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ABSTRACT

Let F?" = (M, M’, F*) be an even-dimensional pseudo-Finsler manifold. We construct an almost
hypercomplex structure on any chart domain of a certain atlas of A/’ by using a considered non-
linear connection. Then by using the almost hypercomplex structure we define two new families of
Finsler connections. Also we show that for any Finsler connection V there exists a linear connection
D such that the local almost hypercomplex structure is parallel with respect to it.
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1. Introduction

A. Bejancu and H.R. Farran, in [1] and [2], for a pseudo-Finsler manifold F™ = (M, M’, F*) with a non-linear
connection HM’ and any two skew-symmetric Finsler tensor fields of type (1,2) on F™, introduced a notion
of Finsler connections which named "(HM’, S, T)—Cartan connections". After them in [3] we reconstruct the
same Finsler connections by using almost complex structures.

On the other hand almost hypercomplex and hypercomplex structures which are important in differential
geometry have many interesting and effective applications in theoretical physics. For example the background
objects of HKT-geometry are hypercomplex manifolds. These spaces appear in N = 4 supersymmetric model
(see [4, 5].). Applications of Riemannian metrics on these spaces persuade us to study the geometry of Finsler
metrics on them (see [6, 7]).

In the present paper we study the relations between Finsler structures and almost hypercomplex structures
in a different viewpoint. We use the almost hypercomplex structures to construct new Finsler connections
on even-dimensional pseudo-Finsler manifolds . For this purpose we construct a local almost hypercomplex
structure by using a considered non-linear connection. Then by using the almost hypercomplex structure we
define two new families of Finsler connections. Also we show that for any Finsler connection V there exists a
linear connection D such that the local almost hypercomplex structure is parallel with respect to it.

2. Preliminaries and notations

Assume that M is a real m-dimensional smooth manifold and 7'M is the tangent bundle of M. Let M’ be a
nonempty open submanifold of 7'M such that 7(M’') = M and 6(M) N M’ = (), where 6 is the zero section of
TM. Suppose that F' = (M, M', F*) is a pseudo-Finsler manifold where F* : M’ — R is a smooth function
which satisfies the following conditions in any coordinate system {(U’, ®’) : 2%, 4"} in M’, :

e F* is positively homogeneous of degree two with respect to (y',...,y™), i.e., we have
Fr(at, .. ™ kyt, o ky™) = K2FS (2 2™yt ™)

for any point (z,y) € (U’',®') and k > 0.
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e At any point (z,y) € (U’,?’), g;; are the components of a quadratic form on R™ with ¢ negative
eigenvalues and m — ¢ positive eigenvalues, 0 < ¢ < m (see [1]).

Consider the tangent mapping =, : TM’' — T'M of the projection map 7 : M’ — M and define the vector
bundle VM’ = ker ... A complementary distribution HM’ to VM’ in TM' is called a non-linear connection or
a horizontal distribution on M’

TM' =HM & VM. @.1)

In local coordinates let {6‘; = 821. — Nij(x,y)a%j, a%ﬂ}’ (i,j = 1---m) be the canonical basis for TM’. Let

F™ = (M,M', F*) be a pseudo-Finsler manifold. Then a Finsler connection on F™ is a pair FF'C = (HM',V)
where HM' is a non-linear connection on M’ and V is a linear connection on the vertical vector bundle V M’
(see [1]).

An almost hypercomplex manifold is a 4n-dimensional manifold M with three globally-defined almost
complex structures J;, i = 1,2, 3, satisfying the quaternion identities

JiJo = —JoJi = J3, (2.2)
J? = —Idry, i=1,2,3. (2.3)

Remark 2.1. From now on we suppose that F?" = (M, M’, F*) is an even-dimensional pseudo-Finsler manifold.
We use h and v for the projections on HM’ and VM’, respectively. Also we use ¢; and 0; as 5%% and %,
respectively.

Throughout the article, we use the following rules for the indices.

The indicant « is equal to 1 and 3, only.

Latin indices (except the alphabets a and n) run from 1 to 2n.

Greek indices «, 3,7 and # run from 1 to n.

Any repeated pair of indices (except the alphabets a and n), provided that one is up and the other is
down, is automatically summed.

The matrix (¢*/) is the matrix inverse of (g;;).

3. New Finsler connections on even-dimensional manifolds

In this section we construct two new families of Finsler connections on M’. For this reason we consider
an atlas on M’, also we suppose that HM’ is a non-linear connection on M’. Then by using the non-linear
connection we define an almost hypercomplex structure on any chart. After this step we define new Finsler
connections on any chart by using the almost hapercomplex structure . Finally it is enough to paste the local
connections by a partition of unity to have a connection on M’.

Let A be an atlas on M’ and (U, ®’) € A. We construct the following almost hypercomplex structure on U’ by
using non-linear connection H M’ .

Jl((soz) = aa JQ((SQ) = 6n+o¢ Jd(éa) = _anJra

Ji (6n+a) = _anJra J2(§n+a) = _504 J3(6n+a) = _aa (3 1)
Jl (aa) = _60¢ JQ(aa) = 8n-i-a J3(aa) = 6n+a ’
Ji (an+a) = 5n+a J2(an+a) = _8(x J3(8n+a) = 6a

It is easy to show

JB = Ji=J=—Idmy (3.2)
Jg - .]1 o J2 == —JQ [©] Jl (33)

Now by using J; and J; we construct two linear connections on U/’ as follows.
Theorem 3.1. Let V be a Finsler connection on U'. The differential operators D, a = 1,3, which are defined by
D%LY :=VxvY — J,VxJ,hY VXY e T(TU) (3.4)

are two linear connections on U'. Also Jy and Js are parallel with respect to D' and D3, respectively.
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Proof. The proof is easy so we omit it. O
Let TP%, a = 1, 3, denotes the torsion tensor of D®. It is simple to see,
TP'(X,Y) = (VxvY —VyuX —u[X,Y]) -
Jo(VxJuhY — Vy J.hX — J.h[X,Y]) VX,Y € D(TU). (3.5)
Now we can introduce two families of new Finsler connections by using J; and Js.

Theorem 3.2. Suppose that HM' is a non-linear connection on M’ and S and T are two arbitrary skew-symmetric
Finsler tensor fields of type (1,2) on F?". Then there exists a unique linear connection V* on VU' satisfying the
conditions:

1. V' is a metric connection.
2. TP", S and T satisfy,

i TP (vX,vY) = S(vX,vY),
ii WTP"(hX,hY) = J,T(J.hY, J.hX).

Proof. For any X,Y,Z € T'(TU’) we define a linear connection V* on VI’ by the following equations.

29(VexvY,wZ) = vX(gwY,vZ))+0Y (g(vZ,vX)) —vZ(g(vX,vY))
+g9(vY, vZ,vX]) + g(wZ, [vX,vY]) — g(vX, [vY,vZ]) 3.6)
+9(vY,S(wZ,vX)) + g(vZ,S(vX,vY)) — g(vX,S(Y,vZ))
and
29(Ve  JohY, JohZ) = hX(g(JuhY, JuhZ)) + hY (g(JahZ, Joh X))
—hZ(g(J hX, J,hY)) + g(JohY, Joh[hZ, hX]) 3.7)

+9(JohZ, Joh[h X, hY)) — g(Joh X, Joh[hY, hZ))
+g(JhY, T(JohZ, Juh X)) + g(JohZ, T(JohX, J,hY))
—g(Jh X, T(JLhY, J,hZ)).

Now we show that g is parallel with respect to V. It is easy to see J, ov =ho J, and vo J, = J, o h. After
performing some computations for any X,Y, Z € I'(TU') we have,

(Vxg)(wY,vZ) = (Vixinxg)(vY,vZ)
= vX(g(wY,v2)) — g(VixvY,vZ) — g(vY,VixvZ)
+hX(g(vY,vZ)) — g(VixvY,vZ) — g(vY, VixvZ) = 0.

So V? is a metric connection.
Locally we set

V5, 0i=Flox V30 =F}o, (3.8)
Vh,0i=Cliox  V3.0i = Clion (3.9)
5(05,0:) = Sfok - T(95,0:) = T} 0. (3.10)

In the relation 3.6 let X = 0;, Y = 0; and Z = 0, then we can obtain the coefficients CZ-’“j and C’fj as follows:
~ 1
Ciy = Cy = 59" {0390 + Oigij — Dugji + Sjigin + Sizom — Siigin}- (3.11)

By attention to the relation 3.1, for computing the coefficients F}; and Fi@- we must consider four cases for any
connection V* as follows:

k k k k
Faﬁ7Fa n+ﬁ7Fn+o¢ ﬂ7Fn+o¢ n+p (312)

Pk ok k k
Fog By g Fova gy Frta ntp (3.13)
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The Computation of F; and FF,_ .
In the equation 3.7 let X = 63, Y = §, and Z = dy. Then we have,

2FFs000 = 0390 + 60905 — 00980 + ThoGan + Tisgon — Tongsn
2F/f+a 89k n+6 = 08Gnta nto T 0agn+0 n+tp — 009n+8 nta
—T 5 nio9ntah = Thva nigdnto b+ Thio niadnis he
Now for the same X and Y let Z = §,,44, after some computations we have
2F 30k nt0 = 089an+0 + 6afn+o 5 + Sntro9pa
+T§ na09ah + Tesgnron — Tivo a98h
2F) o s0k0 = Opgn+a 6+ 0ag ntp — Ont69n+s nta
_Tr}fw 09n+a h — T7}1L+a n+896h + Tghwagnw h-
Now the relations (3.14,3.16) and the relations (3.15,3.17) respectively show that

1
Fclf@ = 59“{55%1 + 0agip + Tﬂhlgah + T(fggzh — Tl gsn}

1
—5(9’”% — " " 6,44) 980

1
F7]f+a 8 = §le{569n+a 1+ 0agl ntp — Tjﬂr,@ 19n+a h — T7]f+a n+B9lh

1
+Tlhn+agn+5 h} - i(gk’)’(sn-i-'y + gk n+75'y)gn+ﬂ nta-

The Computation of F* , ; and F*

+a nt-p*

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

Similar to the pervious case in the equation 3.7, let X = ¢,,43, Y = §, and Z = dy. Then we have,

2F) i g9k0 = On4pYad — 0ago ntp + 609nts o
—Tr}fﬂﬁ o9an — T1 n+p90n + TjoGnts n
2Frlf+a n+ng n+0 = 6’ﬂ+ﬂgﬂ+a n+60 + 6ozgn+9 B — 599ﬁ n+o

—Tél n+09n+a h — TrizL—&-oz BYn+6 h + TS—&-G n+a9B h-
Now for X = 0,45, Y = 6, let Z = §,,19, then we have

2F§ n+pB9k n+6 = 5n+l3ga n+60 — 5agn+9 n+pB — 6n+99n+ﬁ Iy

h h h
7Tn+[3 n+09ah — Ta n+pB9n+0h + Tn+9 a9n+Bh

2F~’7]z€+a n+ﬁgk0 = 5n+ﬁgn+a o+ 5&99 B — 5n+996 n4o
—Tgegnm n=T0 390n + T s 098 b-

Now the relations (3.20,3.22) and the relations (3.21,3.23) respectively show that

1
Folf n+8 = 59k1{6n+5gal - 6(191 n+p — T7£L+5 19ah — TCCL n+BYlh + Tl’&g’rH»ﬂh}

1
+§(9k’y‘5v - gk n+7§n+v)gn+6 o

1
Frlf+a n+8 = §gkl{6n+ﬁgn+a 1+ 6&9[ B — Tﬁ}ngn+a h — TyilL+a BYih

1 n
+Tlhn+a95 n}— §(gk75n+7 + gk +757)9,3 nta-

The Computation of F*,  ; and F¥,.
In 3.7 consider X = d3, Y = 4o and Z = dy. Then we have

2FF, 0 50k0 = 089n+a 6 — Ontads 8 — 0098 nta
+T£99n+ah + Tg—o—a BY6h — Tghn_g_agﬁ h
2F§59k nt6 = 089a n+6 T Ontadnto ntp — 0609n1s a

h h h
~dn+B8 nt+69a h — Ta n+89n+0 h + Tn+0 a9n+p h-

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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Now for the same X and Y let Z = §,,14, then we have

2Fylf+a ﬁgk n+0 — 6ﬁgn+a n+0 — 5n+o¢gn+9 B + 677,—}-99[3 n+oa (328)
+T£L n+69n+ah + Tr’zlJra BYIn+0h — T72L+0 n+a9Bh
2F% 39k6 = 0890 0+ 0ntago ntp — Ont09n+p o (3.29)

K h h
- nl+ﬂ 090 h — 1o nyp90n + 19 o 9n+8 h-

Equations (3.26,3.28) and equations (3.27,3.29) respectively show that

Er., g = %gkl{éﬁgnﬂx I = Ont+alip + Té‘l9n+a n+ T, p9th — T sa9n}
+%(9k 601y — 9" 76,98 nta (3.30)
Ffﬁ = %gkl{%gaz +0n+adi ntp — T7}1L+6 (Gt — T n+891h
+T ) gnip 1} — %(g’”%ﬂ +6°"6,)gn1p o (3.31)

The Computation of ¥, ;and FF ..

Now for the last time in equation 3.7, let X = 0,43, Y = 0,44 and Z = &y. Then we have,
2Frlf+o¢ n+p9k0 = 571+Bgn+a 6 + Ontale n+p T 699n+5 nta (3.32)
_Tr’LlJrﬁ 09n+ah — TT}LL+O¢ n+p96h — T9hn+a9n+ﬁ h

2F§ n+B9k n+6 = On+B9a n+6 t Ontagn+o g — 009pa (3.33)
—Tﬁh n+09ah — T£ﬁ9n+9 h+ T,’Z'+e a9Bh-

Similar to the pervious cases for the same X and Y, let Z = §,,+¢, after some computations we have

2Fy o nt89k nt0 = OntBYnta n+o T Ontadnto ntB — Ontogn+8 nta
—T 5 nio9nton = Thivo nipdnton + Thie niadntpn (3.34)
2FF ntp9k0 = On+p9ab + Ontagep — Ont09sa — T,gegah
~T" 5901 + Tyo9sn- (3.35)

Now by the equations (3.32,3.34) and (3.33,3.35) we respectively have

Fiianip = %gkl{6n+ﬁgn+a L+ Ontadints — Do 19ntah
—T o nip9h + Ty anis n} (3.36)
+%(g’”5w — 9" " 60 40) Gt 8 nta
Folf n+g8 = %gkl{fsnwgal + Ontagip — Tﬁhlgah - Tc}fgglh (3.37)

1 m
+Tl}&9ﬁh} - §(gk’y‘sn+v + gk L+75“/)gﬁoz~
Now by using the relations J, ov = ho J,, vo J, = J, o h and 3.5, we have

TP (X, 0Y) = VyxvY —VyyvX — [vX,0Y] (3.38)
KWTP" (hX,hY) = Jo(ViyJohX — VixJohY + J.h[hX, hY]). (3.39)

Suppose that X,Y € I'(TU') are two arbitrary vector fields on ¢/’ which have the following representations
in local coordinates:

X = 2%0+ 2" 0 + w00 + w0040 (3.40)
Y = %0+ 23" 0hia + 004 + 0" %004 0. (3.41)
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After performing some computations we have:

TP (vX,vY)
hTP" (hX,hY)

S(vX,vY) (3.42)
JuT(JuhY, JuhX). (3.43)

The last equations show that V¢ satisfies the second condition of the theorem.

In this step we show that V* is unique. Let V¢ be another linear connection on Vi{’ satisfying conditions (1)
and (2). }
By the equation (V?g)(vY,vZ) = 0 we have

vX (g(vY,v2)) = g(VixvY,vZ) + g(vY, ViyvZ), (3.44)

and so,
vX(g(wY,vZ)) +vY(g(wZ,vX)) —vZ(g(vX,vY)) =
g2V vX + TP (vX, 0Y) + [vX,vY],0v2) (3.45)
—l—g(TDa (vX,vZ) 4+ [vX,vZ],vY) + g(TDa (wZ,vY) + [vZ,vY],vX),
on the other hand we have, (@Z ) wJ Y, vJ,Z) = 0, which shows that,
hX (g Y, vJ,Z)) + hY (9(vJo Z,vJ, X)) — hZ(g(v ], X, vJ,Y)) (3.46)
= g(JLhTP" (WX, hY) + 2V J.hX + Joh[hX, Y], J,hZ)
+9(JohTP" (WX, hZ) + Joh[hX, hZ), JohY)
+g(—JohTP" (WZ, hY) — Joh[hZ, hY ], J.hX),

where D is the linear connection induced by V¢ and theorem 3.1. )
The relations 3.45 and 3.46 show that V* satisfies 3.6 and 3.7, respectively. Therefore V¢ = V. O

It is a natural question whether we can use J, to introduce a new connection similar to J; and J3?
The answer is negative because J, dose not involve with the non-linear connection and we can not introduce
a connection D? in a similar way to D' and D? but we can have the following theorem.

Theorem 3.3. Suppose that V is a Finsler connection on U'. Then the differential operator D which is defined by
1
DxY = §{VXUY — JiVx J1hY — oV x JovY — JsVx JshY'}, (3.47)

where X, Y € T'(TU'), is a linear connection on U'. Also J1, Jo and Js are parallel with respect to D.

Proof. Forany X,Y,Z € I'(TU') and f € C>(U’) we have

1
Dfx+yZ = §{va’UZ+Vy’UZ—Jl(fVlehZ—‘rVlehZ)

—Jo(fVxJovZ + Vy JovZ) — J5(fVxJshZ + Vy JshZ)} (3.48)
= fDxZ+DyZ

Dx(fY +2) = %{Xf(vY) + fVXVY + VxvZ — Ji(X f(JLhY)

+fVxJihY + VxJ1hZ) — o (X f(JovY) + fVx JovY
+VXJ2UZ) — J3(Xf(J3hY) + fVnghY + VnghZ)} (349)

_ %(2Xf(vY+hY))+fDXY+DXZ
= XfY)+ fDxY + DxZ.

Therefore D is a linear connection on I/’
Now we show that the almost hypercomplex structure is parallel with respect to D.
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Let Y be a vector field on ¢/’ which have the representation Y = 2%, + y“0n+ta + 204 + W*Optq in local
coordinates. Then by a simple computation we have

(DxJ)Y) = Dx(J1(Y))—J1DxY
1
= i{VXleY — leX Jl thy — JQVX JQ”UJ1Y — ngXJghjly (350)
—J1{VXvY — leX J1hY — JQVX JQUY — JgVX J3hY}}
= 0
In a similar way we can show (DxJ2)(Y) = (DxJ3)(Y) = 0. Hence J;, J> and J3 are parallel with respect to
D. ]
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