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Abstract: Let ∆ be an abstract simplicial complex. We study classical homological error correcting codes
associated to ∆, which generalize the cycle codes of simple graphs. It is well-known that cycle
codes of graphs do not yield asymptotically good families of codes. We show that asymptotically
good families of codes do exist for homological codes associated to simplicial complexes of dimension
at least 2. We also prove general bounds and formulas for (co-)cycle and (co-)boundary codes for
arbitrary simplicial complexes over arbitrary fields.
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1. Introduction

Fix a field (usually finite) K. Given an abstract simplicial complex ∆, one can define the reduced
chain complex of ∆ with coefficients in K, which naturally defines the cycles, boundaries and homology
of ∆. These are the classical homological codes, seemingly first studied by Salzer [10]. In the case when
∆ is a one-dimensional simplicial complex, ∆ may be viewed as a simple graph. Since the Moore bound
gives a logarithmic bound on the girth of a graph in terms of the number of edges and vertices, it follows
that one cannot define asymptotically good families of codes from cycle codes of graphs. By applying
recent work in [4] and [2], we show in Theorem 4.2 that one can define asymptotically good families of
codes from cycle codes of simplicial complexes of dimension two or higher.

The paper is organized as follows: Section 2 gathers preliminary results, definitions and related work.
Section 3 contains our results about arbitrary homological codes over arbitrary fields. In it we recover the
parameters for the ith cycle and boundary codes (and their duals) of a simplex of arbitrary dimension.
This was previously done in [10] and [13] over F2. Section 4 contains our main results on the existence
of asymptotically good homological codes.
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2. Preliminaries

2.1. Simplicial complexes

Let ∆ be an abstract simplicial complex on vertex set [m] := {1, . . . ,m}; that is, ∆ is a collection of
subsets of [m], closed under taking subsets. Elements σ ∈ ∆ are called faces or simplices. Maximal faces
are called facets. We note that ∆ is determined by its facets. For σ ∈ ∆, we define the dimension of σ by
setting dim(σ) = |σ|−1. Thus dim(∅) = −1. Then the dimension of ∆ is dim(∆) = max{dim(σ) |σ ∈ ∆}.
We denote by ∆i the set of i-dimensional faces of ∆, called the i-skeleton of ∆, and call an element of
∆i an i-face. An m-simplex is then a simplicial complex on [m + 1] consisting of all possible facets
with one m-dimensional facet. Set fi(∆) to be the number of i-faces, that is, fi(∆) = |∆i|. The vector
(f−1(∆), f0(∆), f1(∆), . . . , fdim(∆)(∆)) is called the f -vector of ∆. We sometimes refer to 0-faces as
vertices and 1-faces as edges. We say that an i-face σ ∈ ∆i has degree r if σ is contained in exactly r
many (i+1)-faces of ∆; that is, deg(σ) =

∣∣{τ ∈ ∆i+1 : σ ⊂ τ}
∣∣ . Finally we define the i-degree of ∆ to be

deg(i,∆) = min{deg(σ) |σ ∈ ∆i}. Thus deg(1,∆) is just the minimal degree of a vertex of the 1-skeleton
of ∆ viewed as a simple graph.

Over any field K, we may define a chain complex (C•(∆,K), ∂•) by setting Ci(∆,K) to be the K-
vector space whose basis is identified with ∆i and such that given σ ∈ ∆i, write σ = {j0, j1, . . . , ji} ⊆ [m],
where j0 < · · · < ji, then

∂i(σ) =

i∑
k=0

(−1)k{j0, . . . , ĵk, . . . , ji},

where ĵk denotes that jk has been removed. Thus C−1(∆,K) ∼= K as ∅ is the only −1-dimensional face.
We extend this linearly to define a map ∂i : Ci(∆,K)→ Ci−1(∆,K). Since ∂i−1 ◦ ∂i = 0 ∀i, the resulting
sequence is a chain complex of K-vector spaces. Let Zi(∆,K) = Ker(∂i) and Bi(∆,K) = Im(∂i+1). Note
that Bi(∆,K) ⊆ Zi(∆,K) ⊆ Ci(∆,K) ∀i. Then we define the ith reduced simplicial homology of ∆ with
coefficients in K as

Hi(C•(∆,K)) = H̃i(∆,K) =
Zi(∆,K)

Bi(∆,K)
.

We define the co-chain complex of ∆ over K to be the vector space dual C•(∆,K) = (C•(∆,K))
∗ of the

chain complex, with coboundary maps ∂i = ∂∗i . We set Zi(∆,K) = Ker(∂i+1) and Bi(∆,K) = Im(∂i).
Then the ith reduced simplicial cohomology of ∆ over K is

Hi(C•(∆,K)) = H̃i(∆,K) =
Zi(∆,K)

Bi(∆,K)
.

Since HomK( ,K) is exact, there is a canonical isomorphism H̃i(∆,K) ∼= H̃i(∆,K). When the simplicial
complex ∆ and the field K are clear from context, we omit them from the notation, e.g. writing H̃i for
H̃i(∆,K).

Let S(∆) denote the suspension of the simplicial complex ∆; that is, S(∆) is the simplicial complex
on vertex set ∆0 ∪ {a, b}, where a, b are two new vertices. For any facet σ ∈ ∆, we assert that σ ∪ {a}
and σ ∪ {b} are facets of S(∆). This uniquely determines S(∆). The suspension can be viewed as the
union of two cones of ∆ glued along their bases.

2.2. Linear codes

A linear code C of length n over a (usually finite) field K is a K-vector subspace of Kn. Elements
x = (x1, . . . , xn) ∈ C are called codewords. We say that C is an [n, k, d]-linear code if C has length n,
the dimension dimK(C) is k, and the minimum Hamming distance of C is d. The minimum Hamming
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distance is the minimum over all pairs x,y ∈ C of distinct codewords of the number of positions i such
that xi 6= yi. The weight w(x) of a codeword x ∈ C is the number of positions i such that xi 6= 0. The
minimum distance of a linear code C is equal to the minimum weight of a nonzero codeword of C.

A generator matrix G of a linear code C over K is a matrix whose rowspace is C. A parity check
matrix H of C is a matrix whose null space is C. In other words x ∈ C if and only if HxT = 0. The dual
code C⊥ of C is the code whose generator matrix is H. Thus G is a parity check matrix for C⊥. We do
not require the rows of G or H to be linearly independent.

We make use of the following well-known fact relating minimum distance of a code to its parity check
matrix.

Proposition 2.1 ([8, Lemma 1.2.3]). Let H be a parity-check matrix for a linear code C over a field K.
Then every set of d− 1 columns of H are linearly independent if and only if C has minimum distance at
least d.

One of the main challenges in classical error correcting code theory is to find codes with large mini-
mum distance and dimension relative to their length. More precisely, we seek a family of asymptotically
good codes. A family of codes Ci with parameters [ni, ki, di] with limi→∞ ni →∞ is asymptotically good
if there exists α, β > 0 such that

lim
i→∞

ki
ni

> α and lim
i→∞

di
ni

> β,

where ki
ni

and di
ni

define the information rate and relative minimum distance of Ci, respectively.

Of particular interest are Low Density Parity Check (LDPC) codes. A linear code C (usually defined
over F2) is an LDPC code if C has a parity check matrix H with relatively few nonzero entries. If the
Hamming weight (number of nonzero entries) in each row and column of H is constant, C is called a
regular LDPC code. If we relax one of these conditions, C is called an irregular LDPC code. The cycle
codes in this paper have parity check matrices with fixed column weight (since the image of the boundary
of any i-face has weight i+ 1), but only certain ones will have fixed row weight as well.

2.3. Homological error correcting codes

Let ∆ be an m-dimensional simplicial complex and let K be a field. For each 0 ≤ i ≤ m, we define
four potentially distinct linear codes. These codes will be the main object of study in this paper. The
definitions parallel those in [10] and [13]. We define the ith cycle code (respectively boundary code) as
Zi(∆,K) (resp. Bi(∆,K)). Similarly, we define the ith cocycle code (respectively coboundary code) as
Zi(∆,K) (resp. Bi(∆,K)). Note that all four codes have length fi as they are subvector spaces of Ci or
C∗i . Moreover, by their definitions it is clear that Zi(∆,K) = Bi(∆,K)⊥ and Bi(∆,K) = Zi(∆,K)⊥. In
particular for all i we have,

dimK Z
i(∆,K) + dimKBi(∆,K) = dimK Zi(∆,K) + dimKB

i(∆,K) = fi(∆).

2.4. Relation to previous work

The definition of LDPC codes originates in the thesis of Gallager [6], [5]. Such codes have recently
attracted more attention because of the good iterative decoding algorithms associated to them which
approach the Shannon limit. Asympotically good codes can be shown to exist by pseudorandom methods
and constructed algorithmically. (See e.g. [7]). Our Theorem 4.2 shows that they can be constructed as
cycle codes of two-dimensional simplicial complexes.

The earliest references we can find to the definition of homological error-correcting codes of a simpli-
cial complex are the papers by Salzer [10] and Thomeier [13], where the authors use the terms “topological
codes” and “polyhedral codes,” respectively. Both describe the general construction of cycle and boundary
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codes of a simplicial complex. Both authors then compute the parameters of the ith cycle codes for an
m-dimensional simplex. We recover this as a special case of our more general formulas for the dimension
and minimum distance. See Theorem 3.7.

In [9], Rytíř showed that any linear code over Q or Fp can be realized as a truncated homological code
of some two dimensional simplicial complex. Without truncation, there are linear codes which cannot be
realized. Our results give both restrictions on the parameters of homological codes and existence results
for asymptotically good homological codes.

When ∆ is a one-dimensional simplicial complex, we may view ∆ as a simple graph G = (V,E) with
vertex set V = ∆0 and edge set E = ∆1. In this case Z1(∆,F2) is called the cycle code of the graph G
and has been well-studied. See [14] for a concise survey. It is easy to see that if G = (V,E) is a graph,
then its cycle code has parameters [n, k, d], where n = |E|, k = |E| − |V |+ 1 and d is the girth of G, that
is, the minimum length of a cycle in G. The well-known Moore bound states that for an r-regular graph
G, that is a graph which has r edges incident to each vertex, the girth of G is bounded above by a term
logarithmic in r and |V |. A similar bound for non-regular graphs was given in [1]. Thus if we have a
family of graphs Gi = (Vi, Ei) with linear growth for |Vi| and |Ei|, the girth of Gi is at most logarithmic
in |Vi| and |Ei|. Therefore, it is impossible to construct a family of asymptotically good error correcting
codes from graphs or one-dimensional simplicial complexes. Our Theorem 4.2 shows that it is possible
to do so with two-dimensional simplicial complexes.

Finally we comment that a there is great interest in finding quantum error correcting codes, in-
troduced in [11], with similar properties. A well-studied family are the CSS codes [3], [12]. Some
constructions of CSS codes, also called homological codes, are defined from graphs, simplicial or poly-
hedral complexes. In the quantum setting, the existence of asymptotically good codes is still an open
question. We do not discuss quantum codes further in this paper and refer the interested reader to the
survey [14] and the references therein.

3. Results on arbitrary homological codes

In this section we collect general results which hold for each of the four types of homological codes
for an arbitrary simplicial complex ∆ and an arbitrary field K. When clear from context, we suppress ∆
and K from the notation.

Theorem 3.1. Let ∆ be an m-dimensional simplicial complex, K a field and 0 ≤ i ≤ m. Then Zi =
Zi(∆,K) is an [n, k, d]-code with

n = fi,

k =

i∑
j=−1

(−1)i+jfj +

i−1∑
j=0

(−1)i+j+1 dimK H̃j ,

d ≥ i+ 2.

Proof. Zi is a sub-vector space of Ci and dimK Ci = fi. So n = fi. By definition, the matrix H
associated to ∂i is a parity check matrix for Zi. Since two i-faces of ∆ can only share at most one
(i− 1)-face, any two columns of H can share at most one index where that entry is nonzero. Thus each
set of i+ 1 columns of ∂i are linearly independent. By Proposition 2.1, d ≥ i+ 2. For the computation
of k, we proceed by induction on i. For i = 0, we have the short exact sequence

0→ Z0 → C0 → C−1 → 0.

Thus,

dimK Z0 = dimK C0 − dimK C−1 = f0 − f−1
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as desired. Now suppose

dimK Zp =

p∑
j=−1

(−1)j+pfj +

p−1∑
j=0

(−1)j+p+1 dimK H̃j

for some p ∈ N. For i ≥ 0, we have the short exact sequences

0→ Bi → Zi → H̃i → 0

and

0→ Zi → Ci → Bi−1 → 0.

Therefore,

dimKBi = dimK Zi − dimK H̃i

and

dimK Zi = dimK Ci − dimKBi−1.

Then by induction we have

dimK Zp+1

= dimK Cp+1 − dimKBp

= fp+1 − (dimK Zp − dimK H̃p)

= fp+1 −

 p∑
j=−1

(−1)j+pfj +

p−1∑
j=0

(−1)j+p+1 dimK H̃j

− dimK H̃p


=

p+1∑
j=−1

(−1)j+p+1fj +

p∑
j=0

(−1)j+p dimK H̃j .

Corollary 3.2. Let ∆ be a contractible simplicial complex and let K be a field. Then,

dimK Zi(∆,K) =

i∑
j=−1

(−1)i+jfj .

Proof. If ∆ is contractible then H̃i(∆,K) = 0 ∀i.

The following corollary provides an explicit formula for computing the dimension of cycle codes of graphs
discussed in Section 2.3.

Corollary 3.3. Let ∆ be a connected simplicial complex. Then,

dimK Z1(∆,K) = f1(∆)− f0(∆) + 1.

Proof. By Theorem 3.1, we have

dimK Z1 = f1 − f0 + f−1 + dimK H̃0.

Since ∆ is connected, H̃0 = 0. Moreover, f−1 = 1 for any simplicial complex. The result follows.
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In general, as the following example shows, the minimum distance of Zi(∆,K) can be strictly bigger than
i+ 2. When i = 1, d represents the girth of the 1-skeleton of ∆.

Example 3.4. Consider the Petersen Graph P viewed as a simplicial complex of dimension 1. It has
10 vertices (0-faces) and 15 edges (1-faces). The graph P is 3-regular with girth 5. It follows from
Theorem 3.1 and the discussion in Section 2.4 that Z1(P,K) is a [15, 6, 5]-code for any field K. Note that
the minimum distance here is 5 > 3 = 1 + 2.

1

2

34

5

6

7

89

10

If K = F2, then the parity check matrix of Z1(P,F2) is the incidence matrix of P , which is also the matrix
associated to ∂1(P,F2). We index the rows by the vertices and the columns by the edges of P .



1,3 1,4 1,6 2,4 2,5 2,7 3,5 3,8 4,9 5,10 6,7 6,10 7,8 8,9 9,10

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0

4 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0

5 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0

6 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0

7 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

8 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0

9 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

10 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1



Since the dimensions of the homologies of a simplicial complex can depend on the field K, the parameters
for a given cycle code can also depend on K.

Example 3.5. Let ∆ be the standard triangulation of the real projective plane on vertex set {1, 2, 3, 4, 5, 6}
with the following 2-faces:

∆2 = {123, 124, 126, 134, 135, 156, 235, 236, 346, 456}.

If K = F2, then H̃1(∆,K) = K, whereas if K = Fp with p 6= 2, then H̃1(∆,K) = 0. So by Theorem 3.1,
when K = F2, Z2(∆,K) has dimension

k = f2 − f1 + f0 − f−1 + H̃1(∆,F2)− H̃0(∆,F2)

= 10− 15 + 6− 1 + 1− 0 = 1,

whereas when K = Fp for p 6= 2, Z2(∆,K) has dimension k = 0.
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Theorem 3.6. Let ∆ be an m-dimensional simplicial complex, K a field and 0 ≤ i < m. Then Bi(∆,K)
is an [n, k, d]-code with

n = fi,

k =

i∑
j=−1

(−1)i+jfj +

i∑
j=0

(−1)i+j+1 dimK H̃j ,

d = i+ 2.

Proof. Bi is a sub-vector space of Ci and dimK Ci = fi. So n = fi. Since dimKBi = dimK Zi−dimK H̃i,
the formula for k follows from Theorem 3.1. Since dim(∆) ≥ i+ 1, the image of ∂i+1 is nonempty. Each
(i + 1)-face has boundary with i + 2 distinct faces. Hence there is at least one vector in Bi of weight
exactly i + 2. So d ≤ i + 2. But Bi ⊆ Zi and the minimum distance of Zi was at least i + 2. Thus
d = i+ 2.

Corollary 3.7. Let ∆ be an m-dimensional simplex, K a field and 0 ≤ i < m. Then Zi(∆,K) = Bi(∆,K)
is an [n, k, d]-code with

n =

(
m+ 1

i+ 1

)
,

k =

(
m

i+ 1

)
,

d = i+ 2.

Proof. By Theorem 3.1, n = fi =
(
m+1
i+1

)
. Since ∆ is contractible, H̃i(∆) = 0 ∀i. Hence, Zi = Bi ∀i

and d = i+ 2 by Theorem 3.6. Finally, we have

k =

i∑
j=−1

(−1)i+jfj =

i∑
j=−1

(−1)i+j
(
m+ 1

j + 1

)
=

(
m

i+ 1

)
,

by Pascal’s Identity.

Note that the parameters do not depend on the field K.

Remark 3.8. The family of m-simplex codes described here are not asymptotically good according to the
definition given in Section 2.2. If i = m− 1, then k =

(
m
m

)
= 1; that is, a one-dimensional code. In the

most interesting scenario, we set i = m− 2 and obtain the following:

n =
(m2 +m)

2
,

k = m,

d = m.

Note that there is quadratic growth in n, but linear growth in k and d. Thus,

lim
i→∞

ki
ni

= 0 and lim
i→∞

di
ni

= 0.

Other choices of i < m− 2 produce codes with similar asymptotics.

A similar analysis can be carried out on the dual codes Zi(∆,K) and Bi(∆,K). In general, the minimum
distance depends on the minimum degree of an i-face in ∆.
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Theorem 3.9. Let ∆ be an m-dimensional simplicial complex, K a field and 0 ≤ i < m. Then Zi =
Zi(∆,K) is an [n, k, d]-code with

n = fi,

k =

i−1∑
j=−1

(−1)i+j+1fj +

i∑
j=0

(−1)i+j dimK H̃j ,

d ≥ deg(i,∆) + 1.

Proof. Since Zi ⊆ Ci, n = fi. Since Zi = B⊥i , dimK Z
i + dimKBi = fi and the value of k follows from

Theorem 3.6. Each column of the matrix associated to ∂∗i+1 has at least deg(i,∆) nonzero entries. Since
any two distinct i-faces are contained in at most one (i+ 1)-face, every set of deg(i,∆) columns of ∂∗i+1

is linearly independent. Indeed suppose r columns of ∂∗i+1 are linearly dependent. The first such column
has at least deg(i,∆) nonzero entries and each other column can cancel at most one of these entries,
meaning r > deg(i,∆). Applying Proposition 2.1 yields that d ≥ deg(i,∆) + 1.

A similar argument gives the parameters for the coboundary codes.

Theorem 3.10. Let ∆ be an m-dimensional simplicial complex, K a field and 0 ≤ i ≤ m. Then
Bi = Bi(∆,K) is an [n, k, d]-code with

n = fi,

k =

i−1∑
j=−1

(−1)i+j+1fj +

i−1∑
j=0

(−1)i+j dimK H̃j ,

deg(i,∆) + 1 ≤ d ≤ min{deg(σ) |σ ∈ ∆i−1 and deg(σ) > 0}.

Proof. The formulas for n and k follow from Theorem 3.1. That deg(i,∆) + 1 ≤ d follows from
Theorem 3.9 since Bi ⊆ Zi. On the other hand, by definition there is a nonzero element in Bi of weight
min{deg(σ) |σ ∈ ∆i−1 and deg(σ) > 0}.

When ∆ is the m-dimensional simplex, each i-face is contained in exactly m− i many (i+ 1)-dimensional
faces. Applying the previous two theorems yields the following calculation, which together with Theo-
rem 3.7, recovers calculations in [10] and [13].

Corollary 3.11. Let ∆ be an m-simplex, K a field and 0 ≤ i ≤ m. Then Zi(∆,K) = Bi(∆,K) is an
[n, k, d]-code with

n =

(
m+ 1

i+ 1

)
,

k =

(
m

i

)
,

d = m− i+ 1.

It is easy to check that none of these codes form a regular LDPC family of codes that are asymptotically
good.

4. Asymptotically good homological codes

The goal of this section is to prove the existence of asymptotically good cycle codes for specially
chosen simplicial complexes ∆ with dim(∆) ≥ 2. We rely on the following result of Dotterer, Guth, and
Kahle derived from work of Aronshtam, Linial, Łuczak and Meshulam [2]. Since a proof is omitted from
[4] we sketch a proof here. For notation and details, we refer the reader to [2].
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Theorem 4.1 ([4, Theorem 6.2(1)]). For any α > 0, and for all n sufficiently large, there exist 2-
dimensional simplicial complexes ∆ with n vertices and with at least αn2 faces, such that every cycle in
in H2(∆,F2) is supported on at least Cαn2 faces (where Cα > 0 is a constant depending only on α).

Proof. Let Y2(n, p) denote the probability space of simplicial complexes of that contain every (d− 1)-
dimensional face and also each d-dimensional face with independent probability p. Fix α > 0 and let
c > 6α. By [2, Theorem 4.1], there exists a constant δ (depending only on c) such that asymptotically
almost surely, every every minimal core subcomplex (and thus every minimal cycle) K of Y ∈ Y2(n, cm )

with f2(K) ≤ δn2 is the boundary of a 3-dimensional simplex. Let Xm denote the number of 2-cycles in Y
with exactly m faces so that Xm = 0 for m ≤ 3 and X4 counts the number of boundaries of 3-dimensional
simplices in Y . The expected number of such subcomplexes is

EX4 =

(
n

4

)
p4 =

n(n− 1)(n− 2)(n− 3)

3!

c4

n4
≤ c4

6
.

Thus for sufficiently large n, we can find a d-dimensional simplicial complex Y with n vertices and no
cycles of size ≤ δn2 except for the at most c4

6 boundaries of 3-simplices. By removing one face from each
cycle, we get a simplicial complex Y ′ with no 2-cycles of size ≤ δn2. The expected number of 2-faces in
Y ′ is

Ef2(Y ′) ≥
(
n

3

)
p− c4

6
=
n(n− 1)(n− 2)

6

c

n
− c4

6
=
c(n− 1)(n− 2)− c4

6
,

and for n sufficiently large c(n−1)(n−2)−c4
6 > αn2. Thus we may take Cα = δ.

With this result and Theorem 3.1 in hand, we can now prove our main result about the existence of
asymptotically good cycle codes.

Theorem 4.2. There is a positive constant c ∈ R such that, for all m ∈ N sufficiently large, there exists
a 2-dimensional simplicial complex ∆m on m vertices such that Z2(∆m,F2) is an [n, k, d]-code with

n = m2,

k ≥ m2

2
,

d ≥ cm2.

In particular, Z2(∆m,F2) give a family of asymptotically good codes over F2.

Proof. Let α = 1 and apply Theorem 4.1. We get an infinite family of 2-dimensional simplicial
complexes ∆m for m� 0 such that ∆m has m vertices and at least m2 2-faces and such that every cycle
of H2(∆m,F2) = Z2(∆m,F2) is supported on at least cm2 faces where c = C1 above. First note that we
may assume that f2(∆m) = m2 since deleting faces can only increase the size of the support of a cycle in
H2(∆m,F2). Moreover, we may assume that all

(
m
2

)
edges are present since adding edges does not affect

Z2(∆m,F2). Thus by Theorem 3.1, Z2(∆m,F2) is an [n, k, d]-code with n = f2(∆m) = m2. Since every
cycle is supported on at least cm2 faces, d ≥ cm2. Finally we have

k = f2 − f1 + f0 − f−1 + H̃1 − H̃0

= m2 −
(
m

2

)
+m− 1 + H̃1 − H̃0

≥ m2

2

where the last inequality uses that H̃0 = 0, since ∆m is connected, and that m ≥ 2.
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The results in [2] and [4] rely on probabilistic methods to prove the existence of such simplicial
complexes. It would be interesting to have explicit constructions of such simplicial complexes.

Finally we remark that the previous Theorem can be extended to higher dimension by taking sus-
pensions.

Proposition 4.3. Let ∆ be an m-dimensional simplicial complex and let K be a field. If Zm(∆,K) had
parameters [n, k, d], then Zm+1(S(∆),K) has parameters [2n, k, 2d].

Proof. For all i ≥ −1, there is a canonical isomorphism φ : H̃i(∆,K) ∼= H̃i+1(S(∆),K), coming from
the Mayer-Vietoris sequence induced by sending an i-face σ to the sum σ ∪ {a}+ σ ∪ {b}, where a, b are
the two additional vertices. In particular, Zm(∆,K) = H̃m(∆,K) ∼= H̃m+1(S(∆),K) = Zm+1(S(∆),K)
and the dimensions of the 2 codes agree. If n is the length of Zm(∆,K), then by construction the length
of S(∆) is fm+1(S(∆)) = 2fm(∆) = 2n. Finally, it is clear that φ doubles the support of any cycle in
Zm(∆,K) and hence doubles the minimum weight of the associated code.

Note that since the dimension is preserved, we do not get asymptotically good families by taking
repeated suspensions of a given simplicial complex. However, combining with Theorem 4.2 yields the
following consequence.

Corollary 4.4. For any integer r ≥ 2, there is a family of r-dimensional simplicial complexes {∆m}
whose cycle codes Zr(∆m,F2) are asymptotically good.

Proof. Fix r ≥ 2. Let Sr(∆) denote the r-fold suspension of ∆. Let {∆m} be the family of 2-
dimensional simplicial complexes from Theorem 4.2. Then by Proposition 4.3, Zr(Sr−2(∆m),F2) has
parameters [2r−2m2,m2/2, c2r−2m2], and hence forms an asymptotically good family.

Finally we remark that since the parity check matrix of Zr(Sr−2(∆m),F2) is the matrix associated
to ∂r(Sr−2(∆m),F2), it has exactly r + 1 ones per column. So the corresponding family of codes is a
(non-regular) LDPC family of codes.
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