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ABSTRACT  ARTICLE INFO 

A correct simulation of a quantum circuit on a classical computer is more 

important because of their future use. The main purpose of this work is to illustrate 

a full adder circuit by using a standard Mathematica add-on package. The circuit 

can be constructed by using CNOT-based quantum gates. The program provides a 

curriculum unit, to generate the basic elements that make up quantum circuit.  This 

paper shows effective computational design by using analogy of classical circuits. 

We presented an explicit example to show efficiency of the 4 qubit full adder 

circuit on classical computer. The method given in this paper can be used to design 

various quantum circuits. 

Keywords: 

 

Quantum Bit 

Qubit 

Full adder 

Mathematica 

Simulation  

 

1. Introduction 

 

There are plenty theoretical [1-5] and experimental study 

[6-8] that work for buildup quantum computer based on 

quantum mechanical postulates. The study in the same 

problems that faced traditional computers through quantum 

system technology is one of the significant issues that hope 

technologies for future computing systems.  

It has been a great deal of interest for simulating a 

quantum algorithm on a classical computer. A basic quantum 

computer has already been built but practically quantum 

computer has not yet been built.  Scientists need to simulate 

quantum algorithms on classical computers. Consequently, 

various general-purpose quantum computer simulators have 

been developed. Recently, several Mathematica-based [9] 

quantum algorithm simulators have appeared, including 

Quantum: Mathematica add-on for simulating quantum 

algorithms [10]. Although running time for such simulators 

increases exponentially by increasing the number of qubits, 

many quantum algorithms including few qubits can be 

simulated efficiently on a classical computer. 

Theoretically, quantum computing allows solving 

problems much faster than classical computing, e.g. N steps 

need to search an unstructured database for solving one 

problem with a classical algorithm, but in the quantum Grover 

algorithm needs only √𝑁 steps [11]. 

In this study simulation a four qubit full adder circuit was 

simulated by using a Mathematica package developed by J. L. 

Gómez-Muñoz and F. Delgado [12]. A full adder is an 

essential component of a classical computer and also an asset 

component for quantum computers [13]. Although a 

considerable attention has been paid to present quantum 

algorithm for full adder circuit, the study of this problem from 

different point of view leads to the progress of quantum 

algorithm and simulation techniques. Among various 

quantum circuits, CNOT-based circuits have attracted widely 

attentions in the literature [14], and likewise, this study 

algorithm include CNOT-based quantum circuits. Note that as 

a part of the development of quantum computing, it is 

necessary to find efficient ways to design a quantum circuit. 

According to the quantum theory, quantum logic circuit 

represents unitary transformations of the state of one or more 

qubits over time or space. These circuits are modeled as a 

cascade of one or more quantum logic gates represented by a 

unitary transformation matrix [15, 16]. 

The paper is organized such that basics of quantum 

computation and quantum gates used to construct full adder 

circuits is briefly reviewed, and a simple quantum circuit and 

its unitary matrix was represented. In addition, it is devoted to 

present an algorithm for addition of four qubit numbers using 

a quantum computer. Classical full adder circuit is briefly 

summarized and quantum algorithm based on analogy of the 

classical algorithm is constructed. A Wolfram Mathematica 

program (WMP) is prepared using Quantum: Mathematica 

add-on for simulating quantum algorithms [12] is used to 

simulate four qubit full adder circuit. 

https://dergipark.org.tr/jphcfum
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2. Theoretical Background 

 

Quantum computation is based on principles of quantum 

mechanics. In quantum mechanics a quantum state (or qubit) 

can be typically obtained from the state of a two-level 

quantum system. As an example ground state and excited state 

of an atom or the vertical and horizontal polarizations of a 

single photon are represented as qubits. The qubits are 

denoted by using Dirac notation such as one of these states as 

and the other as   

According to the theory of quantum mechanics the states 

can be written as linear combinations of these pure states, 

which is called superposition, and it is the most significant 

property that speed up computation based on quantum. In 

other words, the state of a qubit 𝜓 can be written as 

𝜓=𝛼|0+𝛽|1where 𝛼 and 𝛽 are complex numbers and 

satisfy 𝛼2 + 𝛽2 =1. This implies that by performing a single 

operation, on the state (𝜓), both qubits will be affected at the 

same time. Similarly, a two-qubit system can perform 

operation on a four-qubit input, three qubit system can 

perform operation on eight qubits, and consequently, an n 

qubit system can perform operation on 2n qubits. This is 

known as quantum parallelism [18] and by a sufficient 

algorithm one can use this property to speed up quantum 

computer exponentially compared to a classical computer. 

There are various quantum gates with different 

functionalities that can be used for constructing a quantum 

circuit, including identity (I), NOT, CNOT, C2NOT and 

SWAP gates. Icons of the gates are given in the Figure 1, 

where each symbol , and | are used for control, target and 

contact qubits, respectively. The operation of each gates are 

as follows: 

 Identity gate (I) with matrix MI that does not act on 

the qubits. Its icon is a horizontal wire.   

 NOT gate inverts the working qubit and its action is 

given by the matrix MNOT.  

 CNOT gate work such that if the control qubit is |1, 

then the target qubit is inverted, otherwise it remains 

constant. It is action on qubits can be obtained by 

using the matrix MCNOT.   

 SWAP gate exchanges the values of input qubits.  

C2NOT gate is controlled-CNOT gate, also known as 

Toffoli gate, can be described as: if both control qubits are |1, 

the target is inverted; otherwise, it remains the same. 

As aforementioned before, quantum gates are represented 

by unitary matrices and the circuits are also represented by 

unitary matrices. Such circuits are called unitary stabilizer 

circuits [20].  For example, in Figure 2, NOT gate combined 

with identity gate. Matrix representation of combined gates 

can be obtained by direct product of MI and MNOT. In addition, 

Figure 3 shows the Cascading quantum gates to construct a 

quantum circuit. 

 

 

Figure 1. Basic quantum gates [19]. 

 

Figure 2. A compound gate constructed from an identity and 

a NOT gate [14]. 

 

 

Figure 3. Cascading quantum gates to construct a quantum 

circuit and its QMatrix [14]. 

 

3. Construction of Classical and Quantum Full Adder 

Circuit 

 

In order to construct a quantum full adder circuit, there is 

an analog to classical full adder circuits. A classical full adder 

operates with an input of two addend bits, “A” and “B”, and a 

carry bit, “Cin” (Figure 4), where S and Cout are the output 

“sum” and the “carry-over”, respectively. The sum (S), can be 

easily expressed as 𝑆 = 𝐴⨁𝐵⨁𝐶𝑖𝑛 with ⨁ is an addition 

modulo 2. The true table of full-adder is given in Table 1. Also 

Table 2 gives input combinations that produce the same 

output combinations in full adder circuit 

 

Figure 4. Classical full-adder circuit. 
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Figure 5. Parallel 4-bit binary Adder [22]. 

 

Table 1. Truth Table of classical full-adder. 

Input Output 

A B Cin S Cout 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 0 

1 1 1 1 1 

 

𝐶𝑜𝑢𝑡 can be easily obtain by following expression [21]: 

 

𝐶𝑜𝑢𝑡 = (𝐴⨁𝐵)𝐶𝑖𝑛 + 𝐴𝐵 (1) 

 

In order to construct a full adder circuit for more than 1 

binary digit, we connected classical full adder circuit in 

cascade as shown in Figure 5.  

The circuit in Figure 5 performs calculation of two binary 

numbers of digits (𝐴3𝐴2𝐴1𝐴0 and 𝐵3𝐵2𝐵1𝐵0) with initial 

carry 𝐶0 = 0. Therefore, the classical version of full adder 

circuit does not operating unitary. A classical gate that can 

perform a unitary transformation on inputted bits are classical 

CNOT gate [23]. 

Adder circuits are a key element in any computational 

logic unit. In order to find an analogy between classical and 

quantum computation, it is worth to test reversibility of 

classical circuit [24-26]. Logic equation for CNOT gate is 

given by: 

Sum=A⨁B and Cout=A B (2) 

A reversible half-adder can be constructed by using two 

reversible gates (Figure 6). This combination gate 

corresponds to a Peres gate [27]. 

A 1-bit full-adder takes two binary digits (A, B) and a 

carry-in (Cin) as input. Its mathematical representation is 

given as follows: 

Sum=A ⨁ B ⨁ Cin (3) 

Cout=AB ⨁ (A ⨁ B)Cin (4) 

 

Figure 7 demonstrates a reversible full-adder circuit that 

has been made by using four CNOT based gates. 

 

 

Figure 6. Reversible 1-bit half-adder. 

 

  
Figure 7. Reversible 1-bit full-adder. 

 

Furthermore, appropriate combinations of the 1-bit half and 

full-adder, provides a reversible n-bit half and full-adders 

(Figure 8). 

We have shown that a reversible full adder circuit can be 

constructed by using CNOT and Controlled CNOT gates 

represented by a unitary matrix. 
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Figure 8. Reversible n-bit Full adder. 

 

Table 2. Input combinations that produce the same output 

combinations in full adder circuit (shown shaded). 

Input Output 

A B Cin C1 S Cout G1 G2 

0 0 1 0 1 0 0 0 

0 1 0 0 1 0 0 1 

1 0 0 0 1 0 1 0 

 

4. The results of Quantum Circuit Simulator 

To simulate four bit quantum full adder circuit a programed 

Mathematica package was used, which is called Mathematica 

Add-On package, that presented for Dirac Notation, 

Noncommutative Algebra of Operators and Commutators, 

Quantum Computing, and Plotting of Quantum Circuits [9]. 

Also, in order to fully utilize all that quantum circuits, it was 

necessary to design a circuit simulator that had to be efficient 

and accurate [23].  Firstly, a half-adder circuit was designed. 

4.1 Simulation of Half-Adder 

It is easy to use the WMP to construct a unitary circuit. The 

schematic diagram of the quantum circuit can be drawn by 

using the command QuantumPlot[], and operation of the 

circuit on the qubits can be tabulated by using the command 

QuantumTableForm[].  

The half adder circuit and its operation is illustrated in Figure 

9, whereby,  lines 1, 2 and 3 represents input and output of the 

circuit. Synthesis of input-output relation of the circuit are 

summarized in Table 3. 

 

 

Figure 9. Simulation Quantum Half-Adder and obtained 

Mathematica results. 

 

 
 

Figure 10. Simulation Quantum Full-adder with result by 

Mathematica. 

 

Table 3. Synthesis of input and output Quantum Half-Adder. 

Input Output 

Line 1 = First Input bit (A) Line 1 = Garbage 

Line 2 = Second Input bit (B) Line 2 = Sum 

Line 3 = 0 Line 3 = Cout 
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Table 4. Synthesis of input and output Quantum Full-Adder. 

Input Output 

Line 1 = First Input bit (A) Line 1 = Garbage 

Line 2 = Second Input bit (B) Line 2 = Garbage 

Line 3 = 0 Line 3 = Cout 

Line 4 = Cin Line 4 = Sum 

4.2. Simulation Quantum Full-Adder 

Similar to the design of half-adder circuit we constructed a 

full adder circuit. In the circuits input qubits are applied to 

lines 1 and 2. Input of the line 3 is always 0, while carry input 

is applied to line 4. Sum of the numbers are appears on output 

part of line 4 and carry appears on output line 3. The relation 

between inputs and outputs are given in the Table 4. 

On the other hand, to evaluate action of the circuit on a given 

input state, one can use the command QuantumEvaluate[]. 

Action of the full adder circuit on various states (qubits) are 

given in Figure 10. 

The following Mathematica line illustrates summation of 

qubits (1) and (1) with (0) carry input. The sum is obtained by 

measuring the output 4 and carry can be determined by 

measuring output 3. 

 
 (5) 

Using the full adder circuit we can design a 4 qubit quantum 

full adder circuit by writing the following code in 

Mathematica Add-On program.  

  
 (6) 

 

Figure 11. Simulation 4-qbit Adder by Mathematica. 

Figure 11 gives the output of the Mathematica code for the 

quantum full adder circuit. The corresponding action of the 

circuit on input qubits are summarized in Table 5. 

Table 5. Synthesis of input and output 4-qbit Adder. 

Input Output 

Line 1 = First bit Input (A0) Line 1 = Garbage 

Line 2 = Second bit Input (B0) Line 2 = Garbage 

Line 3 = 0 Line 3 = Cout 

Line 4 = Cin Line 4 = Sum0 

Line 5 = First bit Input (A1) Line 5 = Garbage 

Line 6 = Second bit Input (B1) Line 6 = Garbage 

Line 7 = 0+Cout(Output line 3) Line 7 = Cout 

Line 8 = Cin Line 8 = Sum1 

Line 9 = First bit Input (A2) Line 9 = Garbage 

Line 10 = Second bit Input 

(B2) 

Line 10 = Garbage 

Line 11 = 0+Cout(Output line 

7) 

Line 11 = Cout 

Line 12 = Cin Line 12 = Sum2 

Line 13 = First bit Input (A3) Line 13 = Garbage 

Line 14 = Second bit Input 

(B3) 

Line 14 = Garbage 

Line 15= 0+Cout(Output line 

11) 

Line 15 = Cout 

Line 16 = Cin Line 16 = Sum3 

As a specific example, the following Mathematica command 

gives action of the circuit on the input state. 

 
 (7) 

5. Conclusion 

The Mathematica add-on presented in this work utilizes an 

irreducible form of output decomposition of a general 

controlled quantum gate with addition conditionals and a 

highly efficient to simulate complex quantum circuits. 

Another important application in which large and complex 

circuit need to be efficiently simulated is in the area of 

quantum error correction. This demonstrates a part of a 

general framework for simulation of quantum computers on a 

classical computer. 
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