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ABSTRACT

In this paper, we consider the projective change o : F — F of metrics of the Kropina space F,, and
the Finsler space F),, respectively. It is known that The Douglas and the Weyl Curvature tensors
remain invariant under the projective change of the Finsler metrics. Moreover, h—curvature tensor
in the Berwald connection is invariant under the a special projective change named as Z—projective
change. M. Fukui and T. Yamada studied in the projective change between two Finsler spaces.
Then, B.D. Kim and H.Y. Park proved that if a symmetric space remains to be symmetric one under
the Z—projective change then the space is of zero curvature.

In present paper, we first investigated in the quantities which are invariant under the Z— projective
change between two Finsler spaces. Then, we obtained the necessary and sufficient conditions for
a projective change o : F — F between a Kropina space F,,(n > 2) and a Finsler space F,,(n > 2) to
be a Z—projective change.
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1. Introduction

A Minkowski norm on a vector space V' is a nonnegative function ' : V' — [0, co) with following properties:
1. F(y) > 0foranyy € Vand F(y) =0<y =0,
2. F(\y) = AF(y), forany A > 0 and any y € V, i.e. F' is positively y—homogeneous of degree one,

3. F(y)is on V\{0} such that the matrix
Lo
gij(y) = ) [F ]ny (v)

is positive definite. On an n—dimesional manifold M, a Finsler metric F' is a C* function on TMy = TM\{0}
such that F,, = Frr, s is a Minkowski norm on T, M for any = € M.

Let F' be a Finsler metric on M. The pair (M, F) is called a Finsler space. In a Finsler space, the metric tensor
is given by

1 9*F?
9ij(®,y) = iw(%y),

where x = z* denotes the coordinates of p € M and (z,y) = (z%,3") denotes the local coordinates of y €
T,MI[8,7].

In local coordinates, the geodesics of F' = F'(x,y) Finsler metrics are characterized by a system of equations:

Pt z( dfx>f
el + 2G"* ( =, dt =0,
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where G is called the geodesics spray coefficients denoted by
G = igil {[F2]zky1yk - [Fz]rl}

and these coefficients are positive functions with y—homogeneous of the second degree. The functions G* gives
a global vector field called spray on T'M[6].

In Finsler geometry, Finsler metrics are separated into several classes according to their geometric properties.
In this work, we concerned with a Finsler space with Kropina metric.

Let ¢ = ¢(s) be a C* positive function on an open interval (—by, by) satisfying

¢(s) — s¢'(s) + (b° = s*)¢"(s) > 0, [s] < b < bo,
where b = a"(2)b;ib; = b;b',b; = b;(x), b= ||Bslla=1+/a"(z)bib; < by and «a = \/a;j(x)y'y?, B = b;(x)y’ respec-

tively, a Riemannian metric and differantial 1—-form[4, 7].
Kropina metric is a special class of (a, 3)—metrics having the form

2
F=%.
B

1.1. Definition of Projective Change

Two Finsler metrics ' and F on a manifold M are said to be (pointwise) projectively related if they have the

same geodesics as point sets. o : F' — F metric change between two Finsler metrics F' and F on a manifold M
is called projective change. Projective change has been characterized using spray coefficients.

Let F,, and F,, be two Finsler spaces. The Finsler metrics F' and F are projectively related to each other if and
only if there exists a scalar function P on T'M. In this case, we can write

= ng + P(Iay)yia
where P is homogeneous of degree one in y and G and G; are the spray coefficients of F and F, respectively[5].

1.2. Relation of Spray Coefficients

The relation between the spray coefficients of («, 3) —metric, qj and the Riemannian metric o, Cff = %F’ R
are given by

i o 09 — s(p¢" + ¢'¢) —2a¢/
G T =T T W6~ 50 + 7~ ] <¢— sg'” *) )
yii ¢¢//
<a T T 566" + 7 ) (1.1)

where I, = I’ (z) are the second kind of Christoffel symbols, and

1 1 . ) ) o .
Tij = 5(% +bji), sij = g(bz‘;j —bjii), 85 =a"s.5, so = sy, s5 = syb,

i i P12 g
s0 = 83", Too = T35y'y’, b7 = a'"b;b;
”"

and ";" denotes the covariant derivative with respect to Levi-Civita connection of the Riemannian a—metric[1].
By usmg this relation we have the following lemma.

Lemma 1.1. The spray coefficients G of the Kropina metric F' and the spray coefficients G* of the Riemannian metric o

are related by
i ;a2 o?so + Broo i a*so+ PBroo
G = Ci ﬁ 50 b+ 23b2 b — a2h? Y- (1.2)

Proof. Since ¢(s) = %, for a Kropina metric, substituting ¢(s) in (1.1), the relation between the spray coefficients
of Kropina and Riemannian metric is obtained as (1.2). O
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By substituting
i i Q2 m i
G; =G 23 so + 2525 b
_ it (qie -0k g @St B )
— G+, (Q_ 55 b g V)
In (1.2), we obtain,
G =G +Py (1.3)

. . ,L . . . . y . . .
which characterizes the spray G is projectively equivalent to G, where projective factor P is

P(z,y) = b% (So + %7’00)- (1.4)

2. Z-Projective Finsler Spaces

The projective change, whose projective factor P(z,y), satisfying the following conditions

_ _ 0P _ 0P r 3P)
P, — PP, =0, p=09P p. — 9P 0P\ 2.1

is called Z—projective change, where the symbol "|" denotes the horizontal covariant derivative with respect
to the Berwald connection BF(G% . GFZJ, 0) of F Finsler metric[2]. The connection coefficients of G ; and GFZ . of

: G - 0G.
BT can be derived from the functions G*, namely G, = 507 and G, = 3 .
Y

2.1. The Quantities Which Are Invariant Under The Z-Projective Change

The Douglas and the Weyl curvature tensors of F;, Finsler space are defined by

h _ ~h 1 haq”ij h h h

Wijk  m 4+ 1 8yk i Yrjk i j J YFrki

and
Wi = Rj, — RS}, — g g0 (R — RoD) o'

respectively, where

Gn‘jk: - 3yk » Mrij Fijr
and

_ 1 m
an—lRm

R is the Ricci curvature(or Ricci scalar)[1].

It is known that The Douglas and the Weyl curvature tensors remain invariant under the projective change
of two Finsler metrics.

In this work, we investigate the other quantities, which are invariant under the Z —projective change between
two Finsler spaces except the Douglas and the Weyl curvature tensors.

Theorem 2.1. Riemannian curvature tensor of a Finsler metric is invariant under the projective change if and only if P,
projective factor of change is satisfied the following equations:

Py, — Prjo =0, (Pk\o = P}cuyl) (2.2)
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Proof. In F,, Finsler space with BF(@ijk, ng, 0) Berwald connection, R’ coefficients of Riemann tensor are
defined by

G PG PG 0G oG

= : 267 — - 2.3
wk oxk Y 01 Oy TG oy oy* oyl Oy 23)
[1].
Under the condition (2.1), the equations (2.3) and (1.3) lead to
R’y = R} + (2P — Peo — PPy)y' — (P — P?)3],, (24)
where P, = % - %357 Py = Py~
Assume that the Riemannian curvature tensor is an invariant than we have
R; k - i‘k .
Thus (2.4) reduces to _ '
(PPy — Pyo)y' — (P — P23} = 0, 25)
where the second term in (2.5) is
Po—P?=(Py— PP)y* =0
and substituting (2.1) into (2.5) we obtain
Py, — Prjo = 0.
Conversely (2.1) and (2.2) in (2.4) we find
Riy =Ry + (2P, — Pyo — PPy’ — (P — P?)5}
= R}, + (P = Pro)y’
which completes the proof. O
Theorem 2.2. R!,, R—curvature tensor of a F, Finsler space is invariant under the Z—projective change.
Proof. Let F,, be a Finsler space with BF(C;_EJ. L G}’J, 0) connection. Differentiating R. , defined by
R ji = kG = 9;Gy, + Gy, Gy = Gy, Gy
with respect to y' give the R—curvature tensor|[3].
RiFljk = 5lR;jk (2.6)
= aquljz —0;Gy, — %alc’gjr + @TjalG;kr + @fkr%z - ngr%l’
here 0, = i, O = 9
WhETe Ik ok F oyF
It is known that, for a Berwald space the following conditions
G 4. =G, =0
holds. Then (2.6) reduces to
Ry, = OiRLji = OkGljy = 0;Glpy + Gl Gy = Gy Gl (2.7)

Under any projective change between two spaces with F and F Finsler metrics, using the relation G =
G + Py of the spray coefficents is obtained as

GL; =G +y'P;+ Po;
;jk = G;jk + 4" P + Pjd), + Pid; (2.8)
NGy = Gy = Gy + Y Prrt + 8, Prt + 6. Pyt + 6}, P,

www.iejgeo.com



On Z-Projective Change of Kropina Spaces

where P, = §,P ve P = 3j P;. Using (2.6) and (2.8), R—curvature tensor of ﬁn is written as

Rk = kG 51 = 0;G 1y — G LOG" 5, + G 0G4 + G, Gy = G Gy
=R+ YOSk + 01 Sk + 5105k — 6,015, (2.9)

where ¥; = P; — PP; and ¥ = Pj, — Py = 3j2k — Bij. Under Z—projective condition, setting ¥; = 0 and
Y;r = 01in (2.9) yields to 4 4
R;ljk = RZFljk’

which completes the proof. O

2.2. Z-Projective Kropina Spaces

A projective change of a Finsler space of zero curvature is also a Finsler space of zero curvature if and only
if the projective factor P satisfies the equation (2.1). In other words, projective change

Theorem 2.3. The necessary and sufficient conditions for which the projective change between a Kropina space Fy,(n > 2)
and a Finsler space F,,(n > 2) is a Z—projective change are

oo = c(z)a?,

b2sf)sq; + Bs's; =0,

b28j|i —cbisj — 8,85 + bQCSji —s"sra;; =0, (2.10)
where ¢ = c(z) is a differentiable fonction satisfying the conditions

b20|i — b, —cs; = 0.

Proof. According to Lemma 1.1, the relation between spray coefficients of Kropina and Riemann space from is

G\ =Gl - Py +9. (2.11)
or putting
G =G+
— i - Goh + ot Iy 212)
we get

G; =G+ Py,
which defines a projective change between F' Kropina metric and F Finsler metric. Leto : ' — Fbea projective
change. If o is a Z—projective change than the projective factor P(z,y) satisfies the conditions
P; — PP, =0, (2.13)

where 1 r
P+ 0%8)
By taking the horizontal covariant derivative of and the partial derivative of P given by
opP r OP
P i = - i T
T o "y

and

respectively in (2.13) we obtain
47”0054{20427"1'0 - yﬂ“oo} + 253042{ [ — 2roor; + b2roop; + 2rio(so — 7‘0)} o® + bﬂ"go}
+ 2520/1{ [bQSO‘i — si(ro + 80) + b?sTrpg — 2307“1} a? + Qyi(bgsgmo — soro)}

+ Baﬁ{QQbQstr — 2b2bisgmo + 2b2yisgsr + 2bisor0} - aSbeisgsT =0 (2.14)
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which denote polynomial equations with 9th-degree. These equations are implicitly in the following form:
AsBt + AuBa® + A3’ 4+ AsBa’ + A1a® =0, (2.15)

where the coefficients of A;,i=1,---,5 are polynomials in y and the subscripts denote the degree of
homogenity with respect to y. It is clear that coefficients are in the form

As = 4droo(20°r0 — Yiroo)

Ay = 2[(—27‘007“1' + b27“00|i =+ 27“i0(80 — 7“0))0(2 + bi’l“go],

Az = 2[(b2$0|i — si(ro + so0) + b2s§rro - 2307”1-)0[2 + 2yi(b2$6rr0 — 5070)],

Ay = a®b?s] s, — 26%b;s(reo + 267Y: 848, + 2bisoro,

Al = —beisgsr.
Since the term A; = —b?b;s}s,. does not contain 3, there must be a scalar function f;(z) such that

bhishs, = Bfi(x). (2.16)
Differentiating both sides of (2.16) with respect to ¢/ and considering
filx) = =b;s"s,

the equation (2.16) can be written as
b;(b*shs, + Bs"s,) =0

or
b?shs, + Bs"s, = 0. (2.17)

On the other hand substituting (2.17) in (2.15) and paying attention to the terms of A, + Ay = —2bb;s{ro +
2b;s0r0, which seemingly does not contain g, it is seen that needed to stasfying,

bi(soro — b*sgrro) = Buar, (2.18)

where wu;; = u;;(7)y’. Differentiating both sides of (2.18) with respect to 3’ and y* and transvecting the
equations obtained by differentiation by ¢/ and b* give

biSkabk - bib2(fT'jTST + 7"7«8;) = bjuikbk + bzul—j (219)

and
b;s"r. = uib", (2.20)

respectively.
Substituting (2.20) into (2.19), we obtain

wij(z) = %[sjrrbr —bjs" T + b2 (rjps” — shry)],

u = uij(v)y’ = %[sorrbr — Bs"ry + b (rors” — sgrr)]. (2.21)

if (2.21) is multiplied by b?, we have
unb' = sorpb" — Bs"r + b2 (rops" — shry).

Then, substituting w;; into (2.15), we obtain

a6{b250|i — si(ro + s0) + b2sfrro — 2sor; — 8" spy; + [% [sombr — Bs"r,
+ b%(rops" — Sgrr)} } + a45{ — 2rgor; + b2r00‘i + 2r;0(s0 — 70)
— b%yl [80T7.br — ﬁSTTT + bZ(TOTST — 867“7.)} } + 04257“00(4ﬂ7“i0 + TOObi)

—268%rg0y: = 0, (2.22)
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which do not contain 3. Then we can write
T T b'L (d (s T
b2sgs — si(ro + s0) + b2 s rr0 — 2507 — 87 sry; + W [sored” + b2 (rors” — shrr)] = Bgi(x). (2.23)

Differentiating (2.23) by 3’ and resulting equation transvecting b’, we find g;(x) fonction as

gi(x) = —s"(8pi +1ri) + 8iTr — b%sirrbr + b%(Zsrrr — s"sp)b;. (2.24)
. 2 .
Consequently, multiplying (2.22) by b* and paying attention to be u;1b* = % (soro — b2s§yrr0), 9i(x)b" = 0, we find
o {at(=s'r;) + & (b?b'rgo); — 2roorsb’ — 215 + 2b%s{ri0) + b7rgy}
= 2Broo(Broo — 2ar0). (2.25)

Forn > 2, a? # 0 (modf3) and b? # 0, term on the right side of (2.25) must be a multiple of a?. According to this,
for the realizing of (2.25) we get
oo = ca’ (2.26)
or
003 — 2rga? = vy, (2.27)

where v; = v;(2)y’ and ¢ = c¢(z) are scalar functions of z. It is easily seen that (2.26) and (2.27) are equivalent
to each other. On the other hand, substituting the conditions rop = ca? and b%sys, + Bs"s, = 0 into (2.14) after
necessarly calculations, we find

625]-” — chisj — s;5; + b%csji — s"spai; =0

and the scalar function ¢(z) satisfying
b2c|i — b, —cs; = 0.
Taking account of this conditions, we find the necessary conditions for a projective change to be a Z—projective
change as
b25657- + Bs"s, =0, roo = ca’

and

b2sj); — cbisj — sis; + b7csj; — s"spaz; = 0.
Conversely, substituting (2.10) conditions into P, — PP; , we find

P; — PP, =0,

which completes the proof. O

Corollary 2.1. In theorem 2.3, the necessary and sufficient conditions for which the projective change between F Kropina
metric with weak Berwald space and a F,, Finsler metric is a Z—projective change are

bzsgsr + Bs"s, =0

and
b2sj); — chisj — sisj + b7csj; — s"spa; =0,

where ¢ = c(x) is a scalar function satisfying the conditions

2 2
bc|ifc b; —cs; =0.
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