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QUASILINEARIZATION METHOD IN CAUSAL DIFFERENTIAL
EQUATIONS WITH INITIAL TIME DIFFERENCE

COŞKUN YAKAR

Abstract. In this paper, the method of the quasilinearization technique in
causal

differential equations is applied to obtain upper and lower sequences with
initial time difference in terms of the solutions of the linear causal differential
equations that start at different initial times. It is also shown that these
sequences converge to the unique solution of the nonlinear equation in causal
differential equations uniformly and superlinearly.

1. Introduction

The most important applications of the quasilinearization method in causal
differential equations [5] has been to obtain a sequence of lower and upper bounds
which are the solutions of linear causal differential equations that converge super-
linearly. As a result, the method has been popular in applied areas. However,
the convexity assumption that is demanded by the method of quasilinearization
has been a stumbling block for further development of the theory. Recently, this
method has been generalized, refined and extended in several directions so as to be
applicable to a much larger class of nonlinear problems by not demanding convexity
property. Moreover, other possibilities that have been explored make the method
of generalized quasilinearization universally useful in applications [7]. In the inves-
tigation of initial value problems of causal differential equations [5], we have been
partial to initial time all along in the sense that we only perturb the space variable
and keep the initial time unchanged. However, it appears important to vary the
initial time as well because it is impossible not to make errors in the starting time
[4, 6, 7, 8, 9, 10, 11, 12, 13]. Recently, the investigations of initial value problems
of causal differential equations where the initial time changes with each solution
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in addition to the change of spatial variable have been initiated [1, 13] and some
results on the comparison theorems, global existence, the method of variation of
parameters, the method of lower and upper solutions and the method of monotone
iterative techniques [3, 4, 7, 8, 11] have been obtained.

In this paper, the generalized quasilinearization technique in causal differen-
tial equations is used to obtain upper and lower sequences in terms of the solutions
of linear causal differential equations that start at different initial times and bound
the solutions of a given nonlinear causal differential equation [5]. It is also shown
that these sequences converge to the unique solution of the nonlinear equation
uniformly and superlinearly.

2. Preliminaries

In this section, we state some fundamental definitions and useful theorems for
the future reference to prove the main result. First one is comparison result, the
second one is existence result in terms of the upper and lower solutions with initial
time difference.
An operator N : E → E,E = C [J,Rn] is said to be causal operator if, for any

x, y ∈ E such that x (s) = y(s), we have N(x) (s) = N(y) (s) for t0 ≤ s < t0 + T.
Let us consider the casual functional equation

x (t) = (Nx) (t) , x(t0) = x0

where the causal operator N : E → E is continuous and x(t0) = x0 for t0 ≥ 0
denotes the initial value for any x ∈ E.
Let α0, β0 ∈ C1 [J,R] with α0 (t) ≤ β0 (t) on J = [t0, t0 + T ], t0, T ∈ R+ and

Ω = {u ∈ E : α0 (t) ≤ u ≤ β0 (t) , t ∈ J} .
We consider the following initial value problem for casual differential equation

u′(t) = (Nu) (t) , u(t0) = u0 for t ≥ t0 (2.1)

where N : E → E continuous causal operator, E = C [J,R] for J = [t0, t0 + T ],
t0, T ∈ R+ and Ω ⊆ E.

Definition 2.1: α0, β0 ∈ C1 [J,E] are said to be the natural lower and upper
solutions of (2.1), respectively, if the the following inequalities are satisfied

α′0 ≤ (Nα0) (t) , α0(t0) ≤ u0 for t ≥ t0 (2.2)

β′0 ≥ (Nβ0) (t) , β0(t0) ≥ u0 for t ≥ t0 (2.3)

respectively.

Definition 2.2: α0, β0 ∈ C1 [J,E] are said to be the coupled lower and upper
solutions of (2.1), respectively, if the the following inequalities are satisfied

α′0 ≤ (Nβ0) (t) , α0(t0) ≤ u0 for t ≥ t0 (2.4)

β′0 ≥ (Nα0) (t) , β0(t0) ≥ u0 for t ≥ t0 (2.5)
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respectively.

Definition 2.3: N : E → E is said to be semi nondecreasing in t for each x if

(Nx) (t1) = (Ny) (t1) and (Nx) (t) ≤ (Ny) (t) , t0 ≤ t < t1 < T + t0 (2.6)

for
x (t1) = y (t1) , x (t) < y (t) , t0 ≤ t < t1 < T + t0. (2.7)

Definition 2.4: Let N ∈ C [J × E,E] . At x ∈ E
(N (x+ h)) (t) = (Nx)(t) + L (x, h) (t) + ‖h‖ η (x, h) (t) (2.8)

where lim‖h‖−→0 ‖η (x, h) (t)‖ = 0 and L(x, ·) (t) is a linear operator. L(x, h) (t)
is said to be Fréchet derivative of N at x with the increment h for the remainder
η (x, h) (t) .

3. Causal Functional Inequalities

We give some basic results in causal functional inequalities for the scalar case as
follows [5].

Theorem 3.1: Assume that

(i) N : E → E is a continuous causal operator, E = C [J,R] for J = [t0, t0 + T ],
t0, T ∈ R+ and let α0, β0 ∈ E satisfy

α0 < (Nα0) (t) for t0 ≤ t ≤ T + t0 (3.1)

β0 ≥ (Nβ0) (t) for T + t0 ≥ t ≥ t0. (3.2)

(ii) N is semi nondecreasing, i.e.

x (t1) = y (t1) , x (t) < y (t) , t0 ≤ t < t1 < T + t0

implies

(Nx) (t1) = (Ny) (t1) and (Nx) (t) ≤ (Ny) (t) , t0 ≤ t < t1 < T + t0.

Then
α0 (t) < β0 (t) for t0 ≤ t ≤ T + t0 (3.3)

provided
α0 (t0) < β0 (t0) . (3.4)

Proof [5]: Suppose that the conclusion (3.3) of the theorem is not true and
α0 < (Nα0) (t) . Then because of the continuity of the functions and (3.4), there
would exist a t1 > t0 such that

α0 (t1) = β0 (t1) and α0 (t) < β0 (t) for t0 ≤ t < t1 < T + t0. (3.5)

Since N is assumed to be semi nondecreasing, we have
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α0 (t1) < (Nα0) (t1) ≤ (Nβ0) (t1) ≤ β0 (t1) .

This is a contradiction since α0 (t1) = β0 (t1) . Therefore, it proves the claim (3.3).

Theorem 3.2: Assume that
(i) N : E → E is a continuous causal operator, E = C [J,R] for J = [t0, t0 + T ],

t0, T ∈ R+ and let α0, β0 ∈ E satisfy

α0 ≤ (Nα0) (t) for t0 ≤ t ≤ T + t0 (3.6)

β0 > (Nβ0) (t) for T + t0 ≥ t ≥ t0. (3.7)

(ii) N is semi nondecreasing.

Then the conclusion of the Theorem 3.1 remains the same.

Proof [5]: Suppose that the conclusion of the theorem is not true and β0 >
(Nβ0) (t) . Then because of the continuity of the functions and such that (3.4) is
satisfied, there would exist a t1 > t0 such that (3.5 ) is satisfied. Since N is assumed
to be semi nondecreasing, we have

α0 (t1) ≤ (Nα0) (t1) ≤ (Nβ0) (t1) < β0 (t1) .

This is a contradiction again since α0 (t1) = β0 (t1) . Therefore, it proves the claim
(3.3).

First we state the following theorem and prove it.

Theorem 3.3: Assume that

(i) N : E → E is a continuous causal operator, E = C [J,R] for J = [t0, t0 + T ],
t0, T ∈ R+ and let α0, β0 ∈ E satisfy

α0 < (Nα0) (t) for t0 ≤ t ≤ T + t0 (3.8)

β0 ≥ (Nβ0) (t) for T + t0 ≥ t ≥ t0. (3.9)

or

α0 ≤ (Nα0) (t) for t0 ≤ t ≤ T + t0 (3.10)

β0 > (Nβ0) (t) for T + t0 ≥ t ≥ t0. (3.11)

(ii) N is semi nondecreasing.
(iii) (Nx) (t) − (Ny) (t) ≤ Lmaxt0≤s≤t [x(s)− y(s)] whenever x(s) ≥ y(s) for

t0 ≤ s ≤ t and 0 < L < 1.
Then

α0 (t) ≤ β0 (t) for t0 ≤ t ≤ t0 + T (3.12)



QUASILINEARIZATION METHOD IN CAUSAL DIFFERENTIAL EQUATIONS 59

provided
α0 (t0) ≤ β0 (t0) . (3.13)

Proof [5]: Let us define β0ε(t) = β0(t)+ε where ε > 0 is arbitrary small. Then
we have

β0ε(t0) = β0(t0) + ε ≥ α0 (t0) + ε > α0 (t0)

and
β0ε(t) ≥ β0(t) for t0 ≤ t ≤ t0 + T.

Now, by using the one sided Lipschitz condition in (iii), we get

β0ε(t) = β0(t) + ε ≥ (Nβ0) (t) + ε ≥ (Nβ0ε) (t)− Lε+ ε > (Nβ0ε) (t)

for t0 ≤ t ≤ t0 +T, since 0 < L < 1. Now by applying Theorem 3.2 with (3.10) and
(3.11) to α0 (t) and β0ε(t), we find that

α0 (t) < β0ε(t) for t0 ≤ t ≤ t0 + T. (3.14)

Since ε > 0 is arbitrary small, by taking ε→ 0 in (3.14), we get

α0 (t) ≤ β0(t) for t0 ≤ t ≤ t0 + T.

Therefore this completes the proof.
The proof of Theorem 3.3 can also be done by using (3.8), (3.9) and Theorem

3.1.

4. Causal Differential Inequalities

We give a basic result in causal differential inequalities for the scalar case as
follows.

Theorem 4.1: Assume that

(i) α0, β0 ∈ C1 [J,R] and N : E → E is a continuous causal operator, E =
C [J,R] for J = [t0, t0 + T ], t0, T ∈ R+ and let α0, β0 ∈ E satisfy

α′0 < (Nα0) (t) for t0 ≤ t ≤ T + t0 (4.1)

β′0 ≥ (Nβ0) (t) for T + t0 ≥ t ≥ t0. (4.2)

or

α′0 ≤ (Nα0) (t) for t0 ≤ t ≤ T + t0 (4.3)

β′0 > (Nβ0) (t) for T + t0 ≥ t ≥ t0. (4.4)

(ii) the causal operator N is semi nondecreasing.
Then

α0 (t0) < β0 (t0)

implies

α0 (t) < β0 (t) for t0 ≤ t ≤ T + t0. (4.5)
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Proof : Suppose that the conclusion (4.5) of Theorem 4.1 is false and α′0(t) <
(Nα0) (t) . Then the continuity of the α0 (t) , β0 (t) and the fact that α0 (t0) <
β0 (t0) yield that there exists a t1 > t0 such that

α0 (t1) = β0 (t1) , α0 (t) < β0 (t) for t0 ≤ t < t1. (4.6)

The semi nondecreasing nature of N and (4.6) give

(Nα0) (t1) ≤ (Nβ0) (t1) . (4.7)

In view of (4.6), we get for small h > 0,

α0 (t1 − h)− α0 (t1) < β0 (t1 − h)− β0 (t1)

and hence (4.1) and (4.7) show that

(Nα0) (t1) ≤ (Nβ0) (t1) ≤ β′0 (t1) ≤ α′0 (t1) < (Nα0) (t1) .

This is a contradiction and therefore the claim (4.5) is valid. The proof is complete.

The proof of Theorem 4.1 can also be done by using (4.3) and (4.4).

As before, for nonstrict differential inequalities, we require a one-sided Lipschitz
condition.
Theorem 4.2: Assume that

(i) α0, β0 ∈ C1 [J,R] and N : E → E is a continuous causal operator, E =
C [J,R] for J = [t0, t0 + T ], t0, T ∈ R+ and let α0, β0 ∈ E satisfy

α′0 < (Nα0) (t) for t0 ≤ t ≤ T + t0 (4.8)

β′0 ≥ (Nβ0) (t) for T + t0 ≥ t ≥ t0. (4.9)

or

α′0 ≤ (Nα0) (t) for t0 ≤ t ≤ T + t0 (4.10)

β′0 > (Nβ0) (t) for T + t0 ≥ t ≥ t0. (4.11)

(ii) N is semi nondecreasing.
(iii) (Nx) (t) − (Ny) (t) ≤ Lmaxt0≤s≤t [x(s)− y(s)] whenever x(s) ≥ y(s) for

t0 ≤ s ≤ t and 0 < L < 1.
Then

α0 (t0) ≤ β0 (t0) (4.12)

implies

α0 (t) ≤ β0 (t) for t0 ≤ t ≤ T + t0. (4.13)

Proof: Let us set β0ε(t) = β0 (t) + ε exp (2L (t− t0)) for small ε > 0. Then

β0ε(t0) > β0 (t0) and β0ε(t) > β0 (t) . (4.14)



QUASILINEARIZATION METHOD IN CAUSAL DIFFERENTIAL EQUATIONS 61

Now we use the one-sided Lipschitz condition

(Nβ0ε) (t)− (Nβ0) (t) ≤ L max
t0≤s≤t

[β0ε(s)− β0(s)] ≤ Lε exp (2L (t− t0))

to obtain

β′0ε(t) = β′0(t) + 2Lε exp (2L (t− t0))
≥ (Nβ0)(t) + 2Lε exp (2L (t− t0))
≥ (Nβ0ε)(t)− Lε exp (2L (t− t0)) + 2Lε exp (2L (t− t0))
= (Nβ0ε)(t) + Lε exp (2L (t− t0))
> (Nβ0ε) (t) .

We will show that α0(t) < β0ε(t) for t0 ≤ t ≤ t0 + T. If this is not true, because
of (4.13), there would exist a t1 > t0 such that

α0(t1) = β0ε(t1) and α0(t) < β0ε(t), t0 ≤ t < t1 < T. (4.15)

Now we have

β′0ε(t) > (Nβ0ε) (t) , β0ε(t0) ≥ x0 and α′0(t) ≤ (Nα0)(t), α0(t0) ≤ x0
for t0 ≤ t ≤ t0 + T.

And semi-nondecreasing nature of N and (4.15) give

(Nα0)(t1) = (Nβ0ε)(t1) and (Nα0)(t) ≤ (Nβ0ε)(t) ,t0 ≤ t < t1 < T. (4.16)

Also, in view of (4.15), we get for small h > 0

α0(t1 − h)− α0(t1) < β0ε(t1 − h)− β0ε(t1).
Hence the assumption (i), (4.11) and (4.16) show that

(Nα0)(t1) ≥ α′0(t1) ≥ β′0ε(t1) > (Nβ0ε)(t1) ≥ (Nα0)(t1).

This leads to the contradiction because of (4.15). Then we have

β′0ε(t) > (Nβ0ε) (t) , β0ε(t0) ≥ α0(t0) and α′0(t) ≤ (Nα0)(t), α0(t0) ≤ β0ε(t0)
for t0 ≤ t ≤ t0 + T

and α0(t) < β0ε(t) for t0 ≤ t ≤ t0 + T. We get α0(t) ≤ β0(t) as ε approaches to
zero for t0 ≤ t ≤ t0 + T. This completes the proof.

The proof of Theorem 4.2 can also be done by using (4.10) and (4.11).

Theorem 4.3: Assume that
(i) α0 ∈ C1 [[t0, t0 + T ] , E] , t0, T > 0, β0 ∈ C1 [[τ0, τ0 + T ] , E] , τ0 ≥ 0 and

N ∈ C [R+ × E,E] , α′0(t) ≤ (Nα0)(t), α0(t0) ≤ x0 for t0 ≤ t ≤ t0 + T and
β′0(t) ≥ (Nβ0)(t), x0 ≤ β0(τ0) for τ0 ≤ t ≤ τ0 + T ;
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(ii) (Nx) (t) − (Ny) (t) ≤ Lmaxt0≤s≤t [x(s)− y(s)] whenever x(s) ≥ y(s) for
t0 ≤ s ≤ t and 0 < L < 1.

(iii) (Nu)(t) is semi-nondecreasing in u for each t.
(iv) t0 < τ0, (Nu)(t) is nondecreasing in t for each u.

Then (I) α0(t) ≤ β0(t+η) for t0 ≤ t ≤ t0+T where η = τ0−t0, (II) α0(t−η) ≤ β0(t)
for τ0 ≤ t ≤ τ0 + T where η = τ0 − t0.

Proof: Suppose that
−
β0(t) = β0(t+ η) so that

−
β0(t0) = β0(t0 + η) = β0(τ0) ≥

x0 ≥ α0(t0), and
−
β
′

0(t) = β′0(t+ η) ≥ (Nβ0)(t+ η) = (N
−
β0)(t) for t0 ≤ t ≤ t0 + T.

Let
−
β0ε(t) =

−
β0(t) + ε exp (2L (t− t0)) for small ε > 0. Then

−
β0ε(t) >

−
β0(t) and

−
β0ε(t0) >

−
β0(t) ≥ α0(t0). (4.17)

We will show that α0(t) <
−
β0ε(t) for t0 ≤ t ≤ t0 + T. If this is not true, because

of (I), there would exist a t1 > t0 such that

α0(t1) =
−
β0ε(t1) and α0(t) <

−
β0ε(t), t0 ≤ t < t1 < T. (4.18)

Now we use the one-sided Lipschitz condition(
N
−
β0ε

)
(t)−

(
N
−
β0

)
(t) ≤ L max

t0≤s≤t

[
−
β0ε(s)−

−
β0(s)

]
≤ Lε exp (2L (t− t0))

to obtain
−
β
′

0ε(t) =
−
β
′

0(t) + 2Lε exp (2L (t− t0))

≥ (N
−
β0)(t) + 2Lε exp (2L (t− t0))

≥ (N
−
β0ε)(t) + 2Lε exp (2L (t− t0))

≥
(
N
−
β0ε

)
(t)− Lε exp (2L (t− t0)) + 2Lε exp (2L (t− t0))

>

(
N
−
β0ε

)
(t) .

Now we have
−
β
′

0ε(t) >

(
N
−
β0ε

)
(t) ,

−
β0ε(t0) ≥ x0 and α′0(t) ≤ (Nα0)(t), α0(t0) ≤ x0

for t0 ≤ t ≤ t0 + T.

Semi-nondecreasing nature of N and (4.18) give
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(Nα0)(t1) = (N
−
β0ε)(t1) and (Nα0)(t) ≤ (N

−
β0ε)(t) ,t0 ≤ t < t1 < T. (4.19)

Also, in view of (4.19), we get for small h > 0

α0(t1 − h)− α0(t1) <
−
β0ε(t1 − h)−

−
β0ε(t1). (4.20)

Hence the assumption (i) and (4.20) show that

(Nα0)(t1) ≥ α′0(t1) ≥
−
β
′

0ε(t1) > (N
−
β0ε)(t1) ≥ (Nα0)(t1).

Since t0 < τ0, assumption (iv), (Nu)(t) being nondecreasing in t, leads to a con-
tradiction because of (4.19).
By applying Theorem 4.1, we have

−
β
′

0ε(t) >

(
N
−
β0ε

)
(t) ,

−
β0ε(t0) ≥ α0(t0) and α′0(t) ≤ (Nα0)(t), α0(t0) ≤

−
β0ε(t0)

for t0 ≤ t ≤ t0 + T

and α0(t) <
−
β0ε(t) for t0 ≤ t ≤ t0 + T. We get α0(t) ≤

−
β0(t) as ε approaches to

zero for t0 ≤ t ≤ t0 + T. This completes the proof.

To prove (II), we set
−
α0(t) = α0(t− η) for τ0 ≤ t so that

−
α0(τ0) = α0(τ0− η) =

α0(t0) ≤ x0 ≤ β0(τ0), and
−
α
′
0(t) = α′0(t+ η) ≤ (Nα0)(t− η) = (N

−
α0)(t) for τ0 ≤ t ≤ τ0 + T.

Setting
−
α0ε(t) =

−
α0(t)−ε exp (2L (t− t0)) for some ε > 0 small. Then proceeding

similarly, we derive the estimate α0(t − η) ≤ β0(t) for τ0 ≤ t ≤ τ0 + T where
η = τ0 − t0. Therefore the proof is completed.

If we know the existence of lower and upper solutions of (2.1) such that α0 (t) ≤
β0 (t+ η) , t ∈ J, then we can prove the existence of a solution of the initial value
problem (2.1) in the closed set

'
Ω = {u ∈ E : α0 (t) ≤ u ≤ β0 (t+ η) , t ∈ J} where

η = τ0 − t0 .

Theorem 4.4: Assume that

(i) α0 ∈ C1 [[t0, t0 + T ] , E] , t0, T > 0, β0 ∈ C1 [[τ0, τ0 + T ] , E] , τ0 ≥ 0 and
N ∈ C [R+ × E,E] , α′0(t) ≤ (Nα0)(t), α0(t0) ≤ x0 for t0 ≤ t ≤ t0 + T and
β′0(t) ≥ (Nβ0)(t), x0 ≤ β0(τ0) for τ0 ≤ t ≤ τ0 + T ;

(ii) (Nx) (t) − (Ny) (t) ≤ Lmaxt0≤s≤t [x(s)− y(s)] whenever x(s) ≥ y(s) for
t0 ≤ s ≤ t and 0 < L < 1;

(iii) (Nu)(t) is semi-nondecreasing in u for each t;
(iv) t0 < τ0, (Nu)(t) is nondecreasing in t for each u;
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(v) the operator N is bounded on
'
Ω.

Then there exists a solution u(t) of (2.1) in the closed set
'
Ω with u(t0) = u0,

satisfying α0 (t) ≤ u ≤ β0 (t+ η) for t0 ≤ t ≤ t0 + T.

Proof: Let P ∈ C (J,R) be defined by

(Pu) (t) = max [α0 (t) ,min [u (t) , β0 (t+ η)]] .

Then (NPu) (t) defines a continuous extension of N on E which is also bounded

since N is assumed to be bounded on
'
Ω. Therefore, there exists a solution of the

initial value problem

u′(t) = (NPu) (t) , u(t0) = u0

on J. For any ε > 0, and for
−
β0(t) = β0 (t+ η) consider

−
β0ε(t) =

−
β0(t) + ε (1 + t)

−
α0ε(t) = α0(t) + ε (1− t) .

Then we have
−
α0ε(t0) < u0 <

−
β0ε(t0), since α0(t0) ≤ u0 ≤

−
β0(t0).We need to show

that
−
α0ε(t) < u(t) <

−
β0ε (t) , on J. (4.21)

If this is not true, then there exists a t1 ∈ (t0, t0 + T ] at which u(t1) =
−
β0ε(t1)

and
−
α0ε(t) < u(t) <

−
β0ε(t), t0 ≤ t < t1. Then

u (t1) >
−
β0(t1) and (Pu)(t1) =

−
β0(t1). (4.22)

Moreover,
α0 (t1) ≤ (Pu) (t1) ≤ β0 (t1 + η) .

Hence,
−
β
′

0(t1) ≥ (NPu) (t1) = u′(t1).

Since
−
β
′

0ε(t1) >
−
β
′

0(t1), we have
−
β
′

0ε(t1) > u′(t1). However, we have
−
β
′

0ε(t1) ≤

u′(t1) since u(t1) =
−
β0ε(t1) and u(t) <

−
β0ε(t), t0 ≤ t < t1. This is a contradiction

with
−
β
′

0ε(t1) > u′(t1). Hence for all t ∈ J, u(t) <
−
β0ε(t) and consequently (4.21)

holds on J, i.e.
−
α0ε(t) < u(t) <

−
β0ε (t) on J. We get

α0 (t) ≤ u(t) ≤
−
β0 (t) on J as ε→ 0. (4.23)

This completes the proof.
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5. Main Results

In this section, we will prove the main theorem that gives several different condi-
tions to apply the method of generalized quasilinearization to the nonlinear causal
differential equations [5] with initial time difference and state remarks and corol-
laries for special cases.

Theorem 5.1: Assume that

(i) N : E → E is a continuous causal operator, E = C [J,R] for J = [t0, τ0 + T ],
t0, τ0, T ∈ R+ and there exists a constant M such that (Nu)(t) ≤M on J × Ω;

(ii) (Nu)(t) is semi nondecreasing in u for each t ∈ J ;
(iii) α0 ∈ C1 [[t0, t0 + T ] , E] and β0 ∈ C1 [[τ0, τ0 + T ] , E] for τ0 ≥ t0 > 0 and

T > 0,

α′0(t) ≤ (Nα0)(t) for t0 ≤ t ≤ t0 + T

β′0(t) ≥ (Nβ0)(t) for τ0 ≤ t ≤ τ0 + T

where α0(t0) ≤ β0(τ0);
(iv) t0 < s0 < τ0, (Nu)(t) is nondecreasing in t for each u;
α0, β0 ∈ C1 [J,R] such that α′0(t) ≤ (Nα0)(t)), (Nβ0)(t) ≤ β′0(t) and α0(t) ≤

β0(t) , t ∈ J ;
(v) the Fréchet derivative; (Nxx)(t) exists and is continuous and (Nxx)(t) ≤ L1

for (t, x) ∈ J ×Ω, for some L1 > 0 and (Ny)(t) ≤ (Nx)(t)− (Nxy)(t) (x− y) where
α0(t) ≤ y ≤ x ≤ β0(t), t ∈ J ;

(vi) (Nxx)(t)− (Nxy)(t) ≤ L2(x−y)γ , t ∈ J, where L2 is a positive constant and
0 ≤ γ < 1.

Then there exist monotone sequences
{
∼
αn(t)

}
and

{
∼
βn(t)

}
which converge uni-

formly to the unique solution of (2.1) with u(s0) = x0 where s0 is between initial
time t0 and τ0 and the convergence is superlinear.

Proof: Since β̃0 (t) = β0 (t+ η1), η1 = τ0 − t0 we get β̃0 (t0) = β0 (τ0) ≥
α0 (t0) = α̃0 (t0) and β̃

′
0 (t) ≥ (Nβ̃0) (t+ η1) for t0 ≤ t ≤ t0 + T. Using the as-

sumptions (iv), it is clear that N(t, x) satisfies the Lipschitz condition in x for
(t, x) ∈ J × Ω. Furthermore, we have the following inequalities

(Nx)(t) ≥ (Ny)(t) + (Nxy)(t) (x− y) whenever α̃0(t) ≤ y ≤ x ≤ β̃0(t) on J (5.1)

and also by using (iv) we see that whenever α̃0 (t) ≤ y ≤ x ≤ β̃0 (t) ,

(Nx)(t)− (Ny)(t) ≤ L (x− y) (5.2)

for some L > 0.
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Consider the linear IVPs of causal differential equations for η2 = s0 − t0
∼
α
′
1 = (N

∼
α0) (t+ η2) + (Nx

∼
α0)(t+ η2)

(
∼
α1 −

∼
α0

)
,
∼
α1 (t0) = u0 (5.3)

∼
β
′

1 = (N
∼
β0)(t+ η2) + (Nx

∼
α0)(t+ η2)

(
∼
β1 −

∼
β0

)
,
∼
β1 (t0) = u0 (5.4)

where α̃0(t0) ≤ u0 ≤
∼
β0 (t0) . We shall show that α̃0 ≤ α̃1 on J. To do this, let

p = α̃0(t)− α̃1(t), so that p(t0) ≤ 0. Then

p′ = α̃′0 − α̃′1
≤ (Nα̃0) (t+ η2)−

[
(Nα̃0)(t+ η2) + (Nxα̃0)(t+ η2)

(
∼
α1 − α̃0

)]
= (Nxα̃0)(t+ η2)p.

Theorem 4.2 gives p(t) ≤ 0 on J proving that α̃0(t) ≤ α̃1(t) on J . Now set

p =
∼
α1 −

∼
β0 and note that p(t0) ≤ 0. Also, using (5.1)

p′ =
∼
α
′
1 −

∼
β
′

0

≤ (Nα̃0) (t+ η2) + (Nxα̃0)(t+ η2)
(
∼
α1 − α̃0

)
− (N

∼
β0) (t+ η1)

≤ (N
∼
β0)(t+ η2)− (Nxα̃0)(t+ η2)

(
∼
β0 − α̃0

)
+ (Nxα̃0)(t+ η2)

(
∼
α1 − α̃0

)
−(N

∼
β0) (t+ η2)

≤ (Nxα̃0)(t+ η2)p

which again implies
∼
α1(t) ≤

∼
β0(t) on J.

Similarly, we can obtain that α̃0(t) ≤ β̃1(t) ≤ β̃0(t) on J. In order to prove that
α̃1(t) ≤ β̃1(t) on J, we proceed as follows. Since α̃0 ≤ α̃1 ≤ β̃0,using (5.1), we see
that

α̃1(t) = (Nα̃0) (t+ η2) + (Nxα̃0)(t+ η2)
(
∼
α1 − α̃0

)
≤ (Nα̃1)(t+ η2).

Similarly, (N
∼
β1) (t+ η2) ≤

∼
β
′

1(t) and therefore by Theorem 4.2 it follows that

α̃1(t) ≤
∼
β
′

1(t) on J which shows that

α̃0(t) ≤ α̃1(t) ≤ β̃1(t) ≤ β̃0(t) on J.

Assume that for some n > 1,
∼
α
′
n ≤ (Nα̃n) (t+ η2) , (N

∼
βn)(t + η2) ≤

∼
β
′

n and
∼
αn(t) ≤

∼
βn(t), t ∈ J.

We must show that

α̃n(t) ≤ α̃n+1(t) ≤ β̃n+1(t) ≤ β̃n(t) on J (5.5)
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where α̃n+1(t) and β̃n+1(t) are the solutions of linear IVPs of casual differential
equations as follows

∼
α
′
n+1 = (Nα̃n) (t+ η2) + (Nxα̃n)(t+ η2)(

∼
αn+1 − α̃n), α̃n+1 (t0) = u0 (5.6)

∼
β
′

n+1 = (N
∼
βn) (t+ η2) + (Nxα̃n) (t+ η2)(

∼
βn+1 −

∼
βn),

∼
βn+1 (t0) = u0. (5.7)

Hence setting p = α̃n(t)− α̃n+1(t), it follows as before p′ ≤ (Nxα̃n)(t + η2)p on J
and hence α̃n(t) ≤ α̃n+1(t) ≤ β̃n(t) on J. In a similar manner, we can prove that
α̃n(t) ≤ β̃n+1(t) ≤ β̃n(t) on J.
Using (5.1), we obtain

α′n+1 = (Nα̃n) (t+ η2) + (Nxα̃n) (t+ η2)
(
∼
αn+1 − α̃n

)
≤ (Nα̃n+1) (t+ η2)− (Nxα̃n) (t+ η2)

(
∼
αn+1 − α̃n

)
+ (Nxα̃n) (t+ η2)

(
∼
αn+1 − α̃n

)
= (Nα̃n+1) (t+ η2) .

Similar arguments yield
(
N
∼
βn+1

)
(t + η2) ≤

∼
β
′

n+1and hence Theorem 4.2 shows

that α̃n+1(t) ≤ β̃n+1(t) on J which proves (5.5) is true. So by using induction we
obtain

α̃0 ≤ α̃1 ≤ · · · ≤ α̃n ≤ α̃n+1 ≤ β̃n+1 ≤ β̃n ≤ · · · ≤ β̃1 ≤ β̃0 on J.

Now using standard arguments (Arzela-Ascoli and Dini’s Theorems, see[2]), it
can be shown that the sequences {α̃n (t)} and {β̃n (t)} converge uniformly and
monotonically to the unique solution of u (t) of (2.1) on J.

∼
u
′
(t) = (N

∼
u) (t+ η2) ,

∼
u (t0) = u0 (5.8)

But letting s = t+η2 and changing the variable, we can show that (5.8) is equivalent
to

u′ (s) = (Nu) (s) , u (s0) = u0.

Finally, to prove superlinear convergence, we let

pn (t) =
∼
u (t)− α̃n (t) and qn (t) = β̃n (t)− ∼

u (t) .

Note that pn (t0) = qn (t0) = 0.
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p′n (t) =
∼
u
′
(t)− α̃′n (t)

= N
(
∼
u
)

(t+ η2)

−
[
(Nα̃n−1) (t+ η2) + (Nxα̃n−1) (t+ η2)

(
∼
αn − α̃n−1

)]
=

∫ 1

0

(
Nx

(
s
∼
u + (1− s)α̃n−1

))
(t+ η2)

(
∼
u − α̃n−1

)
ds

−Nx(α̃n−1) (t+ η2)
(
∼
αn − α̃n−1

)
=

∫ 1

0

(
Nx

(
s
∼
u + (1− s)α̃n−1

))
(t+ η2) pn−1ds

−Nx (α̃n−1) (t+ η2) (pn−1 − pn)

=

∫ 1

0

[(
Nx(s

∼
u + (1− s)α̃n−1)

)
(t+ η2)− (Nxα̃n−1) (t+ η2)

]
pn−1ds

+Nxα̃n−1) (t+ η2) pn.

From (iv) and (v), it follows that

‖p′n (t)‖ ≤
∫ 1

0

L2

∥∥∥s∼u + (1− s)α̃n−1 − α̃n−1)
∥∥∥γ ‖pn−1‖ ds+ L1 ‖pn‖

≤
∫ 1

0

L2

∥∥∥s∼u − sα̃n−1∥∥∥γ ‖pn−1‖ ds+ L1 ‖pn‖

≤
∫ 1

0

L2 ‖spn−1‖γ ‖pn−1‖ ds+ L1 ‖pn‖

= L2 ‖pn−1‖γ+1 + L1 ‖pn‖ .

Then setting an = ‖pn‖ , we find

a′n ≤ ‖p′n‖ ≤ L2 (an−1)
γ+1

+ L1an.

Now Gronwall’s inequality implies

0 ≤ an(t) ≤ L2
∫ t

0

exp [L1 (t− s)] (an(s))
γ+1

ds on J

which yields the estimate

max
J
‖pn(t)‖ ≤ L2

exp (L1T )

L1
max
J
‖pn−1(t)‖γ+1 .
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Similarly,

q′n (t) = β̃
′
n (t)− ∼

u
′
(t)

=
(
Nβ̃n−1

)
(t+ η2) + (Nxα̃n−1) (t+ η2)

(
β̃n − β̃n−1

)
−N

(
∼
u (t)

)
(t+ η2)

=

∫ 1

0

(
Nx(sβ̃n−1 + (1− s)∼u (t))

)
(t+ η2)

(
β̃n−1 −

∼
u
)
ds

+ (Nxα̃n−1) (t+ η2))
(
β̃n − β̃n−1

)
=

∫ 1

0

(
Nx(sβ̃n−1 + (1− s)∼u (t))

)
(t+ η2) qn−1ds+

(Nxα̃n−1) (t+ η2) (qn − qn−1)

=

∫ 1

0

[(
Nx(sβ̃n−1 + (1− s)∼u (t))

)
(t+ η2)−

(
Nx

∼
u
)

(t+ η2)
]
qn−1ds

+
[(
Nx

∼
u
)

(t+ η2)− (Nxα̃n−1) (t+ η2)
]
qn−1 + (Nxα̃n−1) (t+ η2)qn.

We find, using (iv) and (v), that

‖q′n (t)‖ ≤
∫ 1

0

L2

∥∥∥sβ̃n−1 + (1− s)∼u − ∼
u
∥∥∥γ ‖qn−1‖ ds

+L2

∥∥∥∼u − β̃n−1∥∥∥γ ‖qn−1‖+ L1 ‖qn‖

≤ L2 ‖qn−1‖γ+1 + L2 ‖pn−1‖γ ‖qn−1‖+ L1 ‖qn‖ .
Setting bn = ‖qn‖ and an−1 = ‖pn−1‖ , it easily follows that

b′n ≤ ‖q′n‖ ≤ L2 (bn−1)
γ+1

+ L2 (an−1)
γ
bn−1 + L1bn.

Similarly, an application of Gronwall’s inequality yields

0 ≤ ‖qn‖ ≤ L2
∫ t

0

exp [L1 (t− s)]
[
‖qn−1(s)‖γ+1 + ‖pn−1(s)‖γ ‖qn−1(s)‖

]
ds on J,

and hence

max
J
‖qn(t)‖ ≤ L2

exp (L1T )

L1

[
max
J
‖qn−1(t)‖γ+1 + max

J
‖pn−1(t)‖γ ‖qn−1(t)‖

]
.

This completes the proof.

Next we give the following remarks and corollaries for special cases.

Remark 5.1 Instead of assumption (v) in Theorem 5.1 if we assume that

‖(Nxx) (t)− (Nxy) (t)‖ ≤ L2 ‖x− y‖ , t ∈ J
where L2 is a positive constant, then we can see that the convergence is quadratic.
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Remark 5.2 Let the assumption of Remark 5.1 be valid. If we assume that
(Nx) (t) is uniformly convex in x instead of the assumption (iv) in Theorem 5.1,
then by Lemma 4.5.1 in [2], we have quadratic convergence as well. Moreover, the
quasimonotonicity of (Nx) (t) in x implies by Lemma 4.2.5 in [2] that (Nxα) (t)x
is also quasimonotone in x.

Corollary 5.1: If the assumptions of the Theorem 5.1 hold with s0 = t0, then
the conclusion of the theorem remains valid.
Proof: For the proof, we let β̃0 (t) = β (t+ η1), α̃0 (t) = α (t) and ũ (t) = u (t)

and proceed, as we did in Theorem 4.1.
Corollary 5.2: If the assumptions of the Theorem 5.1 hold with s0 = τ0, then

the conclusion of the theorem remains valid.
Proof: Similarly, we let α̃0 (t) = α (t− η1) , β̃0 (t) = β (t) and ũ (t) = u (t) and

proceed, as we did in Theorem 5.1.
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