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Abstract
Cascudo, Cramer, and Xing [Torsion limits and Riemann-Roch systems for function fields
and applications, IEEE Trans. Inf. Theory, 2014] gave a construction of arithmetic secret
sharing schemes by using the torsion limits of algebraic function fields and Riemann-Roch
systems. In this work, we give some new conditions for the construction of arithmetic
secret sharing schemes. Furthermore, we give new bounds on the torsion limits of certain
towers of function fields over finite fields.
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1. Introduction
Secret sharing is a cryptographic mechanism allowing to distribute secret shares among

different parties. This is achieved by a trusted dealer in such a way that only authorized
subsets of the parties can determine the secret [3]. Secret sharing schemes have the
advantage of enabling the user to eliminate the root of trust problem [3,21]. Furthermore,
secret sharing has plenty of privacy preserving real-life applications ranging from access
controls [20], oblivious transfers [23] to biometric authentication schemes [13].

The set of all subsets for a group of users authorized to access to some resources within
a system is called its access structure. If the authorized subsets of a secret sharing scheme
are exactly those sets whose cardinality is larger than a predetermined lower bound, then
the secret sharing scheme is said to have a threshold access structure [10]. Moreover, a
secret sharing scheme is called ideal if the shares have the same size as the secrets [3].
Shamir’s secret sharing scheme is a classical example of an ideal secret sharing scheme
having threshold access structure. Since the shares are computed and reconstructed by
using only linear functions [18], it is also an example of a linear secret sharing scheme
(LSSS). Moreover, an LSSS can be constructed for any access structure [17] following the
notion of general access structures introduced in Ito et al. [16]. However, the shares grow
exponentially in the number of parties, and the optimization of secret sharing schemes for
arbitrary access structures is a difficult problem [3].
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Chen and Cramer [8] introduced an LSSS defined over a finite field using algebraic-
geometry codes (AG-codes). Unlike the general case, this scheme has the advantage that
shares are much smaller than the number of parties since one uses algebraic curves with
many rational points. Therefore, this achieves larger information rate by generalizing
Shamir’s secret sharing scheme into an algebra-geometric setting. One inevitable disad-
vantage (due to the bounds on MDS codes [8]) is that this scheme is an ideal ramp secret
sharing scheme, i.e. a quasi-threshold scheme. In particular, one has the property that
the scheme has t-rejecting and t + 1 + 2g-accepting structure, where g is the genus of the
underlying algebraic curve. For LSSS over finite fields, in [5], an upper bound on the limit
of t is given in some cases.

Cascudo, Cramer, and Xing [4, 6] introduced the notion of arithmetic secret sharing
schemes based on AG-codes which are special quasi-threshold Fq-linear secret sharing
schemes. They can be used as the main algorithmic primitives in realizing information the-
oretically secure multi-party computation schemes (in particular, communication-efficient
secure two-party computations) and verifiable secret sharing schemes [7,9]. More precisely,
it is shown in [8] that asymptotically good arithmetic secret sharing schemes can be used
to achieve constant-rate communication in secure two-party communication by removing
logarithmic terms which appear if one instead uses Shamir’s secret sharing scheme [21].
As argued in [6], as an important primitive, these schemes can also be used in plenty of
other useful applications in cryptography including zero-knowledge for circuit satisfiability
[14] and efficient oblivious transfer [15].

Constructing asymptotically good arithmetic secret sharing schemes is based on some
special sequences of algebraic function fields. Besides the well-known notion of Ihara
limits for constructing asymptotically good towers of function fields, the notion torsion
limits for algebraic function fields is introduced in [6]. Geometrically, in order to con-
struct arithmetic secret sharing schemes with asymptotically good properties, we need
not only to have algebraic curves with many rational points but also to have jacobians
(of corresponding algebraic curves) having comparably small d-torsion subgroups. On the
algebraic side, the torsion limit for a tower of function fields with a given Ihara limit gives
information on the size of d−torsion subgroups of the corresponding degree-zero divisor
class groups. In [6], the authors give asymptotical results improving the classical bounds
of Weil [24] on the size of torsion subgroups of abelian varieties over finite fields. For this
purpose, the existence of solutions for certain Riemann-Roch systems of equations is inves-
tigated. The authors further give new bounds on the torsion limits of certain sequences of
function fields. Consequently, they use these bounds in constructing asymptotically good
arithmetic secret-sharing schemes by weakening the lower bound condition on the Ihara
constant A(q).

Following the lines of [6], the contributions of this work are given as follows:
• We give a necessary condition on the asymptotic constructions of arithmetic se-

cret sharings which is helpful for the security of the construction (i.e. how many
adversaries it can tolerate) by using an important class of towers of function fields
introduced by Bassa et al. depending on the Ihara limit given in [2].

• We then give a simplification of Theorem 2.2 [6, Corollary 4.12] in Theorems 4 and
5 under some conditions which eliminate not only the requirements of computing
the class number h, but also the number of effective divisors with degree r1, r2
(Ar1 , Ar2 , resp.). These new conditions are much easier to verify for a given
function field though making the results less general than [6]. For this purpose,
we mainly use the bound on class number [19] and the bound on the number of
effective divisors [1, Theorem 3.5]. In Theorem 2.2, one needs to know both the
class number h and the values Ar1 , Ar2 of a given function field. In particular,
our improvements imply that it is enough to know the genus g and the number of
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places of degree n ≤ g−1 (which are much easier to estimate) to obtain a sufficient
condition.

In Section 2, we first introduce the preliminaries and notations. We then give definitions
and some results regarding arithmetic-secret sharing schemes (based on AG-codes). We
further investigate the bounds on the torsion limits in this section. In Section 3, we give
an application of these bounds for a family of towers of function fields over finite fields
introduced by Bassa et al. [2]. Finally, Section 4 concludes the paper with new conditions
for the construction of arithmetic secret sharing schemes.

2. Preliminaries
Let F/Fq be a function field over the finite field Fq with q elements, where q is a power

of a prime number p. We denote by g := g(F ) its genus, by Bi(F ) its number of places of
degree i for any i ∈ N, and by P(F ) its set of rational places.

An asymptotically exact sequence of algebraic function fields F = {Fi}i≥0 over a finite
field Fq is a sequence of function fields with gi := g(Fi) → ∞ such that for all m ≥ 1 the
following limit exists:

βm(F) = lim
i→∞

Bm(Fi)
gi

.

It is well-known that any tower of function fields over any finite field is an asymptotically
exact sequence, see for instance [12].

Throughout this paper, we will use the following notations frequently:
• F/Fq: A function field with full constant field Fq.
• An = An(F ): The number of effective divisors of F with degree n, for n ≥ 1. Set

An := 0 for n < 0.
• P(k)(F ): The set of places of F with degree k ∈ N.
• log := ln.
• Div(F ): The group of divisors of F with Div(F ) ⊃ Div0(F ) ⊃ Princ(F ), where

Div0(F ) denotes the group of divisors of F with degree zero and Princ(F ) denotes
the group of principal divisors of F .

• JF = Div0(F )/Prin(F ): The zero divisor class group of F with cardinality |JF | =
h(F ), which is called the class number.

For a positive integer r, let
JF [r] := {[D] ∈ JF : r · [D] = O}

be the r-torsion subgroup of JF , where O denotes the identity element of JF . For each
family F = {F/Fq} of function fields with g(F ) → ∞, the limit

Jr(F) := lim inf
F ∈F

logq |JF [r]|
g(F )

is called the r-torsion limit of the family F. Let a ∈ R and F be the set of sequences {F}
of function fields over Fq such that in each family genus tends to infinity and the Ihara
limit

A(F) = lim
g(F )→∞

B1(F )
g(F )

≥ a for every F ∈ F.

Then the asymptotic quantity Jr(q, a) is defined by
Jr(q, a) := lim inf

F∈F
Jr(F).

It is well-known that the Ihara constant is given by A(q) = lim sup
F

A(F), where F runs

over all infinite families of function fields over Fq. We note that we here only consider
asymptotically exact sequences of function fields over finite fields.
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An (n, t, d, r)-arithmetic secret sharing scheme for Fk
q over Fq is an n-code C for Fk

q such
that t ≥ 1, d ≥ 2, C is t-disconnected, the d powering C∗d is an n-code for Fk

q , and C∗d

is r-reconstructing. This means that the secret sharing scheme is linear with the secret in
Fk

q for every share in Fq such that
• no set of ≤ t parties has any information about the secret,
• if d secrets are shared with the scheme, then for any set of r parties, the product

of the d secrets is a linear function of the vector containing the products of the d
shares which correspond to each party.

These schemes are secret sharing schemes with additional properties regarding the recon-
struction of the product of d secrets given the local products of the respective shares. For
further details and how such schemes may be constructed using function fields with many
places of degree one, see [6]. The results of [6] can be divided into two main categories;
results related to the asymptotic existence of arithmetic secret sharing schemes, and the
conditions for the existence of arithmetic secret sharing schemes.

Firstly, we investigate the bounds on torsion limits, which are only related to the results
in [6] on asymptotically good arithmetic secret sharing and will be revisited in Section 3,
in the following theorem by combining the bounds in Theorems 2.3 and 2.4 of [6]:

Theorem 2.1. Let Fq be a finite field of characteristic p. For any integer r ≥ 2, set
Jr := Jr(q, A(q)). Write r as r = plr′ for some l ≥ 0 and a positive integer r′ coprime to
p. Let c := gcd(r′, q − 1) and γ := l

√
q√

q+1 .

(i) For any r one has Jr ≤ 2 logq r.
(ii) If r | q and q is a square, then Jr ≤ 1√

q+1 logq r.
(iii) If r - (q − 1) and, q is non-square or c > pγ, then Jr ≤ logq r.
(iv) If r - q, r - (q − 1), q is a square, and c ≤ pγ, then

Jr ≤ l
√

q + 1
logq p + logq(cr′).

Proof. We give a complete proof by comparing the results of [6]:
(i) It is well-known from a result of Weil [24] that for any function field F/Fq with

genus g one has |JF [r]| ≤ r2g, and hence assertion (i) always holds.
(ii) Applying [6, Theorem 2.4(ii)] with r = pl and r′ = c = 1 we obtain the inequality

Jr ≤ l
√

q + 1
logq p = 1

√
q + 1

logq r.

(iii) and (iv) When r - (q − 1), [6, Theorem 2.3(ii)] yields to Jr ≤ logq r. Furthermore,
when q is a square, we obtain

Jr ≤ l
√

q + 1
logqr, (2.1)

by [6, Theorem 2.3(iii)]. Using [6, Theorem 2.4(ii)], also the following inequality
holds:

Jr ≤ l
√

q + 1
logq p + logq(cr′). (2.2)

Hence, by inequalities (2.1), (2.2), and substituting the value r = plr′, we get

A := l
√

q + 1
logq p + logq(cr′) − logq r =

−l
√

q
√

q + 1
logq p + logq c.

Since A ≥ 0 if and only if c ≥ pγ , assertion (iv) follows.
�
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We remark that for Theorem 2.1(iv) with c < pγ , [6, Theorem 2.4] gives a better upper
bound on Jr than [6, Theorem 2.3].

Secondly, we revisit the following theorem from [6] which is about the general conditions
required for the existence of arithmetic secret sharing which will be improved in Section
4, under some conditions.

Theorem 2.2 ([6, Corollary 4.12]). Let F/Fq be an algebraic function field. Let d, k, t, n ∈
Z with d ≥ 2, n > 1 and 1 ≤ t < n. Suppose Q1, . . . , Qk, P1, . . . , Pn ∈ P(k)(F ) are pairwise
distinct. If there is an integer s such that

h(F ) >

(
n

t

)
(Ar1 + Ar2 |JF [d]|)

where r1 := 2g−s+t+k−2 and r2 := ds−n+t, then there exists an (n, t, d, n−t)-arithmetic
secret sharing scheme for Fk

q over Fq with uniformity.

3. Torsion-limits of towers
For some cryptographic applications [6], one is interested in the families of function

fields F with positive limit A(F) and small torsion limit Jr(F). To determine the torsion
limit seems to be much harder than determining the Ihara limit. In [6, Theorem 2.6], it
is proved that for all q ≥ 8 except perhaps for q = 11 or 13, A(F) > 1 + J2(F). We here
give a discussion on these limits. We begin with an application of Theorem 2.1 when q is
a square:

Proposition 3.1. Suppose that q = pm is a square (with m ≥ 1 and p prime) and
r = plr′ where gcd(r′, p) = 1. We set c := gcd(r′, q − 1) and γ := l

√
q√

q+1 . Then there exists
a recursive tower of function fields F over Fq such that one has

A(F) ≥ √
q − 1 − B + Jr(F),

where

B =



1√
q+1 logq r if r | q

2 logq r if r - q but r | (q − 1)
logq r if r - q, r - (q − 1), c ≥ pγ

l√
q+1 logq p + log(cr′) otherwise.

Proof. We know from [11] that there exists a recursive tower of function fields F over Fq

with A(F) = √
q − 1. As q is a square, the proof follows easily from Theorem 2.1. �

We now need the following result of Bassa et al. [2]:

Theorem 3.2 ([2, Theorem 1.2]). Let n = 2m + 1 ≥ 3 be an integer and q = pn with a
prime p. There exists a recursive tower of function fields F over Fq such that

A(F) ≥ 2(pm+1 − 1)
p + 1 + ϵ

, where ϵ = p − 1
pm − 1

.

Next, the torsion limit of the tower given in Theorem 3.2 can be estimated by using the
lower bound on the Ihara limit A(F):
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Proposition 3.3. Let n and q be given as in Theorem 3.2. There exists a recursive tower
of function fields F over Fq with the following properties:

(i) If p is odd, then A(F) ≥ A + J2(F), where

A = 2(pm+1 − 1)
p + 1 + ϵ

− 2 logq 2 with ϵ = p − 1
pm − 1

. (3.1)

(ii) If p is even, then A(F) ≥ A + logq 2 + J2(F), where A is given as in Eqn. (3.1).

The proof of Proposition 3.3 is obvious; it follows from Theorems 2.1 and 3.2. Alterna-
tively, the proposition follows from Theorem 3.2 and the fact that J2(F ) ≤ logq 2 if 2 | q
and J2(F ) ≤ 2 logq 2 if 2 - q, which is immediate since for any function field F of genus g

one has JF [2] ≤ 22g in general, and JF [2] ≤ 2g in case char(F ) = 2.

Remark 3.4. More concretely, [6, Theorem 4.16] implies that parameters of the as-
ymptotic constructions of arithmetic secret sharings improve depending on the ratio
A(F)/(1 + J(F)). In particular, a larger κ corresponding to the length of the secret
and the τ corresponding to the security of the construction (how many adversaries it can
tolerate) can be obtained by using Proposition 3.3.

4. New conditions for the construction of arithmetic secret sharing schemes
In this part, we give an improvement of [6, Corollary 4.12] under some conditions.

Before this, we need the following: For an algebraic function field F/Fq with genus g, we
set

∆ := {i : 1 ≤ i ≤ g − 1 and Bi ≥ 1} with δ := |∆|, (4.1)
fix an integer n ≥ 0, and further set

Un := {b = (bi)i∈∆ : bi ≥ 0 and
∑
i∈∆

i · bi = n}. (4.2)

It is well-known that the number of effective divisors of degree n of an algebraic function
field F/Fq is given as follows:

An =
∑

b∈Un

[ ∏
i∈∆

(
Bi + bi − 1

bi

)]
, (4.3)

see for instance [1]. By combining this formula for An with some results of [6] and the
bound on class number given in [19] we obtain the following theorem. This improves the
sufficient conditions on the existence of arithmetic secret sharing schemes with uniformity:

Theorem 4.1. Let F/Fq be a function field of genus g ≥ 2, d, k, t, n ∈ N with d ≥ 2 and
1 ≤ t < n. Set

M := max
{(Bi + ⌊g−1

i ⌋
⌊g−1

i ⌋

)
| i ∈ ∆

}
. (4.4)

Suppose that Q1, . . . , Qk, P1, . . . , Pn ∈ P(1)(F ) are pairwise distinct rational places and

H >

(
n

t

)(
2g

√
q + q + 1 + M δ · d2g), (4.5)

where
H := qg−1(q − 1)2

(q + 1)(g + 1)
and δ is given as in (4.1). Assume further that

1 ≤ ds − n + t ≤ g − 1, (4.6)
where s = 2g + t + k − 3. Then there exists an (n, t, d, n − t)-arithmetic secret sharing
scheme for Fk

q over Fq with uniformity.
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Proof. We first note that |JF [d]| ≤ d2g by Theorem 2.1.
Choose an s ∈ Z such that

r1 := 2g − s + t + k − 2 = 1, r2 := ds − n + t.

Note that r1 = 1 implies Ar1 = A1 = B1. Using the Hasse-Weil bound [22, Theorem 5.2.3]
on B1 and the bound on Ar2 given in [1, Theorem 3.5] one obtains(

n

t

)
(Ar1 + Ar2 |JF [d]|) ≤

(
n

t

)(
B1 +

∏
i∈∆

(
Bi + ⌊g−1

i ⌋
⌊g−1

i ⌋

)
|JF [d]|

)

≤
(

n

t

)(
B1 + M δ|JF [d]| ≤ B1 + M δd2g)

≤
(

n

t

)(
2g

√
q + q + 1 + M δd2g)

< H ≤ h,

by assumption (4.5) and the bound H ≤ h shown in [19]. Now by Theorem 2.2, the proof
follows. �

We now give an example satisfying the conditions of Theorem 4.1. Note that the
parameters in the following example satisfy the conditions in [6, Proposition 4.8].

Example 4.2. Let q := 38, n = 9, d = t = 2, k = 1, and F := Fq(x) be the rational
function field over Fq. Consider the extension field E := F (y) of F where y2+x6+x+1 = 0.
It has genus g(E) = 2 and ∆ = {1}, so δ = 1. Using Magma†, one obtains B1(F ) = 6481,
hence M = 6482, and

H = 29 · 37 · 52 · 412

17 · 193
> 14342347.

Hence, H satisfies condition (4.5):

H ≥
(

n

t

)(
2g

√
q + q + 1 + M δ · d2g) = 3981528.

The condition (4.6) is clearly satisfied. Thus, by Theorem 4.1, we obtain an (9, 2, 2, 7)-
arithmetic secret sharing scheme over F38 with uniformity. Note that E/Fq is a hyperel-
liptic function field.

Next, we give an estimation for the cardinality of Un (see (4.2)), which will be used in
Theorem 4.5. For this, We know that the partitions of a number n is correspond to the
set of solutions (j1, j2, ..., jn) to the Diophantine equation

1j1 + 2j2 + 3j3 + ... + njn = n.

For example, two distinct partitions of 4 in summands can be given by (1, 1, 1, 1), (1, 1, 2)
corresponding to the solutions (j1, j2, j3, j4) = (4, 0, 0, 0), (2, 1, 0, 0), respectively. The
cardinalities of the summands in the partition (1, 1, 2) are j1 = 2 and j2 = 1. We now fix
δ = |∆|, as in (4.1). We need to count the number of partitions of n in summands whose
cardinalities are in ∆. We choose the values j′

is for the δ − 1 largest indices i in ∆. Those
indices are all at least 2 (notice that if 1 ∈ ∆, then it is necessarily the smallest index in
∆). Thus, each ji is at most n/2, i.e., it is within the range [0, n

2 ]. This means, we have
n
2 + 1 choices for each ji. Therefore, we have the following lemma:

Lemma 4.3. |Un| ≤
(

n
2 + 1

)δ−1
.

†Magma Computational Algebra System: Magma Online Calculator,
available under http://magma.maths.usyd.edu.au/calc/
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Remark 4.4. For the applications in arithmetic secret sharing schemes, it is highly desired
to construct other examples with q < n (i.e., improving Shamir’s secret sharing scheme). In
order to find such examples we need algebraic function fields for which B1 is large, however,
almost all Bi, 2 ≤ i ≤ g − 1, are zero so that Conditions (4.5) and (4.6) of Theorem 4.1
simultaneously hold. However, finding such examples may not be easy. For example, the
function field F3(x, y) ⊃ F3(x), with y3 − y − x4 + x2 = 0, over F3 has genus g = 3 and
B2 = 0. Similarly, the function field F5(x, y) ⊃ F5(x), with (x4−1)y4+x3y3+3xy−x4 = 0,
over F5 has g = 4 and B2 = 0 (but B3 = 40). When Be = 0 with e a prime number would
imply that the corresponding curve attains no new points over the extension Fq of degree
e. For a fixed genus g and e prime, assuming Be = 0 and comparing a Hasse-Weil lower
bound over Fqe to an upper bound over Fq yields

qe − 2g
√

qe ≤ q + 2g
√

q.

For instance, for g = 3 (which makes e = 2 the only relevant case to consider) this leads
to q ≤ 9.

Theorem 4.5. Let F/Fq be a function field, d, k, t, n ∈ N with d ≥ 2 and 1 ≤ t < n.
Let 1 ≤ m ≤ g − 1, be such that Bm ≥ Bi for all i ∈ {1, . . . , g − 1}. Suppose that
Q1, Q2, . . . , Qk, P1, P2, . . . , Pn ∈ P(1)(F ) are pairwise distinct rational places and

H >

(
n

t

)(
B1 +

(
n

2
+ 1

)δ−1(e · (Bm + n − 1)
n

)nδ

d2g
)

(4.7)

where H is as in Theorem 4.1, δ is as in (4.1), and e is Euler’s constant. Assume further
that

ds − n + t ≥ 1,

where s = 2g + t + k − 3. Then there exists an (n, t, d, n − t)-arithmetic secret sharing
scheme for Fk

q over Fq with uniformity.

Proof. The proof is similar to that of Theorem 4.1. The main difference is that instead
of M, we use the assumption that Bm ≥ Bi and the bound (4.8) for binomial coefficients.
Note that bi ≤ n for all i ∈ ∆. By applying induction on n the following inequality can
be proven: (

Bm + n − 1
n

)
=

(
Bm + n − 1

Bm − 1

)
(4.8)

≤
(

e · (Bm + n − 1)
n

)n

.

Hence, by applying Lemma 4.3 with n = r2, using (4.3) and (4.8), we obtain that

A1 + Ar2 |JF [d]| = B1 +
∑

b∈Un

∏
i∈∆

(
Bi + bi − 1

Bi − 1

)
|JF [d]|

≤ B1 +
∑

b∈Un

(
Bm + n − 1

Bm − 1

)δ

|JF [d]|

≤ B1 +
(

n

2
+ 1

)δ−1(Bm + n − 1
Bm − 1

)δ

d2g

≤ B1 +
(

n

2
+ 1

)δ−1(e(Bm + n − 1)
n

)nδ

d2g.

Thus, the desired results follows by the assumption (4.7). �
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