and
various related topics was presented in [4, 5].

In 1991, Chen conjectured the following;:

Conjecture: The only biharmonic submanifolds of Euclidean spaces are the minimal ones.

In Euclidean spaces, we have the following results, which indeed support the above mentioned conjecture.
Chen proved in 1985 that every biharmonic surface in E? is minimal. Thereafter, I. Dimitric generalized this
result [9]. In [14], it was proved that every biharmonic hypersurface in E* is minimal. In [16], it was obtained
that every biharmonic hypersurface in E° with three distinct principal curvatures must be minimal. Also, it was
proved that every biharmonic hypersurfaces with three distinct principal curvatures in E"*! with arbitrary
dimension is minimal [12]. Recently, it was proved that there exist no proper biharmonic hypersurfaces in E®
with zero scalar curvature [10].

Chen et al. [7, 8] obtained some examples of proper biharmonic surfaces in 4-dimensional pseudo-Euclidean
spaces EZ for s =1,2,3 (see also [6]). Also, it was proved in [7, 8] that biharmonic surfaces in pseudo-
Euclidean 3-spaces are minimal. A. Arvanitoyeorgos et al. [2] proved that biharmonic Lorentzian hypersurfaces
in Minkowski 4-spaces are minimal. In [16], it was proved that every biharmonic non-degenerate hypersurface
in E° with three distinct principal curvatures of diagonal shape operator is minimal.

In this paper, we study biharmonic Lorentz hypersurfaces M7 in Ef"! with at most three distinct eigen
values of non-diagonal shape operators satisfies the equation (2.11).
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2. Preliminaries

Let (M7, g) be a n-dimensional Lorentz hypersurface isometrically immersed in a n + 1-dimensional pseudo-
Euclidean space (E7*!,g) and g = Gy We denote by £ unit normal vector to M{* with g(§,¢) = 1.
Let V and V denote linear connections on E7*! and M7, respectively. Then, the Gauss and Weingarten
formulae are given by B
VxY =VxY +h(X,Y), V X,Y € (TM}), 2.1)
va = _S§X7 Ve F(TMln)J_a (2.2)
where h is the second fundamental form and S is the shape operator. It is well known that the second
fundamental form h and shape operator S are related by

g(M(X,Y),€) = g(Se X, Y). (2.3)
The mean curvature vector is given by
H= ltraceh. (2.4)
n
The Gauss and Codazzi equations are given by

R(X,Y)Z = g(SY,Z2)SX — g(SX, Z)SY, (2.5)
(VxS)Y = (Vy5)X, (2.6)

respectively, where R is the curvature tensor, S = S¢ for some unit normal vector field £ and
(Vx8)Y = Vx(5Y) - S(VxY), (2.7)

forall X,Y,Z € T(TM}).
By comparing the tangential and normal components in biharmonic equation AH = 0, the necessary and
sufficient conditions for M} to have proper mean curvature in £+ are

AH + HtraceS? = 0, (2.8)
and n
S(gradH) + §ngadH =0, (2.9)
where H denotes the mean curvature. Also, the Laplace operator A of a scalar valued function f is given by [3]
Nf == eleieif = Veeif), (2.10)
i=1
where {e1,es,...,€,} is an orthonormal local tangent frame on M} with ¢; = £1.

A vector X in E"™! is called spacelike, timelike or lightlike according as g(X,X) >0, g(X,X) <0 or
9(X,X) =0, respectively. A non-degenerate hypersurface M of E"™! is called Riemannian or pseudo-
Riemannian according as the induced metric on M;" from the indefinite metric on E*! is definite or indefinite.
A shape operator of pseudo-Riemannian hypersurfaces is not diagonalizable always unlike the Riemannian
hypersurfaces.

It was proved in [16, 15] that the canonical form of the non-diagonal shape operator of M} in E}"! having
minimal polynomial (y — X\)?(y — A1)(y — A,,) with three distinct real eigen values takes the form

— >
> O

S = A , 2.11)
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with respect to some suitable pseudo-orthonormal frame of the tangent bundle.

3. Biharmonic Lorentz hypersurfaces in £]"' with non-diagonal shape operator

Let M7 be a biharmonic Lorentz hypersurface in E}"! with proper mean curvature vector field having
non-diagonal shape operator given by (2.11). Also, we assume that mean curvature is not constant and
gradH # 0. Assuming non constant mean curvature implies the existence of an open connected subset U of
M7, with grad, H # 0, for all p € U. The shape operator S of a biharmonic Lorentz hypersurface given by (2.11)
having the three distinct eigen values A, A\; and \,, with multiplicities r, s and ¢ respectively, and with minimal

polynomial (y — A\)?(y — A1)(y — A\,) can be written as
S(e1) = Aep +ea, S(ea) = Aea, S(ea) =Aea, S(ep) = Aiep, Slec) = Iec,
with respect to pseudo orthonormal basis of vector fields {ei, ez, ..., e,} of T, M7, satisfying
gler,e2) = =1, glei,ei) = 1,

and
gler,er) = glea,e2) = gler, e;) = glez, e5) = g(eiaej) =0,

for i #j and i, =3,4,...,n, and A=3,4,....,r, B=r+1,r+2,...,r+s, C=r+s+1,r+s+2,...,

s+t=n.
We write

Zwﬁvek, By=1.23....n
Taking covariant derivatives of (3.2) and (3.3) with respect to e, and using (3.4), we find
: 2 ' 2 1 i 2 i 1 ; .

Wp1 = —Wkas w;ci =Wy = Wy = 0, w/lcl = Wi, w;CQ = wy,;, w‘ljﬂ — _w;w,

fori#j, 4,7=3,4,...,nandk=1,2,...,n
Now onwards, we take
A+A, A A=34,...r
B#B, B,B=r+1,r+2,....,71+s,
C#C, CC=r+s+1l,r+s+2,....,r+s+t=n.

Putting X = e;, Y = e, in (2.6), and using (2.7) and (3.1), gives

er(Mez + A Zp | Whatp — wWis(Aea) = D7 3 W12 (Aea) ZTBJFSTH wih(Men)
n
— 2 rs+l wir(Anec) = e2(Ner + A3 o whiep + 37, whyep — wi (Aer + e2)

r+s n C
—>hs wsy (Aea) — = 2 Brt1 wii(Miep) = 2 Cmrist1wn (Anec),
whereby, taking inner product with e, e4, we obtain

and

respectively.
Putting X =e;,Y = ep in (2.6), and using (2.7) and (3.1), gives

ei(M)es + M Y, puipep — wip(er +e2) —wip(Aea) = 34 s wip(Aea)—
+
;; ST_H W1B()‘1€B) Z‘ r+s+1 wip(Anec) = eg(Mer + A Zp;ﬁQ whep + Zp;ﬂ Whap

+
WB1(/\€1 + e2) ZA WBl (Aea) — Z:n 37'+1 Wi (Arem) — Eg=r+s+1 wg1()\n60)7
whereby, taking inner product with e;, e4, e and ec, we get

es(\) = (A — Nwig,

(3.1)

(3.2)

(3.3)
T+

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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(/\1 - >\)wa = ngv
(A= A)wB, +wB, =0,

and
(A1 = An)wis = (A = A)w§; + who,

respectively.
Putting X =e;, Y = e¢ in (2.6), and using (2.7) and (3.1), gives

e1(An)ec + A1 20 o wicep — w%c()‘fl +ez) —wic(Ae2) = Y _gwic(Aea)—

3.9)
(3.10)

(3.11)

r+s n . .
S wic(Men) = 3G et wic(Aneg) = eCO\)el +ADs0 We1€p + 2y Winep Whereby, taking in-

+
_W01()‘61 + e2) ZA 3“01 (Aea) Z% gr+1 u’c1 (Aep) — an:r+s+1 wéh (Anem),

ner product with es, e4, and ec, we have
ec(A) = (A — Nwic,
(An = Nwic = Wi,
and
e1(An) = (A= An)wgl + Wgza

respectively.
Putting X = e5, Y = ep in (2.6) and using (2.7) and (3.1), we get

ea(M)es + A1 DB WIBEp — wyp(Ner + e2) — wip(Aez) — Yo%y wip(hea)—
;rs,“ W2B(/\163 Zg r4s+1 w2CB()‘n6C) =ep(Aez + A Zp;él wggep - W1232(/\62)

r+s n C
- ZA:Z} wBQ()‘eA) D= —rt1 wiga(Arem) — Zczr+s+1 wis(Anec),
whereby, taking inner product with ey, e3, €4, e, €5, and ec, we find

ep(N) = (M — Nwip — wsp,
wyp = 0,
wip =0,
(A= A)wEs = e2(M),

B
OJB2 == 07

and
(A=A )W2B =(A=2A )sza

respectively.
Putting X = e3, Y = ec¢ in (2.6), and using (2.7) and (3.1), gives

e2(An)ec +An 3o, 10 Whoep — w%c({el +eg) —wic(Aez) = Y _gwic(Aea)—
;+Sr+1 W20(>\1€B Zg r+s+1 chco\ eg) = ec(Nez + A Zp;ﬂ Werep — weg(Nez)

- ZA 3“’02 (Aea) — ZTBJ’_STJ,»I why(Mrep) — Z:;:rJrerl Wiy (Anem),
whereby, taking inner product with ey, e, e4, ec and e, we obtain
(A = Nwie = ec(N) + wye,
wye =0,
wye =0,
(A = A)wes = ea(An),

and

c
Weoo = O,

(3.12)
(3.13)

(3.14)

(3.15)
(3.16)
(3.17)
(3.18)

(3.19)

(3.20)

(3.21)
(3.22)
(3.23)
(3.24)

(3.25)
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respectively.
Putting X =e4, Y = ep in (2.6), and using (2.7) and (3.1), gives

ea(M)ep + M Zp;ﬁB whpep —whp(Aer +e2) —wip(Aez) — Z:n:i% wi'p(Aem)—
r+9 n
B=r+1 “’AB()‘leB Zczr+s+1~wgB()‘neC) =ep(Mea+ A Zp;éA WhaCp —Wha
(Aer +e2) — WBA(/\€2) - Z%:g WSA()“@A) - Z::Sr-i-l wia(A1em)

n c
- Zc:r+s+1 wia(Anec),
whereby, taking inner product with ey, e4, e, ep, e5, and ec, we get

whp =0, (3.26)
(M = Nwilp = es(N), (3.27)
wi, =0, (3.28)
A= A)wha = ealh), (3.29)
wB, =0, (3.30)
and
(M = M)l = (A = An)wia, (3.31)
respectively.
Putting X =e4, Y = ec in (2.6), and using (2.7) and (3.1), gives
ean)ec + A D0 Lo wheep — w}40(~/\e1 + e2) —wic(Nea) = Yot s whe(Aen)—
71;+5r+1 whc(Aier) Ené T+s+1 wSC(A ea) =ec(Nea + A ZméA W alp — WA
(Ae1 +e2) — w4 (Ae2) — 3Gy wia(Aeg) ZESTH wéa(Mep)
- Zm r+s+1 wCA<)\ €m),
whereby, taking inner product with ey, e4, €3, ep and ec, we find
Whe =0, (3.32)
(An = Nwic = ec(N), (3.33)
whe =0 (3.34)
(Ao = M)le = (= M)wa, (3.35)
and
(A= An)w§a = ealAn), (3.36)
respectively.
Putting X = ep, Y = ec in (2.6), and using (2.7) and (3.1), gives
ep(An)ec + An Zp;sc Wchep - wjlsc()‘el +e2) —whe(Ae2) = XU _swie(Aea)—
Z;z+br+l whc(Aem) = D6 r+s+1 wBC(A eg) = ec(>\1)63 +M Zp;éB Wepep — W
(Aer + ea) —wgp(ea) — Y _swip(hea) — Z;“M wlp(ep)
- Zm:r+s+1 wg'lB(/\HGM>7
whereby, taking inner product with ey, es, e, e5 and ec, we obtain
(An — )‘)W?BC - WJIBC = (M- )‘)W%B - Wé‘Bv (3.37)
(A = Nwhe = (A1 — Nwép, (3.38)
(A — MwBe =ec (M), (3.39)
wB. =0, (3.40)
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and
(A1 = M)wég =es(An), (3.41)

respectively.

Similarly, evaluating  g((V¢,S)ea,e2) = g((Ve,S)er,e2),  g((VepS)eg,ez) = g((VeES)eB,eE), and
9(VeeS)ea,ex) = 9((Veg S)ec, eg), and using (2.7) and (3.1), we get

ea(N) =0, (3.42)

eg(A1) =0, (3.43)
and

ec(An) =0, (3.44)
respectively.

Now, we consider the following cases of gradH viz. space like and light like depending upon preferred
direction to study biharmonic Lorentz hypersurfaces in E;™' with non-diagonal shape operator given by
(2.11). It is obvious from (2.9) that gradH is an eigenvector of the shape operator S with the corresponding
eigenvalues — 2.

Let grad H be light like: Assuming grad H in the direction of ey, we can write grad H= —e; (H )es. From (2.9),
(2.4) and (3.1), we get
nH nHn—s—t+2) t

Since grad H= —e; (H )es, therefore, using (3.45), we have

e1(H)#0, e/(H)

Using (3.4), (3.46) and the fact that [e; e4](H) =
find

0, e(N)=0, 1=2,3,...,n. (3.46)
=Ve,eq(H) =V e(H) forl #qand l,q=2,3,...,n, we
Wi, = Wy (3.47)
First, we consider the case of three distinct eigenvalues viz.
Casel: Let A\ — A\ A0, A\, — A\ ZO0and XA — )\, #0.
Using (3.26), (3.32), (3.47) and (3.5), we have
Wha = Wity = Wha = W = 0. (3.48)
From (3.7), (3.19), (3.25) and (3.5), we get
wia =whx=wl =0 (3.49)
Also, using (3.8), (3.12), (3.15), (3.16), (3.21), (3.22), (3.46) and (3.5), we find
wip = wic = wip = whe = 0. (3.50)
Using (3.38), (3.47) and (3.5), we obtain
Wep = Wpo = W = Wiy = 0. (3.51)
Now, from (3.9), (3.13), (3.48), (3.20), (3.51) and (3.5), we have
wip = wip = wip = wip = 0. (3.52)

Now, we have the following:
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Lemma 3.1. Let M} be a biharmonic Lorentz hypersurface with non-constant mean curvature in the pseudo Euclidean
space E7, having the non-diagonal shape operator given by (2.11). If grad H is light like and in the direction of es, then

r+s
p _ p _ p
E Wipeps Ve, €4 = E Wypp, Ve,€B = E WopCp,
p#1,A,B p#1,A p=r+1

n
— D _ D
Ve,ec = E : WacCps Ve, e = E : Waptp> Ve, ec = E : wACe:Da Vepger = E :WB18P7

p=r+s+1 p#1,B p#1,C PF2
_ P _ p _ P
Vegez = E Wpoeps Vepen = E wppeps Vepec = E | Whetp:
p#1,A,B,C p#B p#1,C
_ P _ P _ P
€1 = E :wmep, Vecer = E Weolps Vec€B = E WoBtps
p#2 p#1,A,B,C p#1,B
_ P
Vesec = g Weoeeps eBeB g w ep, Veg e = E w
p#C p#1,B p#1,C

Now, computing g(R(ez,eg)en, e2), g(R(e2, ec)ec, e2), using (2.5) and Lemma 3.1, we obtain
ea(wpp) +wppwy +wpp) =0,  ex(whe) +woo(wy +whe) = 0. (3.53)
Adding (3.18) and (3.24), and using (3.45), (3.46) and (3.5) therein, we get

—t+2)H H
{w — tnJohg + {7 + A b =0. (3.54)

Acting on (3.54) with e, and using (3.53), we find
el — whil = 0,
which implies either ex(\,) = 0 or wl o = wh 5. In both cases, using (3.18), (3.24), (3.54) and (3.5), we have
WhR = Wee = Wha = wgz = 0. (3.55)

Now, computing g(R(ep, e1)en, e2), g(R(ec, e1)ec, e2) and using (2.5), Lemma 3.1 and (3.45), we obtain

- nH nH(n—s—t+2 t
Z WEpWia = _7{ ( 9 ) _ ;/\n}, (3.56)
A=3
and
- nH
D wiowia = — - (3.57)

Now, adding (3.29) and (3.36), and using (3.45), (3.46) and (3.5) therein, we get

—t+2)H H
{w w4+ t{”7 + A lwde = 0. (3.58)

Since A varies from 3 to r, therefore (3.56), (3.57) and (3.58) is valid for r > 2. Multiplying (3.58) by wi , and
taking summation over A and then using (3.56) and (3.57), we get
s+ 1)tA2 —dn(n —s —t + 2)tHN\, + n*(n —t +2)(n — s —t + 2)H? = 0. (3.59)

Now, from (3.59), we find ), imaginary as discriminant D = —16n2H?(n — s — t + 2)(nst + 2ts + 2t*) < 0.
Therefore, a contradiction, hence, » > 2 is not possible.
Now, for r = 2, (3.56) and (3.57) reduce to

_ﬂ{nH(n—s t+2)_é)\n}:0’ (3.60)
2s s
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and
——A\,=0. (3.61)

Hence, From (3.60) and (3.61), we obtain that H = 0.

Case II: Let either A — A\ =0 or A\, — A =0o0r A — A\, = 0. Then, from (3.45), we find that each eigen value
A, A1 and A, are proportional to H. So, from (3.46), we have

etl(N) =e(A) =€ (M) =0, for 1=23,....,n (3.62)
If A = Ay, then using (3.36), (3.62) and (3.5), we get
wi s =who=0. (3.63)

Using (3.63) and computing g(R(ec, e1)ec, e2), we get that H = 0.
Now, if \; = \,, or A = )\, in both cases from (3.29), (3.62) and (3.5), we obtain w5 , = w45 = 0. Evaluating
g(R(ep,e1)en, e2), we find that H = 0.

Combining Case I and Case II, we have:

Proposition 3.1. Let M7 be a biharmonic Lorentz hypersurface in the pseudo Euclidean space E7! having the non-

diagonal shape operator given by (2.11). If gradH is light like, then M7 is minimal.

Now, we discuss the space like case of gradH.

Let grad H be space like: In this case gradH can be in the direction of e4 or e or ec. In view of (3.42), (3.43)
and (3.44), one of the multiplicities of eigen values must be one, otherwise, we get contradiction. Since r > 2,
therefore either s or ¢t must be one. Without loss of generality, we assume that r > 2,s > 1,¢t = 1 and gradH is
in the direction of e,,. We can write gradH=e,,(H)e,,. Now,wehave A=3,4,...,r, B=r+1,r+2,...,r+s=
n —1and C = n. From (2.9) and (2.4), we get

nH 3nH rA

)\n:_77 and )\1:2(7177471)—“77171 (364)
Since grad H= e, (H )e,,, therefore, from (3.64), we have
en(H) #£0, e (H)=0 e,(A\)=0, a=1,2,...,n—1. (3.65)

Using (3.4), (3.65) and the fact that [e, e)(H) =0 =V, ep(H) — Ve,eqo(H), fora #band a,b=1,2,...,n -1,
we find
Wiy = Wiy (3.66)

Now, we consider the case of three distinct eigenvalues viz.
CaseIIl: Let A\ — Ay #0, A\, — A1 Z0and A — A\, #0.

From (3.6), (3.42), (3.64) and (3.65), we have

e2(\) =0, ea(A1)=0. (3.67)
From (3.18), (3.24), (3.29), (3.36), (3.65), (3.67) and (3.5), we get
A 0. (3.68)

B _,1 _ n _,1 _ B _ A _  n __
WpR2 = WRpB = Wpy = Wpp = Wpg = WRB = Wpg = Wpy

Using (3.7), (3.16), (3.17), (3.22), (3.26) and (3.5), we have
wig =wh =whB =W, =wh, =0. (3.69)
Using (3.20), (3.32), (3.66) and (3.5), we have

n _,n» _,B _, 1 _ n _ , n _ , A _
Wop = Wpy = Wy, = Wpy, = Wy = Wiy = Wy, = 0. (3.70)
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Also, using (3.11), (3.31), (3.70), and (3.5), we obtain
Wip = wpy = Wi, = Wh, = Wip = Wha = Wi, = wWh, = 0. (3.71)

From (3.28), (3.30), (3.34), (3.40), and (3.5), we get

Wiz =whp=wiz=whz =0 (3.72)
Using (3.14), (3.41), (3.65), (3.68) and (3.5), we have
Wl =wl =Wy =wl =0. (3.73)
From (3.35), (3.38), (3.71), (3.70), and (3.5), we get

WA = Wnp = wip = Wy = 0, (3.74)
From (3.10), (3.19), (3.37), (3.70), (3.71), (3.74), and (3.5), we get

wB =Wl - =wlp =wh =0. (3.75)
Now, we have the following:

Lemma 3.2. Let M7 be a biharmonic Lorentz hypersurface in the pseudo Euclidean space E{*, having the non-diagonal
shape operator given by (2.11). If grad H is space like and in the direction of e, then

E § _ p
Ve, €2 = Wigep, Ve, ep = W1Bepa Ve, en = E Wineps Ve,€a = E Ws 4€p>

p#1 p#B,n p#B,n p#1,A,B,n
_ P _ 2 _ p
Ve, = E Wypep, Ve,n =Wy, €2, Ve, ep = E Wagtp, Veni= E w i
p#1,4,B,n p;ﬁl,g,B,n ;éA B,n
_ p _ P
Vejen = E Wan€ps Vep€l = E wh€p, Vepez = E Wp2Cp;
p#1,A,B.n p#2,B,n p#1,B,B,n
_ P o P _ p _ B
Vepea = E Wgalp, Veplp = E Wit Vepen = E Wpgpeps Veptn = WB,EB,
p#A,B,E,n p;él,A,E,n p#1,A,B

n—1
— E p — § p — E p — E p
venel - wnlel)’ veneQ - w7L26p7 veneA - wnAep’ veneB - wnBep7

p#2,B.n p#1,Bn p#A,Bn p=r+1
Ve, en =0, Vges= Z Wi sep, Veyea = Z whoep, Ve,e1= Zwmep7
p#A p#1,B,n p#2
Veae2 = Z Whoep, Veye1= Z w3, ep.
p#1,B,n pF#2
Now, to find the Laplace operator, we need to construct an orthonormal basis {X;, X»,..., X, } from the
pseudo-orthonormal basis {ej, ez, . . ., e, }. Therefore, we take
Xp=Ate oy Gy i—34....n (3.76)
1= 2 = ;i — €5 = 9, ceey T .
\/5 ) \/§ b 3 19 )
Also, using (3.64), we obtain
-1 2(n — 8 3
traceS? = (=D o n(n=r+8) s Y (3.77)
n—r—1 dn—r—1) n—r—1
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Using (2.10) and (3.76) the Laplace operator for the pseudo-orthonormal basis {e1, e, ..., e,}, is given by

n

A =ejeq +eze; — Z eie; — Ve €0 — Ve,e1 + Z Ve, ei(H). (3.78)
i=3 i=3

Using (3.77), (3.78) and Lemma 3.3 in (2.8), we find

n—1
(n=Dr o n’(h—r+8) ,
2w12+ZwAA+B;rleBen enen(H)—i—H[ — 71/\ + 4(n—r—1)H
_ 3 ga—0. (379)
n—r—1
Now, from (3.12), (3.33), (3.39), (3.8), (3.27) and (3.5), we find
Wiy =—wh, whi=-wE Wii= Wiy W =wig (3.80)
Therefore, using (3.80) in (3.79), we obtain
) o n 7 ( 1)T 2 n2(n—r+8) 2
[—rwly + (n—7r — Dwiglen(H) —enen(H) + H[n e 1)\ + =71 H
_ 3 gN =0, (381)
n—r—1

Now, we have:

Lemma 3.3. Let M} be a biharmonic Lorentz hypersurface in the pseudo Euclidean space E7, having the non-diagonal
shape operator given by (2.11). If grad H is space like and in the direction of e,,. Then, eg(\) = 0 for s > 1.

Proof. From (3.43) and (3.64), we get eg(\) = 0 for s > 1. Now, for s =1, we have B=n—1and r =n — 2.
Now, putting r =n —2and B = n — 1in (3.81), we get

[(—n 4+ 2)wis + Wiy 1ym_1ylen(H) — enen(H) + H[(n — 1)(n — 2)\* + ?HQ —3n(n —2)H\ = 0. (3.82)

Using (25, (35), (380 and Lemma 33, computing g¢(R(en—1,€1)e2,€,) and
g(R(€A7 6n—1)en7 6A)/ we flnd

en—1(wiy) + Wiy (Wi 1ym1) + W) Z Win_1yawia =0, (3.83)
and
en—1(wis) + Wi (W 1) n_1) + Wia) + 20 (,_1yawia =0, (3.84)
respectively.

Taking summation over A from 3 to r in (3.84), we find

(r = 2)en—1(wih) + (r = 2)wiy  (Win_1)m_1) T Wia) +2 Z Wip—1)awia = 0. (3.85)
=3

Combining (3.83) and (3.85), we obtain

ren—1(wi) + 1wly H(Wh_1)(n1) + i) =0, (3.86)
or,
en—1(wly) = *W?z_l(w(nn—n(n—n + wi), (3.87)
Using (3.8), (3.64), (3.87) and (3.5) for r = n — 2, we find
n en—l()\) n n
en—1(wly) = _m(w(n—l)(n—l) + wi). (3.88)
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Using (3.64), (3.65), (3.66) and r = n — 2 in (3.12) and (3.39), we have

H
en(N) = =(5- + Nty (3.89)
and S
n
en(? —(n=2)A) = (2nH — (n = 2)N)W(,_1y(n—1)s (3.90)
respectively.
Adding (3.89) and (3.90), we get
3n nH
— enlH) = —(n = 2)(—~ + Ny + 2nH — (n = 2N 1)(n-1)- (3.91)

Using (3.65) and Lemma 3.3, and the fact that [e, e,,](H) =0= V. e,(H) — V., e.(H),fora=1,2,... ,n—1,
we obtain
eqen(H) =0. (3.92)

Differentiating (3.91) with respect to e,,—; and using (3.88), (3.89) and (3.92), we find

2n(n = 2)(H — AW, _1y(n—1) T wiz)en—1(A)

a1 &ln1)n1) = TG = (n = 2A) BnH — 200 — D) (393)
Taking derivative of (3.82) along e,,_; and using (3.88), (3.92) and (3.93), we get
(n — 2)en_1(N) [2en(H)(wE‘n_1)(n_1) ol + H2(n— DA — 3nH)(2nH — (n — 2))\)} ~0.
If e,—1(A) # 0 in the above, then
2en (H) (Wi —1)(n_1) T Wiz) + H(2(n — DA = 3nH)(2nH — (n — 2)A) = 0. (3.94)

Differentiating (3.94) along e,,—; and using (3.88) and (3.93), we obtain

4(n(n —4)H — (n — 2)(n — DA (W, _1)(n_1) + wiz)en(H) + H[n(Tn — 10)H
—4(n—=1)(n—=2)N)2nH — (n — 2)A)(3nH — 2(n — 1)A\] = 0. (3.95)

Eliminating e, (H) from (3.94) and (3.95), we get

__ _3nH _ 3nH __
A= g0 7 M T g —

which is a contradiction of distinct principal curvatures, consequently e,,_;(\) = 0. Whereby proof of Lemma
is complete.

Next, we have:

Lemma 3.4. Let M be a biharmonic Lorentz hypersurface in the pseudo Euclidean space E{*, having the non-diagonal
shape operator given by (2.11). If grad H is space like and in the direction of e,,. Then, we find

en(why) + (Whh)? = —A, (3.96)

3nH 7 A
2n—r—-1) n-r-1

), (3.97)

n n __
whpwiz = A(

m H 3nH A
n _ n 2 _ _L n _ r
en(wpp) — (WEp) 5 (2(n—r—1) n—r—l)' (3.98)
Proof. Using (3.8), (3.15), (3.16), (3.27), (3.5) and Lemma 3.4, we obtain
wiy = wy) =wip =wip =wip =whs =0. (3.99)
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Also, evaluating g((Ve,S)ea,ez) = g((Ve,S)er,ez) and g((Ve, S)ea, ep) = g((Ve,S)er, ep), using (2.6), (3.1)
and (3.69), we get

w§2 = wi‘g =0 and wf, =uwh, (3.100)
respectively.
Computing g(R(en, e1)en, e2) and g(R(e,, ea)en, e4), using (2.5), (3.68), (3.99), (3.80), (3.5) and Lemma 3.3, we

find

n n\2 _ - A, n _ @
en(wiz) + (Wi) Z Wn2aWia = = A, (3.101)
A=3
and °
en(wiy) + (Wh)” + 2wibefla = TN, (3.102)
respectively.
Now, taking summation over A from 3 to r in (3.102), we get
n n\2 - A n nH
(r—2)en(wiy) + (r —2)(wiy)” +2 Z wihpwla = (r — 2)7)\. (3.103)

A=3

Now, combining (3.101) and (3.103), we obtain (3.96).
Next, evaluating g(R(e1,er)en,e2), g(R(ea,ep)en,ea) and g(R(ea,e1)es,er), using (2.5), (3.68), (3.99),
(3.100), (3.80), (3.5) and Lemma 3.3, we find

T

3nH rA

Whpwlh — ) wipwha = N == " w1 (3.104)
A=3
n n 3nH A
W Wty 4+ wipwl 4 + 2wk Jwils = )\(2(” =D oo 1)7 (3.105)
and
whawip =0, (3.106)
respectively.

From (3.106), we have either w}; , = 0 or w{l; = 0. In both the cases, from (3.104) and (3.105), we get (3.97).
Similarly, evaluating g(R(e., ep)en, eg), we obtain (3.98).
Now, we have:

Proposition 3.2. Let M} be a biharmonic Lorentz hypersurface in the pseudo Euclidean space E7 with three distinct
eigen values and having the non-diagonal shape operator given by (2.11). If gradH is space like, then M7 is not proper
biharmonic.

Proof. Using (3.64) and (3.5) in (3.12), we get

en(N) = —(% AW, (3.107)
Using (3.5), (3.64) and (3.107) in (3.39), we find
nH
3ne,(H) = [nH(n —r+2) = 2r\lwgg — 27’(7 + Nwls. (3.108)

Now, multiplying (3.108) by wT, and using (3.97), we have

H A 3nH
(w?z)Q(nT + A) = —3nwiye,(H) + m[nH(n —r+2)— QT)\](nT —TA). (3.109)

Similarly, multiplying (3.108) by w’ ; and using (3.97), we obtain

2rd ) 3nE (3.110)

(Whp)2(nH(n —r 4 2) —2r\) = 3nwige, (H) + - 5

n—r—1
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Differentiating (3.108) along e,,, and using (3.96), (3.97), (3.98) and (3.107), we find

H
3nenen(H) = e (H)[n(n — 7+ 5)whp — n(r + 6)wiy] — rnH)\(nT +A)

3nH — 2r\

m[—n% —r+2)H? +2n(r +2n+ 4)H). (3.111)

Eliminating e, e, (H) from (3.81) and (3.111), we get

3nH

en(H)(n =1 = 4)wp + (3 = Ned] + 1o =5

[n(n —r+5)H? — (2n+ 8r + 4)HA +4rA\%] = 0. (3.112)

Acting with e,, on (3.112) and putting the value of e,e, (H) from (3.81) and using (3.96), (3.97), (3.98) and
(3.107), we find

n—1)r nr n?(n—r
7“(0—71—)1)\2771—37“—1H>\+ 4((n—r—+18))}]
[(n=—r—1)B—-7r)—r(n—r—14)

2(n—r—1)

[(n =7 —4)whp + (3 — r)wis][H{

+(n—r)(n—r—4)(whp)* — (B —7)(r+1)(wi)* +

nen(H)
dn—r—1)
3n
dn—r—1)

(3nHX — 2rA?)]e,(H) + [3n(2n — 2r + 19)H? + (2r(n —r — 4)—

2(6n + 257 + 9))HA + 12r)\?] + [(n+4r +2)H? — 4rHN(nH + 2\)w}, = 0. (3.113)

Now, multiplying (3.112) by w}, and using (3.97), we have

n—r—4

(B = ren(H)wl)’ = 50—~

(3nH\ — 2r)%)e, (H)

3nH

v _ 2 21, n
dn—r—1) [n(n =7+ 5)H" = (2n +8r + ) HA + 4rAJwiy.  (3.114)

Similarly, multiplying (3.112) by wf ; and using (3.97), we obtain

(n—1 — A)en(H)(Whp)? = —ﬁ(i’m}[}\ — 2rA\2)e, (H)
= % [n(n —r+5)H? — (2n +8r + 4)H\ + 4r\*|wisz.  (3.115)

Using (3.114) and (3.115) in (3.113), we get
wioE+whpF +e,(H)G =0, (3.116)

where

E = H[(9n + 13r + 2nr — 2r2 + 45)n? H? + 4r(2nr + 7 — 3)A* — 6nr(3n + 2r + 8) H ],
F=H[-((n—7)2n—2r+11) + 32)n*H* —4r((n —r)(2n + 1) — 4(n — 1))\?
+6n((n—r7r)(n+2r+8)+8r)HA|,

(

G = 4r(2n +7)A\% + 3n%(2n — 2r + 19)H? + 2n((n — 7)(r — 6) + (3n — 351 — 30)) H\.

Eliminating e, (H) from (3.116) and (3.108), we obtain
wizfi(H,A) +wipfo(H,A) =0, (3.117)

where fi(H,\)=FE — WG and fo(H,\) =F + WG are the homogeneous functions of
degree 3 in terms of H and A.
Multiplying (3.117) by wf, and w}, 5 and using (3.97), we obtain

A

(Wiy)? f1(H, \) = TOm—r—1)

(3nH — 2r\) fo(H, N), (3.118)
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and
A

(Wip)f2(H,\) = fm(?mH —2rA) f1(H, N, (3.119)

respectively.
Again, eliminating e, (H) from (3.112) and (3.108), we get

Py(whp)? — Pa(wiy)® + Ps =0, (3.120)
where

P=4n—r—-1)(n—r—4)(n(n —r+2)H —2r)\),

Py=4r(n—r—1)(3—r)(nH + 2X)),

Py =8r%(n —2r — )X +9n3(n —r + 5)H® — 6nr(2n — 2r + 13)H?\
+4nr{3(n+3r —1) +2r(n —r — 1)} HA%

Now, eliminating w{, and w5 from (3.120) by using (3.118) and (3.119), we obtain
ABnH — 2r\)[(fo2(H,\)?Pa — (f1(H, \)2Pi] +2(n —r — 1) f1(H, \) fo(H, \) P; = 0, (3.121)

which is a homogeneous equation of degree 9 in terms of H and A. Here, we point out that A # 0. In fact,if A = 0
then (3.121) gives H = 0, which is contradiction to our assumption. We put ¥ = %, then (3.121) will reduce to
an algebraic equation in Y’

(BnY —2r)[Py — Ps]+2(n—r—1)Ps =0, (3.122)

where

Py=dr(n—r—1)(3—7r)(nY +2)(g2(Y))?,

Ps=4(n—r—1)(n—7—4)(n(n —r+2)Y —2r)(g1(Y))?,

Ps = [8r*(n —2r — 1) + 9n3(n — r + 5)Y> — 6n’r(2n — 2r + 13)Y?
+4nr{3(n+3r—1)+2r(n—r—1)}Y]g:1(Y)g2(Y),

(V) =Y[(9n + 137 + 2nr — 2r% 4+ 45)n2Y? + 4r(2nr +r — 3) — 6nr(3n + 2r + 8)Y]
_r(nY +2)
3n

+ (3n — 351 — 30))Y],

@(Y)=Y[—((n—7)(2n —2r +11) + 32)n2Y? —dr((n — r)(2n + 1) — 4(n — 1))
(n(n—r+2)Y —2r)
3n
+3n%(2n — 2r + 19)Y? 4 2n((n — r)(r — 6) + (3n — 35r — 30))Y].

[4r(2n +7) + 3n%(2n — 2r + 19)Y2 + 2n((n — 7)(r — 6)

+6n((n—r)(n+2r+8)+8r)Y]+ [4r(2n+T7)

and without having solve to (3.122) explicitly, even in the case of the existence of a real solution, H will be
proportional to A with a numerical factor v, where v be the root of the equation (3.122). Hence, we can assume
that H = v\ and substituting it in (3.107) and (3.108), and using (3.96), (3.97) and (3.98), we obtain

e2N)(nv+4)  nv(nv+2)M4

— Aepen(N) + =2 12 = 1 , (3.123)
o - o
Aenen(3) = en(A)(1 + n(n —3 in+_2)25 —5) = nu(n(n4(—nr_+T2zu1)— o (3:129)
Adding (3.123) and (3.125), we find
€2(\) = (nl/—&—2)(n(n—r—|—2)1/—2r))\4. (3.126)

dn—r—1)
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Using (3.124) and (3.126), we get e,,(\) = 0. Since H = v, therefore we obtain e, (H) = 0, a contradiction to
(3.65). Which completes the proof of Proposition 3.6.

Now, we consider the case of two distinct eigenvalues.

Case IV: Let either of A\ — A\ =0o0r A\, — A1 =0o0r A — A, = 0. Then, from (3.64), we can say that each eigen
value A\, \; and ), is the multiple of H. From (3.65), we have
ea(A) =eq(M1) =ea(An) =0, for a=1,2,...,n—1. (3.127)

IfA— X, =0o0r\, — A\ =0, then from (3.33) or (3.39), we get e,,(H) = 0 which is a contradiction to (3.65).
Now, if A — A\; =0, then » = n — 1. From (3.64), we have

3nH
A=)\ = 1)’ (3.128)
Putting » = n — 1 in (3.81) and using (3.128), we get
" n*(n+8) 4
—(n—1wise,(H) — enen(H) + Tn-n &= 0. (3.129)
Using (3.128) in (3.96), we find
(i) + () = (3130)
en(wis wiy)” = =1 .
Using (3.5), (3.64) and (3.128) in (3.12), we have
en) = =" 2 . (3.131)
Differentiating (3.131) along e,, and using (3.125), we get
_4)n45) e PP(042)
Eliminating e, e, (H) from (3.129) and (3.132), we obtain
2n+2)(n—4), o n*(n+5) o
—a (wis)” + 1) H* =0. (3.133)
Differentiating, again (3.133) along e,, and using (3.130) and (3.131), we get
dn—4), , 9 3n? 9
5 (wig)* + i 1)H =0. (3.134)

Therefore, from (3.133) and (3.134), we can conclude that H must be zero.

Combining Proposition 3.6 and Case IV, we have

Proposition 3.3. Let M} be a biharmonic Lorentz hypersurface in the pseudo Euclidean space E}", having the non-
diagonal shape operator given by (2.11). If gradH is space like, then M7 is not proper biharmonic.

Now, using Propositions 3.2 and 3.7, we have following:

Theorem 3.1. Let M be a biharmonic Lorentz hypersurface in the pseudo Euclidean space Ey", having non-diagonal
shape operator given by (2.11) with at most three distinct principal curvatures. Then M7 is not proper biharmonic.
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