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Abstract: In this work, we consider the spectral problem for a second-order discontinuous differential operator with a spectral
parameter in the boundary condition in Lp, 1 < p <∞. We study a method for establishing the basicity of eigenfunctions for such
a problem. Such spectral problems arise while one solves the problem of a loaded string fixed at both ends with a load placed in
the between ends of the string by the Fourier method.
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1 Introduction

The spectral problems with discontinuity conditions inside the interval play an important role in mathematics, mechanics, physics and other
fields of science. The applications of boundary value problems are related to discontinuous material properties.

The study of spectral properties of many discrete differential operators requires new methods for constructing a basis. This was the motiva-
tion for many mathematicians to study intensively the basis properties (such as completeness, minimality, basicity) of the systems of special
functions mostly eigen and associated functions of differential operators. For this purpose, various methods were developed for these properties
[1]-[8]. However, in the case of a discontinuous differential operator, a system of eigenfunctions emerges, which cannot be demonstrated the
basicity properties by standard methods. An example of this situation has been the subject of our study.

In this paper, we consider the following spectral problem with a point of discontinuity

y′′(x) + λy(x) = 0, x ∈ (−1, 0) ∪ (0, 1), (1)

y(−1) = y(1) = 0

y(−0) = y(+0) (2)

y′(−0)− y′(+0) = λmy(0)

where λ is the spectral parameter,m is a non-zero complex number. This problem comes from the problem of vibrations of a loaded string with
the fixed ends with a load placed in the middle of a string when the problem was solved by applying Fourier methods [[9]-[11]]. For these
methods, basis properties of the eigenfunctions system should be studied suitable spaces of functions (generally Lebesgue spaces or Sobolev
space).

Grand Lebesgue Spaces introduced by Iwaniec and Sbordone come from integrability properties of the Jacobian determinant ([12]), and the
spaces play an important role in PDEs theory (see e.g. [13]) and in Functions Spaces Theory (see e.g. [14]). There are many applications in
analysis, see [12]-[19]. These spaces attracted the interest of many researchers, either in Harmonic Analysis (see [20],[21]) and Interpolation-
Extrapolation Theory ([22]) or in P.D.Es ([23],[24]).

In subsequent years, quite a number of problems in Harmonic Analysis and the theory of non- linear differential equations were studied in
these spaces (see, e.g., the papers [25]-[29]). So, in this work, we study the basicity properties of the eigenfunctions system of the problem
(1),(2) in grand Lebesgue spaces. For this purpose, at first, we find corresponding spaces dense in grand Lebesgue spaces. Then we denote that
the eigenfunctions system of (1),(2) form a basis on these spaces.

2 Auxiliary informations

Let Ω ⊂ Rn, n ≥ 2 be a measurable set of Lebesgue measure |Ω| < +∞. In 1992, grand Lebesgue space Ln(Ω) was established by Iwaniec
and Sbordone [12] as space such that

|Df | ∈ Ln)(Ω)⇒ |Jf | ∈ L1
loc(Ω)
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for all Sobolev mappings f : Ω→ Rn, f = (f1, . . . , fn). After that we will use letter p instead of n, supposing 1 < p < +∞. Grand Lebesgue
spaces are defined by

Lp)(Ω) =

{
f ∈M0 : fp) = %(|f |) = sup

0<ε<p−1
ε

1
p−ε

(
1

| Ω |

∫
Ω
|f |p−εdx

) 1
p−ε

< +∞

}
,

where M0 is the set of all real-valued measurable functions on Ω,M+
0 show the subset nonnegative functions of M0 and % : M+

0 → [0,+∞]
satisfy the following conditions for all f, g, fn(n = 1, 2, 3, . . . ), λ ≤ 0 constants, measurable subsets E ⊂ Ω

• %(f) = 0⇔ f = 0 a.e. in Ω,
• %(λf) = λ%(f),
• %(f + g) ≤ %(f) + %(g)
• 0 ≤ g ≤ f a.e. in Ω⇒ %(g) ≤ %(f),
• 0 ≤ fn ↑ f a.e. in Ω⇒ %(fn) ↑ %(f),
• E ⊂ Ω⇒ %(χE) < +∞,
• E ⊂ Ω⇒

∫
E fdχ ≤ CE%(f),

where CE , 0 < CE <∞ depend on E and % but not to f . Grand Lebesgue spaces are a special category of Banach Function spaces: The
spaces are rearrangement-invariant:

µf (λ) = |{χ ∈ Ω : |f(χ)| > λ}| , for all λ ≥ 0

it is %(f) = %(g) if µf = µg . Lp) is nonseparable spaces. Because for α ∈ R

fα(x) =

{
x−1/p; x ∈ [0, α)

0; x ∈ [α, 1]

functions satisfy the following inequality. For all α, β ∈ R, (α 6= β) there exists ε0 > 0:

‖fα − fβ‖p) ≥ ε0 > 0,

so Lp)(0, 1) is nonseparable spaces. But these spaces must be separable so that we can talk about basicity properties. That’s why we should
study on separable subspaces of Lp). Thus, for δ > 0 we give shift operatör in Lp),

(Tδf)(x) =

{
f(x+ δ); x+ δ ∈ [0, 1]

0; x+ δ 6∈ [0, 1]
,

where f ∈ Lp)(0, 1). Let us define the following set

G̃p)(0, 1) = {f ∈ Lp)(0, 1) : ‖Tδf − f‖p) → 0, δ → 0}

then it is evident that

(G̃p), ‖.‖p)) = Gp) ⊂ Lp).

Hence we can express the following lemma.

Lemma 1. For 1 < p <∞, the following expressions are true.

1. (C∞0 , ‖.‖p)) = Gp);
2. (C∞0 , ‖.‖p) = Lp

The proof of Lemma 1 can be easily shown.
Let us mention the continuous embedding and we can give the following inclusions from [30]

Lp  Lp)  Lp−ε, 0 < ε < p− 1.

Then we conclude that
Lp  Gp)  Lp)  Lp−ε, 0 < ε < p− 1.

Because we have the following example. Let us consider the series

f(x) =

∞∑
n=1

fn(x)

n2
,

where fn(x) =

{
x−1/p, x ∈ (e−n

2p

; 1]

0, x /∈ (e−n
2p

; 1]
.Here f /∈ Lp(0, 1) since ‖fn‖pp = n2p.
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Let us denote f ∈ Gp)(0, 1).

‖fn‖p) ≤ sup
0<ε<p−1

(
ε

∫1

0
x
−1
p (p−1)dx

) 1
p−ε

= sup
0<ε<p−1

p
1

p−ε = p,

and we use the partial sum of the series,

Sm(x) =

m∑
n=1

fn(x)

n2
.

From here ∥∥∥∥∥
m+p∑
n=m

fn(x)

n2

∥∥∥∥∥
p)

≤
m+p∑
n=m

‖fn(x)‖p)
n2

< p

m+p∑
n=m

1

n2
< +∞,

then f ∈ Gp)(0, 1). Thus

Lp(0, 1)  Gp)(0, 1)

and from definitions
Gp)(0, 1)  Lp)(0, 1)

We conclude that Gp) = Lp) and from Lemma 1, Gp) is separable for 1 < p <∞.

Let us recall the definition of completeness, minimality, basicity and theirs criterions from [31] in any Banach space. Let X be a Banach
space.

"A system {xn}n∈N ⊂ X is called complete in X if L[{xn}n∈N] = X ."

Completeness Criterion. LetX be a normed space. A system {xn}n∈N ⊂ X is complete inX if and only if for all f ∈ X∗ :< xn, f >= 0
for each n ∈ N implies f = 0.

"A system {xn}n∈N ⊂ X is called minimal in X if xk /∈ L[{xn}n∈Nk
] for all k ∈ N, where Nk = N\{k}."

"Systems {xn}n∈N ⊂ X and {x∗n}n∈N ⊂ X∗ are called biorthogonal if < xm, x
∗
n >= δnm for all n,m ∈ N."

Minimality Criterion. A system in a Banach space is minimal if and only if it has a biorthogonal system.

Minimality Criterion. A system {xn}n∈N ⊂ X form a basis for X if and only if the following conditions are satisfied:

1. {xn}n∈N is complete in X;
2. {xn}n∈N is minimal in X;
3. The projectors Pm(.) =

∑m
n=1 < ., x∗n > xn are uniformly bounded, i.e., there exists M > 0 such that

‖Pmx‖X ≤M‖x‖X , ∀x ∈ X,

where {x∗n}n∈N ⊂ X∗ is a system biorthogonal to {xn}n∈N.

Let’s give the Dirac delta functional that can find from many sources.

δ(x) =

{
+∞; x = 0

0; x 6= 0

imposing that ∫+∞

−∞
δ(x)dx = 1

For δ to satisfy the above property, we define δε as ∫+∞

−∞
δ(x)dx = lim

ε→0+

∫+∞

−∞
δε(x)dx,

where δε is a generic function of both x and ε such that

lim
ε→0+

δε(x) =

{
+∞; x = 0

0; x 6= 0
,

and ∫+∞

−∞
δε(x)dx = 1.
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From here ∫+∞

−∞
δ(x)f(x)dx = lim

ε→0+

∫+∞

−∞
δε(x)f(x)dx,

for any function f(x) and ∫+∞

−∞
δ(x− c)f(x)dx = f(c).

Also, we will use the Muckenhoupt condition [32] in this work. So we mention Hardy’s inequality for 1 ≤ p ≤ ∞ and bp < −1,[∫∞
0

∣∣∣∣xb ∫x
0
f(t)dt

∣∣∣∣p dx]
1
p

≤ −p
bp+ 1

[∫∞
0
|xb+1f(x)|pdx

] 1
p

.

Later several authors such as Tomaselli, Talenti and Artola investigated the problem of for what functions, U(x) and V (x), there is a finite
constant C such that [∫∞

0

∣∣∣∣U(x)

∫x
0
f(t)dt

∣∣∣∣p dx]
1
p

≤ C
[∫∞

0
|V (x)f(x)|pdx

] 1
p

. (3)

where U(x) and V (x) are weight functions. In 1972, Muckenhoupt gives a condition for the inequality (3):

Theorem 1. [32] If 1 ≤ p ≤ ∞, there is a finite C for which (3) is true if and only if

sup
r>0

[∫∞
r
|U(x)|pdx

] 1
p
[∫r

0
|V (x)|−p

′
dx

] 1
p′

<∞,

where 1
p + 1

p′ = 1.

Now we need to give some notation and results from [33] that will use throughout the paper.

Let us take λ = ρ2 and denote the following designation for boundary forms of (2)

Uv(y) = Uv1(y) + Uv2(y), v = 1, 4

where

U11 = y(−1) U12 ≡ 0,

U21 ≡ 0 U22 = y(1),

U31 = y(0−) U32 = y(0+),

U41 = y′(0−) U42 = −y′(0+)− λmy(0).

Lemma 2. [33] Spectral problem (1),(2) has two series of simple eigenvalues:
λ1,n = (πn)2, n = 1, 2, ... and λ2,n = (ρ2,n)2, n = 0, 1, 2, ... where ρ2,nhas asymptotic form

ρ2,n = πn+
2

πmn
+ o

(
1

n2

)
.

The eigenfunctions un(x), n = 0, 1, 2, . . . prescribed by formula

u2n−1(x) = sinπnx, n = 1, 2, ...,

u2n(x) =

{
sin ρ2,n(1 + x) atx ∈ [−1, 0]

sin ρ2,n(1− x) atx ∈ [0, 1]

correspond to them.

Lemma 3. [33] For Green function components Gkj(x, ξ, ρ) the following expressions

G11(x, ξ, ρ) =

{
− 1
ρ sin ρ(x− ξ) + 1

∆(ρ)
sin ρ(1 + x) sin ρ(1 + ξ)− 1

ρ sin ρ sin ρ(1 + x) sin ρξ, −1 ≤ ξ < x ≤ 0
1
ρ sin ρ(x− ξ) + 1

∆(ρ)
sin ρ(1 + x) sin ρ(1 + ξ)− 1

ρ sin ρ sin ρx sin ρ(1 + ξ), −1 ≤ x ≤ ξ ≤ 0
;

G22(x, ξ, ρ) =

{
− 1
ρ sin ρ(x− ξ) + 1

∆(ρ)
sin ρ(1− x) sin ρ(1− ξ) + 1

ρ sin ρ sin ρx sin ρ(1− ξ), 0 ≤ ξ < x ≤ 1
1
ρ sin ρ(x− ξ) + 1

∆(ρ)
sin ρ(1− x) sin ρ(1− ξ)− 1

ρ sin ρ sin ρ(1− x) sin ρξ, 0 ≤ x ≤ ξ ≤ 1
;

G12(x, ξ, ρ) =
1

∆(ρ)
sin ρ(1 + x) sin ρ(1− ξ), x ∈ [−1, 0], ξ ∈ [0, 1];

G21(x, ξ, ρ) =
1

∆(ρ)
sin ρ(1− x) sin ρ(1 + ξ), x ∈ [0, 1], ξ ∈ [−1, 0].
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Let (a, b) be an interval on R and let us define G-Sobolev spaces

GW p)(a, b) =
{
f, f ′ ∈ Gp)(a, b) : ‖f‖Wp)

= ‖f‖p) + ‖f ′‖p)
}
.

GW p)(−1, 0)×GW p)(0, 1) denotes a space functions whose shrinkages on intervals [−1, 0] and [0, 1] belong respectively to G-Sobolev
Spaces GW p)(−1, 0) and GW p)(0, 1). We define the operator L in Gp)(−1, 1) spaces as

D(L) =
{
û ∈ Gp)(−1, 1)⊕ C : û = (u,mu(0));u ∈W p)

G ;u(−1) = u(1) = 0;u(0−) = u(0+)
}

(4)

where W p)
G = GW p)(−1, 0)×GW p)(0, 1) and for û ∈ D(L)

Lû =
(
−u′′;u′(0−)− u′(0+)

)
. (5)

Let us take the following equation to construct the resolvent of L.

Lû− λû = f̂ , (6)

where û ∈ D(L), f̂ = (f ;β) ∈ Gp)(−1, 1)⊕ C. This equation can be expressed as follows.


−u′′ = λu+ f,

u′(0−)− u′(0+)− λmu(0) = β,

Uv(u) = 0, v = 1, 2, 3

(7)

We shall use the following Lemma to prove basicity in grand Lebesgue spaces.

Lemma 4. [33] For solution û = (u;mu(0)) of the equation (6) it holds the following representations

u(x, ρ) =
β sin ρ(1 + x)

ρ(2 cos ρ− ρm sin ρ)
− 1

ρ

∫x
−1

f(ξ) sin ρ(x− ξ)dξ +
1

ρ

∫0

x
f(ξ) sin ρ(x− ξ)dξ+

+
1

∆(ρ)

∫0

−1
f(ξ) sin ρ(1 + x) sin ρ(1 + ξ)dξ − 1

ρ sin ρ

∫x
−1

f(ξ) sin ρ(1 + x) sin ρξdξ−

− 1

ρ sin ρ

∫0

x
f(ξ) sin ρx sin ρ(1 + ξ)dξ +

1

∆(ρ)

∫1

0
f(ξ) sin ρ(1 + x) sin ρ(1− ξ)dξ,

(8)

if x ∈ [−1, 0];

u(x, ρ) =
β sin ρ(1− x)

ρ(2 cos ρ− ρm sin ρ)
− 1

ρ

∫x
0
f(ξ) sin ρ(x− ξ)dξ +

1

ρ

∫1

x
f(ξ) sin ρ(x− ξ)dξ+

+
1

∆(ρ)

∫1

0
f(ξ) sin ρ(1− x) sin ρ(1− ξ)dξ +

1

ρ sin ρ

∫x
0
f(ξ) sin ρx sin ρ(1− ξ)dξ+

+
1

ρ sin ρ

∫1

x
f(ξ) sin ρ(1− x) sin ρξdξ +

1

∆(ρ)

∫0

−1
f(ξ) sin ρ(1− x) sin ρ(1 + ξ)dξ,

(9)

if x ∈ [0, 1];

u(0, ρ) =
1

ρ(2 cos ρ− ρm sin ρ)

[
β sin ρ+

∫0

−1
f(ξ) sin ρ(1 + ξ)dξ +

∫1

0
f(ξ) sin ρ(1− ξ)dξ

]
. (10)

Finally, let us give the Riesz theorem, which we will apply to the Hilbert transformation. This theorem can be reached from many sources.

Theorem 2. (Riesz Theorem) Let Γ ∈ Lp(X,µ)∗, where 1 ≤ p <∞ and µ is σ−finite. Then if 1
p + 1

q = 1, there exists a unique g ∈
Lq(X,µ)∗ such that

Γ(f) =

∫
X
fgdµ = Φg(f).

Moreover ‖γ‖ = ‖g‖q .
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3 Main results

Lemma 5. The operator defined by (4),(5) is a linear closed operator with dense definitional domain in Gp)(−1, 1)⊕ C. Eigenfunc-
tions of the operator L and problem (1),(2) overlap, and ûk are eigenvectors of the operator L, where û2n−1 = (u2n−1(x); 0)û2n =
(u2n(x);m sin ρ2,n).

Proof: For the proof of dense, we take û = (u;α) ∈ Gp)(−1, 1)⊕ C and define functional F (û) as follows

F (û) = mu(0)− α.

Assume that
Uv(û) = Uv(u), v = 1, 2, 3.

Let us show that F and Uv are bounded linear functionals on W p)
G ⊕ C, but unbounded on Gp)(−1, 1)⊕ C. For boundedness of F and

Uv, v = 1, 2, 3 it is sufficient to prove that δx0(f) = f(x0) Dirac functional is bounded on W p)
G where x0 ∈ (−1, 1) is any fixed point. For

any f ∈W p)
G ,

|f(x0)| =
∣∣∣∣∫x
x0

f ′(t)dt− f(x)

∣∣∣∣ ≤ ∫x
x0

|f ′(t)|dt+ |f(x)|

2|f(x0)| ≤
∫1

−1

∫x
x0

|f ′(t)|dtdx+

∫1

−1
|f(x)|dx ≤ 2

∫1

−1
|f ′(t)|dt+

∫1

−1
|f(x)|dx ≤ (2‖f ′‖p−ε0+

‖f‖p−ε02
1− 1

p−ε0 ≤ 2
2− 1

p−ε0 ε
1

p−ε0
0 (‖f ′‖p) + ‖f‖p)),

then

|δx0(f)| ≤ 2
2− 1

p−ε0 ε
1

p−ε0
0 ‖f‖

W
p)
G

.

So δx0 is bounded on W p)
G but unbounded on Gp)(−1, 1) because for f ∈ Gp)(−1, 1),

‖f‖p) ≤ (p− 1)2
p−1
p ‖f‖p = Cp‖f‖p,

then for g ∈ Lp(−1, 1)

sup
‖g‖p≤1

|δx0(g)| = sup
Cp‖f‖p≤1

|δx0(Cpf)| = Cp sup
Cp‖f‖p≤1

|δx0(f)| ≤ Cp sup
‖f‖p)≤1

|δx0(f)|.

We conclude that δx0 is unbounded on W p)
G (−1, 1) since it is unbounded on Lp(−1, 1) [10]. It is evident that F,Uv, v = 1, 2, 3 are bounded

on W p)
G ⊕ C and unbounded on Gp)(−1, 1)⊕ C. Therefore the set

D(L) =
{
û = (u, α) : u ∈W p)

G ;F (û) = Uv(û) = 0, v = 1, 2, 3
}

is everywhere dense in Gp)(−1, 1)⊕ C and L is a closed operator as a contraction of the corresponding closed maximal operator. The second
part of the lemma is certified directly. �

Theorem 3. Eigenvectors of operator L form a basis in spaces Gp)(−1, 1)⊕ C, 1 < p <∞.

4 Conclusion

In this study, the problem (1),(2) is discussed in grand spaces and basic properties are examined. It is foreseen that these properties can be
examined in more general cases of this problem as arbitrary point for discontinuity.
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