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ABSTRACT

Let F 2n = (M,M ′, F ∗) be an even-dimensional pseudo-Finsler manifold. We construct an almost
hypercomplex structure on any chart domain of a certain atlas of M ′ by using a considered non-
linear connection. Then by using the almost hypercomplex structure we define two new families of
Finsler connections. Also we show that for any Finsler connection ∇ there exists a linear connection
D such that the local almost hypercomplex structure is parallel with respect to it.
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1. Introduction

A. Bejancu and H.R. Farran, in [1] and [2] , for a pseudo-Finsler manifold Fm = (M,M ′, F ∗) with a non-linear
connection HM ′ and any two skew-symmetric Finsler tensor fields of type (1, 2) on Fm, introduced a notion
of Finsler connections which named "(HM ′, S, T )−Cartan connections". After them in [3] we reconstruct the
same Finsler connections by using almost complex structures.
On the other hand almost hypercomplex and hypercomplex structures which are important in differential
geometry have many interesting and effective applications in theoretical physics. For example the background
objects of HKT-geometry are hypercomplex manifolds. These spaces appear in N = 4 supersymmetric model
(see [4, 5].). Applications of Riemannian metrics on these spaces persuade us to study the geometry of Finsler
metrics on them (see [6, 7]).
In the present paper we study the relations between Finsler structures and almost hypercomplex structures
in a different viewpoint. We use the almost hypercomplex structures to construct new Finsler connections
on even-dimensional pseudo-Finsler manifolds . For this purpose we construct a local almost hypercomplex
structure by using a considered non-linear connection. Then by using the almost hypercomplex structure we
define two new families of Finsler connections. Also we show that for any Finsler connection ∇ there exists a
linear connection D such that the local almost hypercomplex structure is parallel with respect to it.

2. Preliminaries and notations

Assume that M is a real m-dimensional smooth manifold and TM is the tangent bundle of M . Let M ′ be a
nonempty open submanifold of TM such that π(M ′) = M and θ(M) ∩M ′ = ∅, where θ is the zero section of
TM . Suppose that Fm = (M,M ′, F ∗) is a pseudo-Finsler manifold where F ∗ : M ′ −→ R is a smooth function
which satisfies the following conditions in any coordinate system {(U ′,Φ′) : xi, yi} in M ′, :

• F ∗ is positively homogeneous of degree two with respect to (y1, . . . , ym), i.e., we have

F ∗(x1, . . . , xm, ky1, . . . , kym) = k2F ∗(x1, . . . , xm, y1, . . . , ym)

for any point (x, y) ∈ (U ′,Φ′) and k > 0.
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• At any point (x, y) ∈ (U ′,Φ′), gij are the components of a quadratic form on Rm with q negative
eigenvalues and m− q positive eigenvalues, 0 < q < m (see [1]).

Consider the tangent mapping π∗ : TM ′ −→ TM of the projection map π : M ′ −→ M and define the vector
bundle VM ′ = kerπ∗. A complementary distribution HM ′ to VM ′ in TM ′ is called a non-linear connection or
a horizontal distribution on M ′

TM ′ = HM ′ ⊕ VM ′. (2.1)

In local coordinates let { δ
δxi = ∂

∂xi −N j
i (x, y)

∂
∂yj ,

∂
∂yi }, (i, j = 1 · · ·m) be the canonical basis for TM ′. Let

Fm = (M,M ′, F ∗) be a pseudo-Finsler manifold. Then a Finsler connection on Fm is a pair FC = (HM ′,∇)
where HM ′ is a non-linear connection on M ′ and ∇ is a linear connection on the vertical vector bundle VM ′

(see [1]).

An almost hypercomplex manifold is a 4n-dimensional manifold M with three globally-defined almost
complex structures Ji, i = 1, 2, 3, satisfying the quaternion identities

J1J2 = −J2J1 = J3, (2.2)
J2
i = −IdTM , i = 1, 2, 3. (2.3)

Remark 2.1. From now on we suppose that F 2n = (M,M ′, F ∗) is an even-dimensional pseudo-Finsler manifold.
We use h and v for the projections on HM ′ and VM ′, respectively. Also we use δi and ∂i as δ

δxi
and ∂

∂yi
,

respectively.
Throughout the article, we use the following rules for the indices.

• The indicant a is equal to 1 and 3, only.
• Latin indices (except the alphabets a and n) run from 1 to 2n.
• Greek indices α, β, γ and θ run from 1 to n.
• Any repeated pair of indices (except the alphabets a and n), provided that one is up and the other is

down, is automatically summed.
• The matrix (gij) is the matrix inverse of (gij).

3. New Finsler connections on even-dimensional manifolds

In this section we construct two new families of Finsler connections on M ′. For this reason we consider
an atlas on M ′, also we suppose that HM ′ is a non-linear connection on M ′. Then by using the non-linear
connection we define an almost hypercomplex structure on any chart. After this step we define new Finsler
connections on any chart by using the almost hapercomplex structure . Finally it is enough to paste the local
connections by a partition of unity to have a connection on M ′.
Let A be an atlas on M ′ and (U ′,Φ′) ∈ A. We construct the following almost hypercomplex structure on U ′ by
using non-linear connection HM ′ .

J1(δα) = ∂α J2(δα) = δn+α J3(δα) = −∂n+α

J1(δn+α) = −∂n+α J2(δn+α) = −δα J3(δn+α) = −∂α
J1(∂α) = −δα J2(∂α) = ∂n+α J3(∂α) = δn+α

J1(∂n+α) = δn+α J2(∂n+α) = −∂α J3(∂n+α) = δα

(3.1)

It is easy to show

J2
1 = J2

2 = J2
3 = −IdTU ′ (3.2)

J3 = J1 ◦ J2 = −J2 ◦ J1 (3.3)

Now by using J1 and J3 we construct two linear connections on U ′ as follows.

Theorem 3.1. Let ∇ be a Finsler connection on U ′. The differential operators Da, a = 1, 3, which are defined by

Da
XY := ∇XvY − Ja∇XJahY ∀X,Y ∈ Γ(TU ′) (3.4)

are two linear connections on U ′. Also J1 and J3 are parallel with respect to D1 and D3, respectively.
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Proof. The proof is easy so we omit it.

Let TDa

, a = 1, 3, denotes the torsion tensor of Da. It is simple to see,

TDa

(X,Y ) = (∇XvY −∇Y vX − v[X,Y ])−
Ja(∇XJahY −∇Y JahX − Jah[X,Y ]) ∀X,Y ∈ Γ(TU ′). (3.5)

Now we can introduce two families of new Finsler connections by using J1 and J3.

Theorem 3.2. Suppose that HM ′ is a non-linear connection on M ′ and S and T are two arbitrary skew-symmetric
Finsler tensor fields of type (1, 2) on F 2n. Then there exists a unique linear connection ∇a on V U ′ satisfying the
conditions:

1. ∇a is a metric connection.

2. TDa

, S and T satisfy,

i TDa

(vX, vY ) = S(vX, vY ),
ii hTDa

(hX, hY ) = JaT (JahY, JahX).

Proof. For any X,Y, Z ∈ Γ(TU ′) we define a linear connection ∇a on V U ′ by the following equations.

2g(∇a
vXvY, vZ) = vX(g(vY, vZ)) + vY (g(vZ, vX))− vZ(g(vX, vY ))

+g(vY, [vZ, vX]) + g(vZ, [vX, vY ])− g(vX, [vY, vZ]) (3.6)
+g(vY, S(vZ, vX)) + g(vZ, S(vX, vY ))− g(vX, S(vY, vZ))

and

2g(∇a
hXJahY, JahZ) = hX(g(JahY, JahZ)) + hY (g(JahZ, JahX))

−hZ(g(JahX, JahY )) + g(JahY, Jah[hZ, hX]) (3.7)
+g(JahZ, Jah[hX, hY ])− g(JahX, Jah[hY, hZ])

+g(JahY, T (JahZ, JahX)) + g(JahZ, T (JahX, JahY ))

−g(JahX, T (JahY, JahZ)).

Now we show that g is parallel with respect to ∇a. It is easy to see Ja ◦ v = h ◦ Ja and v ◦ Ja = Ja ◦ h. After
performing some computations for any X,Y, Z ∈ Γ(TU ′) we have,

(∇a
Xg)(vY, vZ) = (∇a

vX+hXg)(vY, vZ)

= vX(g(vY, vZ))− g(∇a
vXvY, vZ)− g(vY,∇a

vXvZ)

+hX(g(vY, vZ))− g(∇a
hXvY, vZ)− g(vY,∇a

hXvZ) = 0.

So ∇a is a metric connection.
Locally we set

∇1
δj∂i = F k

ij∂k ∇3
δj∂i = F̃ k

ij∂k (3.8)

∇1
∂j
∂i = Ck

ij∂k ∇3
∂j
∂i = C̃k

ij∂k (3.9)

S(∂j , ∂i) = Sk
ij∂k T (∂j , ∂i) = T k

ij∂k. (3.10)

In the relation 3.6 let X = ∂j , Y = ∂i and Z = ∂l, then we can obtain the coefficients Ck
ij and C̃k

ij as follows:

C̃k
ij = Ck

ij =
1

2
glk{∂jgil + ∂iglj − ∂lgji + Sh

jlgih + Sh
ijglh − Sh

ligjh}. (3.11)

By attention to the relation 3.1, for computing the coefficients F k
ij and F̃ k

ij we must consider four cases for any
connection ∇a as follows:

F k
αβ , F

k
α n+β , F

k
n+α β , F

k
n+α n+β (3.12)

F̃ k
αβ , F̃

k
α n+β , F̃

k
n+α β , F̃

k
n+α n+β . (3.13)
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The Computation of F k
αβ and F̃ k

n+αβ .
In the equation 3.7 let X = δβ , Y = δα and Z = δθ. Then we have,

2F k
αβgkθ = δβgαθ + δαgθβ − δθgβα + Th

βθgαh + Th
αβgθh − Th

θαgβh (3.14)

2F̃ k
n+α βgk n+θ = δβgn+α n+θ + δαgn+θ n+β − δθgn+β n+α

−Th
n+β n+θgn+α h − Th

n+α n+βgn+θ h + Th
n+θ n+αgn+β h. (3.15)

Now for the same X and Y let Z = δn+θ, after some computations we have

2F k
αβgk n+θ = δβgα n+θ + δαgn+θ β + δn+θgβα (3.16)

+Th
β n+θgαh + Th

αβgn+θh − Th
n+θ αgβh

2F̃ k
n+α βgkθ = δβgn+α θ + δαgθ n+β − δn+θgn+β n+α (3.17)

−Th
n+β θgn+α h − Th

n+α n+βgθh + Th
θ n+αgn+β h.

Now the relations (3.14,3.16) and the relations (3.15,3.17) respectively show that

F k
αβ =

1

2
gkl{δβgαl + δαglβ + Th

βlgαh + Th
αβglh − Th

lαgβh} (3.18)

−1

2
(gkγδγ − gk n+γδn+γ)gβα

F̃ k
n+α β =

1

2
gkl{δβgn+α l + δαgl n+β − Th

n+β lgn+α h − Th
n+α n+βglh (3.19)

+Th
l n+αgn+β h} −

1

2
(gkγδn+γ + gk n+γδγ)gn+β n+α.

The Computation of F k
α n+β and F̃ k

n+α n+β .
Similar to the pervious case in the equation 3.7, let X = δn+β , Y = δα and Z = δθ. Then we have,

2F k
α n+βgkθ = δn+βgαθ − δαgθ n+β + δθgn+β α (3.20)

−Th
n+β θgαh − Th

α n+βgθh + Th
θαgn+β h

2F̃ k
n+α n+βgk n+θ = δn+βgn+α n+θ + δαgn+θ β − δθgβ n+α

−Th
β n+θgn+α h − Th

n+α βgn+θ h + Th
n+θ n+αgβ h. (3.21)

Now for X = δn+β , Y = δα let Z = δn+θ, then we have

2F k
α n+βgk n+θ = δn+βgα n+θ − δαgn+θ n+β − δn+θgn+β α (3.22)

−Th
n+β n+θgαh − Th

α n+βgn+θh + Th
n+θ αgn+βh

2F̃ k
n+α n+βgkθ = δn+βgn+α θ + δαgθ β − δn+θgβ n+α (3.23)

−Th
β θgn+α h − Th

n+α βgθh + Th
θ n+αgβ h.

Now the relations (3.20,3.22) and the relations (3.21,3.23) respectively show that

F k
α n+β =

1

2
gkl{δn+βgαl − δαgl n+β − Th

n+β lgαh − Th
α n+βglh + Th

lαgn+βh}

+
1

2
(gkγδγ − gk n+γδn+γ)gn+β α (3.24)

F̃ k
n+α n+β =

1

2
gkl{δn+βgn+α l + δαgl β − Th

β lgn+α h − Th
n+α βglh

+Th
l n+αgβ h} −

1

2
(gkγδn+γ + gk n+γδγ)gβ n+α. (3.25)

The Computation of F k
n+α β and F̃ k

αβ .
In 3.7 consider X = δβ , Y = δn+α and Z = δθ. Then we have

2F k
n+α βgkθ = δβgn+α θ − δn+αgθ β − δθgβ n+α (3.26)

+Th
β θgn+αh + Th

n+α βgθh − Th
θ n+αgβ h

2F̃ k
αβgk n+θ = δβgα n+θ + δn+αgn+θ n+β − δθgn+β α (3.27)

−Th
n+β n+θgα h − Th

α n+βgn+θ h + Th
n+θ αgn+β h.
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Now for the same X and Y let Z = δn+θ, then we have

2F k
n+α βgk n+θ = δβgn+α n+θ − δn+αgn+θ β + δn+θgβ n+α (3.28)

+Th
β n+θgn+αh + Th

n+α βgn+θh − Th
n+θ n+αgβh

2F̃ k
α βgkθ = δβgα θ + δn+αgθ n+β − δn+θgn+β α (3.29)

−Th
n+β θgα h − Th

α n+βgθh + Th
θ αgn+β h.

Equations (3.26,3.28) and equations (3.27,3.29) respectively show that

F k
n+α β =

1

2
gkl{δβgn+α l − δn+αglβ + Th

βlgn+α h + Th
n+α βglh − Th

l n+αgβh}

+
1

2
(gk n+γδn+γ − gk γδγ)gβ n+α (3.30)

F̃ k
αβ =

1

2
gkl{δβgαl + δn+αgl n+β − Th

n+β lgαh − Th
α n+βglh

+Th
lαgn+β h} −

1

2
(gkγδn+γ + gk n+γδγ)gn+β α. (3.31)

The Computation of F k
n+α n+β and F̃ k

α n+β .
Now for the last time in equation 3.7, let X = δn+β , Y = δn+α and Z = δθ. Then we have,

2F k
n+α n+βgkθ = δn+βgn+α θ + δn+αgθ n+β + δθgn+β n+α (3.32)

−Th
n+β θgn+αh − Th

n+α n+βgθh − Th
θ n+αgn+β h

2F̃ k
α n+βgk n+θ = δn+βgα n+θ + δn+αgn+θ β − δθgβα (3.33)

−Th
β n+θgαh − Th

αβgn+θ h + Th
n+θ αgβh.

Similar to the pervious cases for the same X and Y , let Z = δn+θ, after some computations we have

2F k
n+α n+βgk n+θ = δn+βgn+α n+θ + δn+αgn+θ n+β − δn+θgn+β n+α

−Th
n+β n+θgn+αh − Th

n+α n+βgn+θh + Th
n+θ n+αgn+βh (3.34)

2F̃ k
α n+βgkθ = δn+βgαθ + δn+αgθβ − δn+θgβα − Th

βθgαh

−Th
αβgθh + Th

θαgβh. (3.35)

Now by the equations (3.32,3.34) and (3.33,3.35) we respectively have

F k
n+α n+β =

1

2
gkl{δn+βgn+α l + δn+αgl n+β − Th

n+β lgn+α h

−Th
n+α n+βglh + Th

l n+αgn+β h} (3.36)

+
1

2
(gkγδγ − gk n+γδn+γ)gn+β n+α

F̃ k
α n+β =

1

2
gkl{δn+βgαl + δn+αglβ − Th

βlgαh − Th
αβglh (3.37)

+Th
lαgβh} −

1

2
(gkγδn+γ + gk n+γδγ)gβα.

Now by using the relations Ja ◦ v = h ◦ Ja, v ◦ Ja = Ja ◦ h and 3.5, we have

TDa

(vX, vY ) = ∇vXvY −∇vY vX − [vX, vY ] (3.38)
hTDa

(hX, hY ) = Ja(∇hY JahX −∇hXJahY + Jah[hX, hY ]). (3.39)

Suppose that X,Y ∈ Γ(TU ′) are two arbitrary vector fields on U ′ which have the following representations
in local coordinates:

X = zαδα + zn+αδn+α + wα∂α + wn+α∂n+α (3.40)
Y = z̃αδα + z̃n+αδn+α + w̃α∂α + w̃n+α∂n+α. (3.41)
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After performing some computations we have:

TDa

(vX, vY ) = S(vX, vY ) (3.42)
hTDa

(hX, hY ) = JaT (JahY, JahX). (3.43)

The last equations show that ∇a satisfies the second condition of the theorem.
In this step we show that ∇a is unique. Let ∇̃a be another linear connection on V U ′ satisfying conditions (1)
and (2).
By the equation (∇̃a

vXg)(vY, vZ) = 0 we have

vX(g(vY, vZ)) = g(∇̃a
vXvY, vZ) + g(vY, ∇̃a

vXvZ), (3.44)

and so,

vX(g(vY, vZ)) + vY (g(vZ, vX))− vZ(g(vX, vY )) =

g(2∇̃a
vY vX + T D̃a

(vX, vY ) + [vX, vY ], vZ) (3.45)

+g(T D̃a

(vX, vZ) + [vX, vZ], vY ) + g(T D̃a

(vZ, vY ) + [vZ, vY ], vX),

on the other hand we have, (∇̃a
hX)(vJaY, vJaZ) = 0, which shows that,

hX(g(vJaY, vJaZ)) + hY (g(vJaZ, vJaX))− hZ(g(vJaX, vJaY )) (3.46)

= g(JahT
D̃a

(hX, hY ) + 2∇̃a
hY JahX + Jah[hX, hY ], JahZ)

+g(JahT
D̃a

(hX, hZ) + Jah[hX, hZ], JahY )

+g(−JahT
D̃a

(hZ, hY )− Jah[hZ, hY ], JahX),

where D̃a is the linear connection induced by ∇̃a and theorem 3.1.
The relations 3.45 and 3.46 show that ∇̃a satisfies 3.6 and 3.7, respectively. Therefore ∇a = ∇̃a.

It is a natural question whether we can use J2 to introduce a new connection similar to J1 and J3?
The answer is negative because J2 dose not involve with the non-linear connection and we can not introduce
a connection D2 in a similar way to D1 and D3 but we can have the following theorem.

Theorem 3.3. Suppose that ∇ is a Finsler connection on U ′. Then the differential operator D which is defined by

DXY =
1

2
{∇XvY − J1∇XJ1hY − J2∇XJ2vY − J3∇XJ3hY }, (3.47)

where X,Y ∈ Γ(TU ′), is a linear connection on U ′. Also J1, J2 and J3 are parallel with respect to D.

Proof. For any X,Y, Z ∈ Γ(TU ′) and f ∈ C∞(U ′) we have

DfX+Y Z =
1

2
{f∇XvZ +∇Y vZ − J1(f∇XJ1hZ +∇Y J1hZ)

−J2(f∇XJ2vZ +∇Y J2vZ)− J3(f∇XJ3hZ +∇Y J3hZ)} (3.48)
= fDXZ +DY Z

DX(fY + Z) =
1

2
{Xf(vY ) + f∇XvY +∇XvZ − J1(Xf(J1hY )

+f∇XJ1hY +∇XJ1hZ)− J2(Xf(J2vY ) + f∇XJ2vY

+∇XJ2vZ)− J3(Xf(J3hY ) + f∇XJ3hY +∇XJ3hZ)} (3.49)

=
1

2
(2Xf(vY + hY )) + fDXY +DXZ

= Xf(Y ) + fDXY +DXZ.

Therefore D is a linear connection on U ′.
Now we show that the almost hypercomplex structure is parallel with respect to D.
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Let Y be a vector field on U ′ which have the representation Y = xαδα + yαδn+α + zα∂α + wα∂n+α in local
coordinates. Then by a simple computation we have

(DXJ1)(Y ) = DX(J1(Y ))− J1DXY

=
1

2
{∇XvJ1Y − J1∇XJ1hJ1Y − J2∇XJ2vJ1Y − J3∇XJ3hJ1Y (3.50)

−J1{∇XvY − J1∇XJ1hY − J2∇XJ2vY − J3∇XJ3hY }}
= 0

In a similar way we can show (DXJ2)(Y ) = (DXJ3)(Y ) = 0. Hence J1, J2 and J3 are parallel with respect to
D.
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