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Abstract

Let &,(rM) be the lattice of all saturated submodules of an R-module M with respect
to a prime ideal p of a commutative ring R. We examine the properties of the mappings
1 : 6,(rR) = &,(rM) defined by n(I) = S,(IM) and 0 : &,(rM) — &,(rR) defined
by O(N) = (N : M), in particular considering when these mappings are lattice homomor-
phisms. It is proved that if M is a semisimple module or a projective module, then 7 is a
lattice homomorphism. Also, if M is a faithful multiplication R-module, then 7 is a lattice
epimorphism. In particular, if M is a finitely generated faithful multiplication R-module,
then 7 is a lattice isomorphism and its inverse is 6. It is shown that if M is a distributive
module over a semisimple ring R, then the lattice &,(grM ) forms a Boolean algebra and
7 is a Boolean algebra homomorphism.
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1. Introduction

We assume throughout this paper that all rings are commutative with nonzero identity
and all modules are unitary. Let R be a ring and M be an R-module. For any submodule
N of M, we denote the annihilator of the R-module M/N by (N : M), ie., (N : M) =
{re R|rM C N}.

It is well-known that the collection of all submodules of M forms a lattice with respect
to the operations V and A defined by

LVN=L+N and LAN=LNN.

Note that this lattice, denoted £(rM), is bounded with the least element (0) and great-
est element M. Recently, P.F. Smith has studied several mappings between L(rR) and
L(rM) [22-24]. For instance, in [22], he examined conditions under which the map-
pings A : L(rR) — L(rM) defined by A(I) = IM and p : L(rRM) — L(rR) defined by
u(N) = (N : M) are injective, surjective or lattice homomorphisms. An R-module M is
called a A-module (respectively u-module), if A (respectively ) is a lattice homomorphism.
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The study of the mappings A and p continued in [23], considering when these mappings
are complete lattice homomorphisms.

A proper submodule P of M is called a prime submodule if forr € Randz € M, rx € P
implies that r € (P : M) or x € P (see, for example, [2,6,18,19]). For a proper submodule
N of an R-module M, the intersection of all prime submodules of M containing N is called
the radical of N and denoted by rad N; if there are no such prime submodules, rad N is
M (see, for example, [11,14,17]). A submodule N of M is called a radical submodule if
rad N = N. The collection of all radical submodules of M which is denoted by R(rM)
forms a lattice with respect to the following operations:

LV N =rad(L+ N) and LAN =LNN.

Note that R(grM) is a bounded lattice with the least element rad(0) and the greatest
element M.

In [20], H.F. Moghimi and J.B. Harehdashti have studied the properties of the mappings
p: R(rRR) — R(rM) defined by p(I) = rad(IM) and o : L(rR) — L(rM) defined by
o(N) = (N : M), in particular considering when these mappings are lattice monomor-
phisms or epimorphisms. Later in [9], they investigated conditions under which these
mappings are complete homomorphisms. Note that p is always a lattice homomorphism,
but not necessarily a complete lattice homomorphism. An R-module M is called a o-
module if o is a lattice homomorphism.

Let M be an R-module. For a prime ideal p of R and a submodule N of M, the set
Sp(N) ={m e M | cm € N for some ¢ € R\ p} is called the saturation of N with respect
to p. It is clear that N C Sp(INV). It is said that N is saturated with respect to p, if
N = Sp(N). It is easily seen that S,(N) is a saturated submodule of M (see [15,16], for
more details about saturation of submodules). The collection of all saturated submodules
of an R-module M with respect to a fixed prime ideal p of R is a lattice with the following
operations:

LVN=S8,(L+N) and LAN=LNN.

We shall denote this lattice by &,(rM), or by &,(M) if there is no ambiguity about R.
Note that &,(M) is bounded, with the least element S,(0) and the greatest element M.
Let R be a ring, p a fixed prime ideal of R and M an R-module. Now consider the

mappings 7 : 6,(R) = &,(M) defined by
() = Sp(IM),

for every saturated ideal I of R, and 6 : &,(M) — &, (R) defined by
O(N) = (N : M),

for every saturated submodule N of M. It will be convenient for us to call the module
M an n-module (resp. a f-module) in case the above mapping n (resp. ) is a lattice
homomorphism.

In this paper, we investigate conditions under which 7 and 8 are lattice homomorphisms,
in particular considering when 7 and 6 are Boolean algebra homomorphisms. It is shown
that modules over Priifer domains (Corollary 2.4), projective modules (Corollary 2.6) and
semisimple R-modules (Corollary 2.7) are three classes of n-modules. It is proved that if
M is a faithful multiplication R-module, then 7 is a lattice epimorphism, and in particular
S,(M) is isomorphic to a quotient of &,(R) (Theorem 2.8) for all prime ideals p of R. It is
shown that a finitely generated module M is a #-module if and only if it is a multiplication
module (Corollary 2.11). In particular, every cyclic R-module is a #-module (Corollary
2.10). Moreover, if M is a finitely generated faithful multiplication R-module then 1 and
6 are lattice isomorphisms (Corollary 2.17).

An R-module M is called distributive if L(gM) is a distributive lattice (see, for example,
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[8]). A ring R is called arithmetical if it is a distributive R-module. We say that an R-
module M is &-distributive with respect to a prime ideal p of R if &,(M) is a distributive
lattice. It is proved that an R-module M is distributive if and only if it is G-distributive
with respect to any prime ideal of R (Corollary 3.4). In particular, every multiplication
module over an arithmetical ring R is G-distributive with respect to any prime ideal
of R (Corollary 3.5). It is shown that if M is a distributive module over a semisimple
ring R, then &,(M) forms a Boolean algebra (Theorem 3.7) and 7 is a Boolean algebra
homomorphism (Theorem 3.13). In particular, if M is a multiplication module over a
semisimple ring R, then 7 is a Boolean algebra epimorphism (Corollary 3.14).

2. n-modules and #-modules
We start with a lemma which collects some facts about saturation of submodules.

Lemma 2.1. Let R be a ring, p a prime ideal of R and M an R-module. Then

(1) Sp(LNN)=S,(L)NS,(N) for all submodules L and N of M ;
(2)  Sp(Sp(IM) + Sp(JM)) = Sp(Sp(L + J)M) = S,(IM + JM) for all ideals I and
J of R.

Proof. (1) Clear.

(2) Since IM C (I + J)M C S,(I + J)M, we conclude that S,(IM) C S,(Sp(L + J)M).
Similarly, Sp(JM) C S,(Sp(I+J)M). Therefore, we have S,(IM)+S,(JM) C Sp(Sp(I+
J)M). Hence we have S,(S,(IM)+ S,(JM)) C Sp(Sp(L+ J)M). Now, let € S,(Sp(I+
JYM). Then there exists ¢ € R\ p such that cz € S,(I + J)M. Therefore cx = S5 | 7
for some r; € Sp(I + J) and z; € M (1 < i < k). Thus there are ¢; € R\ p (1 <i < k)
such that ¢;r; € I+ J, and so ¢y ...cpex € (I + J)M. It follows that = € S,((L + J)M).
Hence we have S,(S,(I + J)M) C S,(IM + JM). It is also clear that S,(IM + JM) C
Sp(Sp(IM) + Sp(JM)). O

Theorem 2.2. Let R be a ring, p a prime ideal of R and M an R-module. Then the
following statements are equivalent:
(1) M is an n-module over R;
(2) Spy((INJ)M)=S,(IM)NS,(JM) for all ideals I and J of R;
(3) UpnJp)My = I,M,N J,M, for all ideals I and J of R;
(4) M, is a A-module over R,,.
Proof. (1) = (2) By definition.
(2) = (1) Let I, J € 6,(R). By the assumption, n(I A J) =n(I) An(J).
By using Lemma 2.1, we have
n(I Vv J)

Sp((TV T)M) = Sy(Sy(I + J)M)
Su(Sy(IM) + S,(JM))
Sy (IM) V Sy(JM)

— (D) V n(J).

(2) = (3) Let z € I,M, N J,M,,. Then z = Zi-“:l a;z;/s; = Zle biy;/t; for some a; € I,
b € J, zi,y; € M, s;,t; € R\ p. Hence we have sq ... sgt1...txz € IM NJM which follows
that z € S,(IM)NS,(JM). Therefore by (2), z € S,(LNJ)M). Thus cz € (I NJ)M for
some ¢ € R\ p, and so z € (I, N J,)M, as desired. The reverse inclusion is clear.

(3) = (2) Let x € S,(IM)NSy(JM). Then cx € IM and dx € JM for some ¢,d € R\ p.
Therefore cx = Y8 ¢z and dz = 25:1 djz}; for some ¢; € I, d; € J and z;,7; € M
(1<i,j<k). Thus c;dz = Z§:1 c1d;x’; and hence cjdx € (INJ)M such that c1d € R\p.
Thus « € S,((I N J)M). The reverse inclusion is clear.

(3) < (4) Follows from [22, Lemma 2.1 (ii)]. O



246 M. Noferesti, H.F. Moghimi, M.H. Hosseini

Let R be a domain with the field of fractions K. A non-zero ideal I of R is called
invertible provided I7'I = R where I"! = {k € K : kI C R}. A domain R is called
Priifer if every non-zero finitely generated ideal of R is invertible (see, for more details,

[13]).
Corollary 2.3. Let R be a domain, p a prime ideal of R and M an R-module. Then the
following statements are equivalent:

(1) R, is Priifer;

(2)  Every Ry-module is a A-module;

(3) Every R-module is an n-module.

Proof. (1) < (2) By [22, Theorem 2.3].
(2) < (3) By Theorem 2.2. O

Corollary 2.4. Let R be any Prifer domain. Then every R-module is an n-module.

Proof. Let R be a Priifer domain and p be a prime ideal of R. Then by [13, Theorem
6.6], R, is a valuation ring. Thus by [22, Proposition 2.4], every R,-module is a A-module
and hence by Corollary 2.3, every R-module is an n-module. O
Theorem 2.5. Let R be any ring. Then

(1)  Ewery direct summand of an n-module is an n-module.

(2)  Ewery direct sum of A-modules is an n-module.

Proof. (1) Let K be a direct summand of an n-module M. Let I and J be any ideals of
R and p be a prime ideal of R. Then by Lemma 2.1 (1) and Theorem 2.2, we have

Sp(IK) N Sy(JK) = Sp(K N IM) N Sy(K N JM)

I
N

K)NnS,(InJ)M)
Kn({InJ)M)

=S(INJ)K).
Thus by Theorem 2.2, K is an n-module.
(2) Let M; (i € J) be any collection of A-modules and let M = @;c;3M;. Given any ideals
I and J of R, by [22, Lemma 2.1], we have

Sp(IM) N Sp(JM) = Sp(Diesl M;) N Sp(Biea M;)

= Sp(Dieal M; N BieyJ M;)

= Sp(Siea(IM; N T M;))

= Sp(Biea(I N J)M;)

=S,(INJ)M).
Thus by Theorem 2.2, M is an n-module. (|

Corollary 2.6. For any ring R, every projective R-module is an n-module.

Proof. By [22, Lemma 2.1], every ring R is a A-module. Thus by [10, Theorem IV.2.1]
and Theorem 2.5(2), every free R-module is an 7-module, and therefore by [10, Theorem
IV.3.4] and Theorem 2.5(1), every projective R-module is an n-module. O

Corollary 2.7. For any ring R, every semisimple R-module is an n-module.

Proof. Clearly every simple module is a A-module. Since any semisimple module is a
direct sum of a family of simple submodules, the result follows from Theorem 2.5(2). O
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An R-module M is called a multiplication module if the mapping A is surjective, i.e.,
for each submodule N of M there exist an ideal I of R such that N = IM. In this case,
we can take I = (N : M) (see, for example, [4,7]).

Theorem 2.8. Let M be a faithful multiplication R-module. Then n is a lattice epimor-
phism.
In particular, &,(M) is isomorphic to a quotient of Sp(R) for all prime ideals p of R.
Proof. Since M is a faithful multiplication R-module, M is a A-module by [22, Theorem
2.12]. Thus by [22, Lemma 2.1], (I N J)M = IM N JM for all ideals I and J of R. It
follows that, by Lemma 2.1 (1),

Sp((INJ)M) = S,(IMNJM)=S,(IM)NS,(JM)

for all ideals I and J and prime ideals p of R. Hence by Theorem 2.2, n is a lattice
homomorphism. Now, let p be a prime ideal of R and N € &,(M). Since M is a
multiplication module, we have
n((N: M)) = Sp((N : M)M) = Sp(N) = N
and therefore 7 is an epimorphism. Now, we define the relation ~ on &,(R) by
I~nJ & S,(IM) = S,(JM).
It is evident that ~ is an equivalence relation on &,(R). We show that ~ is a congru-
ence relation. Assume that I;~J; and Ia~.J;. Thus we have S,(I1M) = S,(J1M) and
Sp(IoM) = Sp(J2M). Since M is a faithful multiplication module,
Sp((fl N Jl)M) = Sp(IlM) N Sp(JlM)

= Sp(IQM) N Sp(JQM)

= Sp((IQ N :]2)]\4)7
and therefore I1 A Ji~Iy A Jy. Also, by Lemma 2.1 (2),

Sp(Sp(Il +J1)M) = Sp(sp(llM) + SP(JIM))

= Sp(Sp(12M) + 5p(J2M))

= Sp(Sp(12 + J2) M)
which follows that Iy V Ji~Iy V Jo. Thus 6,(R)/~, the set of equivalence classes with
respect to ~, is a lattice with the following operations:

I/~V J/~=1IVJ/~and I/~ A J/~=1ANJ/~.

Now, the mapping 7 : G,(R)/~ — &,(M) given by 7j(I/~) = n(I) = S,(IM) is a lattice
isomorphism. O

Recall that 6 : &,(M) — &,(R) defined by O(N) = (N : M) is the restriction of
the mapping p : L(rM) — L(rR) to 6,(M) given in [22]. Thus every p-module is a
f-module.

Theorem 2.9. Let R be a ring and M an R-module. Consider the following statements:

(1) M is a B-module over R;
(2) (L+N:M)=(L:M)+ (N :M) for all saturated submodules L and N of M;
(3) (Lp+ Np: My) = (Lp: My) + (N, : My) for all submodules L and N of M and
for all prime ideals p of R;
(4 (L+N:M)=(L:M)+ (N :M) for all submodules L and N of M;
(5) M is a p-module over R.
Then (1) < (2) and (4) < (5).
In particular, if M is a finitely generated R-module, then all of the above statements are
equivalent.
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) < (5) Follows from [22, Lemma 3.1].

4) = (2) Clear.

(2) = (3) Suppose that M is finitely generated. Then M = Rm; + ...+ Rmy, for some
m; € M (1 < i < k). Let L and N be two submodules of M. First we show that
(Sp(L)+Sp(N) : M), = ((L+ N), : M) for all prime ideals p of R. Let p be a prime ideal
of R and assume that r/1 € (S,(L) + Sp(N) : M),. It follows that M C S,(L) + Sp(N).
Thus rm; = x; + y; for some z; € S,(L), y; € Sp(N) (1 < i < k). Therefore c;z; € L and
d;y; € N for some ¢;,d; € R\ p (1 <i<k). Now, since ¢y ...cxdy ...dgrM C L+ N, we
have r/1 € ((L + N), : M,), as requested. Hence, by using [15, Theorem 2.1}, we have

(Lp : Mp) + (Np : Mp) = (Sp(L) : M)p + (Sp(IN) = M)y
((Sp(L) : M) + (Sp(N) : M))y
= (Sp(L) + Sp(N) : M),
(
= (Lyp

Proof. (1) < (2) Follows from definition.
(
(

(L+ N),: M,)
+ N, 1 M,).

(3) = (4) Follows from [3, Proposition 3.8 and Corollaries 3.4 and 3.15].
(4) = (3) Follows from [3, Corollary 3.4 and Corollary 3.15]. O

Corollary 2.10. For any ring R, every cyclic R-module is a 8-module.
Proof. Follows from [22, Corollary 3.7] and Theorem 2.9. O

Corollary 2.11. Let M be a finitely generated R-module. Then the following statements
are equivalent:

(1) M is a -module over R;

(2) M, is a 8-module over Ry, for every prime ideal p of R;

(3) M, is a O-module over Ry, for every maximal ideal m of R;
(4) M is a p-module over R;

(5) M is a o-module over R;

(6) M is a multiplication module over R.

Proof. (1) & (4) By Theorem 2.9.
(4) & (5) < (6) By [20, Theorem 2.11 and Theorem 2.19].
(6) < (2) & (3) By [4, Lemma 2 (ii)], [20, Theorem 2.11] and Theorem 2.9. O

Corollary 2.12. Let R be a ring. If M is a finitely generated 0-module over R and
((0) : M) = Re for some idempotent e of R, then M is an n-module over R. In particular,
every finitely generated faithful 6-module is an n-module.

Proof. By Corollary 2.11 M is a multiplication R-module, and then by [21, Theorem 11]
M is a projective R-module. Thus by Corollary 2.6, M is an n-module over R. U

Now, we investigate conditions under which n and 6 are injective or surjective.

Theorem 2.13. Let n and 0 be as before. Then

(1) mn =n;

(2) 6nf=0.
Proof. (1) Let p be a prime ideal of R and I € &,(R). Since nfn(l) = Sp((Sp(IM) :
M)M), we must show that S,((S,(IM) : M)M) = S,(IM). First note that, since I C
(Sp(IM) : M), we have IM C (S,(IM) : M)M and thus S,(IM) C Sy((Sp(IM) : M)M).

The reverse inclusion follows from

Sy((S(IM) : MYM) € S,(S,(IM)) = S,(IM).
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(2) Let p be a prime ideal of R and N € &,(M). Now, since Onfd(N) = (Sp((IN : M)M) :
M), we must show that (S,((N : M)M) : M) = (N : M). Since (N : M)M C S,((N
M)M), we have (N : M) C (Sp((IN : M)M) : M). The reverse inclusion follows from

):
(Sp((N: M)M) = M) € (Sp(N) : M) = (N : M).
0

Corollary 2.14. Letn and 0 be as before, and p be a prime ideal of R. Then the following
statements are equivalent:

(1) n:6,(R) = &,(M) is a surjection;

(2) no=1;

(3) Sp((N:M)M) =N forall N € G,(M);

(4) 6:6,(M) — &,(R) is an injection.

Proof. (1) = (2) and (4) = (2) follows from Theorem 2.13.
(2) < (3), (2) = (1) and (2) = (4) are clear. O
Corollary 2.15. Letn and 0 be as before, and p be a prime ideal of R. Then the following
statements are equivalent:

(1) n:6,(R) = 6,(M) is an injection;

(2) On =1;

(3) (Sp(IM): M) =1 for all I € Sp(R);

(4) 0:6,(M) — S,(R) is a surjection.
Proof. (1) = (2) and (4) = (2) follows from Theorem 2.13.
(2) < (3), (2) = (1) and (2) = (4) are clear. O

Corollary 2.16. Let n and 0 be as before. Then n is a bijection if and only if 0 is a
bijection. In this case n and 0 are inverse of each other.

Proof. By Corollaries 2.14 and 2.15. U

Corollary 2.17. Let R be a ring and M be a finitely generated faithful multiplication
R-module. Then the mappings n and 6 are lattice isomorphisms. In particular, n and 0
are inverse of each other, and therefore &,(R) and S,(M) are isomorphic lattices for all
prime ideals p of R.

Proof. Since M is a faithful multiplication R-module, n is an epimorphism by Theorem
2.8, and hence 6 is a monomorphism by Corollary 2.14 and [22, Theorem 3.8]. On the
other hand, by [15, Proposition 3.2], we have

(Sp(IM) : M) = Sp,(IM : M) = S,(I) =1,
for all prime ideals p of R and I € &,(R). Hence, by Corollary 2.15, i is an injection and
0 is a surjection. Hence 7 is an isomorphism and its inverse is 6. ]
3. 6,(M) as a Boolean algebra
We start this section by recalling the following basic definition.

Definition 3.1. Let R be a ring and p be a prime ideal of R. An R-module M is called
a &-distributive module with respect to p, if &,(M) is a distributive lattice.

First note the following simple fact.

Lemma 3.2. Let R be a ring, p a prime ideal of R and M be an R-module. Then the
following statements are equivalent:

(1) M is &-distributive with respect to p;
(2) KNS,(L+N)=S,((KNL)+ (KNN)) for all K,L,N € &,(M);
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(3) Sp(K+(LNN))=5,(K+L)NS,(K+ N) forall K,L,N € &,(M).
Proof. By [5, Theorem 1.3.2]. O

The following example shows that a ring R may be &-distributive with respect to a
prime ideal and not with respect to another one.

Example 3.3. Let R = K[X,Y] be the ring of polynomials with independent indetermi-
nates X and Y over a field K. It is evident that R is G-distributive with respect to (0),
since & g)(R) = {(0), R}. However, R is not &-distributive with respect tom = RX +RY.
Let py = RX, pa = RY, p3 = R(X +Y) . Since pi1, p2 and p3 are prime ideals of R, these
ideals are saturated with respect to m and hence p3 N p; and p3 N ps are saturated with
respect to m by Lemma 2.1 (1). Now, since p3 N (p1 +p2) € (p3Np1) + (psNp2), R is not
G-distributive with respect to m by Lemma 3.2.

It is remarked that some classes of R-modules are characterized by using the localization
with respect to all prime ideal of R (see for example [1]). In the next result, it is seen that
the class of distributive modules has this property.

Corollary 3.4. Let R be a ring and M be an R-module. Then the following conditions
are equivalent:

(1) M is a distributive R-module;
(2) M is &-distributive with respect to any prime ideal p of R;
(3) M, is a distributive Ry-module for all prime ideals p of R.

Proof. (1) = (2) Let p be a prime ideal of R and K, L, N € &,(M). By Lemma 2.1 (1)
and the assumption, we have

Sp(K+L)NS,(K+N)=S,(K+L)N(K+ N))=5,(K+ (LNN)).

Thus, the result follows from Lemma 3.2 (3).
(2) = (3) Let p be a prime ideal of R and K, L and N be submodules of M. It suffices
to show that (K, + L,) N (K, + N,) C (K, + (L, N N,)) or equivalently, by [3, Corollary
34, (K+L)N(K+N)), C(K+ (LNN)),. For this, let /s € (K + L)N (K + N))p.
Thus there are elements ki,ke € K, 1l € L, n € N and s1,s2 € R\ p such that x/s =
(k1+1)/s1 = (k2 +n)/s2. It follows that ussisex = (k1 +1) = (k2 +n) for some u € R\ p
so that x € S,(K + L) N S,(K + N). Hence by (2), z € Sp(K + (LN N)). Therefore
cx € K+ (LN N) for some ¢ € R\ p which implies that z/s = cx/cs € (K + (LN N))p,
as required.
(3) = (1) Follows from [3, Corollary 3.4 and Proposition 3.8].

n

Corollary 3.5. Let R be an arithmetical ring, and M be a multiplication R-module. Then
M is a S-distributive R-module with respect to any prime ideal of R.

Proof. By [8, Proposition 1.2] and Corollary 3.4. O

Our next example shows that M being a multiplication module is needed in Corollary
3.5.

Example 3.6. Let K be a field and V = K @& K be the usual two-dimensional vector
space over K. It is easy to see that every subspace of V' is saturated with respect to (0).
Now if Wi = K(1,0), Wy = K(0,1) and W3 = K(1,1). Then W3 N (W +W3) = W3 while
(W3 N W1) + (W3 N Ws) = K(0,0). Thus V is not G-distributive

We recall that a distributive lattice (L, V,A) is a Boolean algebra if there is a unary
operation ' on L and two constants 0 and 1 such that z A2’ =0 and z V2’ = 1.

Let M be a semisimple R-module and N a submodule of M. Then, by definition, there
is a submodule L of M such that M = N @ L. We define the unary operation " on &, (M)
by N’ = S,(L).
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Theorem 3.7. Let R be a semisimple ring, p a prime ideal of R and M a distributive
R-module. Then the lattice &,(M) is a Boolean algebra with the unary operation’ defined
above, 0 = S,(0) and 1 = M.

Proof. By Corollary 3.4, M is a &-distributive R-module. By using Lemma 2.1 (1),
NAN =NNN =5,(N)NSy(L)=5,(NNL)=S,0)=0.
Moreover, M = N + L C Sp(N) + Sp(L) C Sp(Sp(N) + Sp(L)), which implies
NV N'=S,(N+N')=S,(S,(N)+ Sy(L)) = M.
Hence &,(M) is a Boolean algebra. O
From now on, &,(M) is assumed to be a Boolean algebra with the above assumptions.

Corollary 3.8. For any semisimple ring R, &,(R) is a Boolean algebra with respect to
any prime ideal p of R.

Proof. Let R be a semisimple ring and p a prime ideal of R. By [12, Exercise 1.2.5] R is
an arithmetical ring. Thus by Theorem 3.7, &,(R) is a Boolean algebra. O

Corollary 3.9. Let R be a semisimple ring and M be a distributive R-module. Then
S, (M) is a Boolean ring with the following operations:

L+N=S8,(LNSyN)+S,(L)NN) and L-N =LNN,
where M =L @& L =N N.

Proof. Follows from Theorem 3.7 and [5, Theorem IV.2.3]. O

Corollary 3.10. Let R be a semisimple ring, p a prime ideal of R and M a multiplication
R-module. Then M is cyclic and the lattice S,(M) is a Boolean algebra.

Proof. Since R is a semisimple ring, by [12, Corollary 2.6], R is an Artinian ring. Hence
M is cyclic by [7, Corollary 2.9]. Also, by [12, Exercise 1.2.5|, R is an arithmetical ring.
Thus by [8, Proposition 1.2], M is a distributive R-module. Hence by Theorem 3.7, &,(M)
is a Boolean algebra with respect to any prime ideal p of R. (]

Theorem 3.11. Let R be a ring, p a prime ideal of R, M an R-module and N a submodule
of M. Then the followings hold:

(1) For any submodule L containing N, Sp(L/N) = Sp(L)/N. In particular, the
assignment L — L/N is a one to one corresponding between the set {L | L €
&,(M),L 2 N} and &,(M/N);

(2) If M is a &-distributive lattice over R with respect to p, then M /N is &-distributive
over R with respect to p;

(3) If R is a semisimple ring and M a distributive R-module, then &,(M/N) is a
Boolean algebra.

Proof. (1) Clear.

(2) Let &,(M) be a distributive lattice with the operations vV and A and &,(M/N) be a
lattice with the operations V and A . It is seen that V and A are expressed by V and A
respectively as follows:

L/N ¥ K/N = S,(L/N + K/N)
= S,((L + K)/N)
= S,(L+ K)/N
— (LV K)/N,

and
L/NAK/N=L/NNK/N=(LNK)/N=(LAK)/N.
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By these statements, the distributivity of &,(M/N) follows immediately from the dis-
tributivity of &,(M).
(3) Follows from Theorem 3.7 and (2). O

Theorem 3.12. Let R be a ring, T a multiplicatively closed subset of R, M an R-module
and N a submodule of M. Then the followings hold:

(1) Sp-1,(T7IN) =T~ (S,(N)) for all prime ideals p disjoint from T'. In particular,
N € G,(M) if and only if T"'N € 6T71P(T_1M) for all prime ideals p disjoint
from T';

(2) If M is a S-distributive lattice over R with respect to a prime ideal p of R such
that pNT =0, then T~ M is &-distributive over TR with respect to T p;

(3) If R is a semisimple ring, p a prime ideal of R with pNT = () and M a distributive
R-module, then Sp-1,(T~*M) is a Boolean algebra.

Proof. (1) Clear.
(2) Let p be a prime ideal of R such that pNT = (. Let &,(M) be a distributive lattice
with the operations V and A and 6T71P(T_1M) be a lattice with the operations V and
A . Tt is seen that V and A are expressed by V and A respectively as follows:
T'LVT'N=_S8p1,(T"'L+T7'N)
— Sy (T7H(L + )
=T71(Sy(L +N))
=T YLV N),
and
T'LAT'N=T"'LNnT"'N
=T"YLNN)
=T"YLAN).
By these statements, the distributivity of 6T71p(T_1M ) follows immediately from the
distributivity of &,(M).
(3) Since R is a semisimple ring, then so is T~!R. Thus the result follows from Theorem
3.7 and (2). O
Let A and B be Boolean algebras. A function f : A — B is called a Boolean algebra
homomorphism, if f is a lattice homomorphism, f(0) =0, f(1) =1 and f(d’) = f(a) for
all a € A. It is easily proved that a lattice homomorphism f preserves 0 and 1 if and only
if it preserves ’. Thus, in order to show that a function f between two Boolean algebras is

a Boolean algebra homomorphism, it suffices to check that f preserves lattice operations
V and A and constants 0, 1.

Theorem 3.13. Let R be a semisimple ring, p a prime ideal of R and M a distributive
R-module. Then n: &y(R) — &,(M) is a Boolean algebra homomorphism.

Proof. First note that &,(M) and &,(R) are Boolean algebras, by Theorem 3.7 and
Corollary 3.8 respectively. By Corollary 2.7, 1 is a lattice homomorphism. Also,
1(0) = 1(55(0)) = Sy(S,(0)M) = 5,(0) =0,
and
n(1) = n(R) = Sp(RM) = 5,(M) = M = 1.
Hence, as noted above, 1 is a Boolean algebra homomorphism. O

Corollary 3.14. Let R be a semisimple ring, p a prime ideal of R and M a multiplication
R-module. Then n: &p(R) — &,(M) is a Boolean algebra epimorphism.
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Proof. By Corollaries 3.8 and 3.10, &,(R) and &,,(M ) are Boolean algebras respectively.
Also, by the proof of Corollary 3.10, M is distributive. Thus by Theorem 3.13, n is a
Boolean algebra homomorphism. Moreover, if N € &,(M), then (N : M) € 6,(R) and

n(N : M) =S,(N: M)M)=S,(N)=N.
Thus, n is an epimorphism. ]

Finally, we remark that if M is a faithful multiplication module over a semisimple ring
R, then since M is cyclic by Corollary 3.10, we conclude that M is isomorphic to R. So
it clearly follows that n and 6 are Boolean algebra isomorphisms.
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