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Abstract 

Remote Sensing technologies have been used quite a long time in forestry applications. While the more acquired 

data can be obtained with traditional survey and photogrammetric techniques, they required relatively more 

manpower and time consuming. 

The most important characteristics of this research will bring the new opportunities for forestry applications by 

using the object-based classification methods with multispectral satellite images that have high spatial resolution 

(<1meter). In this individual tree and forest stand based research, the solutions searched with using very high-

resolution (VHR) satellite images for time-consuming problems in forestry applications. 

Keywords: Worldview-2, Object-based image analysis, Tree crown 

INTRODUCTION 

Remote sensing provides a useful source of data from which updated land-cover information can be 

extracted for assessing and monitoring vegetation changes. In the past several decades, aerial photo 

interpretation has played an important role in detailed vegetation mapping (Sandmann and Lertzman, 

2003). Nowadays, with the development of technological possibilities, geometric, radiometric, temporal 

and spectral resolutions in satellite and sensor systems have increased. With these developments, 

satellite remote sensing data can provide more and variety of information than analog aerial photographs 

(Yurtseven, 2014).  

In remote sensing studies, object-based classification approaches are used in addition to pixel-based 

classification approaches. The main reason for using object-based approaches is that image objects are 

characterized by a number of additional features, such as texture and form, beyond the pure spectral 

information. All this additional information can hardly be exploited using pixel-based approaches (Baatz 

and Schäpe, 1999; Wong et al., 2003). In object-based image analysis (OBIA), unlike traditional image 

processing techniques, the smallest processing unit is image objects or segments rather than pixels 

(Baatz et al., 2004). Unlike pixel-based methods, the image is analyzed in homogeneous segments 

(objects) by shape, texture and contextual models. This provides a sophisticated base for image analysis 

(Yan et al., 2006). 

OBIA of multispectral (MS) imagery has entered the remote sensing literature at a very early stage 

(Kettig and Landgrebe, 1976; Haralick, 1983; Haralick and Shapiro, 1985; Levine and Nazif, 1985; 

Strahler et al., 1986; McKeown Jr et al., 1989; Pal and Pal, 1993; Câmara et al., 1996; Hay et al., 1996; 

Lobo et al., 1996; Ryherd and Woodcock, 1996; Wulder, 1998; Aplin et al., 1999; Baltsavias, 2004). 

Multispectral imagery supports not only enhanced display of scene content, but also quantitative analysis 
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based on the intrinsic spectral characteristics of imaged objects (Schott, 2007). In this context, due to 

the simpler implementation of conventional pixel-based approaches and require less computational 

power, object-based approaches have not been given due attention (Lobo, 1997). Traditional pixel-

oriented algorithms and analytic techniques cannot take full advantage of the increased spatial coherence 

of very high-resolution imagery (Nussbaum, 2008). 

In the literature, it is seen that object-based approaches are generally used to obtain stand-based data in 

forest areas (Chubey et al., 2006; Wulder et al., 2008; Immitzer et al., 2016; Gudex-Cross et al., 2017). 

However, the main potential of OBIA is emerged by the use of very high-resolution (VHR) (spectral, 

radiometric and spatial) imagery (Blaschke et al., 2014). The number of remote sensing systems with 

very high spatial resolution has increased, as a result of advances in sensor technologies. Therefore, 

individual tree-based studies can also be performed by using VHR satellite imagery (Ke and 

Quackenbush, 2007; Li et al., 2015). The acquisition of individual tree crown parameters using VHR 

data with OBIA techniques is an ongoing research topic. In this context, many techniques have been 

developed, such as template matching (Pollock, 1996), multiple-scale analysis (Brandtberg and Walter, 

1998), valley following (Gougeon, 1995),  spatial clustering (Culvenor, 2002), region growing (Erikson, 

2003), marked point processes (Perrin et al., 2006), Markov random fields (Descombes and Pechersky, 

2006), radial brightness distribution (Pinz, 1989), contour tree (Wu et al., 2016). Most of the proposed 

algorithms are used combinations of these techniques. 

The accuracy of detailed vegetation classification with very high-resolution imagery is highly dependent 

on the segmentation quality, sample size, sampling method, classification framework, and ground 

vegetation distribution and mixture (Yu et al., 2006; Rafieyan et al., 2009a; Rafieyan et al., 2009b). 

In this study, it is aimed to determine the usage potential of the above-mentioned combination (VHR 

satellite imagery and OBIA) in forest areas. In this context, WorldView-2 (WV-2) MS imagery were 

employed. OBIA-based classifications were made on this imagery to generate stand and individual tree 

based information. Accuracy analyzes were performed to evaluate the problems and dilemmas and all 

the results were discussed. 

Study area and data 

The study area is located in north of Istanbul in Turkey and covered western part of the forested area 

called the Belgrade Forests (Figure 1). Elevations, ranges from the sea level up to 237.17 m. Main 

species that show stand formation in the study area are: Oak species (Quercus sp.), Oriental beech 

(Fagus orientalis), Common hornbeam (Carpinus betulus), Anatolian chestnut (Castanea sativa), Black 

pine (Pinus nigra), Stone pine (Pinus pinea), Turkish pine (Pinus brutia Ten.), Maritime pine (Pinus 

pinaster), False acacia (Robinia pseudoacacia), Linden species (Tilia sp.), Strawberry tree (Arbutus 

unedo) and Oriental spruce (Picea orientalis). 

In this study, stereoscopically acquired a pair of WV-2 satellite data were used. Data acquisitions were 

performed on June 6, 2011 at 10:59 (A.M.) (with 10.0 off nadir angle) and 11:00 (A.M.) (with 21.1 off 

nadir angle) local time. WV-2 imagery have 8 MS and a panchromatic sensor bands (see Table 1 for 

more details). Further details about the sensor can be found on Updike and Comp (2010).  
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Figure 1. Study area.  

Table 1. Characteristics of WorldView-2 imagery.  

Spectral Bands Wavelength (nm) 
Spatial Resolution  

at Nadir Look (m) 

Coastal 400 - 450 1.84 

Blue 450 - 510 1.84 

Green 510 - 580 1.84 

Yellow 585 - 625 1.84 

Red 630 - 690 1.84 

Red Edge 705 - 745 1.84 

Near-IR1 770 - 895 1.84 

Near-IR2 860 - 1040 1.84 

Panchromatic  450 - 800 0.46 
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Methodology 

Within the scope of the study, our approach consists of the following main steps (Figure 2): DSM 

generation with photogrammetric processing, atmospheric and topographic correction, pan-sharpening, 

generation of image indices, OBIA and classifications. 

 

Figure 2. Main workflow steps.  

As is known, the basic radiation source of passive remote sensing systems is the sun (Erdin, 1986). 

Radiation reflected or radiated from the earth reaches the sensors in a manner attenuated by absorption 

or scattering by atmospheric components (humidity, pressure, temperature, molecular differences) 

(Bakker et al., 2009). In addition, topographic differences and location on the earth also affect reflection. 

Elimination of these effects allows accurate evaluation of remote sensing data (Campbell and Wynne, 

2012). Especially in VHR satellite imagery, atmospheric and topographic factors adversely affect 

radiometry (Neubert and Meinel, 2005). Although many different approaches are used in the removal 

of atmospheric and topographic effects from images, in this study, ATCOR3 model, which provides fast 

and accurate results, was used to eliminate atmospheric and topographic errors in satellite imagery. 

Detailed modeling and explanations of the method are described by Richter and Schläpfer (2014). At 

the stage of atmospheric and topographic corrections, a digital surface model (DSM) is needed. By using 

state of art technologies such as LIDAR (Light Detection and Ranging) and SAR (Synthetic Aperture 

Radar), it is possible to generate digital surface and terrain models very precisely. However, in some 

cases such data may not be accessible for a specific area. Therefore, in this study, DSM has been 

generated by using stereoscopically acquired panchromatic WV-2 data. In this context, ERDAS Imagine 

Photogrammetry and Stereo Analyst for ERDAS Imagine software packages were employed to generate 

DSM. 
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Spatial resolution is a key feature to obtain detailed information about spatial objects. In this context, 

spatial resolution should be maximized in order to obtain detailed and precise information. When 

working with multi-resolution data, resolution merging techniques are used to increase spatial detail. 

The main interest of merging multi-resolution image data is to generate composite images of improved 

interpretability (Welch and Ehlers, 1987; Kaczynski et al., 1995; de Béthune et al., 1998). In addition, 

it is desirable to maintain the spectral quality of the images with the highest possible spatial detail (Cliche 

et al., 1985). Garguet-Duport et al. (1996) indicated that preservation of spectral information and 

properties is particularly important for vegetation analysis. In this context, the Hyperspherical Color 

Space (HCS) technique, which was developed specifically for WV-2 satellite data and described by 

Padwick et al. (2010) and Deskevich and Padwick (2012), was used in pan-sharpening process. 

Vegetation absorb electromagnetic energy, especially in the part of the spectrum between 450-670 nm 

wavelengths. This cut is called chlorophyll absorption band. Between 700-1300 nm wavelengths, they 

reflect about half of the incoming energy. In order to enhance this spectral difference in multi-band 

employed remote sensing studies, image indices are generated and used in analysis (Sader and Winne, 

1992; Koç, 1997; Hayes et al., 2002). When the multispectral data of the WorldView-2 satellite is 

examined, it is seen that it has suitable spectral characteristics for a total of close to 300 indices including 

single bands (Henrich et al., 2015). In deciding on the image indices used in the classification, the most 

commonly used indices in the literature were evaluated for their suitability for the study (Rouse Jr et al., 

1974; Tucker, 1979; Jackson et al., 1983; Sellers, 1985; Kaufman and Tanré, 1996; Huete et al., 1997; 

Wolf, 2010; Jones et al., 2011; Zhou et al., 2012). In this context, 17 image indexes were selected and 

used in this study (Table 2). After the generation of an input datasets OBIA were performed with the 

eCognition software. OBIA can be examined in two stages: segmentation and classification. The 

purpose of the segmentation process is to generate meaningful objects from the image pixels. There are 

two basic segmentation principles, which are top-down and bottom-up strategies (Trimble, 2012). In the 

top-down approach, which has been developed on the strategy of dividing objects from smaller pieces 

into large pieces, the image can be considered as a single large object or it can be applied in previously 

generated image objects. The bottom-up strategy, in which small objects are combined to form larger 

objects, is used to generate larger and homogeneous objects than image pixels or previously generated 

image objects. Classification can be used to generate more meaningful image objects by assisting 

segmentation, or it can be used for direct classification of generated image objects. In the OBIA 

processes, various features related to image objects can be used, such as spectral, geometric, positional, 

textural, and thematic features. Nevertheless, there is no accepted approach in the literature as to which 

features should be used for classification (Blaschke, 2010). 

Results and Discussion  

According to the main workflow of this study the first step is photogrammetric analysis and DSM 

generation. Photogrammetric operations were performed by using rational polynomial coefficients 

(RPC) parameters, which were supplied with imagery, and 23 ground control points (GCP). GCP 

coordinates were collected by using NRTK (Network Real Time Kinematic) Global Navigation Satellite 

System (GNSS) receiver according to the TUREF (Turkish National Reference Frame) TM30 (EPSG: 

5254) coordinate system and Turkey CORS (Continuously Operating Reference Stations) network 

system. In this context, coordinate transformations to WGS 84 geographic coordinates were performed 

in ArcGIS software. According to the photogrammetric process results aerial triangulation were 

accomplished with 0.06 m Root Mean Square Error (RMSE) and total RMSE of GCPs were 0.61 m in 

horizontal plane and 0.52 m in vertical. As a result of photogrammetric operations, 5 m resolution DSM 

was generated to be used in atmospheric and topographic corrections and OBIA analysis. 
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Table 2. Description of all indices.  

Index Name Formula 

Difference Vegetation Index (DVI) 𝐷𝑉𝐼 = (𝑁𝐼𝑅1 − 𝑅𝑒𝑑) 

Normalized Difference Vegetation Index 

(NDVI) 
𝑁𝐷𝑉𝐼 =

(𝑁𝐼𝑅1 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅1 + 𝑅𝑒𝑑)
 

WorldView Improved Normalized Difference 

Vegetation Index (WVINDVI) 
𝑊𝑉𝐼𝑁𝐷𝑉𝐼 =

(𝑁𝐼𝑅2 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅2 + 𝑅𝑒𝑑)
 

Renormalized Difference Vegetation Index 

(RDVI) 
𝑅𝐷𝑉𝐼 =

(𝑁𝐼𝑅1 − 𝑅𝑒𝑑)

√(𝑁𝐼𝑅1 + 𝑅𝑒𝑑)
 

Transformed Normalized Difference 

Vegetation Index (TNDVI) 𝑇𝑁𝐷𝑉𝐼 = √
(𝑁𝐼𝑅1 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅1 + 𝑅𝑒𝑑) + 0,5
 

Ratio Vegetation Index (RVI) 𝑅𝑉𝐼 =
𝑅𝑒𝑑

𝑁𝐼𝑅1
 

Iron Oxide (IO) 𝐼𝑂 =
𝑅𝑒𝑑

𝐵𝑙𝑢𝑒
 

Soil Adjusted Vegetation Index (SAVI) 𝑆𝐴𝑉𝐼 =
(𝑁𝐼𝑅1 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅1 + 𝑅𝑒𝑑 + 𝐿)
∗ (1 + 𝐿)    𝐿 = 0,5 

Modified Soil Adjusted Vegetation Index 

(MSAVI2) 𝑀𝑆𝐴𝑉𝐼2 =
(2 ∗ 𝑁𝐼𝑅1 + 1 − √(2 ∗ 𝑁𝐼𝑅1 + 1)2 − 8 ∗ (𝑁𝐼𝑅1 − 𝑅𝑒𝑑))

2
 

Normalized Difference Soil Index (NDSI) – 

WorldView Soil Index (WVSI) 
𝑁𝐷𝑆𝐼 = 𝑊𝑉𝑆𝐼 =

(𝑌𝑒𝑙𝑙𝑜𝑤 − 𝐺𝑟𝑒𝑒𝑛)

(𝑌𝑒𝑙𝑙𝑜𝑤 + 𝐺𝑟𝑒𝑒𝑛)
 

R31 𝑅31 =
𝑅𝑒𝑑 𝐸𝑑𝑔𝑒

𝑌𝑒𝑙𝑙𝑜𝑤
 

Simple Ratio Index (SRI) 𝑆𝑅𝐼 =
𝑁𝐼𝑅1

𝑅𝑒𝑑
 

Square Root of Simple Ratio Index 

(SQRT(SRI)) 𝑆𝑄𝑅𝑇(𝑆𝑅𝐼) = √
𝑁𝐼𝑅1

𝑅𝑒𝑑
 

Normalized Difference Water Index (NDWI) 

– WorldView Water Index (WVWI) 
𝑁𝐷𝑊𝐼 = 𝑊𝑉𝑊𝐼 =

(𝑁𝐼𝑅2 − 𝐶𝑜𝑎𝑠𝑡𝑎𝑙)

(𝑁𝐼𝑅2 + 𝐶𝑜𝑎𝑠𝑡𝑎𝑙)
 

Non-Homogeneous Feature Difference 

(NHFD) 
𝑁𝐻𝐹𝐷 =

(𝑅𝑒𝑑 𝐸𝑑𝑔𝑒 − 𝐶𝑜𝑎𝑠𝑡𝑎𝑙)

(𝑅𝑒𝑑 𝐸𝑑𝑔𝑒 + 𝐶𝑜𝑎𝑠𝑡𝑎𝑙)
 

Atmospherically Resistant Vegetation Index 

(ARVI) 
𝐴𝑅𝑉𝐼 =

𝑁𝐼𝑅2 − (2𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒)

𝑁𝐼𝑅2 + (2𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒)
 

Anthocyanin Reflectance Index (ARI) 𝐴𝑅𝐼 = (
1

𝐺𝑟𝑒𝑒𝑛
) − (

1

𝑅𝑒𝑑
) 

 

Two different WV-2 images covering the same area dated June 6, 2011 were used in the study. The 

cloud formations in the northern and northeastern regions are especially noteworthy. Although the 

cloudiness ratios in each image were below 10%, the fact that the cloud formations are fragmented 

constitutes the biggest negativity in the images. As a result of examinations on the images, 

approximately 500 hectares of areas were identified which should be masked within the boundaries of 

the selected study area (areas under the cloud and areas under the cloud shadow). These areas were 

covered approximately 3% of the study area and were masked out in the imagery at the analysis stage 

(Figure 3). 
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Figure 3. Cloud formations.  

Cloud formations were also caused problematic formations on the photogrammetric DSM. In this 

context, defective areas were corrected by using DEM data, which were generated by the Greater 

Municipality of Istanbul (Figure 4). 

The generated DSM and DSM derived slope, aspect, skyview and shadow data were employed in 

ATCOR3 and atmospheric and topographic correction operations were performed. The other ATCOR3 

input parameters are presented in Table 3. According to ATCOR3 results, 73.2 % of image land pixels 

were clear land, 26.8 % image land pixels were hazy land and 32 % of image area excluded which are 

clouds and water bodies. 

After the completion of atmospheric and topographic correction processes, pan-sharpening process was 

performed. At this stage, HCS resolution merge and some image enhancement techniques were 

combined, to achieve the highest possible spatial resolution and the highest possible spectral 

separability. As a result of the intensive studies carried out at this stage, application of the following 

methodological combination were accepted in resolution merge process (Figure 5). 

As mentioned by Lillesand et al. (2014) the goal of image enhancement is to improve the visual 

interpretability of an image by increasing the apparent distinction between the features in the scene. 

With the methodological combination applied in this context, the spatial resolution of multispectral data 

increased from 2 m to 0.25 m, while the interpretability of the imagery was increased (Figure 6). In 

addition, the file size of the pan-sharpened multispectral data increased to 120 GB. Therefore, a high 

processing power is required during the processing of the imagery. 
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Figure 4. Photogrammetric uncorrected DSM (Left), Corrected DSM (Right).  

Table 3. ATCOR3 parameters.  

Parameter Value 

Sensor WorldView-2 MS 

Solar Zenith Angle 20,8 ˚ 

Solar Azimuth Angle 148,7 ˚ 

Sensor Tilt Angle 21,1 ˚ 

Satellite Azimuth Angle 175,3 ˚ 

Scene Visibility 59 

Model for Solar Region Urban / Midlat Summer Urban 

Haze Removal Yes 

Cloud Threshold 16 

Water Threshold 4 

 

 

Figure 5. Pan-sharpening and image enhancement processes.  
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Figure 6. Detail comparisons of raw MS (a), panchromatic (b), standard HCS (c) and the enhancement combined 

HCS (d) imagery.  

After the preparation of the images for the analysis process, we proceeded to the OBIA stage. Since 

there is no standard method followed in the OBIA operation, according to the data and the desired 

outputs at the end of the study, the algorithm combinations and workflow are created according to the 

knowledge and ability of the operator (Navulur, 2007; Blaschke et al., 2008). At this stage, it was 

decided to use two different approaches in the study, which are top-down and bottom-up strategies. With 

the top-down approach, it was aimed to obtain stand or species -based information by a hierarchical 

classification strategy. Differently, with the bottom-up approach, it was aimed to obtain information on 

individual tree basis in specifically selected areas. However, in the selection of specific areas the data 

obtained with the top-down approach were used to serve the bottom-up approach (Figure 2). 

Before the OBIA, 17 image indexes were generated to support the classification (Appendix 1-Image 

Indices). The selection of the bands and coefficients to be used in segmentation and classification stages 

requires a very intensive study. The parameters to be used in these stages were decided by test-observe-

interpret combination. In this context, the best combination of band and parameter was determined for 

each class and classifications were made. 

In accordance with the hierarchical model, firstly, land, water and vegetation areas were classified. 

Imagery were segmented by multiresolution and spectral difference segmentation to generate image 

objects to be used in the classification. A total of 141 training object were selected in three different 

classes within the study area. 47 of these are for Land, 84 for Vegetation and 10 for Water class. In this 

context classifications were accomplished with 99.27% overall classification accuracy and 0.9889 

Kappa (Figure 7).  



Eurasian Journal of Forest Science – Using of high-resolution satellite images by Yurtseven and Yener 2019 
 

 

196 

 

 

Figure 7. Land, water and vegetation classification results.  

In the second step, deciduous, coniferous and shrub classifications were made (Figure 8). In this context, 

overall classification accuracy and Kappa statistic were obtained as 99.33% and 0.99 respectively. 

In the final step, a class has been established for each species with a proportionately greater than 5 

percent area in the study area. In this context, Oak sp., anatolian chesnut, oriental beech, common 

hornbeam, black pine, maritime pine and stone pine stands were classified. However, black pine and 

maritime pine stands which are spectrally similar and lower the classification accuracy were evaluated 

in a single class. After the classifications, water bodies and land classes were merged to the obtained 

thematic data and accuracy assessments were made for 8 classes (Table 4, Figure 9). 

As mentioned before, by using the bottom-up approach, the generability of individual tree-based 

information were examined. In this context, three different scenario or forest stand structure were 

evaluated. Individual trees were classified and accuracy assessments were performed. The number of 

trees obtained by stereoscopic interpretation was used as a reference in the accuracy assessment stage.  

First plot site was selected in a coniferous (Maritime pine) forest with complete crown closure. Using a 

multi-stage classification method, top point of each trees and the gaps between trees were determined. 

In addition, an iterative algorithm was prepared using bottom-up segmentation technique and the crown 

boundaries were determined (Figure 10). According to accuracy assessment results overall classification 

accuracy was obtained as 94.74% (Table 5). 
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Figure 8. Deciduous, coniferous and shrub classification results.  

Table 4. Classification accuracies for all classes.  

Class name 
Producer’s 

Accuracy 

User’s 

Accuracy 
Kappa 

Land 100.00% 100.00% 1.0000 

Water bodies 100.00% 100.00% 1.0000 

Oak sp. 100.00% 100.00% 1.0000 

Anatolian chesnut 89.47% 94.44% 0.9360 

Oriental beech 94.44% 94.44% 0.9365 

Common hornbeam 88.24% 83.33% 0.8110 

Black pine - Maritime pine 94.44% 94.44% 0.9365 

Stone pine 94.44% 94.44% 0.9365 

Overall Classification Accuracy 95.14% 

Overall Kappa Statistics 0.9444 

 

 



Eurasian Journal of Forest Science – Using of high-resolution satellite images by Yurtseven and Yener 2019 
 

 

198 

 

 

Figure 9. Classification results for all classes.  

 

 

Figure 10. Classification of coniferous (Maritime pine) forest with complete crown closure.  
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Table 5. Accuracy assessment result of coniferous (Maritime pine) forest with complete crown closure.  

Number of trees 

obtained by 

photogrammetric 

evaluations 

Total number of 

trees as a result of 

classification 

Number of extra 

trees that do not 

actually exist 

Number of trees that 

cannot actually be 

detected 

Total Number of 

Incorrectly 

Classified Trees 

228 232 10 6 16 

Overall Classification 

Accuracy 
94,74%    

Error of Omission 6,90%    

Producer’s accuracy 93,10%    

 

Second plot site was selected in a coniferous (Stone pine) forest with sparse crown closure. Using a 

multi-stage classification method, bare earth, highway, leafy and coniferous trees were classified 

separately. Similarly to the first plot site, an iterative algorithm was prepared using bottom-up 

segmentation technique and the crown boundaries were determined (Figure 11). According to accuracy 

assessment results overall classification accuracy was obtained as 100% (Table 6). 

 

Figure 11. Classification of coniferous (Stone pine) forest with sparse crown closure 

Conclusions 

The main purpose of this study is to investigate what data can be obtained from high resolution satellite 

data by using object-oriented image analysis methods for forestry purposes. In the context of this study, 

the most important point encountered during the study and the literature research was the lack of a 

standard workflow in the object-based image analysis method. Therefore, the user has to decide the  
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Table 6. Accuracy assessment result of coniferous (Stone pine) forest with sparse crown closure 

Number of trees 

obtained by 

photogrammetric 

evaluations 

Total number of 

trees as a result of 

classification 

Number of extra 

trees that do not 

actually exist 

Number of trees that 

cannot actually be 

detected 

Total Number of 

Incorrectly 

Classified Trees 

264 267 3 0 3 

Overall Classification 

Accuracy 
100,00%    

Error of Omission 1,12%    

Producer’s accuracy 98,88%    

 

appropriate methods according to the data and the desired outputs. The preparation of rule sets with a 

high classification accuracy depends entirely on the operator's knowledge and experience. 

The final plot site was selected in a deciduous (Oak sp., Oriental beech, Common hornbeam) forest with 

complete crown closure. Despite all the evaluations, it was not possible to obtain individual tree based 

data for forest areas in this structure (Figure 12). The main reason of this situation was considered as the 

sympodial branching of deciduous species. 

 

Figure 12. Image objects of deciduous forest with complete crown closure 

In the decision-making process, the user needs to know the attributes of the objects he / she is working 

on, as well as which variables will be defined in a mathematical model. One of the findings obtained 

from the study is that the rule sets prepared for a specific object or class give much more accurate results 

than the rule sets prepared for obtaining many objects. In addition, it has been found that the preparation 

and implementation of such rule sets are more efficient. 



Eurasian Journal of Forest Science – Using of high-resolution satellite images by Yurtseven and Yener 2019 
 

 

201 

 

In accordance with the results presented in the study, data, which are very important in terms of forestry 

such as number of trees per hectare and tree crown width, were obtained with satisfactory accuracy by 

using OBIA and VHR satellite imagery. 
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