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ABSTRACT 

 

In 2006, Mustafa and Sims [18-19] introduced an improved version of the generalized metric space structure which 

they called G-metric spaces and in 2011; Berinde and Borcut [11] introduced the concept of triple fixed point. The 

intent of this paper is to establish some tripled fixed point theorems for mappings having mixed monotone property 
under nonlinear type contractions depended on another function in the framework of a G-metric space X enclosed 

with partial order. The presented results generalize, improve and extend corresponding results of H. Aydi et al. [13] 

(Tripled Fixed Point Results in Generalized Metric Spaces” Journal of Applied Mathematics Volume 2012, Article 
ID 314279, 10 pages, doi:10.1155/2012/314279). Moreover, some examples are provided to illustrate the usability of 

the obtained results. 
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1. INTRODUCTION 

 

Fixed point theory has fascinated many researchers since 

1922 with the celebrated Banach’s fixed point theorem. 

There exists a vast literature on the topic and is a very 

active field of research at present. Theorems concerning 

the existence and properties of fixed points are known as 

fixed point theorems. Such theorems are very important 

tool for proving the existence and eventually the 

uniqueness of the solutions to various mathematical 

models (integral and partial differential equations, 

variational inequalities). 

 

Basic topological properties of an ordered set like 

convergence were introduced by Wolk [1]. In 1981, 

Monjardet [2] considered metrics on partially ordered 

sets. Ran and Reurings [3] proved and analog of Banach 

Contraction mapping principle in partially ordered metric 

spaces. Bhashkar and Lakshmikantham in [4] introduced 

the concept of coupled fixed point of a mapping F: X �X → X and investigated the existence and uniqueness of a 

coupled fixed point theorem in partially ordered 

complete metric spaces. Lakshmikantham and Ciric in 

[5] defined mixed g-monotone property and coupled 

coincidence point in partially ordered metric spaces. 

Following this trend, Berinde and Borcut [11] introduced 
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the concept of triple fixed point and established some 

triple fixed point theorems in partially ordered metric 

spaces. A tripled fixed point is a generalization of the 

well-known concept of coupled fixed point. The study of 

tripled fixed point is a very interesting research area in 

fixed point theory. 

 

The notion of D-metric space is a generalization of usual 

metric spaces and it is introduced by Dhage [14-17]. 

Recently, Mustafa and Sims [18-19] have shown that 

most of the results concerning Dhage’s D-metric spaces 

are invalid. In [18-19], they introduced an improved 

version of the generalized metric space structure which 

they called G-metric spaces. For more results on G-

metric spaces, one can refer to the papers [24-30, 33-35]. 

Hassen et al. [13] established some tripled fixed point 

results in G-Metric Spaces. 

 

The purpose of this paper is three fold which can be 

described as follows. 

 

1. We give some example which shows the weakness 

of Theorem 16 and Theorem 17 (Theorem 2.1 and 

2.4 of Hassen et al. [13]). 

 

2. We establish some tripled fixed point theorems for 

continuous mappings having mixed monotone 

property under nonlinear type contractions 

depended on another function T: X → X  (T is an 

ICS) in the frame work of a G-metric space X 

enclosed with partial order. Also these theorems, are 

still valid for F, not necessarily continuous, 

assuming (X, G, ≤)   is regular. We prove the 

uniqueness of tripled fixed point for such mappings 

in this setup. Our results are extensions of the main 

results of Hassen et al. [13]. 

 

3. We present some examples to illustrate the 

effectiveness of our results. Also, we give a simple 

example which shows that if T is not an ICS 

mapping then the conclusion of main results fail. 

 

2. DEFINITIONS AND PREMILINARIES 

 

Throughout this paper, we denote ℝ
 the set of all 

positive real numbers and ℕ  the set of all natural 

numbers. The triple (X, G, ≤)  is called a partially ordered 

G-metric space if (	X, ≤	)		is a partially ordered set and (X, G)	is a G-metric space. Further, if (X, G)	is complete 

metric space, and then the triple (X, G, ≤)	 is called a 

partially ordered complete G-metric space. We assume 

that X ≠ ∅ and 

 

               X� = X � X � … … … .� X��������������������                        (1) 

 

In what follows, we collect some relevant definitions, 

fundamental results, examples for our further use.  

 

Definition 1 (2006, Mustafa and Sims [19]) Let X be a 

nonempty set, and let	G ∶ X � X	 � X	 → ℝ
	be a function 

satisfying the following properties: 

 

(G1)				G(x, y, z) = 	0, if		x	 = 	y	 = 	z, 
(G2)				0 < ((x, x, y) for all x, y ∈ 	X,	with	x	 ≠ 	y,  

(G3)			G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X,	with	x ≠ y, 

(G4)			G(x, y, z) = G(x, z, y) 	= 	G(y, z, x) =	. . ., 
          (Symmetry in all three variables), 

(G5)			G(x, y, z) ≤ G(x, a, a) + G(a, y, z), ∀		x, y, z, a ∈ X, 

          (Rectangle inequality). 

 

Then the function G is called generalized metric or more 

specially, G-metric on X, and the pair (X, G)	is called a 

G-metric space. Every G-metric on X will define a metric d. on X by 

 d.(x, y) = 	G(x, y, y) + G(y, x, x),			∀		x, y ∈ X      (2) 

 

Example 2 (Hassen et al. [13]) Let 	(X, d)	be a metric 

space. The function G ∶ X � X	 � X	 → ℝ
 defined by 

 G(x, y, z) = max0d(x, y), d(y, z), d(z, x)1              (3) 

or G(x, y, z) = d(x, y) + d(y, z) + d(z, x)                 (4) 

 

for all x, y, z	 ∈ 	X, is a G-metric on X.                           ∎ 

 

Definition 3 (see [19]) Let (X, G)	be a G-metric space 

and let 0x31	be a sequence of points of X, a point x	 ∈ 	X 

is said to be the limit of the sequence 0x31	if			lim�,3→5 G(x�, x3, x) 	= 	0, and one say that the 

sequence 0x31	is G-convergent to x. Thus, that if		x3 →	x		in a G-metric space (X, G), then for any ε > 0, there 

exists N	 ∈ 	ℕ	such that	G(x�, x3, x) < 9,	for all 	n, m	 ≥N. 

 

Proposition 4 (see [19]) Let	(X, G)	be a G-metric space. 

The following are equivalent: 

 

(1). 0x31	is G-convergent to	x, 

(2). G(x3, x3, x) → 	0	as	n → +∞, 

(3). G(x3, x, x) → 	0	as	n → +∞, 

(4). G(x�, x3, x) → 	0	as	m, n → +∞.																														∎ 

 

Definition 5 (see [19]) Let	(X, G)	be a G-metric space. A 

sequence 0x31	is called G-Cauchy if given		ε > 	0, there 

is N	 ∈ 	ℕ	such that G(x3, x�, x>) 	< 9,  for all 	n, m, l	 ≥N, that is, if G(x3, x�, x>) 	→ 	0	as	n, m, l	 → 	∞. 
 

Proposition 6 (see [19]) Let		(X, G)	is a G-metric space. 

The following are equivalent: 

 

(1). The sequence 0x31	is G-Cauchy. 

(2). For every	ε > 0, there exists N	 ∈ 	ℕ	such that  

                  G(x3, x�, x�) < 9		for all	n, m	 ≥ N.            ∎ 

 

Definition 7 (see [19]) Let	(X, G)	and (X?, G?)	are two G-

metric spaces, and let		f ∶ 	 (X, G) → (X?, G?)	be a function. 

Then f is said to be G-continuous at a point a	 ∈ 	X if and 

only if given 	ε > 	0 , there exists δ	 > 	0 such that x, y	 ∈ X; and 	G(a, x, y) 	< 	B implies 	(′Df(a), f(x), f(y)E < 	9.  A function f is G-continuous on X if and only if it 

is G-continuous at all	a	 ∈ 	X. 

 

Proposition 8 (see [19]) Let	(X, G)	and (X?, G?)	be two 

G-metric spaces. Then a function f ∶ 	X	 → 	X′ is G-

continuous at a point x	 ∈ 	X  if and only if it is G-

sequentially continuous at x; that is, whenever 0x31		is G-

convergent to x, we have 0f(x3)1		 is G′ -convergent 

to	f(x).                                                                             ∎ 
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Proposition 9 (see [19]) Let	(X, G)	be a G-metric space. 

Then the function G(x, y, z) is jointly continuous in all 

three of its variables.                                                       ∎ 

 

Definition 10 (see [19]) A G-metric space (X, G) is said 

to be G-complete (or complete G-metric space) if every 

G-Cauchy sequence is G-convergent in	(X, G). 

 

Definition 11 (see [19]) A G-metric space (X, G)  is 

called symmetric G-metric space if 	G(x, y, y) =G(y, x, x)	for all x, y	 ∈ 	X. 
 

Now, we give an example of a non-symmetric G-metric.   

 

Example 12 Let X = 00,1,21 with G-metric defined by  

 

              G(0, 0, 0) = G(1, 1, 1) = G(2, 2, 2) = 0,	 
 

              G(0, 0, 1) = G(0, 1, 0) = G(1, 0, 0) 

          = G(0, 0, 2) = G(0, 2, 0) = G(2, 0, 0) 

          = G(0, 2, 2) = G(2, 0, 2) = G	(2, 2, 0) = 1, 
 

              G(0, 1, 1) = G	(1, 0, 1) = G(1, 1, 0) 

          = G(1, 1, 2) = G(1, 2, 1) = G(2, 1, 1) 

          = G(1, 2, 2) = G(2, 1, 2) = G(2, 2, 1) = 2, 
 

              G(0, 1, 2) = G(0, 2, 1) = G(1, 0, 2) 

          = G(1, 2, 0) = G(2, 0, 1) = G	(2, 1, 0) = 2. 

 

is a non-symmetric G-metric on X because G(0,0,1) ≠G(0,1,1).                                                                          ∎		
Definition 13 (Berinde and Borcut [11]) Let (X, ≤) be a 

partially ordered set and	F: XH → X . The mapping F is 

said to have the mixed monotone property if, for any x, y, z ∈ X, 
 

    xI, xJ ∈ X, xI ≤ xJ 	⟹ F(xI , y, z) ≤ F(xJ, y, z), 
    yI, yJ ∈ X, yI ≤ yJ 	⟹ F(x, yI, z) ≥ F(x, yJ, z),      (5) 

    zI, zJ ∈ X, zI ≤ zJ 	⟹ F(x, y, zI) ≤ F(x, y, zJ). 
 

Definition 14 (see [11]) Let 	F: XH → X . An element (x, y, z) is called a tripled fixed point of F if  

 

         F(x, y, z) = x, F(y, x, y) = y, F(z, y, x) = z.	       (6) 

 

Definition 15 (see [13]) Let	(X, G)	be a G-metric space. 

A mapping F: XH → X is said to be continuous if for any 

three G-convergent sequences 0x31, 0y31  and 0z31 
converging to x, y, and	z, respectively,	0F(x3, y3, z3)1 is 

G-convergent to F(x, y, z). 

 

Theorem 16 (Hassen et al. [13]) Let	(X, ≤)	be partially 

ordered set and suppose there is a G-metric G on X such 

that (X, G) is a G-complete. Suppose also F: XH → X		be a 

continuous mapping having the mixed monotone 

property on X. Assume that there exists ϕ ∈ 	Φ	such that 

for	x, y, z, a, b, c, u, v, w	 ∈ 	X, with	x ≥ a ≥ u, y ≤ b ≤ v, 

and z ≥ c ≥ w, one has 

 

 GDF(x, y, z), F(a, b, c), F(u, v, w)E 

               ≤ φ(max0G(x, a, u), G(y, b, v), G(z, c, w)1)   (7) 

 

If there exist xT, yT, zT ∈ Xsuch that 

 

            xT ≤ F(xT , yT, zT), yT ≥ F(yT, xT, yT),		 
 

                               zT ≤ F(zT, yT, xT)                            (8) 

 

Then F has a tripled fixed point in X, that is, there exist x, y, z ∈ Xsuch that  

 

           F(x, y, z) = x,			F(y, x, y) = y, F(z, y, x) = z.		      ∎		
Theorem 17 (see [13]) Let	(X, ≤)	be partially ordered set 

and suppose there is a G-metric G on X such that (X, G) 

is a G-complete. Suppose also F: XH → Xbe a mapping 

having the mixed monotone property on X. Assume that 

there exists ϕ ∈ 	Φ	such that for 	x, y, z, a, b, c, u, v, w	 ∈	X, with	x ≥ a ≥ u, y ≤ b ≤ v, and z ≥ c ≥ w, one has 

(7). If there exist xT, yT, zT ∈ X	such that 

 

                 xT ≤ F(xT, yT, zT), yT ≥ F(yT, xT , yT),		 
 

                                zT ≤ F(zT, yT, xT)  

     

Assume also that X has the following properties: 

 

a) if a non-decreasing sequence x3 → x  in X, then x3 ≤ x, ∀	n	. 
b) if a non-increasing sequence y3 → y  in X, then y3 ≥ y,			∀	n. 

 

Then F has a tripled fixed point in X, that is, there exist x, y, z ∈ X such that 

 

            F(x, y, z) = x, F(y, x, y) = y, F(z, y, x) = z.	     ∎		
3. MAIN RESULTS 

 

We start this section with some examples which shows 

the weakness of Theorem 16 and 17 (Theorem 2.1 and 

2.4 in [13]). 

 

Example 18(a) Take X = UIJ , 64X endowed with the 

complete G-metric:  

 

   G(x, y, z) = |x − y| + |y − z| + |z − x|	, ∀	x, y, z ∈ X 

 

and	F: XH → X defined by 

                  		F(x, y, z) = 8 \√^_` abc , ∀	x, y, z ∈ X.  

 

The mapping F  is continuous and has the mixed 

monotone property. Also, there exist 	xT = 1 = zT  and yT = 64 such that  

 

F(	xT, yT, zT) = 	F(1, 64, 1) = 8 \ Ideabc = 4 > 1 = 	xT, F(yT, xT, yT) = F(64, 1, 64) = 8(64)bc = 16 < 64 = yT, 

F(	zT, yT, xT) = 	F(1, 64, 1) = 8 \ Ideabc = 4 > 1 = 	zT. 

 

and then, the condition (8) holds. Taking	x = w = a =c = z = 1, y = b = v = 64, u = IJ, 
 

      GDF(x, y, z), F(a, b, c), F(u, v, w)E 
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                      = G f8 \√^_` abc , 8 \√ghi abc , 8 \√jkl abcm 

                      = G
n
o8 \ Ideabc , 8 \ Ideabc , 8 pqbrdes

bc

t
u 

              ≈ G(4, 4, 3.77549) = 11.77549 

and 

           max0G(x, a, u), G(y, b, v), G(z, c, w)1 
             = max {G \1, 1, IJa , G(64,64,64), G(1,1,1)| 

             = max {}1 − IJ} + }IJ − 1} , 0, 0| = 1. 
 

It is clear that here is no ϕ ∈ Φ (no	k ∈ �0,1)) for which 

the inequality (2.1) (inequalities (2.14) and (2.16)) of 

Theorem 2.1 (Corollary 2.2 and 2.3) holds of [13]. 

Notice, however, that (8,8,8) is the unique tripled fixed 

point of F.                                                                        ∎		
Example 18(b) Take X = �1,64� endowed with the 

complete G-metric: 

 

       G(x, y, z) = 	 |x − y| + |y − z| + |z − x|	, ∀	x, y, z ∈ X 

 

and		F: XH → X defined by 

 

                       	F(x, y, z) = 8	q^̀� , ∀	x, y, z ∈ X. 

 

The mapping F is continuous and has the mixed 

monotone property. Moreover, taking		xT = yT = zT = 8, 

the condition (8) holds. Taking u = 1, a = x = 2, v =2, y = b = z = c = w = 1, 
 

    GDF(x, y, z), F(a, b, c), F(u, v, w)E 

                 = 8 ��(2)b� − \IJab�� + �\IJab� − (2)b��� ≈ 7.458 

 

and  

                 max0G(x, a, u), G(y, b, v), G(z, c, w)1 = 2. 

 

It is clear that here is no ϕ ∈ Φ (no	k ∈ �0,1)) for which 

the inequality (2.1) (inequalities (2.14) and (2.16)) of 

Theorem 2.1 (Corollary 2.2 and 2.3) holds of [13]. 

Notice, however, that (8,8,8) is the unique tripled fixed 

point of F.                                                                        ∎ 

 

Now, motivated by the work in [31-32], we give the 

following definition. 

 

Definition 19 Let (X, G) be a G-metric space. A mapping T: X → X is said to be an ICS mapping if T is injective, 

continuous, and has the property: for every sequence 0x31  in X, if 0Tx31  is convergent then, 0x31  is also 

convergent. 

 

Before starting to introduce our main results, let us 

consider the set of functions. 

 

 Φ = �ϕ: ℝ
 → ℝ
│ϕ	is	nondecreasing,	ϕ(t) < �	 
                                and lim�→�� ϕ(r) < � , ∀		t > 01    (9) 

 

Note that ϕ(t) < �  and lim�→�� ϕ(r) < �  imply lim�→
5 ϕ�(t) = 0 for each	t > 0, where ϕ� denotes the 

k-times repeated composition of ϕ with itself. 

 

Our first main result is given by the following: 

 

Theorem 20 Let (X, ≤) be partially ordered set and 

suppose there is a G-metric G on X such that	(X, G) is a 

G-complete. Suppose also that T: X → X  is an ICS 

mapping and	F: XH → X	be a continuous mapping having 

the mixed monotone property on X. Assume that there 

exists ϕ ∈ 	Φ such that for	x, y, z, a, b, c, u, v, w	 ∈ 	X with x ≥ a ≥ u, y ≤ b ≤ v, and z ≥ c ≥ w, one has 

 

     GDTF(x, y, z), TF(a, b, c), TF(u, v, w)E 

 

                          ≤ ϕ(max0G(Tx, Ta, Tu), G(Ty, Tb, Tv), 1 
                                                                   G(Tz, Tc, Tw)1) 

                                                                             (10) 

 

If there exist xT, yT, zT ∈ X	be as in (8). Then F has a 

tripled fixed point in X. 

 

Proof: Suppose xT, yT, zT ∈ Xare such that 

 

                   xT ≤ F(xT, yT, zT), yT ≥ F(yT, xT, yT), 
 

                                  zT ≤ F(zT, yT, xT) 

 

Define 

 

       xI = F(xT, yT, zT), yI = F(yT, xT, yT), 
       

                      zI = F(zT, yT, xT). 

 

Then xT ≤ xI, yI ≤ yT, and	zT ≤ zI. Again, define 

 xJ = F(xI , yI, zI),			yJ = F(yI, xI, yI),		 
 

                     		zJ = F(zI, yI, xI). 

 

Since F has the mixed monotone property on X, we have 

 	xT ≤ xI ≤ 	xJ, 	yJ ≤ yI ≤ yT, 	zT ≤ zI ≤ 	zJ.  

 

Repeating this process, we can construct the sequences 0x31,	0y31, and 0z31 in X such that 

 

      x3
I = F(x3, y3, z3),				y3
I = F(y3, x3, y3),					 
 

               z3
I = F(z3, y3, x3), ∀	n ≥ 0.              (11) 

 

We claim that; 

 

          x3 ≤ x3
I,					y3
I ≤ y3,					z3 ≤ z3
I.     (12) 

 

Indeed, we will use the mathematical induction to prove 

(12). The inequalities in (12) hold for n = 1, 2	because, 

we have 	xT ≤ xI ≤ 	xJ, 	yJ ≤ yI ≤ yT , and 		zT ≤ zI ≤	zJ . Now, suppose that the inequalities in (12) hold 

for	n = m. In that case,  

 

   x� ≤ x�
I,						y�
I ≤ y�,					z� ≤ z�
I.      (13) 
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If we consider (11) and mixed monotone property of F	together with (13), we have 

 

     x�
I = F(x�, y�, z�) 

               ≤ F(x�
I, y�, z�) 

               ≤ �(��
I, ��
I, ��) 

               ≤ �(��
I, ��
I, ��
I) = ��
J, 

 

     ��
I = �(�� , ��, ��) 

               ≥ �(��
I, ��, ��) 

               ≥ �(��
I, ��
I, ��) 

               ≥ �(��
I, ��
I, ��
I) = ��
J,        (14) 

 

     ��
I = �(��, ��, ��) 

               ≤ �(��
I, ��, ��) 

               ≤ �(��
I, ��
I, ��) 

               ≤ �(��
I, ��
I, ��
I) = ��
J. 

 

Thus, (12) is satisfied for all � ≥ 1. If for some positive 

integer � , we have (��
I, ��
I, ��
I) = (��, ��, ��), 
then �� = �(��, �� , ��), �� = �(��, �� , ��), and �� =�(�� , �� , ��),	that is,	(��, �� , ��)	is a tripled fixed point 

of F. Thus, we will assume that (��
I, ��
I, ��
I) ≠(�� , �� , ��), ∀			� ∈ ℕ ; that is, we assume that 

either	��
I ≠ ��  or	��
I ≠ ��or	��
I ≠ �� . Since T is 

injective, for any	� ∈ ℕ, 

 

                 0 < ���0((���
I, ��� , ���), 
                                  ((���
I, ��� , ���), 

                          ((���
I, ��� , ���)1                  (15) 

 

Due to (10) and (11), for any	� ∈ ℕ, we have 

 

  ((���
I, ���, ���) ≔ ((��(��, �� , ��), 
                                             ��(���I, ���I, ���I), 
                                             ��(���I, ���I, ���I)E 
 

                                    ≤ �(���0((���, ����I, ����I), 
                                                      ((��� , ����I, ����I), 
                                                    ((��� , ����I, ����I)E� 
 

  ((���
I, ��� , ���) ≔ ((��(��, �� , ��), 
                                            ��(���I, ���I, ���I) 

                                    ��(���I, ���I, ���I)E 
 

                          ≤ �(���0((��� , ����I, ����I), 
                                          ((��� , ����I, ����I)1� 
 

                          ≤ �(���0((��� , ����I, ����I), 
                                            ((��� , ����I, ����I), 

                                                    ((��� , ����I, ����I)1) 
                                                                               

  ((���
I, ��� , ���) ≔ ((��(�� , �� , ��), 
                                            ��(���I, ���I, ���I), 

                                    ��(���I, ���I, ���I)E 
 

                                   ≤ �(���0((��� , ����I, ����I), 
                                                    ((��� , ����I, ����I), 
                                                    ((���, ����I, ����I)1)          

                                                                                     (16) 

 

Having in mind that	ϕ(t) < � for all	t > 0, sofrom (16), 

we obtain that 

 

                0 < ���0((���
I, ���, ���), 
                                 ((���
I, ���, ���), 

                         ((���
I, ��� , ���)1 
 

            ≤ �(���0((���, ����I, ����I), 
                              ((��� , ����I, ����I), 

                                      ((��� , ����I, ����I)1)  
 < ���0((��� , ����I, ����I), 
                                  ((��� , ����I, ����I) 

                          ((��� , ����I, ����I)1              (17) 

Set   

                                   ∆�≔ ���0((���
I, ���, ���), ((���
I, ��� , ���), 
                                               ((���
I, ���, ���)1  
 

                                                                             (18) 

 

It follows that ∆3< ∆3�I. Thus, 0∆31	is a non-increasing 

sequence of positive real numbers. Hence, there exists γ ≥ 0 such that 

 

                         ����→
5 ∆� =                           (19) 

 

We shall claim that   = 0 . On the contrary, suppose 

that	  > 0. Letting � → +∞ in (17), we obtain that 

 

 0 <   = ����→
5 ∆� 

            = ����→
5 ���0((���
I, ���, ���), 
                                         ((���
I, ���, ���), 
                                         ((���
I, ��� , ���)1 
 

            ≤ ����→
5 �(���0((���, ����I, ����I), 
                                              ((��� , ����I, ����I), 
                                              ((��� , ����I, ����I)1) 

            = ����→
5 �(∆��I) 

            = ���∆¡¢b→£� �(∆��I) <  
                          (20) 

 

which is a contradiction. Therefore, we conclude that 	  = 0, that is, 

 

                                ����→
5 ∆� = 0.                         (21) 

 

In what follows, we shall show that	0���1, 0���1, and 0���1 are G-Cauchy sequences. Suppose, to the contrary, 

that at least of 	0���1	 or 0���1	 or 	0���1  is not a G-

Cauchy sequence, consequently, 

 

        ����,�→
5 ((���, ���, ���) ≠ 0, 
 

or             ����,�→
5 ((���, ���, ���) ≠ 0, 
 

or             ����,�→
5 ((���, ���, ���) ≠ 0.            (22) 

 

This means there exists an	9 > 0 for which we can find 

subsequences����¤�, ����¤�  of 	0���1 , ����¤�, ����¤� 
of	0���1and ����¤�, ����¤� of	0���1with �¥ > �¥ > ¦ 

such that 

 

         ����(D���¤ , ���¤ , ���¤E, 
                  (D���¤ , ���¤ , ���¤E, 
                  (D���¤ , ���¤ , ���¤E� ≥ 9.               (23) 
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Further, corresponding to	�¥, we can choose �¥ in such 

a way that it is the smallest integer with �¥ > �¥ ≥¦	satisfying (23). Then  

 

                   ����(D���¤�I, ���¤ , ���¤E, 
                            (D���¤�I, ���¤ , ���¤E, 
                            (D���¤�I, ���¤ , ���¤E� < 9.         (24) 

 

By rectangle inequality and (24), we have 

 

 (D���¤ , ���¤ , ���¤E ≤ (D���¤ , ���¤ , ���¤�IE 

                                             +(D���¤�I, ���¤�I, ���¤E 

                                     ≤ 9 + (D���¤�I, ���¤�I, ���¤E                                

                                                                                     (25) 

  

Letting ¦ → +∞ in (25) and using (21), we obtain 

 

 ���¥→
5 (D���¤ , ���¤ , ���¤E 

      ≤ ���¥→
5 (D���¤ , ���¤ , ���¤�IE ≤ 9.    (26) 

 

Similarly,  

 

  ���¥→
5 (D���¤ , ���¤ , ���¤E 

            ≤ ���¥→
5 (D���¤ , ���¤ , ���¤�IE ≤ 9, 

 

  ���¥→
5 (D���¤ , ���¤ , ���¤E 

             ≤ ���¥→
5 (D���¤ , ���¤ , ���¤�IE ≤ 9. 

                                                                             (27) 

Again, by (24), we have 

 

                     9 ≤ (D���¤ , ���¤ , ���¤E ≤ (D���¤ , ���¤ , ���¤�IE 

                     +(D���¤�I, ���¤�I, ���¤E 

               ≤ (D���¤ , ���¤ , ���¤�IE 

                     +(D���¤�I, ���¤�I, ���¤�IE 

                     +(D���¤�I, ���¤�I, ���¤E 

               ≤ (D���¤ , ���¤ , ���¤�IE 

                     +(D���¤�I, ���¤�I, ���¤E 

                     +(D���¤ , ���¤ , ���¤�IE 

                     +(D���¤�I, ���¤�I, ���¤E 

               ≤ (D���¤ , ���¤ , ���¤�IE 

                    +(D���¤�I, ���¤�I, ���¤E 

                    +9 + (D���¤�I, ���¤�I, ���¤E      (28) 

 

Letting ¦ → +∞ in (28) and using (21), we get 

 

   9 ≤ ���¥→
5 (D���¤ , ���¤ , ���¤E 

      ≤ ���¥→
5 (D���¤�I, ���¤�I, ���¤�IE ≤ 9.     (29) 

 

Similarly, we have 

 

 9 ≤ ���¥→
5 (D���¤ , ���¤ , ���¤E 

    ≤ ���¥→
5 (D���¤�I, ���¤�I, ���¤�IE ≤ 9, 

 

 9 ≤ ���¥→
5 (D���¤ , ���¤ , ���¤E 

    ≤ ���¥→
5 (D���¤�I, ���¤�I, ���¤�IE ≤ 9.       (30) 

 

Set    

         §¥ ≔ ����(D���¤ , ���¤ , ���¤E, 

                            (D���¤ , ���¤ , ���¤E, 
                            (D���¤ , ���¤ , ���¤E� 
 

Using (23) and (29)-(30), we have 

 

                     9 = ���¥→
5 §¥                              (31) 

 

Now, using inequality (10), we obtain 

 (D���¤ , ���¤ , ���¤E ≔ (D��D��¤�I, ��¤�I, ��¤�IE, 
                                        ��D��¤�I, ��¤�I, ��¤�IE, 
                                        ��D��¤�I, ��¤�I, ��¤�IEa 

 

                  ≤ �D����(D���¤�I, ���¤�I, ���¤�IE, 
                                    (D���¤�I, ���¤�I, ���¤�IE, 
                                  (D���¤�I, ���¤�I, ���¤�IE�E 

 (D���¤ , ���¤ , ���¤E ≔ (D��D��¤�I, ��¤�I, ��¤�IE, 
                                        ��D��¤�I, ��¤�I, ��¤�IE, 
                                        ��D��¤�I, ��¤�I, ��¤�IEa 

          

                  ≤ �D����(D���¤�I, ���¤�I, ���¤�IE, 
                                    (D���¤�I, ���¤�I, ���¤�IE� 
 

                  ≤ �D����(D���¤�I, ���¤�I, ���¤�IE, 
                                    (D���¤�I, ���¤�I, ���¤�IE, 
                                   (D���¤�I, ���¤�I, ���¤�IE�E 

 

 (D���¤ , ���¤ , ���¤E ≔ (D��D��¤�I, ��¤�I, ��¤�IE, 
                                      ��D��¤�I, ��¤�I, ��¤�IE, 
                                      ��D��¤�I, ��¤�I, ��¤�IEa 

           

                  ≤ �D����(D���¤�I, ���¤�I, ���¤�IE,	 
                                    (D���¤�I, ���¤�I, ���¤�IE, 
                                  (D���¤�I, ���¤�I, ���¤�IE�E  

                                                                             (32) 

 

From (32), we deduce that 

 

  ����(D���¤ , ���¤ , ���¤E, 
   (D���¤ , ���¤ , ���¤E, 
   (D���¤ , ���¤ , ���¤E� 
                ≤ �D����(D���¤�I, ���¤�I, ���¤�IE, 
                                  	(D���¤�I, ���¤�I, ���¤�IE,	 
                                   (D���¤�I, ���¤�I, ���¤�IE�E 

 

That is, 

                            §¥ ≤ �(§¥�I)                           (33) 

 

Letting ¦ → +∞ in (33) and having in mind (31), we get 

that 

 

               0 < 9 = ���¥→
5 §¥ 

                         ≤ ���¥→
5 �(§¥�I) 

                         = ���¨¤¢b→©� �(§¥�I) < 9
,       

 

which is a contradiction. Thus,	0���1, 0���1, and 0���1 
are G-Cauchy sequences in(ª, (). Since (ª, () is a G-
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complete, 0���1, 0���1  and 0���1  are convergent 

sequences.  

 

Since � is an ICS mapping, there exist �, �, � ∈ ª such 

that 0��1 , 0��1 , and 0��1  converge to �, �,  and � , 

respectively; that is, 

 

                        ����→
5 �� = � ,  

                        ����→
5 �� = �,  

                        ����→
5 �� = �.                         (34) 

 

Finally, we show that (�, �, �) ∈ ªH  is a tripled fixed 

point of F. Since F is continuous and (�� , ��, ��) →(�, �, �), we have 

 ��
I = �(��, �� , ��) → �(�, �, �),		 ��
I = �(�� , �� , ��) → �(�, �, �),	 
                   ��
I = �(�� , ��, ��) → �(�, �, �).  
 

By the uniqueness of limit, we get that	� = �(�, �, �),� = �(�, �, �),	  and � = �(�, �, �).  So (�, �, �)  is a 

tripled fixed point of  F. This completes the proof.        ∎		
Corollary 21 Let (ª, ≤)  be partially ordered set and 

suppose there is a G-metric G on X such that (ª, () is a 

G-complete. Suppose also that �: ª → ª  is an ICS 

mapping and	�: ªH → ª	be a continuous mapping having 

the mixed monotone property on X. Assume that there 

exists � ∈ 	Φ such that for �, �, �, �, «, ¬, ­, ®, ¯ ∈ 	ª , 

with	� ≥ � ≥ ­, � ≤ « ≤ ®, and � ≥ ¬ ≥ ¯, one has 

 

 (D��(�, �, �), ��(�, «, ¬), ��(­, ®, ¯)E 

          ≤ � \°(±²,±³,±´)
°(±µ,±¶,±·)
°(±¸,±¹,±º)H a  (35) 

 

If there exist �T, �T, �T ∈ ª be as in (8). Then F has a 

tripled fixed point in X. 

 

Proof: It suffices to remark that 

 

  
°(±²,±³,±´)
°(±µ,±¶,±·)
°(±¸,±¹,±º)H  

           ≤ ���0��(�, �, �), ��(�, «, ¬), ��(­, ®, ¯)1 
 

Then, we apply Theorem 20 because that �  is non-

decreasing.                                                                       ∎ 

 

For each	¦ ∈ �0,1), setting �(�) = ¦� in Theorem 20, we 

obtain the following Corollary. 

 

Corollary 22 Let (ª, ≤)  be partially ordered set and 

suppose there is a G-metric G on X such that (ª, () is a 

G-complete. Suppose also that �: ª → ª  is an ICS 

mapping and	�: ªH → ª	be a continuous mapping having 

the mixed monotone property on X. Assume that there 

exists ¦ ∈ �0,1) such that for �, �, �, �, «, ¬, ­, ®, ¯ ∈ 	ª 

with	� ≥ � ≥ ­, � ≤ « ≤ ®, and � ≥ ¬ ≥ ¯, one has 

 

     (D��(�, �, �), ��(�, «, ¬), ��(­, ®, ¯)E 

                     

                        ≤ ¦	���0((��, ��, �­), 
                                        ((��, �«, �®), 
                                        ((��, �¬, �¯)1             (36) 

 

If there exist �T, �T, �T ∈ ª	be as in (8). Then F has a 

tripled fixed point in X.                                                   ∎	

	
Corollary 23 Let (ª, ≤)  be partially ordered set and 

suppose there is a G-metric G on X such that (ª, () is a 

G-complete. Suppose also that �: ª → ª  is an ICS 

mapping and	�: ªH → ª	be a continuous mapping having 

the mixed monotone property on X. Assume that there 

exists ¦ ∈ �0,1) such that for �, �, �, �, «, ¬, ­, ®, ¯ ∈ 	ª 

with		� ≥ � ≥ ­, � ≤ « ≤ ®, and � ≥ ¬ ≥ ¯, one has 

 

 (D��(�, �, �), ��(�, «, ¬), ��(­, ®, ¯)E 

                  ≤ ¥H (((��, ��, �­) + ((��, �«, �®) 

                                                  +((��, �¬, �¯)E 

                                                                             (37) 

 

If there exist �T, �T, �T ∈ ª be as in (8). Then F has a 

tripled fixed point in X. 

 

Proof:  Note that 

 

 ((��, ��, �­) + ((��, �«, �®) + ((��, �¬, �¯) 

                              

                              ≤ 3	���0((��, ��, �­), 
                                              ((��, �«, �®),                                                                                       
                                              ((��, �¬, �¯)1       (38) 

 

Then, the proof follows from Corollary 22.                    ∎		
Remark 24 Taking � = »°¼ , the identity on X, in 

Theorem 20; we get main result (Theorem 2.1) of Hassen 

et al. [13]. Therefore, Corollary 22 and 23 are 

generalization of Corollary 2.2 and 2.3 of Hassen et al. 

[13], respectively.                                                            ∎ 

 

In the following theorem, we omit the continuity 

hypothesis of  F. We need the following definition. 

 

Definition 25 Let (X, ≤) be a partially ordered set and 

(X, G) be a G-metric. We say that (ª, (, ≤) is regular if 

the following conditions hold in X: 

 

c) if a non-decreasing sequence �� → � in ª, then �� ≤ �, ∀	�	. 
d) if a non-increasing sequence �� → �  in ª,  then �� ≥ �, ∀	�. 

 

Theorem 26 Let (ª, ≤) be partially ordered set and 

suppose there is a G-metric G on X such that (ª, () is a 

G-complete. Suppose also that �: ª → ª  is an ICS 

mapping and	�: ªH → ª	be a mapping having the mixed 

monotone property on ª . Assume that there exists � ∈ 	Φ	such that for	�, �, �, �, «, ¬, ­, ®, ¯ ∈ 	ª, with	� ≥� ≥ ­, � ≤ « ≤ ®, and � ≥ ¬ ≥ ¯, one has (10). If there 

exist �T, �T, �T ∈ ª be as in (8). Assume also (ª, (, ≤) is 

regular. Then F has a tripled fixed point in X. 

 

Proof: Following proof of Theorem 20 step by step, we 

can construct three sequences	0��1,0��1, and 0��1 in X 

such that ��
I = �(�� , ��, ��) , ��
I = �(��, �� , ��) , 

and ��
I = �(�� , ��, ��) with  �� ≤ ��
I,				��
I ≤ �� , 

and 	�� ≤ ��
I . Then, 0���1, 0���1 , and 0���1  are G-

Cauchy sequences in (ª, () . Since (ª, ()  is a G-

complete, 0���1, 0���1 and 0���1  are convergent 

sequences. Since �  is an ICS mapping, there exist 
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 �, �, � ∈ ª  such that 0��1 , 0��1 , and 0��1  converge to �, �, and	�, respectively. Since T is continuous, we have 

 

                       ����→
5 ��� = �� ,  

                       ����→
5 ��� = ��,   

                       ����→
5 ��� = ��.                      (39) 

 

We remain to show that F has a tripled fixed 

point	(�, �, �) in X. To this aim, suppose that assumption 

“(ª, (, ≤) is regular” holds. Since 0��1 and 0��1 are non-

decreasing with	�� → � and	�� → � and also 0��1 is non-

increasing with 	�� → �. We have �� ≤ � , �� ≥ � 

and �� ≤ �, ∀		� . If for some � ≥ 0, (�� , ��, ��) =(�, �, �); that is, �� = �, �� = � and		�� = �,	 then			� =�� ≤ ��
I ≤ � = �� ,			� = �� ≥ ��
I ≥ � = �� ,  and � = �� ≤ ��
I ≤ � = �� . This means that 	�� = ��
I =�(��, �� , ��),			�� = ��
I = �(��, �� , ��)  and �� =��
I = �(�� , �� , ��) ; that is, (��, �� , ��) ∈ ªH  is a 

tripled fixed point of F. Now, assume that, ∀	� ≥ 0,(�� , ��, ��) ≠ (�, �, �). Thus,	∀	� ≥ 0, 

 

            ���0((��, ��, ���), 
                     ((��, ��, ���), 
                     ((��, ��, ���)1 > 0.                     (40) 

 

From (10), we have  

 

 ((��(�, �, �), ��(�, �, �), ���
I) 

            ≔ (D��(�, �, �), ��(�, �, �), ��(�� , �� , ��)E 

    ≤ �(���0((��, ��, ���), ((��, ��, ���), 
                                                ((��, ��, ���)1) 

 (D���
I, ��(�, �, �), ��(�, �, �)E                              

   ≔ (D��(�� , �� , ��), ��(�, �, �), ��(�, �, �)E 

   ≤ �(���0((��� , ��, ��), ((��� , ��, ��)1) 

   ≤ �(���0((��� , ��, ��), ((��� , ��, ��), 
                                                ((��, ��, ���)1) 

 

 ((��(�, �, �), ��(�, �, �), ���
I) 

 ≔ (D��(�, �, �), ��(�, �, �), ��(�� , �� , ��)E 

         ≤ �(���0((��, ��, ���), ((��, ��, ���), 
                                             ((��, ��, ���)1)    (41) 

 

Letting � → +∞  in (41), using (40) in the fact that �(�) < � for all � ∈ (0, +∞) and (39), the right-hand of 

all inequalities in (41) tends to 0, so we get that  

 

        ((��(�, �, �), ��(�, �, �), ��) = 0,				 
       	(D��, ��(�, �, �), ��(�, �, �)E = 0, 

        ((��(�, �, �), ��(�, �, �), ��) = 0. 

 

This means that ��(�, �, �) = ��,			��(�, �, �) = �� , 

and��(�, �, �) = ��. Since T is injective, it follows that 

 

          �(�, �, �) = �,			�(�, �, �) = �, �(�, �, �) = �.  

 

Thus, we proved that F has a tripled fixed point in X. 

This completes the proof.                                                ∎ 

 

Remark 27 Results similar to Corollary 21, 22 and 23 

omitting the continuity hypotheses of F and involving 

hypotheses (ª, (, ≤)  is regular corresponding to 

Theorem 26 can also be derived. Due to repetition, the 

details are avoided.                                                          ∎	

	
4. UNIQUENESS OF A TRIPLE FIXED POINT 

 

Now, we shall prove the uniqueness of a triple fixed 

point. For a product ªH = ª � ª � ª	of a partial ordered 

set (ª, ≤), we define a partial ordering in the following 

way: for all	(�, �, �), (­, ½, ¯) ∈ ªH, 

 

 (�, �, �) ≤ 	 (­, ®, ¯) 

                           ⇔ 	� ≤ 	­, � ≥ 	®, � ≤ 	¯.     (42) 

 

We say that (�, �, �) and (­, ½, ¯) are comparable if 

 (�, �, �) ≤ 	 (­, ®, ¯)	 
Or                        	(­, ®, ¯) 	≤ 	 (�, �, �).                     (43) 

 

Also, we say that (�, �, �) is equal to	(­, ½, ¯) if and only 

if �	 = 	­, �	 = 	½ and �	 = 	¯. 
 

Theorem 28 In addition to hypotheses of Theorem 28, 

suppose that for all (�, �, �), (­, ®, ¯) ∈ ªH, there exists (�, «, ¬) ∈ ªH such that  D�(�, «, ¬), �(«, �, «), �(¬, «, �)E 

 

is comparable to  

 (�(�, �, �), �(�, �, �), �(�, �, �), ) 

 

and            D�(­, ®, ¯), �(®, ­, ®), �(¯, ®, ­)E. 

 

Then F has a unique triple fixed point (�, �, �). 
 

Proof: Due to Theorem 20, the set of tripled fixed points 

of F is not empty. Suppose 	(�, �, �)  and 	(­, ®, ¯) , are 

triple fixed points of the mapping � ∶ ªH → ª  such 

that(�, �, �) ≠ 	 (­, ®, ¯); that is, 

 

              

�(�, �, �) = �,			�(�, �, �) = �,			�(�, �, �) = �,			
�(­, ®, ¯) = ­,�(®, ­, ®) 	= ®,�(¯, ®, ­) = ¯.          (44) 

 

We shall show that (�, �, �) and (­, ®, ¯) are equal. By 

assumption, there exists (�, «, ¬) ∈ ªH such that 

 D�(�, «, ¬), �(«, �, «), �(¬, «, �)E 

 

is comparable to  

 D�(�, �, �), �(�, �, �), �(�, �, �)E 

and 												D�(­, ®, ¯), �(®, ­, ®), �(¯, ®, ­)E. 

 

Put 	�T = �, «T = «, ¬T = ¬  and choose �I, «I, ¬I ∈ ª 

such that 

 �I = �(�T, «T, ¬T), «I = �(«T, �T, «T), ¬I = �(¬T, «T, �T). 

 

Thus, we can define three sequences 0��1, 0«�1,and 0¬�1 
as  

 

                          �� = �(���I, «��I, ¬��I),		 
                       			«� = �(«��I, ���I, «��I),		 
                          ¬� = �(¬��I, «��I, ���I).                 (45) 
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for any 	� ≥ 1 . Further set �T = �, �T = �, 	�T = �  and ­T = ­, ®T = ®, ¯T = ¯. and on the same way define 

the sequences 0��1, 0��1,	  and 0��1  and 0­�1, 0®�1,	  and 0 �̄1. Then, it is easy that 

     

             

�� = �(�, �, �),				�� = �(�, �, �),				�� = �(�, �, �),				
­� = �(­, ®, ¯),®� = �(®, ­, ¯),

�̄ = �(¯, ®, ­).       (46) 

Since             

 D�(�, �, �), �(�, �, �), �(�, �, �)E 

                                  = (�I, �I, �I) = (�, �, �) 

 

is comparable to 

 

 D�(�, «, ¬), �(«, �, «), �(¬, «, �)E 

                                     = (�I, «I, ¬I),			∀	�. 
 

That is, � ≤ �I, � ≥ «I, � ≤ ¬I, ∀	�.	Recursively, we get 

that: 

 � ≤ ��, � ≥ «�, � ≤ ¬�, ∀	�. 
 

By (10), (44) and (45), we get;   

 

 ((��, ��, ���
I) = (D��(�, �, �), ��(�, �, �), ��(��, «�, ¬�)E 

  ≤ �(���0((��, ��, ���), ((��, ��, �«�), 
                                                ((��, ��, �¬�)1)  (46) 

 

Similarly, we have; 

 

 ((��, ��, �«�
I) = (D��(�, �, �), ��(�, �, �), ��(«�, ��, «�)E 

         ≤ �(���0((��, ��, �«�), ((��, ��, ���)1) 

         ≤ �(���0((��, ��, ���), ((��, ��, �«�), 
                                                ((��, ��, �¬�)1)  (47) 

 

 ((��, ��, �¬�
I) 

        = (D��(�, �, �), ��(�, �, �), ��(¬�, «�, ��)E 

        ≤ �(���0((��, ��, ���), ((��, ��, �«�), 
                                             ((��, ��, �¬�)1) 

 

It follows from (46) and (47) that 

 

       ���0((��, ��, ���
I), ((��, ��, �«�
I), 
                                      ((��, ��, �¬�
I)1 

 

      ≤ �(���0((��, ��, ���), ((��, ��, �«�), 
                                        ((��, ��, �¬�)1)         (48) 

 

Therefore, for each � ≥ 1, 
 ���0((��, ��, ���), ((��, ��, �«�), ((��, ��, �¬�)1 

 ≤ ��(���0((��, ��, ��T), ((��, ��, �«T), 
                                               ((��, ��, �¬T)1)   (49) 

 

It is known that �(�) < � and ���¨→¿� �(§) < � imply ����→5 ��(�) = 0 for each	� > 0. Thus, from (49), we 

have 

 

 ����→5 ���0((��, ��, ���), ((��, ��, �«�), 
                                                  ((��, ��, �¬�)1 = 0. (50) 

 

This yields that 

 

              ����→5 ((��, ��, ���) = 0, 
            		����→5 ((��, ��, �«�) = 0, 
            		����→5 ((��, ��, �¬�) = 0,                 (51) 

 

Analogously, we show that 

 

              ����→5 ((�­, �­, ���) = 0, 
             	����→5 ((�®, �®, �«�) = 0,                                           
             	����→5 ((�¯, �¯, �¬�) = 0.               (52) 

 

Combining (51) to (52) yields that (��, ��, ��)  and (�­, �®, �¯) are equal. The fact T is injective gives us (�, �, �) = (­, ®, ¯) .                                                       ∎		
Similarly, we can prove the following statement: 

 

Theorem 29 In addition to hypotheses of Theorem 26, 

suppose that for all (�, �, �), (­, ®, ¯) ∈ ªH, there exists (�, «, ¬) ∈ ªH such that 

 

                    D�(�, «, ¬), �(«, �, «), �(¬, «, �)E 

 

is comparable to 

 

                    D�(�, �, �), �(�, �, �), �(�, �, �)E 

and      

                   D�(­, ®, ¯), �(®, ­, ®), �(¯, ®, ­)E. 

 

Then F has a unique triple fixed point	(�, �, �).              ∎		
5. EXAMPLES 

 

In this section, we state some examples showing that our 

results are effective. 

 

Example 30 As in Example 18 (a), define �: ª → ª be 

defined by		�� = ��(�) + 1 , ∀		� ∈ ª. Obviously, T is an 

ICS mapping. Define	�: ℝ
 → ℝ
 be defined by	�(�) =� 2À , ∀	� > 0, then � ∈ Φ. Taking	�, �, �, �, «, ¬, ­, ®, ¯ ∈	ª, with	� ≥ � ≥ ­,� ≤ « ≤ ®, and � ≥ ¬ ≥ ¯, we have 

 

 (D��(�, �, �), ��(�, «, ¬), ��(­, ®, ¯)E 

         = ( p� f8 \√²¸µ abcm , � f8 \√³¹¶ abcm , � f8 \√´º· abcms 

 = 	( f�� f8 \√²¸µ abcm + 1, �� f8 \√³¹¶ abcm + 1, 
                                         �� f8 \√´º· abcm + 1m 

 = Á�� f8 \√²¸µ abcm − �� f8 \√³¹¶ abcmÁ 
             + Á�� f8 \√³¹¶ abcm − �� f8 \√´º· abcmÁ 

     + Á�� f8 \√´º· abcm − �� f8 \√²¸µ abcmÁ 
 

   ≤ IIJ Â|��(�) − ��(�)| + 	 |��(�) − ��(­)|+|��(­) − ��(�)| Ã 
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     + Id Â|��(�) − ��(«)| + |��(«) − ��(®)|+|��(®) − ��(�)| Ã 
     + IIJ Â|��(�) − ��(¬)| + |��(¬) − ��(¯)|+|��(¯) − ��(�)| Ã 
 

    = IIJ ((��(�) + 1, ��(�) + 1, ��(­) + 1) 

      + Id ((��(�) + 1, ��(«) + 1, ��(®) + 1) 

     + IIJ ((��(�) + 1, ��(¬) + 1, ��(¯) + 1) 

 

     = IIJ ((��, ��, �­) + Id ((��, �¬, �¯) 

                                     + IIJ ((�¯, �«, �®) 

 

     ≤ Id Ä((��, ��, �­) + ((��, �¬, �¯)+((�¯, �«, �®) Å 

 ≤ 12 ���0((��, ��, �­), ((��, �¬, �¯), ((�¯, �«, �®)1 
 = �(���0((��, ��, �­), ((��, �«, �®), ((��, �¬, �¯)1) 

 

This is the contractive condition (10). Evidently, for 

every	(�, �, �), (­. ®. ¯) ∈ ªH, there always exists a point (�, «, ¬) ∈ ªH that is comparable to (�, �, �)and (­. ®. ¯). 
So Theorem 20 can be applied to this example to 

conclude that F has a unique triple fixed point	(8,8,8), 

since also the hypotheses of Theorem 28 hold.               ∎		
Example 31 As in Example 18 (b), define �: ª → ª 

by �� = ��(�) + 1,	∀	� ∈ ª . Obviously, T is an ICS 

mapping. Set		�(�) = J¿H ∈ Φ. Taking 	�, �, �, �, «, ¬, ­, ®, w ∈ ª, with	� ≥ � ≥ ­,� ≤ « ≤ ®, and � ≥ ¬ ≥ ¯, 

 

 (D��(�, �, �), ��(�, «, ¬), ��(­, ®, ¯)E 

  = ( f� Ä8	q²µ� Å , � Ä8	q³¶� Å , � Ä8	q·́� Åm 

 = ( Ä�� Ä8	q²µ� Å + 1, �� Ä8	q³¶� Å + 1, �� Ä8	q·́� Å + 1Å     

 = IH {}�� \²µa − �� \³¶a} + }�� �� \³¶a − �� \·́a} 
                                          + }�� \·́a − �� \²µa}| 

 

 = IH 0|��(�) − ��(�) − ��(�) + ��(«)| 
 +|��(�) − ��(«) − ��(­) + ��(®)| 
 +|��(­) − ��(®) − ��(�) + ��(�)|1 

 

 ≤ IH 0|��(�) − ��(�)| + |��(�) − ��(«)| 
      +|��(�) − ��(­)| + |��(«) − ��(®)| 
      +|��(­) − ��(�)| + |��(®) − ��(�)|1 

  

 = IH 0|��(�) − ��(�)| + |��(�) − ��(­)| 
 +|��(­) − ��(�)| + |��(�) − ��(«)| 
 +|��(«) − ��(®)| + |��(®) − ��(�)|1 
 

  

 = °(±²,±³,±´)
°(±µ,±¶,±·)H  

 ≤ JH ���0((��, ��, �­), ((��, �«, �®)1 
 

 ≤ JH ���0((��, ��, �­), ((��, �«, �®)((��, �¬, �¯)1 

 = �(���0((��, ��, �­), ((��, �«, �®), ((��, �¬, �¯)1) 

 

This is the contractive condition (10). Evidently, for 

every	(�, �, �), (­. ®. ¯) ∈ ªH, there always exists a point (�, «, ¬) ∈ ªH  that is comparable to (�, �, �) 

and 	(­. ®. ¯) . So Theorem 20 can be applied to this 

example to conclude that F has a unique triple fixed 

point	(8,8,8), since also the hypotheses of Theorem 28 

hold.                                                                                 ∎ 

 

Now, we give a simple example which shows that if T is 

not an ICS mapping then the conclusion of Theorem 20 

and 26 fail. 

 

Example 32 Let ª = ℝ  and define 	( ∶ 	ª � ª � ª →ℝ
 by ∀	�, �, � ∈ ª. 

 

           ((�, �, �) = 	���0|� − �|, |� − �|, |� − �|1	  
 

Let 	≤	 be usual order. Then, (ª, () is a G-complete G-

metric space. Let �: ªH → ª be given by 

 

                �(�, �, �) = 2� − � + 1, ∀	�, �, � ∈ ª. 

 

It is clear that F is continuous and has the mixed 

monotone property. Moreover, taking 		xT = zT = 1 

and		yT 	= 0, we have  

 F(	xT, 	yT, 	zT) = 	F(1,0,1) 	= 	3	 > 	1 = 	 	xT,	 			F(	yT, 	xT, 	yT) = F(0,1,0) 	= 	−1	 < 	0 = 	 	yT,		 F(	zT, 	yT, 	xT) = F(1,0,1) = 3 > 1	 = 	 	zT, 
 

it is condition (8). Let T: X → X  be define by 		Tx =1, ∀	x ∈ X. Then T is not an ICS mapping. It is obvious 

that the condition (10) holds for any	ϕ ∈ Φ. However, F 

has no tripled fixed point.                                                ∎ 

 

Example 33 As in Example 2.5 of [13], let	T: X → X be 

given by Tx = x, ∀	x ∈ X . Obviously, T is an ICS 

mapping. The mapping  F: XH → X  has unique tripled 

fixed point (0,0,0).                                                          ∎ 

 

Example 34 As in Example 2.6 of [13], let	T: X → X be 

given by Tx = x, ∀	x ∈ X . Obviously, T is an ICS 

mapping. The mapping F: XH → X  has unique tripled 

fixed point \Id , Id , Ida.																																																																∎ 

 

5. CONCLUSION 
 

In this paper, we established some tripled fixed point 

theorems for mappings having mixed monotone property 

under nonlinear type contractions depended on another 

function T: X → X	(where T is an ICS mapping) in the 

framework of a G-metric space X enclosed with partial 

order. Our results are generalized, improved and 

extended some well-known results in the literature. These 

results are extensions of results in [13] to the case triple 

fixed points depending on another function. Inequality 

(10) does not reduce to any metric inequality with the 

metric 	d. , [this metric is given by (2)]. Hence our 

theorems do not reduce to fixed point problems in the 

corresponding metric space	(X, d.). Also, in all Theorem 

20 (Theorem 26) is genuinely different to Theorem 2.1 

(Theorem 3.4) of Hassen et al. [13]. If mapping T: X → X 
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is not an ICS mapping then the conclusion of main 

results (Theorems 20 and 26) fail (see Example 31). 

Also, presented examples are showing that our results are 

real generalization of known ones in triple fixed point 

theory. Our results may be the motivation to other 

authors for extending and improving these results to be 

suitable tools for their applications.                                ∎ 
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