Konuralp Journal of Mathematics, 7 (2) (2019) 324-332

[0 ©] .
Konuralp Journal of Mathematics i
Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath Kosu :,E.\(‘,: o
—_— e-ISSN: 2147-625X =
A Study on Lorentzian o —Sasakian Manifolds
Rajendra Prasad!, Shashikant Pandey', Sandeep Kumar Verma'* and Sumeet Kumar!
LDepartment of Mathematics & Astronomy University of Lucknow, Lucknow-226007, U.P. INDIA.
*Corresponding author E-mail: skvermal208@ gmail.com
Abstract

The object of the present paper is to study the geometric properties of Concircular curvature tensor on Lorentzian a—Sasakian manifold
admitting a type of quarter-symmetric metric connection. In the last, we provide an example of 3-dimensional Lorentzian a—Sasakian
manifold endowed with the quarter-symmetric metric connection which is under consideration is an 11 —Einstein manifold with respect to the
quarter-symmetric metric connection.
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1. Introduction

In 1975, Golab [5] defined and studied quarter-symmetric connection in differentiable manifolds. A linear connection V on an n-dimensional
Riemannian manifold (M, g) is said to be a quarter-symmetric connection [5] if its torsion tensor 7' defined by

T(X,Y)=VxY—VyX —[X,Y] (1.1)
satisfies
T(X,Y)=n(Y)9pX —n(X)9Y, (1.2)

where ¢ is a (1, 1) tensor field, 1 is a 1-form and X, Y are vector fields on I'(TM), I'(TM) is the set of all differentiable vector fields on M.
In particular, if §X = X, then the quarter-symmetric connection reduces to the semi-symmetric connection [4].

Thus the notion of the quarter-symmetric connection generalizes the notion of the semi-symmetric connection. If moreover, a quarter-
symmetric connection V satisfies the condition

(Vxg)(¥,Z) =0, (1.3)

forall X,Y,Z on I'(TM), then V is said to be a quarter-symmetric metric connection, otherwise it is said to be a quarter symmetric non-metric
connection. Recently quarter-symmetric metric connection have been studied by several authors ([8], [9], [12]).

A differentiable manifold M is said to be a Lorentzian manifold, if M has a Lorentzian metric g, which is a symmetric non-degenerate (0,2)
tensor field of index 1. Since the Lorentzian metric g is of index 1 therefore Lorentzian manifold M has not only spacelike vector fields but
also lightlike and timelike vector fields. On a Lorentzian manifold this difference with Riemannian case gives interesting results. In 1989, K.
Matsumoto used a structure vector field —& instead of & in an almost para contact manifold and associated a Lorentzian metric with this
resulting structure, called it as Lorentzian almost para contact manifold.

Yildiz and Murathan studied [15] Lorentzian oc—Sasakian manifolds in 2005 and obtained results for conformally flat and quasi-conformally
flat Lorentzian @—Sasakian manifolds. In 2009, Yildiz et al. ([16, 17]), further studied on three dimensional Lorentzian ot—Sasakian
manifolds and a class of Lorentzian oc—Sasakian manifolds and obtained some important results. In 2013, U.C. De and K. De ([3]) studied
on Lorentzian Trans-Sasakian manifolds, which is a generalization of Lorentzian &t—Sasakian manifolds.

A concircular transformation ([7], [13]) on an n-dimensional Riemannian manifold M is a transformation under which every geodesic circle
of M transforms into a geodesic circle. Every concircular transformation is always a conformal transformation [7]. Thus the concircular
geometry, is a generalization of inversive geometry in the sense that the change of metric is more general than that induced by a circle
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preserving diffeomorphism (see also [2]). An interesting invariant of a concircular transformation is the concircular curvature tensor C. It is
defined by ([13], [14])

C(X,Y)Z=R(X,Y)Z— gV, 2)X —g(X,Z)Y]. (1.4

f
2n(2n+1)
for all vector fields X,Y,Z € ['(TM), where R and 7 be the curvature tensor and scalar curvature with respect to the quarter-symmetric metric
connection V respectively.

Using (1.4), we obtain

- - r

‘C(X,Y,Z,W) = ‘R(X,Y,Z,W) - W—‘,—])

where ‘C(X,Y,Z,W) = g(C(X,Y)Z,W), ‘R(X,Y,Z,W) = g(R(X,Y)Z,W), where X,Y,Z,W € I'(TM) and C is the concircular curvature
tensor and 7 is the scalar curvature with respect to the quarter-symmetric metric connection respectively. Riemannian manifolds with
vanishing concircular curvature tensor are of constant curvature. Thus the concircular curvature tensor is a measure of the failure of a
Riemannian manifold to be of constant curvature.

[g(Y,Z)g(X,W)7g(X,Z)g(Y,W)}, (1-5)

In this paper, we study a type of quarter-symmetric metric connection on Lorentzian a-Sasakian manifolds. The paper is organized as
follows: After introduction section two gives some prerequisites of a Lorentzian ¢-Sasakian manifold. In section three, we obtain a relation
between the quarter-symmetric metric connection and Levi-civita connection. In section four, curvature tensor and Ricci tensor of Lorentzian
o—Sasakian manifold with respect to quarter-symmetric metric connection are given. Section five is devoted to the study of &-concircularly
flat Lorentzian a-Sasakian manifold with respect to the quarter-symmetric metric connection. Quasi-concircularly flat and ¢-concircularly
flat Lorentzian o-Sasakian manifolds with respect to the quarter-symmetric metric connection have been studied in section six and seven
respectively. In the next section, we study a Lorentzian «-Sasakian manifold satisfying C - § = 0 with respect to a quarter-symmetric metric
connection. In the last, we construct an example of a 3-dimensional Lorentzian a-Sasakian manifold endowed with the quarter-symmetric
metric connection.

2. Preliminaries

An (2n+ 1)-dimensional differentiable manifold M is said to be a Lorentzian ot—Sasakian manifold, if it admits a structure (¢,&,7,g)
consisting of a (1,1) tensor field ¢, vector field &, 1-form 1 and a Lorentzian metric g satisfying

0*X =X +1(X)E, 2.1
$o&=0, n0¢ =0, n(§)=-1, gX,§)=n(X), (22)
8(¢X,9Y) =g(X,Y) +n(X)n(Y), (2.3)
(Vx9)Y = af{g(X,Y)E+n (Y)X} 24

for any vector field X, Y on M, where V denotes the covariant differentiation with respect to Lorentzian metric g.
Also a Lorentzian @—Sasakian manifold satisfies [16]

Vxé = apX, (2.5)

(Vxn)Y = ag(X,9Y) (2.6)

for X, Y tangent to M.
Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator Q in a Lorentzian a-Sasakian manifold M with respect to the
Levi-Civita connection V| satisfies following relations [16]

R(E.X)Y = o’ {g(X,Y)E —n(Y)X}, @7
R(X,Y)E=a{n(Y)X -1 (X)Y}, (2.8)
R(E.X)& = —R(X,§)& = o® {X+1(X)&}, 2.9)
S(X,&) =2na’n (X), (2.10)
S(&,8) = —2n0’, Q& =2n0%E, @.11)
S(¢X,9Y) =S(X,Y)—2na’g(X.Y), 2.12)

for all vector fields X,Y € I'(TM).
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3. Relation Between the Quarter-Symmetric Metric Connection and Riemannian Connection

Let V be a Riemannian connection and V be a linear connection on Lorentzian a-Sasakian manifold M such that
VxY =VxY +H(X)Y), 3.1)

where H is a tensor of type (1,2). Now if V be a quarter-symmetric connection on M, then we have [3]

H(X,Y)= %[T(X,Y)—FT' X, Y)+T (v,X))], (3.2)
where
g(T"(X,Y),Z)=¢(T(2,X),Y). (3.3)

Using (1.2) in (3.3), we get

T'(X,Y)=n(X)9Y —g(¢X,Y)¢&. (3.4)
In view of (1.2) and (3.4), equation (3.2) gives
H(X,Y)=n(Y)9X —g(X,Y)S. (3.5)

Hence from (3.1), a quarter-symmetric connection V on a Lorentzian & —Sasakian manifold M is given by

VxY = V¥ +1(Y)9X —g(¢X,Y)E. (3.6)

Also we have

(Vxg) (Y,2) =Xg(¥.Z)— g (VxY,Z) —g (Y,VxZ) 3.7)

With the help of (3.6), after simplification (3.7) gives

(Vxg) (Y,2)=0, VY,ZeI(TM). (3.8)

By virtue of (3.6) and (3.8), we conclude that V is a quarter-symmetric metric connection. Therefore (3.6) is the relation between
Riemannian connection and quarter-symmetric metric connection on a Lorentzian ¢¢-Sasakian manifold.

4. Curvature Tensor and Ricci Tensor of Lorentzian oc—Sasakian Manifold with respect to the

Quarter-Symmetric Metric Connection

Let R(X,Y)Z and R(X,Y)Z be the curvature tensors of a Lorentzian ¢-Sasakian manifold M with respect to the Riemannian connection V
and quarter-symmetric metric connection V respectively, then relation between R (X,Y)Z and R (X,Y) Z is given by

RX.Y)Z = RX.,Y)Z+an(Z)[n¥)X-nX)Y] @.1)

+2a—1)[g(9X,Z) ¢Y — 2 (¢Y,Z) ¢X]
—alg(X,Z)n(Y) —g(¥,Z)n(X)]¢.

From (4.1), we have

REX)Y =(a?—a)[g(X,Y)E—n(Y)X], 4.2)
R(X,¥)& = (o2 —a) (1) X —n(X)Y], “3)
REY)E=(a?—a) Y +n(V)€]. 44)

Let {e1,e2,....,eon,€2q+1 = £} be a local orthonormal basis of vector fields in M. Since on a semi-Riemannian manifold, we have [10]

2n+1
Y eg(R(eY)Z,ei) =S(Y,Z),
i=1

2n+-1
Z EiS(eiaY)g(ehZ) :S(Y7Z)7
i=1
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2n+1
Z Sig(ei,Y)g(ei,Z) = g(Y72)7
i=1

and

2n+1
Y eig(oei,ei) = trace(9),

i=1

where & = g(ej,e;), i =1,2,...,2n+ 1. Using above results on a Lorentzian o-Sasakian manifold, it can be easily verify that

2n
Y g(R(ei,Y)Z,e;) = S(Y,Z) — o*g (§Y,0Z), (4.5)

i=1
2n
Y S(eiY)g(ei,Z) = S(¥,Z) +2ne’n (V)1 (2), (4.6)

Y g(ei,ei) =2n, 4.7

2n
Y gleiY)glei,Z) = g(¢Y,0Z), 4.8)
i=1

2n
Zg(q)e[,e,-) = trace(9) 4.9)

i=1

and

2n

Y ¢(R(ei,Y)Z,e;) =S (¥, Z) — (a2 — a) g(0Y,02). (4.10)
i=1

Then from (4.1), we obtain

S.z) = SW.2)+{2n+1)a—1}n(¥)n(2) @.11)
+(a—1)g(Y,Z)— (2ot —1)trace(¢)P (Y,Z),

S(Y,&)=2n <a2—a)n(Y), @.12)
S_(é,é)=*2n(a2*a), (4.13)
S(¢Y,0Z) = S8(Y,Z) — 2n0’g(Y,Z) — 2non (Y)n(Z). (4.14)

where § and 7 be the Ricci tensor and scalar curvature with respect to the quarter-symmetric metric connection V respectively.

5. £-Concircularly Flat Lorentzian a-Sasakian Manifold with Respect to the Quarter-Symmetric
Metric Connection

Definition 5.1. A Lorentzian a-Sasakian manifold is said to be &—concircularly flat [1] with respect to the quarter-symmetric metric
connection if C (X,Y) & =0, where X, Y € T(TM).

Theorem 5.2. A Lorentzian a-Sasakian manifold admitting a quarter-symmetric metric connection V is & —concircularly flat if and only if
the scalar curvature F with respect to the quarter-symmetric metric connection is equal to 2n(2n+1) (a2 — a) .
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Proof. From (1.4), we have

7

C'(X,Y)é=R(X7Y)§fm[n(Y)an(X)Y]- (5.1)
Using (4.3) in (5.1), we have
CxnE = (a*—a)mm)X-nXx)Y] 5:2)
XY
From (5.2), we have
Cx1E=[(e~a) - 3ol )X - n (X)) 5.3)

Thus from (5.3), if C(X,Y)& = 0, then 7= 2n(2n+ 1) (a® — &) or n(¥)X — n(X)Y = 0, implies that n(X) = 0 which is not possible.
Conversely, if 7 = 2n(2n+ 1) (o> — ) , then from (5.3), it follows that C(X,Y)& = 0.
This completes the proof of the theorem. O

6. Quasi-Concircularly Flat Lorentzian o.-Sasakian Manifold with Respect to the Quarter-Symmetric

Metric Connection

Definition 6.1. A Lorentzian o-Sasakian manifold is said to be quasi—concircularly flat with respect to the quarter-symmetric metric
connection if

‘C(0X,Y,Z,0W) =0 6.1)
where X, Y, Z,W € T'(TM) .

Definition 6.2. A Lorentzian o-Sasakian manifold is said to be an n—Einstein manifold [17] if its Ricci tensor S of the Levi-Civita
connection is of the form

S(X,Y) =ag(X,Y)+bn(X)n(Y), (6.2)
where a and b are smooth functions on the manifold.

Theorem 6.3. If a Lorentzian o.-Sasakian manifold admitting a quarter-symmetric metric connection is quasi-concircularly flat, then the
manifold with respect to the quarter-symmetric metric connection is an M —Einstein manifold.

Proof. From (1.4), we have

A 5 F
_g(xvz)g(yv W)} .
where ‘C(X,Y,Z,W) = g(C(X,Y)Z,W) and ‘R(X,Y,Z,W) = g(R(X,Y)Z,W).
Now putting X = ¢X and W = ¢W in (6.3), we get
COXVZOW) = ROXVZOW) = 5l s[s(V. 2)5(0X.0W) (64)
Using (6.1) in (6.4), we get
ROX.Y.Z.0W) =~ [5(r.2)5(0X.0W) — g(9X.Z)s(¥.6W). (65)

2n(2n+1)

Let {e},ep,....,e2,,& } be a local orthonormal basis of vector fields in M, then {¢ey, Pe,....,Per,,E } is also a local orthonormal basis.
Putting X =W =¢; in (6.5) and summing over i = 1 to 2n, we obtain

2n 7 2n

L ROenY Z,0e) = 305 7y Lle(12)8(9ei oei) —g(9ei 2)s (¥, 9e)] (6.6)
So by virtue of (2.3), (4.7), (4.8) and (4.10), the equation (6.6) takes the form

= F(2n—1 3

S(v,2) = [% n (ata)] g(Y.Z) — [m - (azfa)} ny)n(z). 6.7)
or

S(Y,2)=ag(Y.Z)+bn (Y)n(2),

where a = [%—i—(oﬂ—a)] and b= — [WZH)_ (az—a)].

From which it follows that the manifold is an n—Einstein manifold with respect to the quarter-symmetric metric connection.
This completes the proof of the theorem. O
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7. ¢-Concircularly Flat Lorentzian o.-Sasakian Manifold with Respect to the Quarter-Symmetric
Metric Connection

Definition 7.1. A Lorentzian a-Sasakian manifold is said to be ¢ —concircularly flat [11] with respect to the quarter-symmetric metric
connection if

‘C(¢X,0Y,0Z,0W) =0, (7.1)
where X, Y, Z, W € T(TM).

Theorem 7.2. If a Lorentzian o-Sasakian manifold admitting a quarter-symmetric metric connection is ¢-concircularly flat, then the
manifold with respect to the quarter-symmetric metric connection is an 1 —Einstein manifold.

Proof. From (1.4), we have

e 5 B r
CX,Y,Z,wW) = ‘RX,Y,Z,W) 2t 1) (Y, Z)g(X,W) (7.2)
_g(sz)g(Yv W)} .
where ‘C(X,Y,Z,W) =g(C(X,Y)Z,W) and ‘R(X,Y,Z,W) = g(R(X,Y)Z,W).
Now putting X = ¢X, Y =Y, Z=¢Z, W = ¢W in (7.2), we get
A 5 B r
CIOX,07,02.0W) = “RGX,0V,0Z,0W) — 5 < [4(0,0Z)g(0X, 0W)
—8(¢X,9Z)g(¢Y,oW)]. (7.3)
Using (7.1) in (7.3), we get
‘R(PX,0Y,0Z,0W) = m[g(w,(bz)g(ﬁb)ﬁ W) —g(9X,02)g(9Y,oW)]. (74
Let {ej,ep,....,e2,,E} be a local orthonormal basis of vector fields in M, then {¢ey, Pe,....,Pper,,E} is also a local orthonormal basis.
Putting X =W =¢; in (7.4) and summing over i = 1 to 2n, we obtain
2n 7 2n
L R(9ei 07,97, 9¢i) = 35,1y L18(0Y:02)8(0ei,9ei) —g(9ei 62)8(9Y gei) (7.5)
So by virtue of (4.7), (4.8) and (4.10), the equation (7.5) takes the form
_ _ F(Zn - ]) 2
$(¢Y,92) = {m + (a2~ oc)} 2(9Y,07). (7.6)
By making use of (2.3) and (4.14) in equation (7.6) , we obtain
Sv,z) = {72;1(2“ Ik (oc a) +2n }g(Y,Z) .7

or

§(Y,2) =ag(Y,2)+bn (Y)n (2),

where a = [;;(22"7’:1)) + ((x2 — (x) +2n0{2} and b = [% + (a2 — (x) +2na] .

From which it follows that the manifold is an n—Einstein manifold with respect to the quarter-symmetric metric connection.
This completes the proof of the theorem. O

8. Lorentzian «-Sasakian Manifold Satisfying C - S = 0 with Respect to the Quarter-Symmetric
Metric Connection

Definition 8.1. A Lorentzian o-Sasakian manifold is said to be an Einstein manifold if its Ricci tensor S of the Levi-Civita connection is of
the form

S(X,Y)=ag(X,Y), 8.1
where a is a constant on the manifold.

Theorem 8.2. If Lorentzian a-Sasakian manifold satisfying C - § = O with respect to a quarter-symmetric metric connection, then the
manifold is an Einstein manifold with respect to the quarter-symmetric metric connection.
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Proof. We consider Lorentzian c-Sasakian manifolds with respect to a quarter-symmetric metric connection V satisfying the curvature
condition C- S = 0. Then

(C(x,Y)-8)(z,w)=0. (8.2)
So,
S(C(X,Y)Z,W)+8(2,.C(X,Y)W) =0. (8.3)

Putting X = & in (8.3), we get
S(C.Y)ZW)+S8(Z,C(E,Y)W) =0. (8.4)

From equation (1.4), we have

7

C(EY)Z=R(E,Y)Z~ 1)

[e(Y,2)E—n(2)Y]. (8.5)

Using (4.2) in the equation (8.5), we obtain

CE.Y)Z={o’~a~ He(Y;:2)E —n (2)Y]. (8.6)

7
2n(2n+1)

Using (8.6) and putting Z = & in (8.4) and using the equations (2.2), (4.12), we obtain

{a*—a— MS(Y, W) —2n(a® — a)g(Y,W)] = 0. 8.7)

F
2n(2n+1)
Therefore,

S(v, W) =2n(a* — a)g(Y, W)

provided 7 # 2n(2n+1)(a? — ).
This means that the manifold is an Einstein manifold with respect to the quarter-symmetric metric connection.
This completes the proof. O

9. Example

In this section we construct an example on Lorentzian ¢-Sasakian manifold endowed with the quarter-symmetric metric connection. We
consider the 3-dimensional manifold M? = {(x,y,z) : x,y,z € R}, where (x,y,z) are the standard coordinates in R>. We choose the vector
fields

d d d d

763:(1&:67

|
=

+
Y|
'\<v

which are linearly independent at each point of M>.
Let g be a Lorentzian metric defined by

g(ehel) = 17 8(€2a€2) = 17 g(€3,€3) = _17

and g(ej,ej) = 0if i # j.
Let ¢ be the (1, 1)-tensor field defined by

dey = —ey, Per = —ez, Pe3 =0.

and 1) be a 1—form defined by n(X) = g(X,e3) for any X € [(TM?3)
Now using the linearity of ¢ and g, we obtain

X =X+ n00E,

and

80X, 9Y) = g(X,Y) +n(X)n(Y),

for any vector fields X,Y € I'(TM?). Thus for e3 = &, the structure (¢,&,7,g) defines a Lorentzian para-contact metric structure on M>.
Now, we have

le1,€2] =0, [e2,€3] = —aea, [e1,e3] = —aey,
Let V be the Levi-Civita connection of the Lorentzian metric g which is given by Koszul’s formula defined by

Zg(VXYaZ) :Xg(YvZ)+Yg(va) 7Zg(X’Y) 7g(X’[Y’Z]) 7g(Y7 [sz])+g(zv [X’Y])'
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Using Koszul’s formula, we obtain the following:

Veer =—ae3, Ve ea =0, Ve e3 = —aey, ©.1)
VE‘zel = 07 V(?zeZ = —Qes, V€‘263 = —Qey,
Ve361 = 0, Ve362 =0, V€3€3 = 0,

In view of the above results, we see that
(Vxn)Y = ag(9X,Y)E,
V)(é = OC(PX,

for all X,Y € I(TM?) and & = e3. Therefore the manifold is a Lorentzian c-Sasakian manifold with the structure (¢,&,1,g).
It is known that

R(X,Y)Z=VxVyZ—VyVxZ—VixyZ

Now using (9.1), we can easily obtain the non-zero components of the curvature tensor R as follows:

R(e1,e2)e1 = —aPey, R(er,e2)er = o%ey, ©9.2)
R(€1,63)61 = —a2637 R(€17e3)€3 = —a2e1
R(er,e3)er = —’e3, R(ep,e3)e3 = —at?ey,

Let X,Y and Z be any three vector fields given by

X=X'e, +X%er + X33, 9.3)
Y =Y'e; + Y%+ Ve,

Z=Z'e,+Z%+Z%e;

where X', Y’ and Z!, for all i = 1,2, 3 are all non-zero real numbers. Then

R(X,Y)Z=R(X'e; +X?er + X33,V e; + Y?er +Y3e)(Z'e) + Z%er + Z3¢3). 9.4)
Using equation (9.2) in (9.4), we get

R(X,Y)Z=a*{g(Y,Z)X —g(X,Z)Y}. 9.5)

Hence, the 3-dimensional Lorentzian a-Sasakian manifold is of constant curvature a%. Also from (9.5), we obtain
S(Y,Z) =2a2g(Y,Z) 9.6)

which gives S(e1,e1) = S(ep,e2) =202, S(e3,e3) = —2a? and therefore the scalar curvature r = 602.
Now using (9.1) in (3.7), we obtain the components of quarter—symmetric metric connection V as follows:

Veer = —(0t—1)e3, Ve =0, Vee3 = —(0—1)ey, .7
66261 = O7 ngez = —(OC— l)eg, V62e3 = —(OC— 1)62,
v6‘381 =Y, vt’wez = 07 V€3e3 = 07

Using above results, we can easily obtain the components of curvature tensor R with respect to quarter—symmetric metric connection V as
follows:

=i

(61762)61 = 7(067 1)282, R(€1782)62 = (OC* 1)2617 R(el,EQ)E:; = 07 (98)
(e1,e3)e; = —o(a—1)es, R(ey,e3)es =0, R(ey,e3)e3 = —a(a—1)e;

=i

R(ey,e3)e; =0, R(ey,e3)ex = —a(a—1)es, R(ez,e3)es = —a(o—1)es,

With the help of (9.8), we find the Ricci tensors § with respect to the quarter-symmetric metric connection as:

S(e1,e1) =S(ez,e2) = 2o — 1) —1), 8(e3,e3) = —2a(o —1).

From above results, it follows that the scalar curvature tensor with respect to the quarter-symmetric metric connection is 7 =2(3a¢—1)(a — 1).

Using (4.11) and (9.6) in 3-dimensional Lorentzian o.—Sasakian manifold M?, we have

5(,Z) = (2= 1)(a—1)g(Y,Z) = (= 1)n(Y)n(2).

Thus the three dimensional Lorentzian ot—Sasakian manifold M3 is an n—Einstein manifold with respect to the quarter-symmetric metric
connection V.

If we take o = 1 in this example, then 3-dimensional Lorentzian oi—Sasakian manifold M3 becomes flat with respect to the quarter-symmetric
metric connection V.
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