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Abstract. An important problem in the theory of Lagrangian submanifolds
is to find non-trivial examples of Lagrangian submanifolds in complex Eu-

clidean spaces with some given special geometric properties. In this article,
we provide a method to construct a large family of Lagrangian surfaces in
the complex pseudo-Euclidean plane C2

1 by using either Legendre curves in

the pseudo-sphere S3
2(1) ⊂ C2

1 or Legendre curves in the anti-de Sitter space

H3
1 (−1) ⊂ C2

1. In the first part of this article, we study basic intrinsic and ex-

trinsic geometric properties of the Lagrangian surfaces in C2
1 obtained via our

construction method. In the second part we completely classify Lagrangian
surfaces of constant curvature and minimal Lagrangian surfaces in C2

1 obtained
from our construction method.

1. Introduction.

An immersion f : Mn → M̃n
s of an n-manifold Mn into a pseudo-Kaehler n-

manifold M̃n
s with complex index s is called a Lagrangian immersion if the complex

structure J of M̃n
s interchanges each tangent space of Mn with its corresponding

normal space. The Lagrangian submanifold Mn in M̃n
s has (real) index s.

Lagrangian submanifolds arise naturally in many physical and geometric situa-
tions. For instance, the systems of partial differential equations of Hamilton-Jacobi
type lead to the study of Lagrangian submanifolds and foliations in the cotan-
gent bundle. Furthermore, Lagrangian submanifolds are part of a growing list of
mathematically rich special geometries that occur naturally in string theory.

An important problem in the theory of Lagrangian submanifolds is to find non-
trivial examples of Lagrangian submanifolds with some given special geometric
properties. For instance, a method was given in [22] to construct an important
family of special Lagrangian submanifolds in Cn with large symmetric groups.
Moreover, a method was introduced in [19] to construct Lagrangian submanifolds
of constant sectional curvature by utilizing twisted products decompositions of real
space forms. In [1, 2], Aiyama introduced a spinor-like representation formula
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which parameterizes immersions through two complex functions F1, F2 and a real
one (the Lagrangian angle β). I. Castro and the author introduced in [3] a con-
struction method to construct a large family of Lagrangian surfaces in the complex
Euclidean plane C2 by using pairs of spherical and hyperbolic curves. Also, the
author has completely classified all Lagrangian surfaces of constant curvature in
complex space forms in a series of papers ([9]-[14] and [16]). Recently, spherical
Lagrangian submanifolds in Cn are completely classified in [18].

A regular curve z : I → S3(1) ⊂ C2 in the ordinary unit hypersphere S3(1) is
called Legendre if ⟨z′(t), iz(t)⟩ = 0 holds identically. In [7], the author introduced a
method to construct flat Lagrangian submanifolds in Cn by using special Legendre
curves in S2n−1(1) ⊂ Cn. In particular, his result implies that, for any unit speed
Legendre curve z : I → S3(1) ⊂ C2 and any real-valued function p(t) defined on
an open interval I containing 0, the map

L(s, t) = sz(t) +

∫ t

0

p(t)z′(t)dt(1.1)

defines a flat Lagrangian surface in C2. This construction method was generalized
in [15] to construct a much wider class of Lagrangian surfaces in C2.

The main purpose of this article is to extend the construction method of [15]
to a method which produces a very large family of Lagrangian surfaces in the
complex pseudo-Euclidean plane C2

1 using either Legendre curves in the pseudo-
sphere S3

2(1) ⊂ C2
1 or Legendre curves in the anti-de Sitter space H3

1 (−1) ⊂ C2
1.

In the first part of this article, we study basic intrinsic and extrinsic properties
of Lagrangian surfaces in C2

1 obtained via our method. In the second part we
completely classify Lagrangian surfaces of constant curvature as well as minimal
Lagrangian surfaces in C2

1 obtained via the construction method of this article.

2. Preliminaries.

Mostly, we follow the notations and definitions from [17]. Throughout this article
we denote by Cn

s the complex pseudo-Euclidean n-space with complex index s
endowed with the complex structure J and the indefinite metric given by

g0 = −
s∑
j=1

dzjdz̄j +
n∑

k=s+1

dzkdz̄k(2.1)

for (z1, . . . , zn) ∈ Cn
s .

2.1. Basic definitions, formulas and notations. Assume that ϕ : M → C2
1

is an isometric immersion of a 2-dimensional pseudo-Riemannian manifold M into
the complex pseudo-Euclidean plane C2

1. We denote the Riemannian connections

of M and C2
1 by ∇ and ∇̃, respectively; and by D the connection on the normal

bundle of the surface. Let ⟨ , ⟩ denote the inner product on C2
1 as well as on M .

The formulas of Gauss and Weingarten are given respectively by

(2.2)
∇̃XY = ∇XY + h(X,Y ),

∇̃Xξ = −AξX +DXξ

for tangent vector fields X,Y and normal vector field ξ. The second fundamental
form h is related to the shape operator Aξ by

⟨h(X,Y ), ξ⟩ = ⟨AξX,Y ⟩ .(2.3)



6 B.-Y. CHEN

The mean curvature vector H of M in C2
1 is defined by H = 1

2 trace h. The length
of H is called the mean curvature function.

If R denotes the Riemann curvature tensor of ∇, then the equations of Gauss
and Codazzi are given respectively by

(2.4)
⟨R(X,Y )Z,W ⟩ = ⟨h(X,W ), h(Y,Z)⟩ − ⟨h(X,Z), h(Y,W )⟩ ,
(∇h)(X,Y, Z) = (∇h)(Y,X,Z),

where X,Y, Z,W are vector fields tangent to M and ∇h is defined by

(∇h)(X,Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).

When M is a Lagrangian surface in C2
1, we also have (cf. [17, 20])

(2.5)
DXJY = J∇XY,

⟨h(X,Y ), JZ⟩ = ⟨h(Y, Z), JX⟩ = ⟨h(Z,X), JY ⟩ .

A vector v in C2
1 is called space-like if v = 0 or ⟨v, v⟩ > 0 and time-like if

⟨v, v⟩ < 0. It is called light-like or null if ⟨v, v⟩ = 0 and v ̸= 0.
A regular curve z : I → C2

1 defined on an open interval I ⊂ R is called space-like
(resp., time-like or null) if z′ is space-like (resp. time-like or light-like) at each
point. A space-like (resp., time-like) curve is said to be of unit speed if ⟨z′, z′⟩ = 1
(resp., ⟨z′, z′⟩ = −1) holds identically.

2.2. Legendre curves. A curve z : I → C2
1 is called a Legendre curve if ⟨z′, iz⟩ = 0

holds identically.
If we put

S3
2(1) = {x ∈ C2

1 : ⟨x, x⟩ = 1},(2.6)

H3
1 (−1) = {x ∈ C2

1 : ⟨x, x⟩ = −1},(2.7)

then S3
2(1) and H3

1 (−1) and LC are called the pseudo sphere, and anti-de Sitter
space , respectively.

We need the following lemmas, analogous to [6, Theorem 4.1(a)], for later use.

Lemma 2.1. We have the following:

(a) If z : I → S3
2(1) ⊂ C2

1 is a unit speed time-like curve in S3
2(1) satisfying the

following second order differential equation:

(2.8) z′′(t)− iλ(t)z′(t)− z(t) = 0

for some nonzero real-valued function λ, then z = z(t) is a Legendre curve.

(b) Conversely, if z : I → S3
2(1) ⊂ C2 is a unit speed time-like Legendre curve,

then it satisfies (2.8) for some function λ.

Proof. Assume that z : I → S3
2(1) ⊂ C2

1 is a unit speed time-like curve which
satisfies (2.8) for some real function λ, not identically zero. Then, by taking the
derivative of ⟨z′, z⟩ = 0 and applying ⟨z, z⟩ = 1 and ⟨z′, z′⟩ = −1, we find

⟨z′′, z⟩ = 1.(2.9)

Therefore, after taking the inner product of (2.8) with z and after applying (2.9),
we have

λ ⟨z′, iz⟩ = 0.(2.10)
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Let us put
U = {x ∈ I : λ(x) ̸= 0}.

If U = I, then (2.10) implies that ⟨z′, iz⟩ = 0 holds identically on I. Thus z defines
a Legendre curve in S3(1) by definition.

Next, suppose that U ̸= I, then we have λ = 0 on I − U . Because ⟨z′, iz⟩′ = 0
on I − U , the continuity implies that ⟨z′, iz⟩ = 0 identically. Therefore z defines a
Legendre curve in S3

2(1).
Conversely, suppose that z is a unit speed time-like Legendre curve in S3

2(1),
then we have ⟨z′, iz⟩ = 0. After taking its derivative of this equation we find

⟨z′′, iz⟩ = 0(2.11)

holds identically. Also, it follows from ⟨z′, z⟩ = 0 and ⟨z′, z′⟩ = −1 that

⟨z′′, z⟩ = 1.(2.12)

On the other hand, since z, iz, z′ and iz′ form a pseudo-orthonormal frame field
satisfying

⟨z, z⟩ = ⟨iz, iz⟩ = 1, ⟨z′, z′⟩ = ⟨iz′, iz′⟩ = −1,(2.13)

we may express z′′ as a linear combination of z, iz, z′, iz′. Thus we have

z′′ = θz + ηiz + µz′ + λiz′(2.14)

for some functions θ, η, µ, λ. Now, by applying (2.12), (2.13) and (2.14), we find
θ = 1, η = µ = 0. Consequently, we obtain (2.8). �

Similarly, we also have the following.

Lemma 2.2. We have the following:

(a) If z : I → H3
1 (−1) ⊂ C2

1 is a unit speed space-like curve in H3
1 (−1) satisfying

(2.15) z′′(t)− iλ(t)z′(t)− z(t) = 0

for some nonzero real-valued function λ, then z = z(t) is a Legendre curve.

(b) Conversely, if z : I → H3
1 (−1) ⊂ C2 is a unit speed space-like Legendre curve,

then it satisfies (2.15) for some function λ.

Proof. This can be done in a similar way as Lemma 2.1. �
Remark 2.1. It is easy to verify that the function λ given in (2.8) (resp., given in
(2.15)) is the curvature function of the unit speed Legendre curve z in S3

2(1) (resp.,
in H3

1 (−1)).

2.3. Another lemma. We also need the following lemma.

Lemma 2.3. Let u, v be any two vectors in the complex pseudo-Euclidean n-space
Cn
s with complex index s and let a, b be any two complex numbers. Then we have

⟨au, bv⟩ = ⟨a, b⟩ ⟨u, v⟩+ ⟨ia, b⟩ ⟨u, iv⟩ ,(2.16)

⟨au, ibv⟩ = ⟨a, b⟩ ⟨u, iv⟩+ ⟨a, ib⟩ ⟨u, v⟩ ,(2.17)

where ⟨a, b⟩ = Re (ab̄) denotes the real part of the complex number ab̄ with b̄ being
the complex conjugate of b, and ⟨u, v⟩ denotes the canonical inner product of u and
v in Cn

s .

Proof. Follows by straightforward computation. �
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3. Intrinsic properties

Let C∗ denote the punched complex line C− {0}. A curve z : I → C2
1 is called

regular if z′ is nowhere zero.
The following result provides a very simple construction method to produce

many Lagrangian surfaces in C2
1 via Legendre curves.

Proposition 3.1. Let f : I1 → C∗ be a regular curve defined on an open interval
I1 of the real line and let z : I2 → S3

2(1) ⊂ C2
1 be a unit speed time-like curve

defined on an open interval I2 containing 0. Then, for any functions p : I2 → C,
we have the following.

(i) If z : I2 → S3
2(1) ⊂ C2

1 is a Legendre curve, then

Lfpz(s, t) = f(s)z(t)−
∫ t

0

p(t)z′(t)dt(3.1)

defines a Lagrangian isometric immersion of M = (Ufz, gfpz) into C2
1, where

Ufz = {(s, t) ∈ I1 × I2 : f(s) ̸= p(t)}(3.2)

and gfpz is the Lorentzian metric given by

gfpz = |f ′(s)|2ds2 − |f(s)− p(t)|2dt2.(3.3)

(ii) Conversely, if f contains no circular arcs in C∗ and if Lfpz is a Lagrangian
immersion, then z : I2 → S3

2(1) ⊂ C2
1 is a Legendre curve in S3

2(1).

Proof. Let f : I → C∗ be a regular curve, z : I2 → S3
2(1) ⊂ C2

1 be a unit speed
time-like curve, and let L = Lfpz be the map defined by (3.1). Then we have

(3.4)
Ls =

∂L

∂s
= f ′(s)z(t),

Lt =
∂L

∂t
= (f(s)− p(t))z′(t).

Since ⟨z, z′⟩ = 0, Lemma 2.1 and (3.4) imply that

(3.5)

⟨Ls, Ls⟩ = |f ′(s)|2,
⟨Ls, Lt⟩ = ⟨if ′, f − p⟩ ⟨z, iz′⟩ ,
⟨Lt, Lt⟩ = −|f − p|2.

If z(t) is a Legendre curve in S3
2(1) ⊂ C2

1, we have ⟨z, z⟩ = 1. Thus it follows
from (3.4) and (3.5) that the induced metric on Ufz is given by (3.3). Since z(t)
is a Legendre curve, (3.4) implies ⟨Ls, iLt⟩ = 0, which shows that L : M2 → C2

1 is
Lagrangian. This proves statement (i).

Conversely, it follows from (3.4) and Lemma 2.3 that

⟨Ls, iLt⟩ = ⟨f ′, f − p⟩ ⟨z, iz′⟩ .

Therefore, if Lfpz is Lagrangian, then we find

⟨f ′(s), f(s)− p(t)⟩ ⟨z(t), iz′(t)⟩ = 0

identically. Let us assume that ⟨z(t), iz′(t)⟩ ̸= 0 on an open subinterval Ĩ ⊂ I1,

then we have ⟨f ′(s), f(s)− p(t)⟩ = 0 holds for all s on Ĩ. Thus we get

|f(s)− p(t)|2s = 0
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which implies that, for each t ∈ I2, the curve f is contained in a circle centered
at p(t) in C∗. This is impossible unless p is a constant. Hence, when f = f(s)
contains no circular arcs, we get ⟨z, iz′⟩ = 0, which is nothing but z = z(t) is a
Legendre curve in S3

2(1) ⊂ C2
1. �

Similarly, we also have the following.

Proposition 3.2. Let f : I1 → C∗ be a regular curve defined on an open interval
I1 and let z : I2 → H3

1 (−1) ⊂ C2
1 be a unit speed space-like curve defined on an

open interval I2 containing 0. Then, for any functions p : I2 → C, we have:

(i) If z : I2 → H3
1 (−1) ⊂ C2

1 is a Legendre curve, then

Pfpz(s, t) = f(s)z(t)−
∫ t

0

p(t)z′(t)dt(3.6)

defines a Lagrangian isometric immersion of M2 = (Ufz, gfpz) into C2
1, where

Ufz = {(s, t) ∈ I1 × I2 : f(s) ̸= p(t)}(3.7)

and gfpz is the Lorentzian metric given by

gfpz = −|f ′(s)|2ds2 + |f(s)− p(t)|2dt2.(3.8)

(ii) Conversely, if f contains no circular arcs and if Pfpz defines a Lagrangian
immersion, then z : I2 → H3

1 (−1) ⊂ C2
1 is a Legendre curve in H3

1 (−1).

Proof. This can be done in the same as Proposition 3.1. �

4. Extrinsic properties.

For a unit speed planar curve f : I → C defined on an open interval I, we define
the curvature function of f on I by

κ(s) = ⟨f ′′(s), if ′(s)⟩ .(4.1)

We may express f in polar form as f = ρ(s)eiθ(s) for some real-valued function θ.

Theorem 4.1. Let f : I1 → C∗ be a unit speed curve, z : I2 → S3
2(1) ⊂ C2

1 a
unit speed time-like Legendre curve, p(t) a complex-valued function defined on I2
containing 0, and let L = Lfpz : (Ufz, gfpz) → C2

1 be the Lagrangian isometric
immersion defined by

Lfpz(s, t) = f(s)z(t)−
∫ t

0

p(t)z′(t)dt.(4.2)

Then we have:

(1) Ls = ∂L/∂s is an eigenvector of the shape operator AJLs with eigenvalue κ,
where κ is the curvature function of the plane curve f = f(s).

(2) Lt = ∂L/∂t is an eigenvector of the shape operator AJLt if and only if p is
constant and f(s) is a part of a line through the point p, i.e., f(s) = cs + p for
some c ∈ C with |c| = 1.

(3) L is a totally geodesic immersion if and only if

(3.1) p is constant, f = f(s) is a part of a line through p, and

(3.2) z : I2 → S3
2(1) ⊂ C2

1 is a geodesic in S3
2(1).



10 B.-Y. CHEN

Proof. Under the hypothesis, it follows from Eq. (3.3) of Proposition 3.1 that the
induced metric on Ufz via Lfpz is the following twisted product Lorentzian metric

gfpz = ds2 − |f(s)− p(t)|2dt2.(4.3)

From (4.2) we find

(4.4)

Ls =
∂L

∂s
= f ′(s)z(t),

Lt =
∂L

∂t
= (f(s)− p(t))z′(t),

Lss = f ′′(s)z(t), Lst = f ′(s)z′(t),

Ltt = (f(s)− p(t))z′′(t)− p′(t)z′(t).

By applying (2.8), (3.3), (4.4) and Lemma 2.3, we find

(4.5)

⟨Lss, iLs⟩ = ⟨f ′′, if ′⟩ = κ,

⟨Lss, iLt⟩ = ⟨Lst, iLs⟩ = 0,

⟨Ltt, iLs⟩ = ⟨Lst, iLt⟩ = ⟨f ′, ip− if⟩ ,
⟨Ltt, iLt⟩ = |f − p|2 ⟨z′′, iz′⟩+ ⟨p′, if − ip⟩ .

Since f(s) is assumed to be of unit speed, we have |f ′(s)| = 1. Let us put

e1 = Ls, e2 =
Lt

|f − p|
.(4.6)

Then e1, e2 form a pseudo-orthonormal frame according to (4.3). Hence, by using
(2.2), (2.3), (4.3), (4.5) and Lemma 2.1, we find

AJe1 =

κ(s) 0

0
⟨f ′, if − ip⟩
|f − p|2

 ,(4.7)

AJe2 =

 0
⟨f ′, ip− if⟩
|f − p|2

⟨f ′, if − ip⟩
|f − p|2

λ(t)

|f − p| +
⟨p′, ip− if⟩
|f − p|3

 ,(4.8)

where λ is the curvature function of z in S3
2(1).

Clearly, statement (1) of this theorem follows from (4.7). For statement (2), we
observe that the third equation in (4.5) implies that Lt is an eigenvector of AJLt if
and only if

⟨f ′(s), ip(s)− if(t)⟩ = 0

holds identically. Since the later condition holds true if and only if the position
vector of γp(t)(s) = f(s) − p(t) is always tangent to the curve γp(t) for any fixed
t. Therefore, for each t the curve γp(t) is a part of a line through the origin of C.
Consequently, there exists a unit vector field c(t) in C such that f(s)−p(t) = c(t)s.
This implies that both c and p are constant. Thus we must have f(s) = cs + p,
Consequently, f(s) is a part of a line through p. This gives statement (2) of the
theorem.

For statement (3), let us assume that L : M2 → C2
1 is totally geodesic. Then

statement (2) implies that p is constant and f = cs + p for some unit complex
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number c. Moreover, it follows from (4.8) that

0 = λ(t)|f(s)− p|2 + ⟨p′, ip− if(s)⟩ = λ(t)|f(s)− p|2.(4.9)

By applying these facts we conclude that λ = 0, which shows that the Legendre
curve z has zero curvature in S3

2(1). Consequently, z is a geodesic in S3
2(1).

The converse follows easily from (4.5) and Lemma 2.1. Thus we have statement
(3) of the theorem. �

Similarly, we have the following.

Theorem 4.2. Let f : I1 → C∗ be a unit speed curve, z : I2 → H3
1 (−1) ⊂ C2

1 a
unit speed space-like Legendre curve, p a complex-valued function defined on I2 ∋ 0,
and P = Pfpz : (Ufz, gfpz) → C2

1 the Lagrangian isometric immersion defined by

Pfpz(s, t) = f(s)z(t)−
∫ t

0

p(t)z′(t)dt.(4.10)

Then we have:

(a) Ps = ∂P/∂s is an eigenvector of the shape operator AJPs with eigenvalue κ,
where κ is the curvature function of the plane curve f = f(s).

(b) Pt = ∂P/∂t is an eigenvector of the shape operator AJPt if and only if p is
constant and f(s) is a part of a line through the point p.

(c) P is a totally geodesic immersion if and only if

(c.1) p is constant, f = f(s) is a part of a line through p, and

(c.2) z : I2 → H3
1 (−1) ⊂ C2

1 is a geodesic in H3
1 (−1).

Proof. Under the hypothesis, it follows from (3.3) of Proposition 3.1 that the in-
duced metric on Ufz via Lfpz is given by (3.8). By applying (2.8), (3.8), (4.10),
Lemma 2.2 and Lemma 2.3, we find

(4.11)

⟨Pss, iPs⟩ = −⟨f ′′, if ′⟩ = −κ,
⟨Pss, iPt⟩ = ⟨Pst, iPs⟩ = 0,

⟨Ptt, iPs⟩ = ⟨Pst, iPt⟩ = ⟨f ′, if − ip⟩ ,
⟨Ptt, iPt⟩ = λ|f − p|2 + ⟨p′, ip− if⟩ .

As in the proof of Theorem 4.1, if we put

e1 = Ls, e2 =
Lt

|f − p|
.(4.12)

Then e1, e2 form a pseudo-orthonormal frame. Hence, after using (2.2), (2.3), (3.8),
(4.11), (4.12) and Lemma 2.1, we obtain

AJe1 =

κ(s) 0

0
⟨f ′, if − ip⟩
|f − p|2

 ,(4.13)

AJe2 =

 0
⟨f ′, ip− if⟩
|f − p|2

⟨f ′, if − ip⟩
|f − p|2

λ(t)

|f − p| +
⟨p′, ip− if⟩
|f − p|3

 ,(4.14)

where λ is the curvature function of z in S3
2(1). Now, we may conclude the theorem

in the same way as Theorem 4.1. �
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5. Classification of Lagrangian surfaces of constant curvature in C2
1

In this section we completely classify Lagrangian surfaces of constant curvature
which are constructed via our construction method.

Theorem 5.1. Let f : I1 → C∗ be a unit speed curve in C∗, p : I2 → C a unit
speed curve in C defined on an open interval I2 ∋ 0 such that p does not meet the
curve f , and let z : I2 → S3

2(1) ⊂ C2
1 be a unit speed time-like Legendre curve.

Then the Lagrangian surface defined by

L = Lfpz(s, t) = f(s)z(t)−
∫ t

0

p(t)z′(t)dt(5.1)

is of constant Gauss curvature K if and only if, up to reparametrization of s and
dilations and rigid motions of of C2

1, one of the following eight cases occurs:

(a) K = 0 and

L = reis/rz(t),

where r is a positive number.

(b) K = 0 and

L = sz(t)−
∫ t

0

p(t)z′(t)dt,

where p is a real-valued function.

(c) K = 0 and

L =
rs1+i/r√
1 + r2

z(t),

where r is a nonzero real number.

(d) K = 1 and

L =
1

2

{
z(t)e2is +

∫ t

0

e−2iB(t)z′(t)dt

}
,

where B(t) is a real-valued function;

(e) K = 1 and

L = a cos s
(√

1−a2 sin2 s+ ia sin s
)
e

i
a

√
1−a2 tanh−1

( √
1−a2 sin s√
1−a2 sin2 s

)
z(t),

where a is a nonzero real number.

(f) K = −1 and

L = (a2e2s − iaes
√
1− a2e2s)e

i
a

√
e−2s−a2z(t),

where a is a positive real number.

(g) K = −1, and

L = az(t) cosh s
(√

1−a2 sinh2 s− ia sinh s
)
e
i

√
1+a2

a tan−1

( √
2+2a2 sinh s√

2+a2−a2 cosh(2s)

)
,

where a is a real number satisfying 0 < a < 1;

(h) K = −1, and

L = az(t) sinh se±
i
a

∫ s
0

√
csch2s−a2 coth2 s ds,

where a is a positive number.
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Proof. Suppose that f : I1 → C∗ is a unit speed curve, p(t) is a complex-valued
function defined on an open interval I2 ∋ 0 such that p does not meet the curve
f , and z : I2 → S3(1) ⊂ C2

1 is a unit speed time-light Legendre curve. Then the
induced metric gfpz via Lfpz is given by

gfpz = ds2 − |f(s)− p(t)|2dt2.

Thus the Gauss curvature K of (Ufz, gfpz) satisfies

Gss = −KG, G = |f(s)− p(t)|.(5.2)

Case (1): K = 0. Solving (5.2) gives

|f(s)− p(t)|2 = (A(t)s+B(t))2(5.3)

for some real-valued functions A(t) and B(t).

Case (1.1): A(t) = 0. In this case, (5.3) reduces to |f(s)− p(t)|2 = B2(t). Thus
we find

⟨f ′(s), f(s)− p(t)⟩ = 0,(5.4)

which implies that

⟨f ′(s), p′(t)⟩ = ⟨f ′′(s), p′(t)⟩ = 0.(5.5)

If f ′′ = 0 holds identically, we get f(s) = as+ b for some complex numbers a, b
with |a| = 1. Substituting this into (5.4) gives

⟨a, p(t)⟩ = ⟨a, as+ b⟩ = s+ ⟨a, b⟩

which is impossible. Therefore we must have f ′′(s) ̸= 0.
Since |f ′(s)| = 1, we have ⟨f ′, f ′′⟩ = 0. Thus f ′′ ̸= 0 and (5.5) imply that p is

constant. Hence, by (5.3), B is a positive real number, say r. Consequently, after
applying a suitable translation on s, we obtain f(s) = p + reis/r, p ∈ C. After
substituting these into (5.1) we obtain case (a) of the theorem.

Case (1.2): A(t) ̸= 0. We obtain from (5.3) and |f ′| = 1 that

⟨f ′(s), f(s)− p(t)⟩ = A2(t)s+A(t)B(t),(5.6)

⟨f ′′(s), f(s)− p(t)⟩ = A2(t)− 1.(5.7)

Case (1.2.a): f ′′ = 0. We have f(s) = as+ c1 for some complex numbers a, c1
with a = eiψ, ψ ∈ R. Thus, after applying some suitable rotation and translation
on C, we get f(s) = s. Also, it follows from (5.7) that A2 = 1. Without loss of
generality, we may assume that A = 1. Now, by substituting these into (5.3) we
conclude that p(t) is the real-valued function satisfying p(t) = −B(t). Consequently,
after applying these facts and (5.1) we get case (b).

Case (1.2.b): f ′′ ̸= 0. Since f ′′(s) = iκf ′ with κ ̸= 0, we obtain from (5.6) and
(5.7) that

f(s) = p(t) + (A2(t)s+A(t)B(t))f ′(s) +

(
A2(t)− 1

κ(s)

)
if ′(s).(5.8)

By differentiating (5.8) with respect to s we find(
1

κ2

)′

=
2A2(t)s

1−A2(t)
+

2A(t)B(t)

1−A2(t)
,(5.9)
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which implies (
1

κ2(s)

)′′

=
2A2(t)

1−A2(t)
.(5.10)

Therefore there exists a nonzero real number a such that(
1

κ2

)′′

= 2a, A2(t) = a(1−A2(t)).

Thus we have
1

κ2
= as2 + c1s+ c2

for some real numbers c1, c2. Hence, after applying a suitable translation on s, we
obtain

1

κ2
= as2 + b, A2 =

a

a+ 1
(5.11)

for some real number b.
From (5.9) and (5.11), we get B = 0. Hence (5.8) reduces to

f(s) = p+

(
as

a+ 1
− i

(a+ 1)κ(s)

)
f ′(s),(5.12)

which shows that p is constant.

If b = 0, we get a > 0. If we put a = r2, r > 0, then we find from (5.11) that
κ = 1/(rs). Substituting this into (5.12) gives

f(s) = p+
r(r − i)sf ′(s)

(r2 + 1)
.

After solving this differential equation we obtain f(s) = p + µs1+i/r for some

complex numbers µ. Since |f ′| = 1, we have |µ| = r/
√
1 + r2. Therefore, after

applying a suitable rigid motion on C, we obtain

f(s) = p+
rs1+i/r√
1 + r2

.

After substituting this into (5.1) we obtain case (c).

If b ̸= 0, then we obtain from (5.11) and (5.12) that

f ′(s) =
(a+ 1)

(
as± i

√
as2 + b

)
a(a+ 1)s2 + b

(f(s)− p)(5.13)

which implies

|f − p|2 =
a(1 + a)s2 + b

(1 + a)2
.(5.14)

By comparing (5.3) and (5.14), we obtain b = 0 which is a contradiction.

Case (2): K = 1. Solving (5.2) gives

|f(s)− p(t)| = A(t) cos(s+B(t))(5.15)

for some real-valued functions A(t) ̸= 0 and B(t). Thus we find

⟨f ′(s), f(s)− p(t)⟩ = −1

2
A2 sin(2s+ 2B),(5.16)

⟨f ′′(s), f(s)− p(t)⟩ = −A2 cos(2s+ 2B)− 1.(5.17)
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If f ′′ = 0, then (5.17) yields

A2(t) cos(2s+ 2B(t)) + 1 = 0,

which is impossible. Thus f ′′ ̸= 0, and f ′(s), f ′′(s)/κ form an orthonormal frame.
Hence, after applying (5.16) and (5.17), we find

f(s) = p(t)−
{
A2

2
sin(2s+ 2B) +

i

κ

(
A2 cos(2s+ 2B) + 1

)}
f ′(s).(5.18)

Now, by differentiating (5.18) with respect to s we get

κ′(s)
(
1 +A2(t) cos(2s+ 2B(t))

)
=

1

2
(κ3 − 4κ)A2(t) sin(2s+ 2B(t)),(5.19)

Case (2.a): κ is constant. In this case, (5.19) implies κ2 = 4. Hence, f lies in a
circle of radius 1/2. Without loss of generality, we may assume κ = 2. Since f(s)
is a unit speed curve, we may also put

f(s) = q +
e2is

2
(5.20)

for some q ∈ C. Substituting this into (5.16) and (5.17) gives⟨
ie2is, q − p(t)

⟩
= −1

2
A2 sin(2s+ 2B),

2
⟨
e2is, q − p(t)

⟩
= A2 cos(2s+ 2B).

These two equations imply that

2q = 2p(t) +A2(t)e−2iB .(5.21)

Combining this with (5.20) yields

(5.22) f(s) = p(t) +
1

2
(A2(t)e−2iB + e2is)

Thus

(5.23) 4|f(s)− p|2 = (A2 − 1)2 + 4A2 cos2(s+B).

Now, by comparing (5.23) and (5.15) we find A = 1. Hence (5.22) reduces to

(5.24) f(s) = p(t) +
e−2iB + e2is

2
.

If B = b is constant, then (5.24) implies that p is constant. Thus, after applying
(5.1) and (5.24), we obtain a special case of case (d) of the theorem.

If B is non-constant, then we find from (5.20) and (5.21) that

(5.25) f(s) = q +
e2is

2
, p(t) = q − e−2iB(t)

2
,

where q ∈ C and B(t) is an arbitrary real-valued function. Consequently, after
applying (5.1) and (5.25), we obtain case (d) for non-constant B.

Case (2.b): κ is non-constant. After solving (5.19) we find

κ(s) = ±
2
(
1 +A2 cos(2s+ 2B)

)√
(1 +A2 cos(2cs+ 2B))2 − e−8b
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for some real number b. Without loss of generality, we may assume that

κ(s) =
2
(
1 +A2 cos(2s+ 2B)

)√
(1 +A2 cos(2s+ 2B))2 − e−8b

.(5.26)

Since κ is non-constant, we see from (5.26) that A ̸= 0 and B is constant. Thus,
after applying a suitable translation on s, we get B = 0. Thus, by substituting
(5.26) into (5.18) we find

f = p− f ′

2

{
A2 sin(2s) + i

√
(1 +A2 cos(2s))2 − e−8b

}
.(5.27)

Thus, by applying |f ′(s)| = 1, we find from (5.27) that

|f − p|2 = A2 cos2s+
(A2 − 1)2 − e−8b

4
.(5.28)

Comparing (5.15) and (5.28) gives (A2 − 1)2 = e−8b. Thus A is a real number say
a, which gives e−8b = (a2 − 1)2. Without loss of generality we may assume a > 0.
Therefore (5.26) and (5.27) yield

f = p− a

2
f ′
{
a sin(2s) + 2i cos s

√
1− a2 sin2 s

}
,(5.29)

κ(s) =
(1 + a2 cos(2s)) sec s

a
√

1− a2 sin2 s
.(5.30)

From (5.29) we obtain

f ′(s) =
(p− f(s))

a

(
a tan s− i

√
sec2 s− a2 tan2 s

)
.(5.31)

After solving (5.31) we obtain

f − p = α cos s
(√

1− a2 sin2 s+ ia sin s
)
e

i
a

√
1−a2 tanh−1

( √
1−a2 sin s√
1−a2 sin2 s

)
(5.32)

for some α ∈ R. It follows from (5.1) and (5.32) that L is given by

L = α cos s
(√

1− a2 sin2 s+ ia sin s
)
e

i
a

√
1−a2 tanh−1

( √
1−a2 sin s√
1−a2 sin2 s

)
z(t).(5.33)

Now, by applying (5.33) and ⟨z, z⟩ = |f ′(s)| = 1, we get ⟨Ls, Ls⟩ = α2/a2. Thus
we may find from (3.3) of Proposition 3.1 that q = a. Consequently, we obtain case
(e) of the theorem.

Case (3): K = −1. Solving (5.2) gives

|f(s)− p(t)| = α(t) cosh s+ β(t) sinh s(5.34)

for some real-valued functions α(t) and β(t).
We divide this into three cases.

Case (3.1): α2 = β2. In this case, (5.34) becomes

|f(s)− p(t)| = a(t)e±s,

where a is a positive function. Without loss of generality, we may assume that

|f(s)− p(t)| = a(t)es(5.35)
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for some nonzero real-valued function. Thus we find

⟨f ′(s), f(s)− p(t)⟩ = a2e2s,(5.36)

⟨f ′′(s), f(s)− p(t)⟩ = 2a2e2s − 1.(5.37)

If f ′′ = 0, then (5.37) gives 2a2(t)e2s = 1 which is impossible. Hence we must
have f ′′ = iκf ′ ̸= 0. Thus, by applying (5.36) and (5.37), we find

f(s) = p(t) +

{
a2e2s +

i

κ
(2a2e2s − 1)

}
f ′(s),(5.38)

which shows that p is a complex number. After differentiating (5.38) with respect
to s and applying f ′′ = iκf ′, we find

κ′(s) =
a2(t)e2sκ(s)(4 + κ2(s))

2a2(t)e2s − 1
.(5.39)

After differentiating (5.39) with respect to t, we find a′(t) = 0. Hence a(t) is a
positive real number. Now, by solving (5.39) for κ we obtain

κ = ± 2b2(2a2e2s − 1)√
1− b4(1− 2a2e2s)2

for some positive real number b. Without loss of generality, we may assume that

κ =
2b2(2a2e2s − 1)√
1− b4(1− 2a2e2s)2

.

After substituting this into (5.38) we obtain

f(s) = p+

{
a2e2s + i

√
1− b4(1− 2a2e2s)2

2b2

}
f ′(s),(5.40)

It follows from (5.40) and |f ′(s)| = 1 that

|f(s)− p(t)|2 = a4e4s +
1− (1− 2a2e2s)2

2b2
,(5.41)

By comparing (5.35) and (5.41), we find b = 1. Therefore (5.40) becomes

f(s) = p+
1

2

{
2a2e2s + i

√
1− (1− 2a2e2s)2

}
f ′(s),(5.42)

Now, after we solve (5.42) for f(s), we obtain

f(s) = p+
δ

a
es(aes − i

√
1− a2e2s)e

i
a

√
e−2s−a2z(t),(5.43)

for some constant δ. It follows from |f ′(s)| = 1 and (5.43) that δ = a2. Therefore,
we conclude from (5.1) and (5.43) that

L = (a2e2s − iaes
√
1− a2e2s)e

i
a

√
e−2s−a2z(t).

This gives case (f) of the theorem.

Case (3.2): α2 > β2. If we put

A(t) =
√
α2 − β2, α = A cosh η, β = A sinh η

for some real-valued function η(t), then (5.34) becomes

|f(s)− p(t)| = A(t) cosh(s+ η),(5.44)
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which implies that

⟨f ′(s), f(s)− p(t)⟩ = A2(t)

2
sinh(2s+ 2η),(5.45)

⟨f ′′(s), f(s)− p(t)⟩ = A2(t) cosh(2s+ 2η)− 1.(5.46)

From (5.46) we get f ′′ = iκf ′ ̸= 0. So, we (5.45) and (5.46) imply that

f(s) = p(t) +

{
1

2
A2(t) sinh(2s+ 2η) +

i

κ

(
A2(t) cosh(2s+ 2η)− 1

)}
f ′(s).(5.47)

Differentiating this equation with respect to s gives

2κ′(s)
(
1−A2(t) cosh(2s+ 2η)

)
+ κ(s)A2(t)(4 + κ2) sinh(2s+ 2η) = 0,(5.48)

which can be written as

A2(t) =
2κ′(s)

2κ′ cosh(2s+ 2η)− κ(4 + κ2) sinh(2s+ 2η)
.(5.49)

By differentiating (5.49) with respect s gives

coth(2s+ 2η) =
(4 + κ2)κ′′ − 3κκ′2

2(4 + κ2)κ′(s)
.(5.50)

Since the right-hand-side of (5.49) depends only on s, η(t) is a real number. Thus,
after applying a suitable translation in s, we have η = 0. Also, we see follows from
(5.49) that A is a positive real number. Consequently, (5.48) yields

2κ′(s)
(
1− a2 cosh(2s)

)
+ κ(s)a2(4 + κ2) sinh(2s) = 0,(5.51)

After solving (5.51) we get

κ(s) = ± 2b2(1− a2 cosh(2s))√
1− b4(1− a2 cosh(2s))2

,

for some positive number b. Without loss of generality, we may assume that

κ(s) =
2b2(1− a2 cosh(2s))√
1− b4(1− a2 cosh(2s))2

.(5.52)

By substituting this into (5.47) and applying A = a and η = 0, we get

f(s) = p+

{
a2

2
sinh(2s)−

i
√
1− b4(1− a2 cosh(2s))2

2b2

}
f ′(s).(5.53)

Since |f ′| = 1, it follows from (5.53) that

|f(s)− p|2 =
1

4

(
1

b4
+ 2a2 cosh(2s)− a4 − 1

)
.(5.54)

On the other hand, we also have

|f − p|2 = a2 cosh2(s).

Now, by comparing this with (5.54), we obtain b2 = 1/(1 + a2). Therefore, we
obtain from (5.53) that

f(s)− p =
1

2

{
a2 sinh(2s)− i

√
(1 + a2)2 − (1− a2 cosh(2s))2

}
f ′(s).(5.55)
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After (5.55) we obtain

f(s)− p = γ cosh s
(√

1− a2 sinh2 s− ia sinh s
)
e
i

√
1+a2

a tan−1

( √
2+2a2 sinh s√

2+a2−a2 cosh(2s)

)(5.56)

for some nonzero real number γ.
From (5.56) we get |f−p|2 = r2 cosh2 s. Comparing this with |f−p|2 = a2 cosh2 s

from before gives r = a. Consequently, we find case (g) from (5.1) and (5.56).

Case (3.3): α2 < β2. If we put

A(t) =
√
β2 − α2, α = A sinh θ, β = A cosh θ,

then (5.34) becomes

|f(s)− p(t)| = A(t) sinh(s+ θ(t))(5.57)

for some real-valued function θ(t). Thus we find

⟨f ′(s), f(s)− p(t)⟩ = A2(t)

2
sinh(2s+ 2θ),(5.58)

⟨f ′′(s), f(s)− p(t)⟩ = A2(t) cosh(2s+ 2θ)− 1.(5.59)

If f ′′ = 0, then (5.59) gives

A2(t) cosh(2s+ 2θ) = 1

for all t which is impossible. So, we must have f ′′ = iκf ′ ̸= 0. Hence it follows
from (5.58) and (5.59) that

f(s) = p(t) +

{
1

2
A2 sinh(2s+ 2θ) +

i

κ

(
A2 cosh(2s+ 2θ)− 1

)}
f ′(s),(5.60)

which is exactly (5.47). Therefore, we can apply exactly the same way as in case
(3.2) to conclude that θ = 0, A(t) is a positive real number, say a, and p(t) is a
complex number. Hence in views of (5.57) we may put

f(s)− p = a sinh seiθ(5.61)

for some real-valued function θ = θ(s, t). From (5.61) and |f ′(s)| = 1, we find

a2θ2s sinh
2 s = 1− a2 cosh2 s,(5.62)

which implies that a2 ≤ 1 due to cosh s ≥ 1.
If a2 = 1, then (5.62) becomes (1 + a2θ2s) sinh

2 s = 0, which is impossible. So,
we must have 0 < a < 1. Hence we find from (5.62) that

θs = ±1

a

√
csch2s− a2 coth2 s.(5.63)

If we put

φ(s) = ±1

a

∫ s

0

√
csch2s− a2 coth2 s ds,(5.64)

then we obtain from (5.63) that

θ(s, t) = φ(s) + ψ(t)

for some real-valued function ψ(t). Substituting this into (5.61) gives

f(s)− p = a sinh sei
(
± 1

a

∫ s
0

√
csch2s−a2 coth2 s ds+ψ(t)

)
,(5.65)



20 B.-Y. CHEN

which shows that ψ is a real number. Hence, after applying a suitable translation
on s, we have ψ = 0. Hence(5.65) reduces to

f(s) = p+ a sinh sei
(
± 1

a

∫ s
0

√
csch2s−a2 coth2 s ds

)
,(5.66)

where p is a complex number, a is a nonzero real number and r is a real number.
Consequently, we obtain case (h) after combining (5.1) and (5.66).

The converse can be verified by straight-forward computation. �

Similarly, we also have the following.

Theorem 5.2. Let f : I1 → C∗ be a unit speed curve, z : I2 → H3
1 (−1) ⊂ C2

1 a
unit speed space-like Legendre curve, and p = p(t) a complex-valued function defined
on K. Then the Lagrangian immersion Lfpz : (Ufz, gfpz) → C2

1 defined by

P = Pfpz(s, t) = f(s)z(t)−
∫ t

0

p(t)z′(t)dt(5.67)

is of constant Gauss curvature K if and only if, up to reparametrization of s and
dilations and rigid motions of of C2

1, one of the following eight cases occurs:

(a) K = 0 and

P = reis/rz(t).

(b) K = 0 and

P = sz(t)−
∫ t

0

p(t)z′(t)dt,

where p is a real-valued function;

(c) K = 0 and

P =
rs1+i/r√
1 + r2

z(t),

where r is a nonzero real number.

(d) K = 1 and

P =
1

2

{
z(t)e2is +

∫ t

0

e−2iB(t)z′(t)dt

}
,

where B(t) is a real-valued function;

(e) K = 1 and

P = a cos s
(√

1−a2 sin2 s+ ia sin s
)
e

i
a

√
1−a2 tanh−1

( √
1−a2 sin s√
1−a2 sin2 s

)
z(t),

where a is a nonzero real number.

(f) K = −1 and

P = (a2e2s − iaes
√
1− a2e2s)e

i
a

√
e−2s−a2z(t),

where a is a positive real number.

(g) K = −1, and

P = az(t) cosh s
(√

1−a2 sinh2 s− ia sinh s
)
e
i

√
1+a2

a tan−1

( √
2+2a2 sinh s√

2+a2−a2 cosh(2s)

)
,

where a is a real number satisfying 0 < a < 1;
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(h) K = −1, and

P = az(t) sinh se±
i
a

∫ s
0

√
csch2s−a2 coth2 s ds,

where a is a positive number.

Proof. This can be proved exactly in the same was as Theorem 5.1. �

6. Classification of minimal Lagrangian surfaces in C2
1.

Let M be a Lagrangian surface in C2
1. If e1, e2 be a pseudo-orthonormal frame

on M , then the mean curvature vector H of M in C2
1 is given by

H =
1

2

2∑
j=1

ϵjh(ej , ej), ϵj = ⟨ej , ej⟩ , j = 1, 2.(6.1)

The Lagrangian surface M is called minimal if H = 0 holds identically.
The following are two examples of Lagrangian minimal surfaces in C2

1.

Example 6.1. Consider the surface M1 in C2
1 defined by(

a
(
cosh

( s
a

)
+ i sinh

( s
a

))
sinh t, a

(
cosh

( s
a

)
+ i sinh

( s
a

))
cosh t

)
.(6.2)

It is direct to verify that M1 is a Lagrangian minimal surface in C2
1 whose induced

metric is given by

g1 = (cosh2 s)(−ds2 + dt2).(6.3)

Example 6.2. Consider the surface M−1 in C2
1 defined by(

a
(
cosh

( s
a

)
+ i sinh

( s
a

))
cosh t, a

(
cosh

( s
a

)
+ i sinh

( s
a

))
sinh t

)
.(6.4)

It is direct to verify that M−1 is also a Lagrangian minimal surface in C2
1 whose

induced metric is given by

g1 = (cosh2 s)(ds2 − dt2).(6.5)

In this section we classify all minimal Lagrangian surfaces in C2
1 obtained by the

construction method given in this paper.

Theorem 6.1. Let f : I1 → C∗ be a unit speed curve, z : I2 → S3
2(1) ⊂ C2

1 a
unit speed time-like Legendre curve defined on an open interval I2 containing 0, and
p = p(t) a complex-valued function defined on I2. Then the Lagrangian immersion
Lfpz : (Ufz, gfpz) → C2

1 defined by

Lfpz(s, t) = f(s)z(t)−
∫ t

0

p(t)z′(t)dt(6.6)

is minimal if and only if either Lfpz is a totally geodesic Lagrangian surface or, up
to reparametrization and rigid motions, Lfpz is an open portion of the Lagrangian
minimal surface M1 defined by (6.2).



22 B.-Y. CHEN

Proof. Let f : I1 → C∗ be a unit speed curve, z : I2 → S3
2(1) ⊂ C2

1 a unit
speed time-like Legendre curve defined on an open interval I2 containing 0, and
p = p(t) a complex-valued function defined on I2. Then it follows from (4.5), (6.1),
Proposition 3.1 and Theorem 4.1 that Lfpz is a minimal Lagrangian immersion if
and only if the following two conditions hold identically:

(i) The curvature function κ(s) of f in C satisfies

κ(s)|f(s)− p(t)|2 + ⟨f ′(s), if(s)− ip(t)⟩ = 0.(6.7)

(ii) The curvature function λ(t) of the Legendre curve z(t) in S3
2(1) satisfies

λ(t)|f(s)− p(t)|2 + ⟨p′(t), if(s)− ip(t)⟩ = 0.(6.8)

Let us assume that Lfpz is a minimal Lagrangian immersion. In order to solve
the differential system (6.7) and (6.8), we divide into two cases.

Case (a): f ′′(s) = 0. In this case, we obtain that κ = 0 and f(s) = c1s + c2
for some complex numbers c1, c2 with |c1| = 1. Moreover, it follows from (6.7) that
⟨f ′, if − ip⟩ = 0. Thus, after applying (4.5) and (6.8), we conclude that Lfpz is a
totally geodesic Lagrangian immersion.

Case (b): f ′′(s) ̸= 0. In this case, we have κ ̸= 0 because we have f ′′ = iκf ′.
Now, by differentiating (6.7) with respect to s we find

κ′(s)|f(s)− p(t)|2 + 3κ⟨f ′(s), f(s)− p(t)⟩ = 0,

which can be expressed as

(ln |κ(s)|)′ + 3

2

∂

∂s
(ln |f − p|2) = 0.(6.9)

By solving (6.9) we get

|f − p|2 =
ψ2(t)

κ2/3(s)
(6.10)

for some real-valued function ψ(t). Substituting (6.10) into (6.7) gives

⟨f(s)− p(t), if ′(s)⟩ = ψ2(t)κ1/3(s).(6.11)

Differentiating (6.11) with respect to s gives

⟨f(s)− p(t), f ′(s)⟩ = −κ
′ψ2(t)

3κ5/3
.(6.12)

Since f is a unit speed curve with κ ̸= 0, f ′(s), f ′′(s)/κ form an orthonormal
frame over R. Thus, we obtain from (6.11) and (6.12) that

f(s) = p(t)− κ1/3
(
κ′

3κ2
− i

)
ψ2(t)f ′(s).(6.13)

By differentiating (6.13) with respect to t, we obtain

p′(t) = 2κ1/3
(
κ′

3κ2
− i

)
ψ(t)ψ′(t)f ′(s).(6.14)

If ψ′(t) ̸= 0, then (6.14) gives

p′(t)

ψ(t)ψ′(t)
= 2κ1/3

(
κ′

3κ2
− i

)
f ′(s),(6.15)
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which implies that

p′(t) = 2δψ(t)ψ′(t),

(
κ′

3κ5/3
− iκ1/3

)
f ′(s) = δ(6.16)

for some complex number δ. Thus, we have

p(t) = ψ2(t)δ + η(6.17)

for some complex numbers δ, η. Substituting (6.17) into (6.13) gives

f(s) =

{
δ −

(
κ′

3κ5/3
− iκ1/3

)
f ′(s)

}
ψ2(t) + η,(6.18)

which implies that ψ is constant. Thus p is also constant by (6.17). Hence, we
conclude from (6.8) that λ(t) = 0. Consequently, z = z(t) is a Legendre geodesic
in S3

2(1) ⊂ C2
1. Moreover, we find from (6.10) that

|f(s)− p|2 =

(
a2

κ

)2/3
,(6.19)

where p ∈ C and 0 ̸= a ∈ R. Substituting (6.19) into (6.7) gives

⟨if ′(s), f(s)− p⟩ = a4/3κ1/3.(6.20)

Now, let us reparametrize f as f(s(x)) = p+ x+ iy(x). Then we have

κ =
y′′(x)

(1 + y′(x)2)3/2
, ⟨if ′, f − p⟩ = y − xy′(x)

(1 + y′(x)2)1/2
.(6.21)

By combining (6.20) and (6.21), we get

a4y′′(x) = (y − xy′(x))3.(6.22)

Let u = y − xy′. We get du/dx = −xy′′. Thus, (6.22) becomes a4u′(x) = −xu3.
Solving this equation gives

y − xy′ = ± a2√
x2 − a4c

for some constant c. After solving this differential equation, we have

y = ∓

(√
x2 − a4c

a2c
+ bx

)
(6.23)

for some real number b. Thus, we find

f = p+ (1∓ ib)x∓ i

√
x2 − a4c

a2c
.(6.24)

From (6.21) and (6.23), we discover that

κ =
±a8c3((

x+ a2bc
√
x2 − a4c

)2
+ a4c2(x2 − a4c)

)3/2 .(6.25)

Hence, we obtain from (6.19), (6.24) and (6.25) that(
x+ a2bc

√
x2 − a4c

)2
+ a4c2(x2 − a4c) = a4c2

(
x2 +

(√
x2 − a4c

a2c
+ bx

)2)
,

which implies that

b2 =
1− a4c2

a4c2
.
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Thus a4c2 ≤ 1. Consequently, we see from (6.23) that f(s) − p = x(s) + iy(s) lies
in the hyperbola:

x2 ± 2
√
1− a4c2

a2c
xy − y2 =

1

c
.(6.26)

Furthermore, it follows from (6.6) that

Lfpz = (f(s)− p)z(t) = (x(s) + iy(s))z(t).(6.27)

By applying the following rotation:

x = cos

(
1

2
tan−1

(√
1− a4c2

a2c

))
x̃∓ sin

(
1

2
tan−1

(√
1− a4c2

a2c

))
ỹ,

y = ± sin

(
1

2
tan−1

(√
1− a4c2

a2c

))
x̃+ cos

(
1

2
tan−1

(√
1− a4c2

a2c

))
ỹ,

on C2, equation (6.25) becomes x̃2 − ỹ2 = a2. Thus may assume that

f(s)− p = a
(
cosh

( s
a

)
+ i sinh

( s
a

))
.

Since z(t) is a unit speed Legendre geodesic in S3
2(1) ⊂ C2

1 which can be represented
by

z(t) = (sinh t, cosh t).

Consequently, up to reparametrization and rigid motions, Lfpz is an open portion
of the Lagrangian minimal surface M0 defined by (6.2).

The converse can be verified by direct computation. �

Theorem 6.2. Let f : I1 → C∗ be a unit speed curve, z : I2 → H3
1 (−1) ⊂ C2

1

a unit speed space-like Legendre curve defined on an open interval I2 containing 0,
and let p = p(t) be a complex-valued function defined on I2. Then the Lagrangian
immersion Lfpz : (Ufz, gfpz) → C2

1 defined by

Pfpz(s, t) = f(s)z(t)−
∫ t

0

p(t)z′(t)dt(6.28)

is minimal if and only if either Pfpz is a totally geodesic Lagrangian surface or, up
to reparametrization and rigid motions, Pfpz is an open portion of the Lagrangian
minimal surface defined by (6.4).

Proof. Let f : I1 → C∗ be a unit speed curve, z : I2 → H3
1 (−1) ⊂ C2

1 a unit
speed space-like Legendre curve defined on an open interval I2 containing 0, and
let p = p(t) be a complex-valued function defined on I2. Then it follows from
(4.11), (6.1), Theorem 3.2 and Theorem 4.2 that Pfpz is minimal if and only if the
following two conditions hold:

(i) The curvature function κ(s) of f in C satisfies

κ(s)|f(s)− p(t)|2 + ⟨f ′(s), if(s)− ip(t)⟩ = 0.

(ii) The curvature function λ(t) of the Legendre curve z(t) in S3
2(1) satisfies

λ(t)|f(s)− p(t)|2 + ⟨p′(t), ip(t)− if(s)⟩ = 0.

Since these two conditions are exactly the corresponding two conditions given in
the proof of Theorem 6.1. Therefore, we may obtain this theorem by using the
same argument using in the proof of Theorem 6.1. �
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