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Estimation of the COVIMEP Variation in a HCCI Engine

Highlights

» The variation of the COV\vep Was tried to be predicted by using the ANN method

» Experimental data obtained for different boosted pressure and lambda values were used as input data
The best performance was obtained at 37th iteration

» Total correlation factor was found as 0.97763

Graphical Abstract

In this study, variation of the COV\uep Was tried to be predicted by using the artificial neural network method for
4-stroke, 4-cylinder, direct injection and supercharged HCCI engine experimental data obtained by using n-
heptane fuel at 60 °C intake air temperature, 1000 rpm engine speed at different boosted pressure. As a result of
the study, it was seen that the stored data and the estimated COV,vep data were compatible.
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Figure. Comparison of ANN results with experimental data

Aim
COViuep, Which is an indicator of unstable operation in internal combustion engines, was estimated by ANN
method.

Design & Methodology

The COV)vep estimation was performed with MATLAB ANN Toolbox using the experimental data obtained for
seven different boosted pressure and different lambda values of HCCI engine.

Originality

COVmep Was used as target data 1000 iterations, 3 layers and 5 neurons were used in network structure and
teaching, accuracy and testing procedures were conducted.

Findings

The best performance was obtained at 37th iteration with an average quadratic error of 0.0013026. Total
correlation factor was found as 0.97763.

Conclusion
It is seen that the stored data and the estimated COVwvep data are in harmony.
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ABSTRACT

In this study, variation of the COVimer was tried to be predicted by using the artificial neural network method for 4-stroke, 4-
cylinder, direct injection and supercharged HCCI engine experimental data obtained by using n-heptane fuel at 60 °C intake air
temperature, 1000 rpm engine speed at different inlet air intake pressure. Intake air inlet pressure and lambda were used as input
data in artificial neural network model. The COV mer value was used as the target. Three layers and five neurons were used to
construct the network using the Levenberg-Marquardt algorithm. Correlation between targets and outputs for teaching, accuracy
and testing were obtained as 0.97989, 0.9504 and 0.91644, respectively. Total correlation factor was found as 0.96983. As a result
of the study, it was seen that the stored data and the estimated COVimep data were compatible.

Keywords: HCCI engine, low temperature combustion, artificial neural network.

Bir HCCI Motorda COVmep Degisiminin Tahmini

oz

Bu calismada, 4 zamanly, 4 silindirli, direkt enjeksiyonlu ve siipersarjlit HCCI motorunda n-heptan yakit1 kullanilarak 60 °C giris
sicakliginda, 1000 rpm mtor hizinda, farkli mme havasi girig basinglarinda elde edilen deneysel sonuglar kullanilarak yapay sinir
ag1 metodu kullanilarak COVimep degisimi tahmin edilmeye ¢alisilmistir. Yapay sinir ag1 modelinde giris verisi olarak emme havasi
giris basinci ve lambda kullanilmistir. COV mep degeri hedef olarak belirlenmistir. Ug katman ve bes néron kullanilarak olusturulan
ag yapisinda Levenberg-Marquardt algoritmasi ile 6gretme islemi yapilmustir. Ogretme, dogruluk ve test ici hedefler ile ¢ikiglar
arasindaki kolerasyon faktorii sirasi ile 0.97989, 0.9504 ve 0.91644 olarak elde edilmistir. Toplam korelasyon faktorii ise 0.96983
olarak bulunmustur. Yapilan ¢alisma sonucunda, saklanan veriler ile tahmin edilen COVimep verilerinin uyum igerisinde oldugu
gorilmiistiir.

Anahtar kelimeler: HCCI motoru, diisiik sicaklik yanmasi, yapay sinir agi.

1. INTRODUCTION HCCI engines cannot be used commercially yet because

Homogeneous charged compression ignition (HCCI)
engines have advantages such as high thermal efficiency,
very low NOx and PM emissions and low heat loss
compared to conventional spark ignition (SI) and
compression ignition (CI) engines. In HCCI engines, the
air / fuel mixture prepared outside the cylinder is almost
homogeneously taken into the cylinder and compressed.
Combustion of the air / fuel mixture starts at the same
time in all regions of the cylinder when the temperature
reaches the ignition temperature. Since HCCI engines
can operate in leaner homogeneous mixtures, NOx and
PM emissions are simultaneously reduced as regional
rich  mixtures are not produced. However, the
simultaneous combustion of the mixture in the whole
cylinder causes a high pressure rise rate especially at high
engine loads and this causes knocking. At low engine
loads, misfiring problems occur due to the extremely lean
mixture.

*Sorumlu Yazar (Corresponding Author)
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of these problems.

Researchers have tried to resolve these problems via
increasing the intake air inlet temperature, increasing
intake air inlet pressure, changing the compression ratio,
changing valve timing, using exhaust gas recycle etc.
Furthermore, since the physical and chemical features of
the fuels used in HCCI engines affect the combustion
stages directly, researchers also have conducted detailed
studies by using fuels having different physical and
chemical properties and tried to extent operation range of
the HCCI engine [1-9].

One of the most important parameters used in HCCI
engines for detecting misfire zones is COVimvep
(coefficient of variation of indicated mean effective
pressure) which expresses cycle to cycle variations in
IMEP. Since the HCCI combustion starts with self-
ignition in the cylinder, the combustion start angle cannot
be controlled directly. The variations in instantaneous
inlet air temperature, the remaining amount of exhaust
gas in the cylinder and the temperature, cylinder wall and
piston top temperature reveal a cycle to cycle variation in
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cylinder pressure and IMEP. Variance differs rapidly,
especially HCCI operation at misfiring regions of the
engine. The variation in COVvep can be examined to
provide a more appropriate operating map for the misfire
zone and to prevent the engine from running in these
areas.

Experimental studies for HCCI engines are quite costly.
Since the operation of the engine during the experiments
is not completely stable, measurements cannot be taken
at any desired range. Artificial neural networks are
widely used for more precise evaluation of the data
obtained from the tests. In addition, the software
algorithm developed for engine control by determining
engine operation range must determine the engine
operation is progressing into the misfiring zone and
intervene the engine before entering misfire zone. It is
thought that artificial neural networks can be used for the
software algorithm to predict the misfire zone in advance.

Solution methods based on only algorithm and
mathematical approach are insufficient to solve complex
problems. Therefore, artificial neural networks have been
developed for use in solving complex problems [10].
Artificial Neural Networks is a parallel and distributed
processor based on the human brain operating principle
that simulates of the simple nervous system. Learning in
artificial neural networks is accomplished by calculating
the weights of synaptic connections between cells to
achieve the desired target [11].

Ismail et al. developed an artificial neural network
(ANN) model for light diesel engine using blends of
conventional diesel and biodiesel fuels. In the study nine
different engine output parameters such as carbon
monoxide (CO), carbon dioxide (CO2), nitrogen
monoxide (NO), unburned hydrocarbon (UHC),
maximum pressure (Pmax), location of the maximum
pressure (CAPmax), maximum heat release rate
(HRRmax) and cumulative heat release rate were
predicted in ANN model, engine speed, engine output
torque, fuel mass flow rate and concentration rate of
biodiesel in fuel blend were used as input parameters. In
the study, it was found that the results obtained with the
ANN method were compatible with the experimental
data [12].

Rezai et al. have developed a model for the estimation of
performance parameters in an HCCI engine by using
artificial neural networks. In the study, indicated mean
effective pressure (IMEP), thermal efficiency, in-
cylinder pressure, cumulative heat release, nitrogen oxide
(NOXx), CO and total hydrocarbon (THC) were estimated.
In order to estimate these seven different engine
parameters, two separate ANN models, radial simple
function (RBF) and feed forward (FF) were used.
According to the results of the study, the performance
parameters of the butanol and ethanol-fuelled HCCI
engine were estimated with an error less than 4% in both
models (RBF and FF). Since a lower number of neurons
were used in the FF model, it was stated that a simpler

network structure was obtained, but twice the learning
time was required compared to the RBF model [13].

In this study, COV\vep variation was estimated with
artificial neural network method by using the
experimental data obtained at different intake air inlet
pressures at 1000 rpm engine speed using n-heptane fuel
in a 4-stroke, four-cylinder, direct injection and
supercharged HCCI engine.

2. MATERIAL and METHOD
2.1.Experimental Setup

In the present study, 2.0 liter, 4 cylinder, four stroke,
direct injection GM Ecotec gasoline engine was modified
to be operated in HCCI mode. GM Ecotec gasoline
engine has a compression ratio of 9.2 and provides 270
kW output power at engine speed of 6000 rpm. An
external Eaton M62 model supercharger was used to
increase the pressure of the air entering the cylinder, and
this supercharger was driven by a 20 HP electric motor.
An external fuel pump driven by an electric motor was
used for the direct injection system. An air heater was
fitted between the throttle body and the intake manifold
to increase the intake air temperature. Engine load and
speed were controlled by an AC dynamometer of 460 HP.
A schematic view of the experimental setup is given in
Figure 1.

HCCI engine was controlled with an interface and
algorithm that was developed using dSPACE
MicroAutoBox and RapidPro control modules.
Instantaneous in-cylinder pressure data and crankshaft
angle are recorded to the computer via the combustion
analyzer device with 1 degree crank angle precision. In
order to increase the accuracy of calculation in-cylinder
pressure data of 100 consecutive cycles were recorded for
each test point. The IMEP and COV vep Values for each
test point were calculated by using the in-cylinder
pressure data obtained from experiments.

By examining the differences between a numbers of
consecutive cycles, it is determined whether the engine is
running regularly or not. The performance stability of the
engine can also be determined by examining the change
of IMEP according to cyclical variations. The indicated
mean effective pressure variance coefficient (COV-
Coefficient of Variation) is widely used in the expression
of cyclical variations of the internal combustion engines.
In the literature, it was desired that the value of the
coefficient of variance should not exceed 10% for the
engine to work in a stable manner. This value was
considered to be a critical value for HCCI combustion
[4]. Variance coefficient in indicated mean effective
pressure can be calculated by following equations;

imep —

O-ime
coV, X" x100 1)
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Figure 1. Schematic view of the experimental test setup

cycle

Where, o, X, X, and n refers to standard

imep !
deviation of IMEP values of 100 cycles, average IMEP
of the 100 cycle, IMEP values of each cycle and cycle
number respectively. In the present study experiments
were conducted at engine speed of 1000 rpm, injection
pressure of 100 bar, intake air temperature of 60 °C,
seven different intake air pressure of 100-110-120-130-
140-150 ve 160 kPa with n-heptane which is a reference
fuel.

2.2. Artificial Neural Network Method

There are many learning methods used in artificial neural
networks. One of these methods is back propagation.
Back propagation learning is one of the algorithms that
used in multi-layer network. For the input data sent to the
network, the output produced by the network is compared
with the target. The difference between these two values
gives the error value. The error found is distributed to the
weight values of the network in the next iteration and it
is aimed to decrease the error value at the end of the

process [14]. Figure 2 shows the network structure
created. Intake air inlet pressure and lambda were used as

(2)  input data in artificial neural network model. The
COVmvep value was used as the target.
Levenberg-Marquardt algorithm, which is derived from
Newton's algorithms, performs parameter update

(3) processes with error vector and Jacobian matrix created

for all inputs. The Levenberg-Marquardt algorithm uses
system resources (memory, etc.) more than other
algorithms. However, the training of the network takes
place in a shorter time. Training ends when
generalization stops healing [15-16]. In this study,
Levenberg-Marquardt algorithm was used to teach
experimental data to the ANN.

The COV mep estimation was performed with MATLAB
ANN Toolbox using the experimental data obtained for
seven different intake air inlet pressure and different
lambda values of HCCI engine. Experimental parameters
and data were shown in Table 1. In order to test the
accuracy of the artificial neural network model, one of
the test data for each intake air pressures were hidden.

Figure 3 shows the variation of COVIMEP, which is

calculated using the data obtained from the experiments,
depending on the lambda and the intake air pressure.
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Figure 2. Structure of the artificial neural network
Table 1. Experimental data

Teaching data Hidden data
Intake EikI; g]ressure Lambda [-] Lambda [-]
100 1.91-2.03-2.20-2.33-2.65-2.80 2.52
110 2.33-245-281-299-3.21-3.45 2.64
120 2.57-284-3.05-3.28-3.49-3.71-3.92 2.67
130 2.76-3.01-3.42-3.68-3.94-4.14-4.27 3.19
140 2.89-3.10-3.36-3.56-3.83-4.10-4.52 4.37
150 297-3.37-3.67 - 3.925-341.16 -4.47-478-5.10 - 317
3.04-322-343-367-397-451-4.82-521-
160 5.53 - 5.88 4.23
COV IMEP %
10
3 == MAP 100 kPa
X - MAP 110 kPa
& 6

2 === MAP 120 kPa

§ 4 =>4=MAP 130 kPa

2 - == MAP 140 kPa

0 N ~@®-MAP 150 kPa

1,822 26 3 34384246 5 5458 MAP 160 kPa
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Figrure 3. COViwmep variation depending on lambda and intake air pressure
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3. RESULTS AND DISCUSSION

In the present study, prediction of COV mep variation due
to inlet air pressure and lambda in a HCCI engine was
conducted via ANN model using Levenberg-Marquardt
teaching algorithm. Intake air pressure and lambda were
used as input data and COV mep Was used as target data.
The weights in the ANN were calculated using
MATLAB ANN Toolbox for teaching, accuracy and test
processes.

In this study, 52 of 59 of the values were taught to the
network and 7 of them were stored to test the accuracy.
In Figure 4 (a) upper graph shows the performance of
neural networks due to the mean square error for
teaching, accuracy and testing. A total of 1000 iterations
were performed and the best performance was achieved
with an average of 0.0013026 quadratic error in the 37th
iteration.

Best Validation Performance is 0.0013026 at epoch 37
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Figure 4 (b) shows the regression analysis between the
target values for the teaching, accuracy and testing and
the artificial neural network output values. Correlation
between targets and outputs for teaching, accuracy and
testing was obtained as 0.98386, 0.87327 and 0.96283,
respectively. Total correlation factor was found as
0.97763. It is also seen on Figure 4 that the accuracy of
the ANN model applied in this study is high enough.
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Figure 5. a) Comparison of ANN results with experimental
data b) COVIMEP variations depending on lambda
and intake air pressure with ANN

Figure 5 (a) shows the experimental COVIMEP data,
which is not taught to the network of artificial neural
networks, and the comparison with the results of
predictions of ANN model at different intake air inlet
pressures and different lambda values determined by the
model. As a result of the comparison, it was seen that the
hidden experimental data and the estimated COVIMEP
data were compatible.

Figure 5 (b) shows the ANN results of COVIMEP
variations depending on lambda and intake air pressure.
The COVIMEP map was obtained the lambda values
were changed to 0.01 at the different intake air pressures
(100 kPa to 160 kPa) after the accuracy of the ANN
model was tested. In the development of HCCI engines,
it is very important to determine the limits of knock and
misfire. The COVIMEP value exceeds 4 is one of the
most important indicators of the operation of the HCCI
engine in the knock or misfire zone. Thus, it is possible

to estimate the knock and misfiring zones of the HCCI
engine without experimenting using the developed ANN
model.

6. CONCLUSION

In this study, by using the experimental data obtained at
different intake air inlet pressures and 1000 rpm engine
speed using n-heptane fuel in a 4-stroke, four-cylinder,
direct injection and supercharged HCCI engine,
COVIMEP values were estimated by using artificial
neural network method. Experimental data obtained for
seven different intake air pressure (from 100 kPa to 160
kPa with thee intervals of 10 kPa) and different lambda
values were used as input data. COVIMEP was used as
target datal000 iterations, 3 layers and 5 neurons were
used in network structure and teaching, accuracy and
testing procedures were conducted. The best
performance was obtained at 37th iteration with an
average quadratic error of 0.0013026. Total correlation
factor was found as 0.97763. As a result of the study, it
is seen that the stored data and the estimated COVIMEP
data are in harmony.
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