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Abstract: Latterly, the fuzzy soft max-min decision-making method denoted by FSMmDM and provided in 

[Çağman, N., Enginoǧlu, S., Fuzzy soft matrix theory and its application in decision making, Iranian Journal of 

Fuzzy Systems, 2012, 9(1), 109-119] has been configured via fuzzy parameterized fuzzy soft matrices (    -

matrices) by Enginoğlu and Memiş [A configuration of some soft decision-making algorithms via     -

matrices, Cumhuriyet Science Journal, 2018, 39(4), 871-881], faithfully to the original. Although this configured 

method denoted by CE12 and constructed by and-product/or-product (CE12a/CE12o) is useful in decision-

making, the method should be made more attractive in terms of time and complexity in the event that a large 

amount of data is processed. In this paper, we propose two algorithms denoted by EMC19a and EMC19o and 

being new generalisations of FSMmDM. Moreover, we prove that EMC19a accept CE12a as a special case in 

the event that the first rows of the     -matrices are binary. Afterwards, we compare the running times of these 

algorithms. The results show that EMC19a and EMC19o outperform CE12a and CE12o, respectively, in any 

number of data. We then apply EMC19o to a decision-making problem in image denoising. Finally, we discuss 

the need for further research.   

 

Keywords: Fuzzy sets, soft sets, soft decision-making, soft matrices,     -matrices 

Bulanık Esnek Maks-Min Karar Verme Metodunun Bir Genelleştirmesi ve 

Gürültü Kaldırmada Performans Temelli Değer Atamaya Uygulaması 
 

Öz: Son zamanlarda, FSMmDM ile gösterilen ve [Çağman, N., Enginoǧlu, S., Fuzzy soft matrix theory and 

its application in decision making, Iranian Journal of Fuzzy Systems, 2012, 9(1), 109-119] çalışmasında 

verilen bulanık esnek maks-min karar verme metodu, Enginoğlu ve Memiş [A configuration of some soft 

decision-making algorithms via     -matrices, Cumhuriyet Science Journal, 2018, 39(4), 871-881] tarafından 

bulanık parametreli bulanık esnek matrisler (    -matrisler) yoluyla orijinaline sadık kalacak biçimde 

yapılandırıldı. CE12 ile gösterilen ve ve-çarpım/veya-çarpım (CE12a/CE12o) yoluyla inşa edilen bu 

yapılandırılmış metot karar vermede kullanışlı olmasına rağmen, yüksek sayıda veri işlenirken zaman ve 

karmaşıklık bakımından daha cazip hale getirilmesi gerekmektedir. Bu çalışmada, FSMmDM’nin 

genelleştirmeleri olan ve EMC19a ve EMC19o ile gösterilen iki algoritma öneriyoruz. Ayrıca, EMC19a’nın 

    -matrislerin ilk satırlarındaki bileşenlerin 0 ya da 1 olduğunda CE12a’yı özel bir durum olarak kabul 

ettiğini gösteriyoruz. Ardından, bu algoritmaların çalışma sürelerini karşılaştırıyoruz. Sonuçlar herhangi bir 

veri sayısında EMC19a ve EMC19o’nun sırasıyla CE12a ve CE12o’dan daha iyi bir performans sergilediğini 

göstermektedir. Daha sonra, EMC19o’yu gürültü kaldırmada bir karar verme problemine uyguluyoruz. Son 

olarak, sonraki çalışmalar hakkında bir tartışmaya yer veriyoruz. 

 

Anahtar Kelimeler: Bulanık kümeler, esnek kümeler, esnek karar verme, esnek matrisler,     -matrisler 
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1. Introduction 

Soft sets [1] are designed to cope with uncertainties, and so far, many applied and theoretical 

studies have been conducted on that [2–33]. Recently, some soft decision-making algorithms have 

been configured via fuzzy parameterized fuzzy soft matrices (    -matrices) by Enginoğlu and 

Memiş [34], faithfully to the original. Moreover, the authors have remarked that studies on the 

simplifications and different configurations of these methods therein are worth doing. In the recent 

time, several soft decision-making algorithms given in [34] have been configured and simplified 

[35–39] to apply them to a decision-making problem in computer science such as image denoising 

and machine learning. 

 

The soft max-min decision-making method SMmDM and the fuzzy soft max-min decision-making 

method FSMmDM provided in [5,12] and configured in [34] have a similar disadvantage 

considered in [35–39]. Therefore, in this paper, we have focused on improving two new methods 

being a different generalisation of them and free of the disadvantages mentioned above. 

 

In Section 2, we present the concept of     -matrices [13,40] and give CE12 constructed by and-

product/or-product (CE12a/CE12o) [5,12,34]. In Section 3, we propound two new methods, namely 

EMC19a and EMC19o, and prove that EMC19a equivalent to CE12a under the condition that first 

rows of the     -matrices are binary. In Section 4, we compare the running times of these 

algorithms. In Section 5, we apply EMC19o to a decision-making problem in which the noise 

removal/image denoising methods can be ordered in terms of performance. Finally, we discuss the 

need for further research.  

 

2. Preliminaries 
 

In this section, firstly, the concept of     -matrices [13,40] and some of its basic definitions have 

been presented. Throughout this paper, let   be a parameter set,      be the set of all fuzzy sets 

over  , and       . Here, a fuzzy set is denoted by   
    

      instead of             

 . 

Definition 2.1. [7,13] Let   be a universal set,       , and   be a function from   to     . 
Then, the set                        being the graphic of   is called a fuzzy parameterized fuzzy 

soft set (    -set) parameterized via   over   (or briefly over  ). 

In the present paper, the set of all     -sets over   is denoted by         . In         , since 

the          and   generated each other uniquely, the notations are interchangeable. Therefore, as 

long as it does not cause any confusion, we denote an     -set          by  . 

Example 2.1. Let                 and                   . Then, 

      
     

      
         

       
       

     
       

       
      

      
         

     
      

        

is an     -set over  . 

Definition 2.2. [13,40] Let             Then,       is called the matrix representation of   (or 

briefly     -matrix of  ) and is defined by  
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    for             and           

such that  

     
         

                  
  

Here, if         and      , then       has order    . 

From now on, the set of all     -matrices parameterized via   over   is denoted by         . 

Example 2.2. Let’s consider the     -set   provided in Example 2.1. Then, the     -matrix of   is 

as follows:  

      

 
 
 
 
 
 
        
        
      
          
        
       

 
 
 
 
 

 

Definition 2.3. [13,40] Let               . For all   and  , if      , then       is called  -

    -matrix and is denoted by    . Here,     is called empty     -matrix and     is called 

universal     -matrix. 

Definition 2.4. [13,40] Let                           ,             , and     . If  

      
       

          
  

then       is called   -restriction of       and is denoted by          . Briefly, if          , then 

         can be used instead of          . It is clear that  

         
       

        
  

Definition 2.5. [13,40] Let                     . For all   and  , 

If        , then       is called a submatrix of       and is denoted by             , 

If        , then       and       are called equal     -matrices and is denoted by            . 

Definition 2.6. [13,40] Let                           . For all   and  ,  

If                 , then       is called union of       and       and is denoted by             , 

If                 , then       is called intersection of       and       and is denoted by 

            , 

If                   , then       is called difference between       and       and is denoted by 

            , 

If              , then       is called symmetric difference between       and       and is denoted 

by             . 

Definition 2.7. [13,40] Let                     . For all   and  , if          , then       is 

complement of       and is denoted by      
   or     

   . 
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Definition 2.8. [13,40] Let                     . If                 , then       and       are 

called disjoint. 

Definition 2.9. [40] Let          
          ,          

          , and            
 

             such that            . For all   and  , 

If                 , then       is called and-product of       and       and is denoted by 

           , 

If                 , then       is called or-product of       and       and is denoted by       

     ,  

If                   , then       is called andnot-product of       and       and is denoted by 

           , 

If                   , then       is called ornot-product of       and       and is denoted by 

           .  

Secondly, we present the algorithm CE12 [5,12,34]. 

Step 1. Construct two     -matrices       and       

Step 2. Find and-product/or-product     -matrix       of       and       

Step 3. Obtain       defined by  

       
 

 
   
    

              

      
  

such that               and                                  

Step 4. Obtain the set               
 

       

Preferably, the set              or                can be attained such that       
   

   
 

   
. 

3. Soft Decision-Making Methods: EMC19a and EMC19o 

 

In this section, we first propose an algorithm denoted by EMC19a. 

Step 1. Construct two     -matrices       and       

Step 2. Obtain score matrix       defined by  

     
       

    
            

    
                       

           

  

such that              ,                      , and                       

Step 3. Obtain the decision set              

It is clear that the values     give a ranking order over   . Therefore, the decision maker can choose 

the proper ones of the alternatives. 

Theorem 4.1. EMC19a is equivalent to CE12a under the condition that first rows of the     -

matrices are binary. 

PROOF. Let us consider the functions     provided in CE12a and EMC19a, and show      
           . Then, 
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In a similar way,  

                  

                   

                                     

                               

                         

              

Here,              ,              ,           , and            . 

Suppose that first rows of the     -matrices are binary,       
    

         
  ,                , 

and                . The functions     provided in CE12a and EMC19a are equal in the event 

that      or     . Assume that      and     . Since       and      , for all      

and     ,  
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Secondly, we propose another algorithm denoted by EMC19o. 

 

Step 1. Construct two     -matrices       and       

Step 2. Obtain score matrix       defined by  

     
       

    
            

    
                       

           

  

such that              ,                    , and                     

Step 3. Obtain the decision set              

It is clear that the values     give a ranking order over   . Therefore, the decision maker can choose 

the proper ones of the alternatives. 

 

4. Simulation Results 

 

In this section, we first compare the running times of CE12a and EMC19a by using MATLAB 

R2018b. So long as it has not been encountered a difficulty, we use a laptop with 2.6 GHz i5 Dual 

Core CPU and 4 GB RAM to compare the methods. However, in this study, we use a workstation 

with I(R) Xeon(R) CPU E5-1620 v4 @ 3.5 GHz and 64 GB RAM because the computer is 

insufficient to run CE12a if the parameters are more than 5000.  

 

We present the running times of CE12a and EMC19a in Table 1 and Fig. 1 for 10 objects and the 

parameters ranging from 10 to 100. Even though the difference of running times between these 

methods is low, EMC19a is about 70 times faster than CE12a in 100 parameters and 10 objects. 

 

Table 1. The running times of the methods for 10 objects and 10-100 parameters (In Second) 

Parameter Count 10 20 30 40 50 60 70 80 90 100 

CE12a 0.01811 0.00548 0.00166 0.00273 0.00604 0.00780 0.00941 0.00839 0.01225 0.01640 

EMC19a 0.00789 0.00237 0.00039 0.00038 0.00211 0.00081 0.00042 0.00019 0.00032 0.00024 

Difference 0.0102 0.0031 0.0013 0.0024 0.0039 0.0070 0.0090 0.0082 0.0119 0.0162 

Advantage (%) 56.4254 56.6633 76.2652 86.2857 65.0508 89.6560 95.5149 97.7886 97.4096 98.5428 

 

 

Figure 1. The figure for Table 1 
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We then give the running times of CE12a and EMC19a in Table 2 and Fig. 2 for 10 objects and the 

parameters ranging from 1000 to 10000. It must be noted that the difference in running times 

between these methods is increasing seriously. 278-second running time shows CE12a is not 

appropriate for any real-time software processing a large amount of data. 

 

Table 2. The running times of the methods for 10 objects and 1000-10000 parameters (In Second) 
 

Parameter Count 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

CE12a 0.7436 3.3679 9.9886 22.4843 40.8677 66.2469 102.8899 147.6173 202.8367 278.8861 

EMC19a 0.0080 0.0027 0.0013 0.0015 0.0034 0.0026 0.0019 0.0024 0.0041 0.0026 

Difference 0.7356 3.3652 9.9873 22.4828 40.8642 66.2443 102.8880 147.6149 202.8326 278.8835 

Advantage (%) 98.9276 99.9201 99.9867 99.9933 99.9916 99.9960 99.9981 99.9984 99.9980 99.9991 

 

 

 Figure 2. The figure for Table 2 

 

We then give their running times in Table 3 and Fig. 3 for 10 parameters and the objects ranging 

from 10 to 100. Despite the low difference of running times between these methods, EMC19a is 

about 5 times faster than CE12a in 10 parameters and 100 objects. 

 

Table 3. The running times of the methods for 10-100 objects and 10 parameters (In Second) 

Object Count 10 20 30 40 50 60 70 80 90 100 

CE12a 0.0141 0.0047 0.0022 0.0014 0.0032 0.0037 0.0041 0.0054 0.0033 0.0024 

EMC19a 0.0074 0.0020 0.0005 0.0003 0.0017 0.0011 0.0009 0.0008 0.0005 0.0005 

Difference 0.0067 0.0027 0.0017 0.0011 0.0015 0.0026 0.0032 0.0046 0.0028 0.0019 

Advantage (%) 47.2867 58.0965 77.5393 78.0378 47.8422 71.2486 78.3838 85.0085 84.7237 78.6004 

 

 

Figure 3. The figure for Table 3 
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We then give their running times in Table 4 and Fig. 4 for 10 parameters and the objects ranging 

from 1000 to 10000. The results show that only increasing the objects do not affect the running time 

as much as only increasing the parameters. Besides, in a large number of parameters, EMC19a 

works faster than in a large number of objects.   

 

Table 4. The running times of the methods for 1000-10000 objects and 10 parameters (In Second) 

Object Count 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

CE12a 0.0602 0.1216 0.2389 0.3778 0.5634 0.7539 1.0909 1.3661 1.6618 1.9791 

EMC19a 0.0116 0.0129 0.0175 0.0242 0.0342 0.0414 0.0492 0.0590 0.0687 0.0812 

Difference 0.0486 0.1087 0.2214 0.3536 0.5292 0.7125 1.0417 1.3071 1.5931 1.8979 

Advantage (%) 80.7231 89.3771 92.6951 93.5828 93.9242 94.5032 95.4878 95.6795 95.8664 95.8986 

 

Figure 4. The figure for Table 4 

We then give their running times in Table 5 and Fig. 5 for the parameters and the objects ranging 

from 10 to 100. Although the difference of running times between these methods is low, EMC19a is 

up to 130 times faster than CE12a.  

 

Table 5. The running times of the methods for 10-100 objects and parameters (In Second) 

Count 10 20 30 40 50 60 70 80 90 100 

CE12a 0.0140 0.0055 0.0044 0.0076 0.0151 0.0233 0.0349 0.0447 0.0653 0.0905 

EMC19a 0.0057 0.0017 0.0009 0.0006 0.0022 0.0011 0.0006 0.0006 0.0007 0.0007 

Difference 0.0083 0.0037 0.0035 0.0070 0.0129 0.0222 0.0343 0.0441 0.0647 0.0897 

Advantage (%) 59.2037 68.2321 80.3370 92.0232 85.3565 95.0726 98.2459 98.5621 98.9913 99.2141 

 

 

 Figure 5. The figure for Table 5  

We then give their running times in Table 6 and Fig. 6 for the parameters and the objects ranging 

from 100 to 1000. 0.0206-second and 616-second running times shows EMC19a is more 

appropriate than CE12a for any real-time software. 
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Table 6. The running times of the methods for 100-1000 objects and parameters (In Second) 

Count 100 200 300 400 500 600 700 800 900 1000 

CE12a 0.1447 1.3295 5.9489 17.0769 39.5983 79.2793 145.0186 244.9221 399.8934 616.6867 

EMC19a 0.0101 0.0036 0.0038 0.0048 0.0083 0.0091 0.0114 0.0134 0.0172 0.0206 

Difference 0.1346 1.3258 5.9451 17.0721 39.5900 79.2702 145.0072 244.9088 399.8762 616.6662 

Advantage (%) 92.9952 99.7266 99.9355 99.9720 99.9791 99.9885 99.9921 99.9945 99.9957 99.9967 

 

Figure 6. The figure for Table 6. The results show that EMC19a outperforms than CE12a in any 

number of data. 

 

Secondly, we compare the running times of CE12o and EMC19o by using MATLAB R2018b and a 

workstation with I(R) Xeon(R) CPU E5-1620 v4 @ 3.5 GHz and 64 GB RAM because the 

computer mentioned above is insufficient to run CE12o if the parameters are more than 5000. 

We present the running times of CE12o and EMC19o in Table 7 and Fig. 7 for 10 objects and the 

parameters ranging from 10 to 100. Even though the difference of running times between these 

methods is low, EMC19o is about 100 times faster than CE12o in 100 parameters and 10 objects. 

 

Table 7. The running times of the methods for 10 objects and 10-100 parameters (In Second) 

Parameter Count 10 20 30 40 50 60 70 80 90 100 

CE12o 0.0117 0.0054 0.0023 0.0030 0.0085 0.0086 0.0112 0.0143 0.0162 0.0203 

EMC19o 0.0066 0.0024 0.0004 0.0003 0.0025 0.0005 0.0001 0.0002 0.0002 0.0002 

Difference 0.0052 0.0030 0.0019 0.0026 0.0061 0.0081 0.0111 0.0140 0.0159 0.0200 

Advantage (%) 43.9452 55.0417 82.2197 88.7153 70.9732 94.4846 98.7038 98.4619 98.6299 98.8234 

 

 Figure 7. The figure for Table 7 

We then give the running times of CE12o and EMC19o in Table 8 and Fig. 8 for 10 objects and the 

parameters ranging from 1000 to 10000. It must be noted that the difference in running times 

between these methods is increasing seriously. 515-second running time shows CE12o is not 

appropriate for any real-time software processing a large amount of data. 
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Table 8. The running times of the methods for 10 objects and 1000-10000 parameters (In Second) 
 

Parameter Count 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

CE12o 0.8761 6.0139 18.1107 39.1060 72.1961 117.6709 184.9469 271.8735 373.6522 515.0063 

EMC19o 0.0074 0.0028 0.0014 0.0016 0.0034 0.0027 0.0020 0.0023 0.0025 0.0027 

Difference 0.8687 6.0111 18.1093 39.1044 72.1927 117.6682 184.9449 271.8712 373.6497 515.0036 

Advantage (%) 99.1569 99.9539 99.9923 99.9959 99.9952 99.9977 99.9989 99.9991 99.9993 99.9995 

 

 Figure 8. The figure for Table 8 

 

We then give their running times in Table 9 and Fig. 9 for 10 parameters and the objects ranging 

from 10 to 100. Despite the low difference of running times between these methods, EMC19o is 

about 7 times faster than CE12o in 10 parameters and 100 objects. 

 

Table 9. The running times of the methods for 10-100 objects and 10 parameters (In Second) 

Object Count 10 20 30 40 50 60 70 80 90 100 

CE12o 0.0113 0.0044 0.0017 0.0018 0.0039 0.0053 0.0056 0.0062 0.0038 0.0043 

EMC19o 0.0058 0.0020 0.0004 0.0003 0.0016 0.0019 0.0008 0.0006 0.0005 0.0006 

Difference 0.0056 0.0025 0.0013 0.0015 0.0023 0.0034 0.0048 0.0056 0.0033 0.0038 

Advantage (%) 49.2078 55.1922 73.7450 82.3905 57.8698 63.7274 84.9306 90.7323 86.8001 87.2092 

 

Figure 9. The figure for Table 9 

We then give their running times in Table 10 and Fig. 10 for 10 parameters and the objects ranging 

from 1000 to 10000. The results show that only increasing the objects do not affect the running time 

as much as only increasing the parameters. Besides, in a large number of parameters, EMC19o 

works faster than in a large number of objects. 
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Table 10. The running times of the methods for 1000-10000 objects and 10 parameters (In Second) 

Object Count 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

CE12o 0.0761 0.1539 0.2690 0.4271 0.6235 0.8606 1.1178 1.4193 1.7636 2.1721 

EMC19o 0.0116 0.0135 0.0172 0.0263 0.0338 0.0413 0.0497 0.0598 0.0691 0.0816 

Difference 0.0645 0.1404 0.2518 0.4008 0.5898 0.8193 1.0682 1.3594 1.6945 2.0905 

Advantage (%) 84.7582 91.2375 93.5980 93.8512 94.5847 95.1976 95.5574 95.7834 96.0829 96.2443 

 

Figure 10. The figure for Table 10 

We then give their running times in Table 11 and Fig. 11 for the parameters and the objects ranging 

from 10 to 100. Although the difference of running times between these methods is low, EMC19o is 

up to 150 times faster than CE12o. 

Table 11. The running times of the methods for 10-100 objects and parameters (In Second) 

Count 10 20 30 40 50 60 70 80 90 100 

CE12o 0.0106 0.0059 0.0050 0.0103 0.0197 0.0353 0.0447 0.0685 0.0829 0.1030 

EMC19o 0.0053 0.0018 0.0009 0.0006 0.0022 0.0012 0.0006 0.0006 0.0007 0.0007 

Difference 0.0053 0.0041 0.0041 0.0097 0.0175 0.0341 0.0441 0.0679 0.0822 0.1023 

Advantage (%) 50.0941 69.9820 82.4312 93.8611 88.6337 96.5521 98.5871 99.1218 99.1953 99.3082 

 

 

 Figure 11. The figure for Table 11  

We then give their running times in Table 12 and Fig. 12 for the parameters and the objects ranging 

from 100 to 1000. 0.0201-second and 637-second running times shows EMC19o is more 

appropriate than CE12o for any real-time software 
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Table 12. The running times of the methods for 100-1000 objects and parameters (In Second) 

Parameter Count 100 200 300 400 500 600 700 800 900 1000 

CE12o 0.1635 1.4368 6.5425 18.5807 42.0813 83.9797 151.8452 257.2460 415.8905 637.8363 

EMC19o 0.0071 0.0037 0.0034 0.0048 0.0083 0.0089 0.0113 0.0137 0.0162 0.0201 

Difference 0.1564 1.4331 6.5392 18.5760 42.0731 83.9708 151.8339 257.2323 415.8743 637.8162 

Advantage (%) 95.6327 99.7408 99.9485 99.9744 99.9804 99.9894 99.9925 99.9947 99.9961 99.9969 

 

Figure 12. The figure for Table 12    

The results show that EMC19o outperforms than CE12o in any number of data. 

 

5. An Application of EMC19o 

 

In this section, we apply EMC19o to sort some filters used in image denoising concerning noise 

removal performance. Even though sorting these filters is to be more difficult in the event that the 

filters perform variously in different noise densities, EMC19o overcomes this difficulty. To 

illustrate, let us consider mean-SSIM results (Table 13) and mean-PSNR results (Table 14) 

provided in [41].  

Table  13. The mean-SSIM results of the filters for the 15 traditional images 

Noise Density 10% 20% 30% 40% 50% 60% 70% 80% 90% 

PSMF 0.9028 0.8715 0.8018 0.6988 0.4903 0.1882 0.0633 0.0318 0.0139 

DBA 0.9079 0.8664 0.8097 0.7376 0.6521 0.5552 0.4567 0.3623 0.2937 

MDBUTMF 0.8841 0.7994 0.7443 0.7657 0.7963 0.7880 0.7501 0.6443 0.3052 

NAFSM 0.9147 0.8916 0.8669 0.8409 0.8124 0.7796 0.7403 0.6872 0.5736 

DAMF 0.9253 0.9113 0.8946 0.8752 0.8523 0.8244 0.7892 0.7398 0.6572 

 

Table  14. The mean-PSNR results of the filters for the 15 traditional images 
Noise Density 10% 20% 30% 40% 50% 60% 70% 80% 90% 

PSMF 31.6100 28.3800 25.2900 22.2500 18.1900 12.6000 9.1700 7.4600 6.0800 

DBA 32.8200 29.0500 26.1800 23.7200 21.4900 19.2700 17.0900 14.8100 12.1600 

MDBUTMF 31.2400 28.0500 26.6800 26.7300 26.8400 26.1800 24.8600 21.4200 14.0700 

NAFSM 33.8800 31.0500 29.3000 28.0400 26.9500 25.9300 24.8900 23.5900 20.7800 

DAMF 37.4800 34.1400 31.9500 30.3000 28.9100 27.6300 26.3200 24.8000 22.7100 

Assume that the success in high noise densities is more important than in the others. In that case, the 

values given in Table 13 and the values normalized via maximum entry of Table 14 given in Table 

14 can be represented with two     -matrices as follows: 
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If we apply EMC19o to the     -matrices       and      , then the score matrix and the decision set 

are as follows:  

                                                        

and  

                                                           

The scores show that DAMF outperforms the others and the ranking order DAMF, NAFSM, 

MDBUTMF, DBA, and PSMF is valid. 

Assume that the success in low noise densities is more important than in the others. In that case, the 

values given in Table 13 and the values normalized via maximum entry of Table 14 given in Table 

14 can be represented with two     -matrices as follows: 
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If we apply EMC19o to the     -matrices       and      , then the score matrix and the decision set 

are as follows:  

                                                    

and  

                                                           

 

The scores show that DAMF outperforms the others and the ranking order DAMF, NAFSM, DBA, 

PSMF, and MDBUTMF is valid. 
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6. Conclusion 

 

The soft max-min decision-making method SMmDM was defined in 2010 [5] and the fuzzy soft 

max-min decision-making method FSMmDM [12], being a generalisation of SMmDM, was defined 

in 2012. Lately, since such methods cannot model decision-making problems in the event that the 

parameters have uncertainties, these methods have been configured [34] via     -matrices [13,40]. 

However, the configured method has a drawback such as its incapability of processing a large 

number of parameters on such a standard computer with 2.6 GHz i5 Dual Core CPU and 4GB 

RAM. 

 

In this study, we have proposed the method EMC19a, which is faster than CE12a and the method 

EMC19o, which is faster than CE12o. Of course, for other products, simplifications of these 

methods can be investigated. 

 

Also, we have compared the methods mentioned above in terms of their running times. Besides the 

results in Section 6, the results in Table 15 and 16 too show that EMC19a and EMC19o perform 

better than CE12a and CE12o, respectively. 

Table 15. The mean advantage, max advantage, and max difference values of EMC19a over CE12a 
 

Location Objects Parameters Mean Advantage % Max Advantage % Max Difference 

Table 1 10 10-100 81.9602 

 

98.5428 

 

0.0162 

 Table 2 10 1000-10000 99.8809 99.9991 278.8835 

Table 3 10-100 10 70.6767 

 

85.0085 

 

0.0067 

 Table 4 1000-

10000 

10 92.7738 95.8986 1.8979 

Table 5 10-100 10-100 87.5239 99.2141 0.0897 

Table 6 100-1000 100-1000 99.2576 99.9967 616.6662 

Table 16. The mean advantage, max advantage, and max difference values of EMC19o over CE12o 
 

Location Objects Parameters Mean Advantage % Max Advantage % Max Difference 

Table 7 10 10-100 82.9999 

 

98.8234 

 

0.0200 

 Table 8 10 1000-10000 99.9089 99.9995 515.0036 

Table 9 10-100 10 73.1805 

 

90.7323 

 

0.0056 

 Table 10 1000-

10000 

10 93.6895 96.2443 2.0905 

Table 11 10-100 10-100 87.7767 99.3082 0.1023 

Table 12 100-1000 100-1000 99.5246 99.9969 637.8162 

Finally, it is clear that the methods constructed by minimum-maximum (min-max), max-max, and 

min-min decision functions are also worth to study. 
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