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ABSTRACT 

In this paper the characterization of certain families of the 
kP  sets for 3(4)k ≡  are given, and it is shown that some of them 

can not be extended.  
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1. INTRODUCTION 

From its firs Let k  be a non zero integer and X  be a 

set of distinct positive integers. X  is said to be a kP  

set if any two distinct positive integers ix  and jx  of 

X , the integer i jx x k. +  is a perfect square. A kP  

set X  can be extended if there exists a positive integer 

y X∉  such that X {y}∪  is still a kP  set.  

For simplicity, throughout this paper, ( )x y n≡  will 

denote ( )x y modn≡ .  

The problem of extending kP  sets is an old one dating 

from the time of Diophantus[1]. The most famous result 

in this area is due to Baker and Davenport[2], who 

proved that the 1P  set 1 3 8 120{ }, , , can not be 

extended. Recently the problem of extendibility of the 

kP  sets have been examined by Kanagasabapathy and 

Ponnudurai[3], Heichelheim[4], Thamotherampillai[5], 

Mohanty and Ramasamy[6],[7], Brown[8],  

 

 

Altindis[9], Dujella [10], Dujella and Luca[11] and 

Dujella and Ramasamy [12].  

The purpose of this paper is to characterize certain 

families of the kP  sets for 3(4)k ≡  and to show that 

some of them can not be extended.  

2. CHARACTERIZATION OF kP  SETS FOR 

3(4)k ≡   

THEOREM 1. If X  is a kP  set for 3(4)k ≡ , then 

all of the elements of X  either are odd and they are 

congruent to one another or at most one of them is even 

and it is congruent to 2 modulo 4.  

PROOF. Let 1 2 3 4X {x x x x }= , , ,  be a kP  set with 

3(4)k ≡ . Then by the definition of kP  set we have  

2

i jx x k c. + =  

for some integers i jx x,  and c  with i j≠ . From the 

fact that perfect squares are congruent to 0 or 1 modulo 

4, we have  
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0 1(4)i jx x k or. + ≡  

so that  

1 2(4)i jx x or. ≡  

this shows that the product of any two elements i jx x,  

of a kP  set is congruent to 1 or 2 modulo 4. Indeed;  

a). Let 1 2 3 1(4)x x x≡ ≡ ≡ . If 4 1 2(4)x or≡ , 

then  1 2(4) 1 4i jx x or i j. ≡ , ≤ ≠ ≤  

b). Let 1 2 3 3(4)x x x≡ ≡ ≡ . If 4 3 2(4)x or≡ , 

then 1 2(4) 1 4i jx x or i j. ≡ , ≤ ≠ ≤  

For the remaining cases we have 0 3(4)i jx x or. ≡  

which is impossible. This completes the proof.  

3. NON EXTENDABILITY OF CERTAIN kP  

SETS FOR 3(4)k ≡   

Let X {a b c}= , ,  be a kP  set. By the definition of 

kP  set we have  

2 (1)ab k x+ =  

2 (2)ac k y+ =  

2 (3)bc k z+ =  

where x y z, ,  are integers. Solving equations (1), (2) 

in terms of b  and c , and plugging them into equation 

(3), we obtain  

2 2 2 2( )( ) ( )x k y k a k az− − + =  

Since the right hand side of this equation is a perfect 

square, the left hand side must be a perfect square, too. 

The left hand side can be written as  

2 2 2( ) [( ) ]xy k k x y a− − − −  

If we set y x a− = , then the equation becomes a 

perfect square.  

The problem of choosing a  is reduced to solving the 

congruence 
2 ( )x k a≡ . If ( ) 1k a, =  and ( ) 1k

a
=  

then this congruence is solvable, where ( )k
a

 denotes 

the Legendre Symbol.  

for x an s y x a= + , = +  we obtain  

2

2

( 2 )

( 1)[ ( 1) 2 ]

s k
a

s k
a

b n an s

c n a n s

−

−

= + +

= + + + +
  

where 
2 ( )n N s k a∈ , ≡ . Hence adding k  to the 

product if any two elements of  

2 2

( 2 ) ( 1)[ ( 1) 2 ]
s k s k

X {a b c} {a n an s n a n s }
a a

− −
= , , = , + + , + + + +

is always a perfect square.  

REMARK 1. If 1 1k a= − , =  and 0s =  then we 

obtain the 1P−  sets 
2 21 1 ( 1) 1{ n n }, + , + +  [6]. If 

1 2k a= − , =  and 1 ( 1 17 4s k a s= , = − , = , =  

and 1)n =  then we get the 1P−  sets 

2 22 2 2 1 2 6 5{ n n n n }, + + , + + , (respectively 

17 26 85{ }, , )[8]. If 3 1k a= , =  and 

0 ( 3 2 1)s k a s= , = , = , =  then we get the 3P  sets 

2 21 3 2 2{ n n n }, − , + − ,(respectively 

2 2
2 2 2 1 2 6 3{ n n n n }, + − , + + )[9].  

THEOREM 2. If 1(4)n ≡  then the 3P  sets 

2 22 2 2 1 2 6 3{ n n n n }, + − , + +  can not be 

extended.  

PROOF. 
2 2

2 2 2 1 2 6 3{ n n n n d}, + − , + + ,  is a 

3P  set. Then there exist x y,  and z  integers such 

that   

2

2 2

2 2

2 3 (4)

(2 2 1) 3 (5)

(2 6 3) 3 (6)

d x

n n d y

n n d z

+ =

+ − + =

+ + + =

  

Now the equations, (4), (5), and (6) lead to the 

equations  

2 2 2 2

2 2 2 2

2 2 2 2

2 (2 2 1) 9 6 6 (7)

2 (2 6 3) 6 18 3 (8)

(2 2 1) (2 6 3) 12 12 (9)

y n n x n n

z n n x n n

n n z n n y n

− + − = − −

− + + =− − −

+ − − + + =− −

 

Write 1(4)n ≡  and examining the equations (7) and 

(8) mod4 shows that  

2y2 + x2 
≡ 1(4) 

2z2 - 3x2 
≡ -3(4) 

and consequently x  is odd, y  is even and z  is even. 

Putting 2 2y u z v= , =  into (9) yields  
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2 2 2 2(2 2 1) (2 6 43) 3(1 )n n v n n u n+ − − + = − +  

From the fact that 1(4)n ≡  we have  

2 23 2(4)u v+ ≡  

which is impossible. Indeed, if v  is odd, this leads to 

the congruence  

23 1(4)u ≡  

which is impossible. if v  is even then this leads to the 

congruence  

2 2(4)u ≡  

which is impossible. Thus if 1(4)n ≡ , then the 3P  set 

2 2
2 2 2 1 2 6 3{ n n n n }, + − , + +  can not be 

extended.  
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