
Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
Volume 68, Number 2, Pages 2079—2093 (2019)
DOI: 10.31801/cfsuasmas.586095
ISSN 1303—5991 E-ISSN 2618-6470

Available online: July 3, 2019

http://communications.science.ankara.edu.tr/index.php?series=A1

POSITION VECTORS OF CURVES WITH RECPECT TO
DARBOUX FRAME IN THE GALILEAN SPACE G3

TEVFİK ŞAHİN AND BUKET CEYLAN DİRİŞEN

Abstract. In this paper, we investigate the position vector of a curve on the
surface in the Galilean 3-space G3. Firstly, the position vector of a curve with
respect to the Darboux frame is determined. Secondly, we obtain the standard
representation of the position vector of the curve with respect to Darboux
frame in terms of the geodesic, normal curvature and geodesic torsion. As a
result of this, we define the position vectors of geodesic, asymptotic and normal
line along with some special curves with respect to Darboux frame. Finally,
we elaborate on some examples and provide their graphs.

1. Introduction

The fundamental theorem of curves state that curves are determined by curva-
tures [1]. Thus, curvature functions provide us with some special and important
information about curves. For example, a circular helix is a geometric curve with
curvature κ ≡ const . 6= 0, torsion τ ≡ const . 6= 0 [2]. Straight lines and circles
are curves that κ ≡ 0 and κ ≡ cons., τ ≡ 0, respectively. Also, these curves
are degenerate helices. Helices appear in many different branch of science such as
engineering, biology, chemistry, CAD, etc.
In addition, curvature functions give us information about not only curves but

also surfaces on which curves lie. The geodesic curvature κg, normal curvature
κn and geodesic torsion τg charactarize geodesic, asymptotic curve, and line of
curvature, respectively. The curves emerges from the solution of some important
physical problems. They are also important in the theory of curves and surfaces.
For example, geodesics arise from the problem of finding ’shortest curves’joining
two points of a surface M . It was first considered by Johann Bernoulli (1697).
Obviously this is a typically problem of calculus of variations. Also, a curve C on a
surfaceM is called a geodesic curve or geodesic if its geodesic curvature κg vanishes
identically [1]. In what follows, we state three different definition lines in planes.
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We want to emphasize that geodesics can be seen as extension of this idea to curves
in surfaces.
A "line" on a surface can be seen as extension of the familiar properties of lines

in the plane: For example, lines are (1) the curves of shortest length joining two
points (Archimedes). (2) The curves of plane curvature identically zero (Huygens,
Leibniz, Newton). (3) The curves whose tangent and its derivative are linearly
dependent [2].
As stated in [3], the problem of the determination of the position vector of a

space curve with respect to the Frenet frame is still open in the Euclidean space.
Generally, it is hard to solve this problem. However, it is solved for some special
curves such as plane curves, helix and slant helix [4, 5, 6]. On the other hand, in
the Galilean space G3, the foregoing problem is solved for all curves [3].
The main aim of this study is to solve the above problem for all curves on

a surface in G3 with respect to the Darboux Frame. Firstly, we determine the
position vector of a curve on a surface in G3 in terms of geodesic, normal curvature
and geodesic torsion with respect to the Darboux and standard frame. Secondly,
we shall give position vectors of some special curves such as geodesic, asymptotic
curve, line of curvature on a surface in G3.
Also, we will relate foregoing curves with helix, Salkowski curve and anti-Salkowski

curve (see (30) ). That is, we shall give special cases of these curves such as: geo-
desics that are circular helix, genaralized helix or Salkowski, etc. Furthermore, we
provide graphs of some special curves.
Last but not least, we want to emphasize that the results of this study can be

extended to families of surfaces that have common geodesic curve.

2. Preliminaries

As it is well known, Galilean geometry is associated with the Galilean principle
of relativity. The Galilean space G3 is one of the Cayley-Klein spaces equipped
with the projective metric of signature (0, 0,+,+) [7]. The absolute figure of the
Galilean space is the ordered triple {w, f, I}, where w is an ideal (absolute) plane,
f is a line (absolute line) in w, and I is a fixed eliptic involution of points of f .
In non-homogeneous coordinates the group of motion of G3 (i.e. the group of

isometries of G3) has the form define :

x = a1 + x,

y = a2 + a3x+ y cosϕ+ z sinϕ, (1)

z = a4 + a5x− y sinϕ+ z cosϕ,

where a1, a2, a3, a4, a5, and ϕ are real numbers [8]. If the first component of a vector
is not zero, then the vector is called as non-isotropic, otherwise it is called isotropic
vector [8].
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The scalar product of two vectors v = (v1, v2, v3) and w = (w1, w2, w3) in G3 is
defined by

v ·G w =
{
v1w1, if v1 6= 0 or w1 6= 0
v2w2 + v3w3, if v1 = 0 and w1 = 0 .

If v ·Gw = 0, then v and w are perpendicular. In particular, every isotropic vector
is perpendicular to every non-isotropic vector. The norm of v is defined by

‖v‖G =
√
|v ·G v|.

Let I ⊂ R and let α : I → G3 be a curve parameterized by arc length (we abbreviate
as p.b.a.l) with curvature κ > 0 and torsion τ . If α is a curve p.b.a.l. that is,

α (x) = (x, y (x) , z (x)) ,

then the Frenet frame fields are given by

T (x) = α′ (x) ,

N (x) =
α′′(x)

‖α′′(x)‖G
(2)

B (x) = T (x)×G B(x) (3)

=
1

κ (x)
(0,−z′′ (x) , y′′ (x)) ,

where κ (x) and τ (x) are defined by

κ (x) = ‖α′′(x)‖G, τ (x) =
det (α′ (x) , α′′ (x) , α′′′ (x))

κ2 (x)
. (4)

Also, where ×G is the Galilean cross product defined by

v ×G w =

∣∣∣∣∣∣
0 e2 e3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ (5)

for v =(v1, v2, v3) and w =(w1, w2, w3) [9].
The vectors T,N and B are called the tangent, the principal normal and the

binormal vector field, respectively [9]. Therefore, the Frenet-Serret formulae can
be written as TN

B

′ =
0 κ 0
0 0 τ
0 −τ 0

TN
B

 . (6)

Frame fields constitute a very useful tool for studying curves and surfaces. How-
ever, the Frenet frame T,N,B of α is not useful to describe the geometry of surface
M . Since N and B in general will be neither tangent nor perpendicular to M.
Therefore, we require another frame of α for study the relation between the geom-
etry of α and M . There is such a frame field that is called Darboux frame field of
α with respect to M . The Darboux frame field consists of the triple of vector fields
T,Q, n. The first and last vector fields of this frame T and n are a unit tangent
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vector field of α and unit normal vector field of M at the point α(x) of α. Let
Q = n×G T be the tangential-normal.

Theorem 1. Let α : I ⊂ R → M ⊂ G3 be a unit-speed curve, and let T, Q, n be
the Darboux frame field of α with respect to M. Then

TQ
n

′ =
0 κg κn
0 0 τg
0 −τg 0

TQ
n

 . (7)

where κg and κn give the tangential and normal component of the curvature vector,
and these functions are called the geodesic and the normal curvature, respectively
[10].

Proof. We have

T ′ = (T ′ ·G Q)Q+ (T ′ ·G n)n
= (α′′ ·G Q)Q+ (α′′ ·G n)n
= κgQ+ κnn.

(8)

The other formulae are proved in a similar fashion. �

Also, the equation (8) implies the important relations

κ2(x) = κ2g(x) + κ
2
n(x), τ(x) = −τg(x) +

κ′g(x)κn(x)− κg(x)κ′n(x)
κ2g(x) + κ

2
n(x)

(9)

where κ2(x) and τ(x) are the square curvature and the torsion of α, respectively.
We refer to [8, 9, 11, 12] for detailed treatment of Galilean and pseudo-Galilean
geometry.

3. Position vectors of a curve in Galilean space

In this section, we will get an arbitrary curve on a surface in G3. We will analyze
position vector of the curve with respect to the Darboux and standard frame in G3.
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Theorem 2. The position vector β(x) of an arbitrary curve on a surface with
respect to the Darboux frame in the Galilean space G3 is given by:

β(x) = (x+ c1)T+

{
− (x+ c1)κn(x)

τg(x)
+

(
c2 −

∫
f(x)τg(x) sin [t(x)] dx

)
sin [t(x)]

−
(
c3 +

∫
f(x)τg(x) cos [t(x)] dx

)
cos [t(x)]

}
Q

+

{(
c2 −

∫
f(x)τg(x) sin [t(x)] dx

)
cos [t(x)]

+

(
c3 +

∫
f(x)τg(x) cos [t(x)] dx

)
sin [t(x)]

}
n

(10)

where f(x) = λ1(x)κg(x)
τg(x)

−
(
λ1(x)κn(x)
τg(x)

)′
1

τg(x)
and t(x) =

∫
τg(x) dx.

Proof. Let β(x) be an arbitrary curve on a surface in the G3, then, we may express
its position vectors with respect to the Darboux frame as follows:

β(x) = λ1(x)T+ λ2(x)Q+ λ3(x)n (11)

where λ1(x), λ2(x) and λ3(x) are differentiable functions of x ∈ I ⊂ R. By differ-
entiating (11) and using (7), we get

λ′1(x)− 1 = 0
λ1(x)κg(x) + λ

′
2(x)− λ3(x)τg(x) = 0

λ1(x)κn(x) + λ2(x)τg(x) + λ
′
3(x) = 0

. (12)

The first equation of (12) leads to

λ1(x) = x+ c1 (13)

where c1 is an arbitrary real constant. To solve (12) for λi, we use the following
change of variable t =

∫
τg(x)dx so that

λ1(t) = (λ1 ◦ x)(t),
τg(t) = (τg ◦ x)(t),

λ2(t) = −λ1(t)κn(t)τg(t)
− λ̇3(t).

(14)

Here, "˙" stands for derivative with respect to t.
Substituting (14) into (12) we get the following equation

λ̈3(t) + λ3(t) =
λ1(t)κg(t)

τg(t)
−
(
λ1(t)κn(t)

τg(t)

)̇
. (15)
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The general solution becomes

λ3(t) =

[
c2 −

∫
f(t) sin tdt

]
cos t+

[
c3 +

∫
f(t) cos tdt

]
sin t (16)

where c2, c3 are arbitrary real constants and f(t) =
λ1(t)κg(t)
τg(t)

−
(
λ1(t)κn(t)
τg(t)

)̇
. By

differentiating (16) and plug the resulting equation into (14), we obtain

λ2(t) = −
λ1(t)κn(t)

τg(t)
+

[
c2 −

∫
f(t) sin tdt

]
sin t−

[
c3 +

∫
f(t) cos tdt

]
cos t. (17)

As a result the equations (16) and (17) becomes

λ2(x) = −
(x+ c1)κn(x)

τg(x)
+

(
c2 −

∫
f(x)τg(x) sin [t(x)] dx

)
sin [t(x)]

−
(
c3 +

∫
f(x)τg(x) cos [t(x)] dx

)
cos [t(x)].

(18)

and

λ3(x) =

(
c2 −

∫
f(x)τg(x) sin [t(x)] dx

)
cos [t(x)]

+

(
c3 +

∫
f(x)τg(x) cos [t(x)] dx

)
sin [t(x)]

(19)

where f(x) = λ1(x)κg(x)
τg(x)

−
(
λ1(x)κn(x)
τg(x)

)′
1

τg(x)
and t(x) =

∫
τg(x) dx.

Substituting equations (13), (18) and (19) to (11) we obtain (10). This completes
the proof. �

Theorem 3. The position vector β(x) of an arbitrary curve on a surface with
respect to the standard frame in the Galilean space G3 is computed from the natural
representation form:

β(x) =

(
x,

∫ [ ∫ (
κg(x)Sτg − κn(x)

∫
τg(x)Sτg dx

)
dx

]
dx,

∫ [ ∫ (
κg(x)Cτg − κn(x)

∫
τg(x)Cτg dx

)
dx

]
dx

) (20)

where Cτg = cos
[ ∫

τg(x) dx
]
and Sτg = sin

[ ∫
τg(x) dx

]
.

Proof. If β(x) is a curve on a surface in Galilean space G3, then the Frenet equations
(7) are hold. It is easy to see that the following differential equation is obtained by
using (7). (

1

τg(x)
Q′(x)

)′
= −τg(x)Q(x)
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The above equation can be written in the form

d2Q

dt2
+Q = 0, (21)

where t is the new variable that equals to t =
∫
τg(x) dx.

Thus, we can write Q as follows:

Q =
(
0, sin[θ(t)], cos[θ(t)]

)
(22)

If we substitute (22) into (21), and solve componentwise, we get the following two
equations

θ̇(t) = ±1, θ̈(t) = 0

which lead to θ(t) = ±t = ±
∫
τg(x) dx. Without loss of generality, we can assume

that θ(t) has a positive sign. Then we get

Q(x) =

(
0, sin[

∫
τg(x) dx], cos[

∫
τg(x) dx]

)
. (23)

From (7), we obtain

n(x) = −
∫
τg(x)Q(x) dx

= −
∫
τg(x)

(
0, sin[

∫
τg(x) dx], cos[

∫
τg(x) dx]

)
dx+ c

where c is a constant vector. Since the first component of normal vector is zero,
then we can take c = (0, 0, 0), and then

n(x) =

(
0, cos

(∫
τg(x) dx

)
,− sin

(∫
τg(x) dx

))
(24)

From (23) and (7), we have

T′(x) = κg(x)Q(x) + κn(x)n(x)

= κg(x)

(
0, sin[

∫
τg(x) dx], cos[

∫
τg(x) dx]

)
+ κn(x)

(
0,−

∫
τg(x) sin[

∫
τg(x) dx] dx,−

∫
τg(x) cos[

∫
τg(x) dx] dx

)
=

(
0, κg(x) sin[

∫
τg(x) dx]− κn(x)

∫
τg(x) sin[

∫
τg(x) dx] dx

, κg(x) cos[

∫
τg(x) dx]− κn(x)

∫
τg(x) cos[

∫
τg(x) dx] dx

)
.

(25)
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If we let Cτg = cos[
∫
τg(x) dx] and Sτg = sin[

∫
τg(x) dx], then we have

T′(x) =

(
0, κg(x)Sτg − κn(x)

∫
τg(x)Sτg dx, κg(x)Cτg − κn(x)

∫
τg(x)Cτg dx

)
.

(26)
Taking the integral of (26) with respect to, we get

T(x) =

(
0,

∫ (
κg(x)Sτg − κn(x)

∫
τg(x)Sτg dx

)
dx,∫ (

κg(x)Cτg − κn(x)
∫
τg(x)Cτg dx

)
dx

)
+ d

(27)

where d is a constant vector. Since the first component of tangent vector is one,
we can take d = (1, 0, 0), and then

T(x) =

(
1,

∫ (
κg(x)Sτg − κn(x)

∫
τg(x)Sτg dx

)
dx,∫ (

κg(x)Cτg − κn(x)
∫
τg(x)Cτg dx

)
dx

)
.

(28)

Integrating (28) with respect to x, we have

β(x) =

(
x,

∫ [ ∫ (
κg(x)Sτg − κn(x)

∫
τg(x)Sτg dx

)
dx

]
dx,

∫ [ ∫ (
κg(x)Cτg − κn(x)

∫
τg(x)Cτg dx

)
dx

]
dx

) (29)

where Cτg = cos
[ ∫

τg(x) dx
]
and Sτg = sin

[ ∫
τg(x) dx

]
which leads to the equa-

tion (20) and the proof is complete. �

4. Applications

We begin a study of important special curves lying on surfaces. For example,
geodesic, asymtotic and curvature (or principal) line. Let β be regular curve on the
oriented surface in G3 with the curvature κ, the torsion τ , the geodesic curvature
κg, the normal curvature κn and the geodesic torsion τg.

Definition 4. We can say that β is

geodesic curve⇐⇒ κg ≡ 0,
asymptotic curve⇐⇒ κn ≡ 0,
line of curvature⇐⇒ τg ≡ 0.
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Also, We can say that β is called:

κ, τ β
κ ≡ 0 =⇒ a straight line.
τ ≡ 0 =⇒ a plane curve.

κ ≡ cons. > 0, τ ≡ cons. > 0 =⇒ a circular helix or W-curve.
τ
κ ≡ cons. =⇒ a generalized helix.

κ ≡ cons., τ 6= cons. =⇒ Salkowski curve [12,13].
κ 6= cons., τ ≡ cons. =⇒ anti-Salkowski curve [13].

(30)

4.1. The position vector of a family of geodesic line in the Galilean space
G3.

Theorem 5. The position vector βg(x) of a family of geodesic line in Galilean
space G3 is given by

βg(x) =

(
x,−

∫ ∫
κn(x)

∫
τg(x)Sτg dx dx dx,

−
∫ ∫

κn(x)

∫
τg(x)Cτg dx dx dx

)
. (31)

Proof. By using κg(x) ≡ 0 in the equation (20), we obtain the above equation. �

Corollary 6. The position vector of a geodesic that is a circular helix is defined
by the equation

βgch(x) =

(
x,− e

c2
cos(cx+c1)+e1x

2+e2x+e3,
e

c2
sin(cx+c1)+f1x

2+f2x+f3

)
where c, c1, e, e1, e2, e3, f1, f2 and f3 are constants.

Proof. By using the definition (4) and the equations (9) in (5), we get the above
equation. �

Corollary 7. The position vector of a geodesic that is a generalized helix is defined
by the equation

βggh(x) =

(
x,

∫ ∫
κn(x)

[
cos
(
d

∫
κn(x)dx

)
+ d1

]
dxdx,

−
∫ ∫

κn(x)
[
sin
(
d

∫
κn(x)dx

)
+ d2

]
dxdx

)
where d, d1 and d2 are constants.

Proof. By using the definition (4) and the equations (9), we obtain τg(x) = dκn(x).
By using this equation in (5), we get the above equation. �
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Corollary 8. The position vector of a geodesic that is a Salkowski curve is defined
by the equation

βgs(x) =

(
x,m

∫ ∫ (
cos
(∫

τg(x)dx
)
+m1

)
dxdx,

−m
∫ ∫ (

sin
(∫

τg(x)dx
)
+m2

)
dxdx

)
where m,m1 and m2 are constants.

Proof. By using the definition (4) and the equations (9), we obtain κn(x) ≡ d(const.)
and τg(x) 6= const.. By using this equation in (5), we get the above equation. �

Corollary 9. The position vector of a geodesic that is a anti-Salkowski curve is
defined by the equation

βgas(x) =

(
x,

∫ ∫ (
κn(x)

[
cos(bx+ b1) + b2

])
dxdx,

−
∫ ∫ (

κn(x)
[
sin(bx+ b1) + b3

])
dxdx

)
where b, b1, b2 and b3 are constants.

Proof. By using the definition (4) and the equations (9), we obtain τg(x) ≡ b(const.)
and κn(x) 6= const.. By using this equation in (5), we get the above equation. �

4.2. The position vector of a family of asymptotic line in the Galilean
space G3.

Theorem 10. The position vector βa(x) of a family of asymptotic line in Galilean
space G3 is given by

βa(x) =

(
x,

∫ ∫
κg(x) sin

(∫
τg(x) dx

)
dx dx,

∫ ∫
κg(x) cos

(∫
τg(x) dx

)
dx dx

) (32)

Proof. By using κn(x) ≡ 0 in the equation (20), we obtain the above equation. �

Corollary 11. The position vector of a asymptotic that is a circular helix is defined
by the equation

βach(x) =

(
x,− e

c2
sin(cx+ c1) + c2x+ c3,−

e

c2
cos(cx+ c1) + c4x+ c5

)
where c, c1, c2, c3, c4, c5 and e are constants.



POSITION VECTORS OF CURVES WRT DARBOUX FRAME 2089

Proof. By using the definition (4) and the equations (9) in (32), we obtain κg(x) ≡
e, τg(x) ≡ c where e and c are constants. By using this relation in (32), we get the
above equation. �

Corollary 12. The position vector of a asymptotic that is a generalized helix is
defined by the equation

βagh(x) =

(
x,−1

k

∫
cos
(
k

∫
κg(x)dx

)
dx+ k1x+ k2,

1

k

∫
sin
(
k

∫
κg(x)dx

)
dx+ k3x+ k4

)

where k, k1, k2, k3 and k4 are constants.

Proof. By using the definition (4) and the equations (9), we obtain τg(x) = kκg(x)
where k is a constant. By using this relation in (32), we get the above equation. �

Corollary 13. The position vector of a asymptotic that is a Salkowski curve is
defined by the equation

βas(x) =

(
x,

∫ ∫ (
e sin

(∫
τg(x)dx

))
dxdx,

∫ ∫ (
e cos

(∫
τg(x)dx

))
dxdx

)

where e is a constant.

Proof. By using the definition (4) and the equations (9), we obtain κg(x) ≡ e(const.)
and τg(x) 6= const.. By using this equation in (32), we get the above equation. �

Corollary 14. The position vector of a asymptotic that is a anti-Salkowski curve
is defined by the equation

βaas(x) =

(
x,

∫ ∫ (
κg(x) sin(dx+ d1)

)
dxdx,

∫ ∫ (
κg(x) cos(dx+ d1)

)
dxdx

)

where d and d1 are constants.

Proof. By using the definition (4) and the equations (9), we obtain τg(x) ≡ d(const.)
and κg(x) 6= const.. By using this equation in (32), we get the above equation. �

4.3. The position vector of a family of line of curvature in the Galilean
space G3.
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Theorem 15. The position vector βc(x) of a family of line of curvature in Galilean
space G3 is given by

βp(x) =

(
x,

∫ ∫ (
c1κg(x)− c2κn(x)

)
dx dx,

∫ ∫ (
c3κg(x)− c4κn(x)

)
dx dx

) (33)

where c1, c2, c3 and c4 are constants.

Proof. By using τg(x) ≡ 0 in the equation (7), we obtain the above equation. �

Corollary 16. The position vector of a line of curvature is a circular helix if and
only if the below system of differential equations is satisfied.

κg(x)κ
′
g(x) + κn(x)κ

′
n(x) = 0,

κn(x)κ
′′
g (x)− κg(x)κ′′n(x) = 0.

(34)

Proof. By using the definition (30) and the equations (9), we get the above equation.
�

Special Case:
If κg(x) and κn(x) are constant functions, then the equation (34) is satisfied.

Therefore, the line of curvature with κg(x) ≡ const. and κn(x) ≡ const. is a
circular helix, and its position vector is defined by

βpch(x) =
(
x, a1x

2 + a2x+ a3, b1x
2 + b2x+ b3

)
(35)

where a1, a2, a3 and b1, b2, b3 are constants.

Corollary 17. The position vector of a line of curvature is a generalized helix if
and only if the below differential equation is satisfied.

κ′′gκ
3
n + κ

′′
gκnκ

2
g − κ2nκgκ′′n − 3κ2nκ′gκ′n−3κnκgκ′g

2
+ 3κnκgκ

′
n
2

− κ3gκ′′n + 3κ2gκ′gκ′n = 0
(36)

Proof. By using the definition (30) and the equations (9), we get the above equation.
�

Corollary 18. The position vector of a line of curvature is a Salkowski curve if
and only if the following equation is satisfied:

κgκ
′
g + κnκ

′
n = 0

Proof. By using the definition (30) and the equations (9), we get the above equation.
�
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Figure 1. The geodesic curve and surface

Corollary 19. The position vector of a line of curvature is a anti-Salkowski curve
if and only if the following equation is satisfied:

κ′′gκ
2
gκn + κ

′′
gκ

3
n − κ′′nκ3g − κ′′nκgκ2n−2κ′g

2
κgκn + 2κ

′
gκ
′
nκ

2
g

−2κ′gκ′nκ2n + 2κ′n
2
κgκn = 0

(37)

Proof. By using the definition (30) and the equations (9), we get the above equation.
�

We now consider an example for geodesic curve on surface along with their
graphs.

Example 20. In (5), if we let κ(x) = sinx and τ(x) ≡ 1, we obtain

α(x) =

(
x,
x− sin(x) cos(x)

4
,
sin(x)2 − x2

4

)
.
A surface on which this curve lies can be taken as follows:

φ(u, v) =

(
u+ v,

u− sin(u+ v) cos(u+ v)
4

,
sin(u+ v)2 − u2

4

)
.

5. Conclusions

This study is obtained the position vectors of all curves on a surface in G3 with
respect to the Darboux Frame. Firstly, the position vector of a curve on a surface in
G3 in terms of geodesic, normal curvature and geodesic torsion with respect to the
Darboux and standard frame is investigated. As result of these, position vectors
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of some special curves such as geodesic, asymptotic curve, line of curvature on a
surface is obtained in G3.
Consequently, relations of foregoing curves with helix, Salkowski curve and anti-

Salkowski curve are given(see (30) ). That is, special cases of these curves such
as: geodesics that are circular helix, genaralized helix or Salkowski, etc is given.
Furthermore, the graphs of some special curves is drawn .
In the light of these results, special smarandache curves with respect to Darboux

frame in G3 is studied in [15]. Also, we want to emphasize that the results of
this study can be extended to families of surfaces that have common geodesic,
asymptotic curve and line of curvature.
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