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ABSTRACT 

In this study, the change point in mean of the sequence of the random variables from normal distribution under 
the case of having an outlier in the sequence is considered. Under with this case, the maximum likelihood 
estimate of the change point and the estimates of the change point using robust methods are computed. The 
performances of the maximum likelihood method and robust methods on the estimation of the change point 
according to outlier locations with different sample sizes are investigated via extensive simulation studies.  
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1. INTRODUCTION 

Let iX , 1, ,i n= K  comes from normal distribution 

with different mean iµ  and variance 2σ . In this 

sequence, single change point model is defined as 
follows: 

2
1~ ( , ),iX N µ σ       1, ,i τ= K  

2
2~ ( , ),iX N µ σ       1, ,i nτ= + K .                       (1) 

Here τ is an unknown change point, 1µ , 2µ  are 

unknown means and 2σ  is known common variance. 
The case defined in Eq.(1) is a well-known problem 
called change point problem in the literature. Maximum 
likelihood approach is commonly used to estimate the 
change point as well as some other techniques. As it is  

known in the literature, maximum likelihood estimate 

of the change point could be affected by outliers. 
Therefore, robust estimation techniques should be 
considered to minimize the effect of an outlier. 

The change point problem has been studied since 1950s 
(Jarrett, 1979). There are many studies on the 
estimating and the hypothesis testing of one change 
point problem in normal, binomial, Poisson, exponential 
and gamma distributed random variables. For the 
normal distributed random variables, Hinkley (1970), 
and Hinkley and Hinkley (1970), Worsley (1987), Chen 
and Gupta (1997, 2004) investigated the change point in 
the sequence of normal distributed random variables. 
Some of the fundamental works on the change point in 
the sequence of exponential and Poisson distributed 
random variables are available in Haccou et al. (1988); 
Jandhyala and Fotopoulos (1999, 2001); Boudjelaba, et 
al. (2001). Fotopoulos and Jandhyala (2001). 
Ramanayake (2004) considers tests for a change in the 
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shape parameter of gamma distributed random 
variables.  

Even though there have been many studies concerning 
the change point problem in the literature, there are a 
few studies dealing with an outlier. For example, 
Takeuchi and Yamanishi (2006) are interested in the 
issues of outlier detection and change point detection 
from time series. Pechenizkiy et al. (2009) gave a 
framework based on switching regression models 
depending on perceived changes in the data from a pilot 
circulating fluidized bed reactor.  
 
Outliers can be present in the data for many different 
reasons. Influence of outliers on the parameter 
estimation is investigated. Especially in regression 
analysis where outliers have bad effects, robust methods 
are developed. Huber (1973) introduced the class of M 
estimators as a robust technique. Alternative robust 
estimators have been developed by Hinich and Talwar 
(1975) and Andrews (1974). Harvey (1977) compared 
the robust methods which are related to median. O’leary 
(1990) compared the four weight functions by used 
reweighted least squares.  
In this study, we focus on the estimation of change 
point in the mean of the sequence normal random 
variables having an outlier. To estimate the change 
point, we generate some data from the model given 
Eq.(1) and we add a single outlier as a fixed point in the 
sequence and we showed the influence of the outlier on 
the maximum likelihood estimator of the change point. 
Since robust estimation techniques are considered as 
alternative in order to decrease the influence of the 
outlier, we investigate the robust methods for the 
estimate of the change point by extensive simulation 
study. Results are compared according to the mean 
squared error (mse) and the relative frequencies of the 
estimates of change point being equal to the true change 
point location.  

 

2. MAXIMUM LIKELIHOOD ESTIMATOR OF 

CHANGE POINT 

Under the change point model given Eq.(1), the 
likelihood function for observed random variables 

1, , nx xK  is: 
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The log (ln) likelihood function can be written as: 
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For given a fixed value of τ, the maximum estimators of 

1µ  and 2µ  are obtained  
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and these estimates in Eq.(2 ) replace 1µ  and 2µ , Eq.(2) 

can be written as: 
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Eq.(3) is the function of τ only for known the variance, 
2σ . The log likelihood in Eq.(3) is: 

( ) ( ){ }2 2

1 22
1 1

1
( )

2

n

i i
i i

nL x x x x
τ

τ
τ

σ = = +
∝ − − + −∑ ∑l .           (4) 

Maximum likelihood estimate of τ is obtained by 
maximizing the function given in Eq.(4) 
(Hinkley,1970): 

 

ˆ arg max ( )nL
τ

τ=τ l ,           1,2,..., 1nτ = −  
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                                           1,2,..., 1nτ = − .                 (5) 

 

3. ROBUST ESTIMATORS 

Robust regression estimators were first suggested by 
Huber (1973) as M estimators in regression. Robust 
methods are based on the idea of minimizing another 
function of the residuals instead of minimizing the sum 
of squared residuals. Therefore various functions called 
influence or weight functions are proposed for 
residuals.  

A regression model is: 

 

0 1i i iy x eβ β= + + ,         1,2,...,i n= . 

 

Here ix  and iy  are the predictor and response variable 

values, respectively, and ie  are random errors. Let 

ˆi i ie y y= −  be residual of the ith datum, the difference 

between the i. observation and its fitted value. The 
purpose of the M estimators is based on following 
minimization problem 

ˆ
1

min ( )
n

i
i

e
β

ρ
=
∑  

where ρ is a symmetric and positive-definite function 
and a unique minimum at zero. After the derivative of 
the function ρ(.) with respect to βj, we have 

1

( ) 0
n
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e xψ
=

=∑            (6) 
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where ψ(.) is the first derivative of the function ρ(.) and 
it is called ψ(.)  an estimating function or just call it a ψ  
function.  

In most cases, a solution for Eq.(6) can be found 
iteratively. Many functions are suggested in literature. 
Some of them are given Table 1 (Rousseeuw and Leroy, 
1987, Bhar, 2011). 

 

Table 1. Some commonly used M estimators 

type ψψψψ(x) k 

Andrews 
sin ,

( )

0,

x
x k

x k
x k

π
ψ

π

   ≤  =  
>



 1.5 or  2 

bisquare 
2 2(1 ( / ) )

( )
0

x kx x k
x

x k

π
ψ

π
≤ −

= 
>

 5 or 6 

Cauchy ( )2( )
1 /

x
x

x k
ψ =

+
 2.385 

Fair 
1( ) (1 / )x x x kψ −= +  1.4 

Huber 

,

( ) ,

,

k x k

x x k x k

k x k

ψ
− < −


= − ≤ ≤
 >

 1.345 

logistic ( ) tanh( / )x k x kψ =  1.205 

Talwar 
,

( )
0,

x kx
x

x k
ψ

≤
= 

>
 2.985 

Welsch 
2( / )( ) x kx xeψ −=  2.985 

 

4. PROPOSED METHOD  

The proposed idea estimates the location of change 
point in the contaminated sequence by replacing µ1 and 
µ2 with robust estimates in Eq.(2) instead of using 1X  

and 2X  which are known to have 0% breakdown point 

that is are influenced by an outlier in the sequence. For 
the robust estimates of 1µ and 2µ , we used the M 

estimators, also the mode and the median in the 
simulation study. 

 

Another alternative approach could be using 
MAD(median absolute deviation)  to estimate the 
location of the change point. MAD is known to be a 
robust estimator of standard deviation(σ) and it is given 
as follows: 

 

{ }iMAD median X M= − ,            1,2,...,i n= . 

Here M denotes the median of the sample. 

 

 

 

 

In change point problem, we consider two MADs with 
respect to change point in the sequence: 

 

{ }1 1iMAD median X M= − ,         1,2,...,i τ=  

{ }2 2iMAD median X M= − ,        1, 2,...,i nτ τ= + +  

 

where M1 and M2 are the medians of the sequence 
before and after the change point respectively. The 

expressions, ( )2

1
1

i
i

X X
τ

=

−∑ and ( )2

2
1

n

i
i

X X
τ= +

−∑ , in 

Eq.(5) can be replaced to 2
1( 1)MADτ −  and 

2
2( 1)n MADτ− −  respectively.  

Our goal is to investigate the efficiency of suggested 
modifications in Eq.(5) and compare them via 
simulation studies. 

5. SIMULATION STUDY 

To evaluate the performances of the modifications 
explained in Section 4, random samples from normal 
distributions with sample sizes n=40, 60, 100 are 
generated and  the change point location is fixed at the 
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first quartile, at the center and at the third quartile of the 
samples respectively.  

For each sample, the values of parameters are taken 
arbitrarily as ( 1µ , 2µ ) = (0.1, 0.3), (0.5, 1.5), (2.5, 7.5), 

(5, 15), (0.3, 0.1), (1.5, 0.5), (7.5, 2.5), (15, 5) for each 
standard deviations σ=0.001, 0.01, 0.1, 1, 1.5, 2, 2.5. 

The number of iterations is taken to be 500 times for 
each sample size. The outliers are generated from a 
normal distribution with eight times the mean of the 
random samples. The outlier locations in the sequence 
are placed before the true change point location or after 
the true change point location as given in Table 2

 

Table 2. Outlier locations with respect to the true change point location. 

 

For example, let true change point location be 50th 
observation of the sequence from the sample of size 
n=100. The location of the outlier may be 45th 
observation of the sequence or 55th observation of the 
sequence (see Figure 1 ).  

  

We computed the mean of estimates τ̂ , τ̂ , and the 

relative frequencies (ƒ) of the estimate τ̂  being equal to 
the true change point and the estimated mean squared 
errors (mses) for each sample size and the value of 
parameters.  

 

The scatter plot or the box plot of the samples could be 
used to investigate whether there is an outlier in the 
sequence, or not (see Figure 1). In addition, Grubbs’s 
test can be used to detect the outlier in sequence. The 
null and alternative hypotheses for the test are defined 
by 

 

H0: There is no outlier in the sequence 

H1: There is at least one outlier in the sequence. 

 

The test statistic of the Grubbs is, 

 

max iX X
G

S

−
=  

where S is the standard deviation of the sample. At 
significance level α=0.05, the test rejects H0 if the test 
statistics, G, is greater than the critical value, 

2
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2
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Change point location  

Outlier location with respect to  

the true change point location 

25th % observation 20th % observation     or     30th % observation 

50th % observation 45th % observation     or      55th % observation 

75th % observation 70th % observation     or      80th % observation 
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Figure 1. A change point and an outlier in the sequence with the sample size 100 and the parameters of normal 
distribution ( 1µ , 2µ )=(0.5, 1.5) and σ=0.1. 

 

 

Figure 2. The box plot of the samples from normal distribution with parameters ( 1µ , 2µ )=(0.5, 1.5) and σ=0.001 and the 

change point being at the center of the sequence and the outlier with respect to change point location (b.cp: before the 
change point, a.cp: after the change point).    

  



548 GU J Sci, 26(4):543-555 (2013)/ Ayten YĐĞĐTER, Meral ÇETĐN
 

In the simulation study, when we test whether there is 
an outlier using the Grubbs’s test, at each value of the 
means ( 1µ , 2µ ) = (0.1, 0.3), (0.3, 0.1) for each standard 

deviation σ=1, 1.5, 2, 2.5 and at ( 1µ , 2µ ) = (0.1, 0.3), 

(0.3, 0.1), (0.5, 1.5), (1.5, 0.5) for σ=2.5, the null 
hypothesis could not be rejected with the significance 
level α=0.05. The results are evaluated with in the case 
of being an outlier in the sequence. 

6. RESULTS 

The performances of maximum likelihood estimator of 
change point show some differences in results for 
taking standard deviation σ < 0.1 and σ ≥ 0.1. That’s 
why; the results are evaluated for these cases. Table 3 

and Table 4 show the results for σ= 0.01 and ( 1µ , 2µ )= 

(0.1,0.3),(0.3,0.1) respectively. Also, the sample size 
n=100, true change point location (τ being 50th 
percentile observation) and outlier locations (being 45th 
percentile or 55th percentile) are shown by Table 3 and 
4. From these tables, it is clear that robust estimates of 

1µ  and 2µ , except the mode, did not provide the 

desired results. On the contrary to our expectation, 
robust estimators in Eq.(5) are not sufficient to estimate 
the true change point location when an outlier existing 
in the sequence. On the positive side, the sensitivity of 
the arithmetic mean to an outlier is clearly 
demonstrated. 

 

Table 3. The mean of estimates τ̂ , τ̂ , and the relative frequencies (ƒ) of the estimate τ̂  being equal to the true change 
point and the estimated mses for n=100, τ=50th % observation and ( 1µ , 2µ ) = (0.1, 0.3), σ=0.01. 

estimators 

µ1=0.10, µ2=0.30, σ=0.01, n=100, τ=50 

outlier =45th observation outlier =55th observation 

τ̂  f mse τ̂  f mse 

mean 44.00 0.00 36.00 50.00 500.00 0.00 

mode 50.06 484.00 0.16 50.06 486.00 0.19 

median 3.69 0.00 2146.63 4.28 0.00 2093.37 

Andrews 28.11 0.00 479.42 27.66 0.00 499.32 

bisquare 28.12 0.00 479.15 27.63 0.00 500.75 

Cauchy 26.76 0.00 540.63 28.35 0.00 469.49 

Fair 34.05 0.00 255.01 35.26 0.00 217.80 

Huber 31.33 0.00 349.52 32.75 0.00 298.69 

logistic 31.26 0.00 351.80 32.60 0.00 303.74 

Talwar 34.89 0.00 228.53 27.86 0.00 490.55 

Welsch 97.00 0.00 2209.00 97.00 0.00 2209.00 
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Table 4. The mean of estimates τ̂ , τ̂ , and the relative frequencies (ƒ) of the estimate τ̂  being equal to the true change 
point and the estimated mses for n=100, τ=50th % observation and ( 1µ , 2µ ) = (0.3, 0.1), σ=0.01. 

estimators 

µ1=0.30, µ2=0.10, σ=0.01, n=100, τ=50 

outlier =45th observation outlier =55th observation 

τ̂  f mse τ̂  f mse 

mean 50.00 500.00 0.00 55.00 0.00 25.00 

mode 49.96 488.00 0.11 49.97 491.00 0.08 

median 95.78 0.00 2099.42 96.32 0.00 2147.27 

Andrews 72.37 0.00 500.68 71.91 0.00 480.33 

bisquare 72.39 0.00 501.84 71.91 0.00 480.15 

Cauchy 71.68 0.00 470.41 73.26 0.00 541.48 

Fair 64.76 0.00 218.33 66.05 0.00 257.91 

Huber 67.29 0.00 300.09 68.72 0.00 351.36 

logistic 67.42 0.00 304.48 68.83 0.00 355.51 

Talwar 72.13 0.00 490.17 65.12 0.00 228.87 

Welsch 14.71 7.00 1503.49 14.30 8.00 1530.67 

 

In case of σ ≥ 0.1, Tables 5-8 show the result for ( 1µ ,

2µ )={(0.1,0.3), (0.5,1.5), (2.5,7.5), (5,15)} σ = 0.1, 

sample size n=100, true change point (τ is 50th 
percentile), and the outlier locations ( 45th and 55th 
percentiles) in the sequence.  

 

From Table 5, it is seen that all robust estimates and the 
arithmetic mean are insufficient to estimate the true 
change point location, when the difference between 1µ   

 

 

and 2µ  is small. But, this situation changes gradually 

for the arithmetic mean and the mode, as the difference 
between 1µ  and 2µ  increase (See Tables 6-8). We 

focus on especially the arithmetic mean and the mode in 
the following of the study.  
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Table 5. The mean of estimates τ̂ , τ̂ , and the relative frequencies (ƒ) of the estimate τ̂  being equal to the true change 
point and the estimated mses for n=100, τ=50th % observation and ( 1µ , 2µ ) = (0.1, 0.3), σ=0.1. 

 

estimators 

µ1=0.10,  µ2=0.30,  σ=0.10,  n=100,  τ=50 

outlier =45th observation outlier =55th observation 

τ̂  f mse τ̂  f mse 

mean 46.11 115.00 27.85 50.33 300.00 1.54 

mode 81.22 15.00 1407.30 82.10 18.00 1442.99 

median 37.49 5.00 315.90 40.74 12.00 284.27 

Andrews 45.83 69.00 34.29 48.63 150.00 11.74 

bisquare 45.75 68.00 34.73 48.65 146.00 11.66 

Cauchy 44.07 19.00 43.41 49.23 172.00 7.35 

Fair 43.98 3.00 44.94 49.81 230.00 5.35 

Huber 44.27 18.00 42.69 49.27 163.00 8.00 

logistic 43.96 8.00 45.21 49.55 192.00 5.95 

Talwar 46.39 99.00 35.71 48.01 128.00 16.03 

Welsch 91.06 0.00 2174.26 90.50 0.00 2178.60 

 

Table 6. The mean of estimates τ̂ , τ̂ , and the relative frequencies (ƒ) of the estimate τ̂  being equal to the true change 
point and the estimated mses for n=100, τ=50th % observation and ( 1µ , 2µ ) = (0.5, 1.5), σ=0.1. 

estimators 

µ1=0.50,  µ2=1.50,  σ=0.10,  n=100,  τ=50 

outlier=45th observation outlier=55th observation 

τ̂  f mse τ̂  f mse 

mean 44.14 12.00 35.14 50.00 500.00 0.00 

mode 50.19 473.00 0.91 50.13 477.00 0.54 

median 6.91 0.00 1869.08 7.99 0.00 1779.91 

Andrews 30.21 0.00 392.46 30.01 0.00 400.69 

bisquare 30.21 0.00 392.70 29.99 0.00 401.18 

Cauchy 31.92 0.00 330.40 33.55 0.00 274.06 

Fair 35.40 0.00 214.00 36.56 0.00 181.59 

Huber 33.61 0.00 270.33 34.86 0.00 230.99 

logistic 33.89 0.00 260.90 35.23 0.00 219.58 

Talwar 35.36 0.00 215.01 29.83 0.00 407.75 

Welsch 97.00 0.00 2209.00 97.00 0.00 2209.00 
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Table 7. The mean of estimates τ̂ , τ̂ , and the relative frequencies (ƒ) of the estimate τ̂  being equal to the true change 
point and the estimated mses for n=100, τ=50th % observation and ( 1µ , 2µ ) = (2.5, 7.5), σ=0.1. 

estimators 

µ1=2.50,  µ2=7.50,  σ=0.10,  n=100,  τ=50 

outlier =45th observation outlier =55th observation 

τ̂  f mse τ̂  f mse 

mean 44.00 0.00 36.00 50.00 500.00 0.00 

mode 50.00 498.00 0.00 50.00 498.00 0.00 

median 3.02 0.00 2206.79 3.09 0.00 2201.10 

Andrews 26.62 0.00 546.67 25.99 0.00 576.51 

bisquare 26.65 0.00 545.54 25.97 0.00 577.58 

Cauchy 24.45 0.00 653.16 26.05 0.00 573.48 

Fair 33.05 0.00 287.41 34.15 0.00 251.35 

Huber 28.95 0.00 443.73 30.42 0.00 383.79 

logistic 28.34 0.00 469.64 29.82 0.00 407.52 

Talwar 34.25 0.00 248.31 26.39 0.00 557.67 

Welsch 97.00 0.00 2209.00 97.00 0.00 2209.00 

 

Table 8. The mean of estimates τ̂ , τ̂ , and the relative frequencies (ƒ) of the estimate τ̂  being equal to the true change 
point and the estimated mses for n=100, τ=50th % observation and ( 1µ , 2µ ) = (5, 15), σ=0.1. 

estimators 

µ1=5.00,  µ2=15.00,  σ=0.10,  n=100,  τ=50 

outlier =45th observation outlier =55th observation 

τ̂  f mse τ̂  f mse 

mean 44.00 0.00 36.00 50.00 500.00 0.00 

mode 50.00 500.00 0.00 50.00 500.00 0.00 

median 3.00 0.00 2209.00 3.00 0.00 2209.00 

Andrews 26.00 0.00 576.00 25.08 0.00 620.88 

bisquare 26.00 0.00 576.00 25.05 0.00 622.55 

Cauchy 23.98 0.00 677.27 25.13 0.00 618.83 

Fair 32.75 0.00 297.89 34.00 0.00 256.14 

Huber 27.39 0.00 511.31 28.86 0.00 447.31 

logistic 26.83 0.00 536.94 28.21 0.00 475.12 

Talwar 34.00 0.00 255.94 26.00 0.00 576.00 

Welsch 97.00 0.00 2209.00 97.00 0.00 2209.00 
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It is know that the arithmetic mean is influenced by 
outliers in data. But in the case of the change point, it is 
interesting to see that the influence of the outlier 
depends on its location where it appears in the 
sequence. The conclusion is undesirable when the first 
aim of study is to detect the change point in the 
sequence. When we look at the performance of the 
mode, the mode is consistent regardless of the outlier 
location in the sequence (the left of Figure 3). From 

Figure 3, the change point is not detected by the 
arithmetic mean when the outlier occurred before the 
change point for ( 1µ , 2µ ) = (0.1, 0.3), σ=0.01, in 

contrast to the relative frequencies of the estimate τ̂  
being equal to the true change point is very high for 
using the mode. These can be seen from the estimated 
mses of the mode for each sample size.  

 

Figure 3. The mean of estimates τ̂ , τ̂ , and the relative frequencies (ƒ) of the estimate τ̂  being equal to the true change 
point and the estimated mses for the arithmetic mean and the mode with respect to outlier location for the sample sizes 
n=40, 60, 100, ( 1µ , 2µ )=(5, 15), σ=0.1 and τ=50th % observation. 

 

When the outlier occurred after the change point for 

1(µ , 2µ )=(0.1, 0.3), σ=0.01, both the arithmetic mean 

and the mode have a good performance to detect to the 
change point in the sequence. Despite the estimated 
mses are close to zero for both, the estimated mses 
increase in the case of using the mode as the sample 
size increases (the right of Figure 3).  

 

It is seen that when using the arithmetic mean and the 

mode, the relative frequencies of the estimate τ̂  which 
equals to the true change point are almost the same, the 
estimated mse is higher in the case of using the mode 
than the estimated mse in the case of using the 
arithmetic mean. It means that when the true change 
point is not detected, the estimation of the change point 
for using the mode is found to close to the end of the 
sequence and so the estimated mse increases in the case 
of using the mode. 

 

 

When the variances are greater than 0.1, especially, as 
the difference between 1µ  and 2µ  are low, the 

arithmetic mean or the mode is not adequate for the 
estimate of the change point even regardless of the 
location of the outlier. The arithmetic mean has either a 
good performance or bad performance to estimate the 
change point with respect to the outlier location in the 
sequence. But the behavior of the mode is surprisingly 
different, for example, as ( 1µ , 2µ )=(0.1, 0.3), (0.3, 0.1) 

and σ=0.1, it has the biggest estimated mse. Despite 
that, at the same variance, as the difference between 1µ  

and 2µ  increases, it is seen that the estimated mses 

sharply decrease and the relative frequencies of the 

estimate τ̂  being equal to the true change point 
increase (Figure 4). This case cannot be explained 
directly the amount of the variance or the difference 
between 1µ  and 2µ . Especially, this behavior of the 

mode could be explained as follows: as known, about 
99.99% of the observations fall within 4 standard 
deviations of the mean for the normal distributed 
samples. In the case of having the change point in the 
sequence, there are two independent sample from 
normal distribution defined Eq.(1) such that about 
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99.99% of the observations will fall in the interval ( 1µ -

4σ, 1µ +4σ) before the change point, and about 99.99% 

of the observations will fall in the interval ( 2µ -4σ, 2µ

+4σ) after the change point. If there is an intersection 
between these intervals, this is an important factor to 
estimate the change point in the case of using the mode. 

Also this factor is valid in the case of using the 
arithmetic mean, but the mode is more sensitive to be 
how much of the intersection is between the intervals 

1(µ -4σ, 1µ +4σ) and ( 2µ -4σ, 2µ +4σ) (see Table 9).  

 

 

Figure 4. The mean of estimates τ̂ , τ̂ , and the relative frequencies (ƒ) of the estimate τ̂  being equal to the true change 
point and the estimated mses for the arithmetic mean and the mode with respect to the outlier location and ( 1µ , 2µ ) = (0.1, 

0.3), (0.5, 1.5), (2.5, 7.5), (5, 15), and σ=0.1 for the sample size n=100 and τ=50th % observation.  

 

Table 9. The range of the observations from normal distribution with σ=0.1 and ( 1µ , 2µ )=(0.1, 0.3), (0.5, 1.5), (2.5, 7.5), 

(5, 15). 

( 1µ , 2µ ) 

The sample before the change 
point  

The sample after the change 
point 

1µ −4σ 1µ +4σ 2µ −4σ 2µ +4σ 

(0.1, 0.3) -0.30 0.50 -0.10 0.70 

(0.5, 1.5) 0.10 0.90 1.10 1.90 

(2.5, 7.5) 2.10 2.90 7.10 7.90 

(5, 15) 4.60 5.40 14.60 15.40 

 

When we use the MADs with replace to ( )2

1
1

i
i

X X
τ

=

−∑ and ( )2

2
1

n

i
i

X X
τ= +

−∑ , results are given in Table 10-11 respectively 

for the cases σ < 0.1 and σ ≥ 0.1.  
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Table 10. The results of the mean and the MADs for n=100, τ=50th % observation and σ=0.01. 

(µ1, µ2) estimators 

σ=0.01,  n=100,  τ=50 

outlier=45th observation outlier=55th observation 

τ̂  f mse τ̂  f mse 

(0.10 ,0.30) 
mean 44.00 0.00 36.00 50.00 500.00 0.00 

MADs 49.63 139.00 8.61 50.14 155.00 9.71 

(0.5, 1.5) 
mean 44.00 0.00 36.00 50.00 500.00 0.00 

MADs 49.57 153.00 10.45 50.12 156.00 8.05 

(2.5, 7.5) 
mean 44.00 0.00 36.00 50.00 500.00 0.00 

MADs 49.72 142.00 9.47 50.13 153.00 9.38 

(5, 15) 
mean 44.00 0.00 36.00 50.00 500.00 0.00 

MADs 49.86 160.00 7.47 50.14 143.00 10.44 

 

 

Table 11. The results of the mean and the MADs for n=100, τ=50th % observation and σ=0.1. 

(µ1, µ2) estimators 

σ=0.1,  n=100,  τ=50 

outlier=45th observation outlier=55th observation 

τ̂  f mse τ̂  f mse 

(0.10 ,0.30) 
mean 45.92 95.00 28.27 50.30 301.00 1.37 

MADs 50.03 98.00 56.65 50.53 97.00 54.30 

(0.5, 1.5) 
mean 44.12 10.00 35.28 50.00 500.00 0.00 

MADs 49.75 153.00 8.17 50.17 144.00 10.11 

(2.5, 7.5) 
mean 44.00 0.00 36.00 50.00 500.00 0.00 

MADs 49.54 159.00 9.11 50.11 146.00 10.31 

(5, 15) 
mean 44.00 0.00 36.00 50.00 500.00 0.00 

MADs 49.80 151.00 8.70 50.11 144.00 10.14 

 

From Tables 10-11, we see that is no advantage of using 
MAD to reduce the influence of the outlier in the 
sequence. 

 

7. CONCLUDING REMARKS 

In this study, we investigated the influence of the outlier 
on the estimation of the change point in normal 
distributed sequence via a  

simulation study. According to the simulation results, 
we can see that robust estimators given in Section 3 are 
insufficient to estimate of the change point.  

 

The influence of the outlier on the estimation of the 
change point in the sequence is reduced by using the 
mode in Eq.(5), as to be one of the conclusion, it is seen  

 

that the robust methods are necessary for the change 
point problem in the sequence with an outlier. 
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