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Abstract: Let 1 ≤ s <∞ and 1 ≤ r(.) ≤ ∞ where r(.) is a variable exponent. In this study, we consider the variable exponent
amalgam space

(
Lr(.), `s

)
. Moreover, we present some examples about inclusion properties of this space. Finally, we obtain that

the space
(
Lr(.), `s

)
is a Banach Function space.
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1 Introduction

The amalgam of Lp and lq on the real line is the space (Lp, lq) (R) (or briefly (Lp, lq) ) consisting of functions f which are locally in Lp and
have lq behavior at infinity. Several authors studied special cases of amalgams on some sets including R and a locally compact abelian group
G. The first appearance of amalgam spaces can be traced to Wiener [13]. A generalization Wiener’s definition was given by Feichtinger in [6],
and it can be found a good summary of some results about amalgam spaces in [10], [11]. For a historical background of classical amalgams we
refer [7]. The variable exponent Lebesgue spaces Lp(.) and the classical Lebesgue spaces Lp have many common properties but a significant
difference between these spaces is that Lp(.) is not invariant under translation in general, see [4], [12]. Recently, there are many interesting and
important papers appeared in variable exponent amalgam space

(
Lr(.), `s

)
such as Aydin [1], Aydin and Gurkanli [3], Gurkanli and Aydin

[9].

2 Main results

Definition 1. For a measurable function r(.) : R→ [1,∞) (called a variable exponent on R), we put

r− = essinf
x∈R

r(x), r+ = esssup
x∈R

r(x).

Also the convex modular function %r(.) is defined as

%r(.)(f) =

∫
R

|f(x)|r(x) dx.

The variable exponent Lebesgue space Lr(.)(R) is defined as the set of all measurable functions f on R such that %r(.)(λf) <∞ for some
λ > 0, equipped with the Luxemburg norm

‖f‖r(.) = inf

{
λ > 0 : %r(.)

(
f

λ

)
≤ 1

}
.

Let r+ <∞. Then f ∈ Lr(.)(R) if and only if %r(.)(f) <∞, that is, the norm topology is equivalent to modular topology. The space Lr(.)(R)
is a Banach space with respect to ‖.‖r(.). Moreover, it is well known that if we take r(.) = r (const.), then the space Lr(.)(R) coincides with
the classical Lebesgue space Lr(R), see [12]. In this paper, we will assume that r+ <∞.

Definition 2. Let 1 ≤ r(.), s <∞ and Jk = [k, k + 1), k ∈ Z. The variable exponent amalgam space
(
Lr(.), `s

)
is a normed space defined

as (
Lr(.), `s

)
=
{
f ∈ Lr(.)

loc (R) : ‖f‖(Lr(.),`s) <∞
}
,

where

‖f‖(Lr(.),`s) =

∑
k∈Z
‖fχJk

‖sr(.)


1
s

.
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It is well known that
(
Lr(.), `s

)
does not depend on the particular choice of Jk. This follows Jk can be equal to [k, k + 1), [k, k + 1] or

(k, k + 1). Thus, we have same amalgam spaces
(
Lr(.), `s

)
.

Theorem 1. The space
(
Lr(.), `s

)
is a Banach space with respect to the norm ‖.‖(Lr(.),`s) .

Proof: Let {fn}n∈N be a Cauchy sequence in
(
Lr(.), `s

)
. Then given ε > 0 there exists N ∈ N such that if n,m ≥ N , then we have

‖fn − fm‖(Lr(.),`s) =

∑
k∈Z
‖fn − fm‖sr(.),Jk


1
s

< ε. (1)

Hence, for any fixed k, we get
‖fn − fm‖r(.),Jk

< ε (n,m ≥ N) .

Thus {fn}n∈N is a Cauchy sequence in Lr(.) (Jk) for k ∈ Z. Let us define f =
∑
k∈Z

fkχJk
where fk ∈ Lr(.) (Jk). Now, we will show that

f ∈
(
Lr(.), `s

)
. Using Fatou’s Lemma (applied to the right-hand series viewed as integral over the integers),we obtain

‖f‖s(Lr(.),`s) =
∑
k∈Z

∥∥∥fk∥∥∥s
r(.),Jk

=
∑
k∈Z

lim
n→∞

‖fn‖sr(.),Jk

≤ lim
n→∞

inf ‖fn‖s(Lr(.),`s) . (2)

Since {fn}n∈N is a Cauchy sequence (hence {fn}n∈N is bounded in norm), the last quantity is finite. Therefore, the left side of (2) is finite,

that is, f ∈
(
Lr(.), `s

)
. By (1), we have

‖fm − f‖sr(.),Jk
= lim

n→∞
‖fm − fn‖sr(.),Jk

and

‖fm − f‖s(Lr(.),`s) =
∑
k∈Z

lim
n→∞

‖fm − fn‖sr(.),Jk

≤ lim
n→∞

inf
∑
k∈Z
‖fm − fn‖sr(.),Jk

< ε

for m ≥ N . Thus the Cauchy sequence {fn}n∈N converges to f , which is desired result. �

Now, we will show that Lr(.) 6=
(
Lr(.), `s

)
and that these two spaces are not translation invariant in general. Also, we will prove new two

examples which are associated with this.

Example 1. Let r (.) : R→ [0,∞) be a function such that for k ∈ Z

r(x) =

{
1, x ∈ Ak = [2k − 1, 2k)
2, x ∈ Bk = [2k − 2, 2k − 1)

.

Hence, we have r+ <∞ and Ak ∩Bk = φ for all k ∈ Z. Also let us define a function f as

f(x) =


0, x ∈ Ak, k ∈ N
1
k , x ∈ Bk, k ∈ N, (k 6= 0)
0, x < 0 (x /∈ Ak ∪Bk)

Therefore, we have

%r(.)(f) =

∫
R

|f(x)|r(x) dx =

∞∑
k=1

∫
Jk

|f(x)|r(x) dx

=

∞∑
k=1

∫
Jk∩Bk

|f(x)|r(x) dx

=

∞∑
k=1

∫
Bk

1

k2
dx =

∞∑
k=1

1

k2
<∞.
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This follows that f ∈ Lr(.) (R) . Now, we will show that f /∈
(
Lr(.), `1

)
. By using the definition of ‖.‖(Lr(.),`1) , we obtain

‖f‖(Lr(.),`1) =
∑
k∈Z

∥∥∥fχ[k,k+1)

∥∥∥
r(.)

=

∞∑
k=1

∥∥∥fχ[2k−2,2k−1)∥∥∥
r(.)

=

∞∑
k=1

∥∥∥fχ[2k−2,2k−1)∥∥∥
2

=

∞∑
k=1

2k−1∫
2k−2

1

k2
dx


1
2

=

∞∑
k=1

1

k
=∞.

Therefore, we have f /∈
(
Lr(.), `1

)
.

Example 2. Let r (.) : R→ [0,∞) be a function such that for k ∈ Z

r(x) =

{
1, x ∈ Ak = [2k + 1, 2(k + 1))
2, x ∈ Bk = [2k, 2k + 1)

.

Then, we define the space as

Lr(.) (R) =
{
f : f = f1 + f2, f1 ∈ L1 (R) , f2 ∈ L2 (R) , suppf1 = ∪k∈ZAk and suppf2 = ∪k∈ZBk

}
.

If we denote T1f as the translation of given any function f ∈ Lr(.) (R), then we obtain

T1f (x) =

{
f (x+ 1) = f2 (x) , x ∈ Ak
f (x+ 1) = f1 (x) , x ∈ Bk

.

It is easy to see that T1f /∈ Lr(.) (R) .That means the space Lr(.) (R) is not translation invariant. Now, we quote this idea to the amalgam
space. To show this we take same function r(.) and same space Lr(.) (R) . Let p > 1. Let us define a function f as

f(x) =


0, x ∈ Ak
1

(k+1)p
, x ∈ Bk

0, x < 0 (x /∈ Ak ∪Bk)

Then, we obtain

‖f‖(Lr(.),`1) =


∑
k∈Z

{
k+1∫
k

|f (x)|2 dx

} 1
2

=
∞∑
k=1

1
(k+1)p

<∞, x ∈ Bk

0, x ∈ Ak

.

Therefore we have f ∈
(
Lr(.), `1

)
. By the definition of T1f , we get

T1f (x) =

{
f (x+ 1) = 1

(k+1)p
, x ∈ Ak

0, x ∈ Bk
.

This follows that

‖T1f‖(Lr(.),`1) =


∑
k∈Z

{
k+1∫
k

|f (x+ 1)| dx

}
=
∞∑
k=1

1
(k+1)p

<∞, x ∈ Ak

0, x ∈ Bk

.

Therefore, we have T1f ∈
(
Lr(.), `1

)
. This follows that the space

(
Lr(.), `1

)
is translation invariant. As an alternative method, it is easy to

see that
(
L1, `1

)
= L1 or

(
L2, `1

)
⊂ L1and the space L1 is translation invariant. Therefore, the same result is satisfied.

Remark 1. If we consider the Theorem 3.3 in [8], then Lr(.) =
(
Lr(.), `s

)
holds for some special cases. Therefore, the amalgam space(

Lr(.), `s
)

is not translation invariant in general.

Definition 3. Lr(.)
c (R) denotes the functions f in Lr(.) (R) such that suppf ⊂ R is compact, that is,

L
r(.)
c (R) =

{
f ∈ Lr(.) (R) : suppf compact

}
.

Now, let K ⊂ R be given. The cardinality of the set

S(K) = {Jk : Jk ∩K 6= ∅}

is denoted by |S(K)| where {Jk}k∈Z is a collection of intervals Jk = [k, k + 1] = k + [0, 1], and also cover R.
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The following proposition was proved by Aydin [2].

Proposition 1. If g ∈ Lr(.)
c (R) and K is the compact support of g, then we have

(i) ‖g‖(Lr(.),`s) ≤ |S(K)|
1
s ‖g‖r(.) for 1 ≤ s <∞.

(ii) ‖g‖(Lr(.),`∞) ≤ |S(K)| ‖g‖r(.) .

Moreover, we have Lr(.)
c (R) ⊂

(
Lr(.) (R) , `s

)
for 1 ≤ s ≤ ∞.

The main result of this study is to show that the space
(
Lr(.), `s

)
be a special case of Banach function space, in other words, the norm

of
(
Lr(.), `s

)
satisfies the following properties, where f , g, fn in

(
Lr(.), `s

)
for all n ∈ N, λ ≥ 0 and E is any measurable subset of R

(|E| <∞):

1. ‖f‖(Lr(.),`s) ≥ 0

2. ‖f‖(Lr(.),`s) = 0 if and only if f = 0 a.e. in R
3. ‖λf‖(Lr(.),`s) = λ ‖f‖(Lr(.),`s)
4. ‖f + g‖(Lr(.),`s) ≤ ‖f‖(Lr(.),`s) + ‖g‖(Lr(.),`s)
5. If |g| ≤ |f | a.e. in R, then ‖g‖(Lr(.),`s) ≤ ‖f‖(Lr(.),`s)
6. If 0 ≤ fn ↑ f a.e. in R, then ‖fn‖(Lr(.),`s) ↑ ‖f‖(Lr(.),`s)
7. ‖χE‖(Lr(.),`s) <∞
8.

∫
E

|f | dx ≤ C (r(.), E) ‖f‖(Lr(.),`s) for some C > 0.

Theorem 2. The space
(
Lr(.), `s

)
is a Banach Function space with respect to the norm ‖.‖(Lr(.),`s) .

Proof: We have to prove the properties (1)-(8). The first three properties follow directly from the definition of the norm ‖.‖(Lr(.),`s) .

Proof of Property 4. Let f, g ∈
(
Lr(.), `s

)
be given. It is well known that f, g ∈

(
Lr(.), `s

)
if and only if{

‖f‖r(.),Jk

}
k∈Z

,
{
‖g‖r(.),Jk

}
k∈Z

∈ `s (Z). Then we have

‖f + g‖(Lr(.),`s) =
∥∥∥‖f + g‖r(.),Jk

∥∥∥
`s

≤
∥∥∥‖f‖r(.),Jk

+ ‖g‖r(.),Jk

∥∥∥
`s

≤
∥∥∥‖f‖r(.),Jk

∥∥∥
`s

+
∥∥∥‖g‖r(.),Jk

∥∥∥
`s

= ‖f‖(Lr(.),`s) + ‖g‖(Lr(.),`s) .

Proof of Property 5. Let |g| ≤ |f | . Then we obtain

‖g‖(Lr(.),`s) =
∥∥∥‖g‖r(.),Jk

∥∥∥
`s

≤
∥∥∥‖f‖r(.),Jk

∥∥∥
`s

= ‖f‖(Lr(.),`s) .

Proof of Property 6. It is well known that Lr(.) is a BF-space by Proposition 1.3 in [5]. Since 0 ≤ fn ↑ f a.e. in R , then ‖fn‖r(.),Jk
↑

‖f‖r(.),Jk
. If we consider this property for `s, we have

‖fn‖(Lr(.),`s) =
∥∥∥‖fn‖r(.),Jk

∥∥∥
`s
↑
∥∥∥‖f‖r(.),Jk

∥∥∥
`s

= ‖f‖(Lr(.),`s) .

Proof of Property 7. Since |E| <∞ and suppχE = E ⊂ R is compact, then χE ∈ L
r(.)
c (R) and

‖χE‖(Lr(.),`s) ≤ |S(E)|
1
s ‖χE‖r(.),E <∞

by Proposition 1.
Proof of Property 8. By Hölder’s inequality for variable exponent amalgam spaces (see, Corollary 2.4, [3]), we get∫

E

|f | dx =

∫
R

|fχE | dx ≤ c ‖f‖(Lr(.),`s) ‖χE‖(Lr′(.),`s′)

≤ C (r(.), E) ‖f‖(Lr(.),`s)

for some C > 0 where 1
r(.)

+ 1
r′(.)

= 1
s + 1

s′ = 1 and C = C (r(.), E) = c ‖χE‖(Lr′(.),`s′) . �
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