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Abstract: Let 1 < s < oo and 1 < r(.) < oo where r(.) is a variable exponent. In this study, we consider the variable exponent
amalgam space (LT('),KS). Moreover, we present some examples about inclusion properties of this space. Finally, we obtain that

the space (LT('),KS) is a Banach Function space.
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1 Introduction

The amalgam of LP and [ on the real line is the space (L”,1?) (R) (or briefly (L?,1?) ) consisting of functions f which are locally in L” and
have 7 behavior at infinity. Several authors studied special cases of amalgams on some sets including R and a locally compact abelian group
G. The first appearance of amalgam spaces can be traced to Wiener [13]. A generalization Wiener’s definition was given by Feichtinger in [6],
and it can be found a good summary of some results about amalgam spaces in [10], [11]. For a historical background of classical amalgams we
refer [7]. The variable exponent Lebesgue spaces LP () and the classical Lebesgue spaces L” have many common properties but a significant
difference between these spaces is that L () is not invariant under translation in general, see [4], [12]. Recently, there are many interesting and
important papers appeared in variable exponent amalgam space (LT(‘) , Zs) such as Aydin [1], Aydin and Gurkanli [3], Gurkanli and Aydin

[9].

2 Main results

Definition 1. For a measurable function r(.) : R — [1, 00) (called a variable exponent on R), we put

r~ = essinfr(z), T = esssupr(z).
zeR z€R

Also the convex modular function o,.( y is defined as
0y (D) = [ 17"
R

The variable exponent Lebesgue space L) (R) is defined as the set of all measurable functions f on R such that Or () (Af) < oo for some

A > 0, equipped with the Luxemburg norm
—j . /
I£1l7.) = inf {A >0:0p(, (X <1p.

Letrt < co. Then f € ) (R) if and only ifor() (f) < oo, that is, the norm topology is equivalent to modular topology. The space L) (R)
is a Banach space with respect 10 ||.||,.( . Moreover, it is well known that if we take r(.) = r (const.), then the space L") (R) coincides with
the classical Lebesgue space L (R), see [12]. In this paper, we will assume that T < .

Definition 2. Ler1 < r(.),s < coand Ji = |k, k + 1), k € Z. The variable exponent amalgam space (LT(') , Zs) is a normed space defined
as

(Lr(.)js) _ {f e L’ (R): Il (zrer es) < OO}’

where

Hf”(Lr(.),zs) = Z HfXJkHi(,)

kEZ
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It is well known that (LT(‘), Es) does not depend on the particular choice of Jy. This follows Jy, can be equal to [k, k + 1), [k, k+ 1] or
(k,k + 1). Thus, we have same amalgam spaces (Lr(')7 ZS).

Theorem 1. The space (LT(') , 65) is a Banach space with respect to the norm ||'||(LT(-) £s) -

Proof: Let { fn},,cn be a Cauchy sequence in (LT(‘)7 ZS). Then given € > 0 there exists N € N such that if n, m > N, then we have

Il fr. — me(L7'(»)7€S) = Z I fr. — fmni(,),Jk <e. (D

keZ

Hence, for any fixed k, we get
[ fn = fmlly(y,0, <€ (n,m=N).

Thus { fn},,cn is a Cauchy sequence in L) (Jg) for k € Z. Let us define f = > kaJk where f* e L7() (Jx). Now, we will show that
kEZ

fe (LT(‘), Es). Using Fatou’s Lemma (applied to the right-hand series viewed as integral over the integers),we obtain

||f||ELr(-),€S) = lgz ka

i inf || all e o) )

S
— 3 s
ora zgznlimoo 1£n 117,

IN

Since { fn},cn is a Cauchy sequence (hence {fn},,cn is bounded in norm), the last quantity is finite. Therefore, the left side of (2) is finite,
thatis, f € (LT('),KS). By (1), we have

1fm = Fll7cy.0, = Hm [ fm = fallyc)

and
fm = Fl{rr ey = D2 M [l fm = fall?y
keZ
< lim inf Y| = falli
kEZ
< €
for m > N. Thus the Cauchy sequence { fn },,cy converges to f, which is desired result. (]

Now, we will show that L0 # (LT(') , Ks) and that these two spaces are not translation invariant in general. Also, we will prove new two
examples which are associated with this.

Example 1. Letr () : R — [0, 00) be a function such that for k € Z

1, z€Ap=[2k—-1,2k)
"@) =12 seBy=2k-22k—1)

Hence, we have rt < 0o and A, N By, = ¢ for all k € 7. Also let us define a function f as
, r € A, k€N

, « € B, keN,(k#0)
, =<0 (z¢ ApUBy)

flz) =

OF= O

Therefore, we have

or()(f) = J\f(z:)\T(“C) dx = Z J \f(x)‘r(w) da

R k=17,

f ()" ") dz

%

k=1 JiNByg
oo o0
1 1
= Y | pde=Y <o
k=1p, k=1
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This follows that f € L") (R) . Now, we will show that f ¢ (LT('),KI). By using the definition of||.||(LT(_) o) we obtain

Il zrer ) g:Z HfX{k,kH) HT(,) = g:l fo[%—?v%‘l) Hr(.)

(oo}
= > HfX[2k72,2k71) H2
k=1

1
00 2k—1 2 00
1 1
= 2 J mdr| =) ¢ =00
k=1 \ o o k=1

Therefore, we have [ ¢ (LT(‘),€1>.

Example 2. Letr (.) : R — [0, 00) be a function such that for k € Z

(2) = 1, zeA,=[2k+1,2k+1))
= 2, x € By, = [2k, 2k + 1)

Then, we define the space as
LO® = {15 f =+ fo 1€ L' (R), fa € L (R) suppfi = Uren Ax and supp 2 = Upez By}

If we denote T f as the translation of given any function f € L) (R), then we obtain

fg;'—|—]_ :f x), reA
Tlf(m)z{ fga:+1§:f?gw§, IEBz

It is easy to see that T\ [ ¢ L0 (R) .That means the space L0 (R) is not translation invariant. Now, we quote this idea to the amalgam
space. To show this we take same function r(.) and same space L0 (R). Let p > 1. Let us define a function f as

0, x € Ag

flz) = ﬁ x € By,
0, $<O($¢AkUBk)

Then, we obtain

k+1 % 00
> { i |f<x>|2dx} = 3 gk <oo, ze By

oy =93 &2 4
Therefore we have f € (LT(‘) , El) . By the definition of T f, we get
T f (x) = { flat+D) = Grpe: @€ A

This follows that

k1 o
> { J |f(w+1)|dx}— > (k+11)P < oo, x€ A,

1T fll(zror.ny =3 wez | & k=1
0, x € By

Therefore, we have T f € (LT(') , Zl) . This follows that the space (Lr(‘), €1> is translation invariant. As an alternative method, it is easy to

see that (Ll, 61) =L'or (Lz, €1) C L'and the space L% is translation invariant. Therefore, the same result is satisfied.

Remark 1. If we consider the Theorem 3.3 in [8], then e = (LT(‘),ES) holds for some special cases. Therefore, the amalgam space

(LT(') , Es) is not translation invariant in general.

Definition 3. Lz(') (R) denotes the functions f in e (R) such that suppf C R is compact, that is,
Lz(') (R) = {f eV (R) : suppf compact} .
Now, let K C R be given. The cardinality of the set
S(K)={Jp: JsNK # &}

is denoted by |S(K)| where {Ji} .7 is a collection of intervals Jy, = [k, k + 1] = k + [0, 1], and also cover R.
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The following proposition was proved by Aydin [2].
Proposition 1. If g € LZ(‘) (R) and K is the compact support of g, then we have

1
D) 9] (10 gy < ISTDIF llglly for 1 < s < oo,
(i) Nl 10 g < 1STO gl -

Moreover, we have Lz(') (R) C (LT(') (R) ,Es) for1 < s <oo.

The main result of this study is to show that the space ¢ ,£°) be a special case of Banach function space, in other words, the norm

of (LT('),ES) satisfies the following properties, where f, g, fr in (Lr('),és) for all n € N, A > 0 and F is any measurable subset of R
(|E| < c0):

||fH(Lr<»>,es) >0

”fH(L"(»),fS) =0Oifandonlyif f =0ae. inR

Ml (zrer ey = APl zrer o0y

1+ 9ll ey < Iz 00y + gl vy

If |g] < |f|ae.in R, then H9||(Lr<.>,gs) < Hf||(Lr<A>,es)
If0 < fn 1 fae inR, then ||an(Lr(-),zs) t Hf”([/"(-),eo*)
||XEH(LT(A>JS) <0

[1fldz < C 1), B) 11l (170 ) Forsome €' > 0.

P NN kW=

Theorem 2. The space (Lr(') , 48) is a Banach Function space with respect to the norm ||. || (Lr() s) -

Proof: We have to prove the properties (1)-(8). The first three properties follow directly from the definition of the norm ||. || (Lr(),5) -
Proof of Property 4. Let f,g € (LT(') , ES) be given. It is well known that f, g € (LT(') , ZS) if and only if

0705000} ey {00, } ey € (2): Then we have

1+ ol zroey = |15+l

e.i‘

< |1y, + Mgl o
< ey, + 1o,
= I lzroresy M9l (Lo g5 -
Proof of Property 5. Let |[g| < |f|. Then we obtain
l9ll(zrer ey = HHQ”T(‘),J,c P
< Wty ], = 160 zrco ey -

Proof of Property 6. It is well known that L"(") is a BF-space by Proposition 1.3 in [5]. Since 0 < f,, 1 f a.e. in R , then an||7'(~)7Jk 0
IIf HT(_)’ 7,.- If we consider this property for £*, we have

Wall 2o ery = [1Fnllecy. | 1 1700y, = 10 -

Proof of Property 7. Since |E| < co and suppx = E C R is compact, then x € Lg(') (R) and

1
IXEl(Lre ey S ISEN lIxEll ()5 < 00

by Proposition 1.
Proof of Property 8. By Holder’s inequality for variable exponent amalgam spaces (see, Corollary 2.4, [3]), we get

[1r1ds = [irxslde < el g oy Il oo oy

E R

Cr() EY Il e o)

IA

1 1 _ 1 1 _ — —
forsomeC>0wherem+ 0 7§—|—?f1andCfC’(r(.),E)7c\|XE||(L,./<A>7£S/). O

r’(.
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