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Abstract  Öz 

Due to technical developments and wider range of applications in the 
steel structures, significance of the research on structural stability 
problems become forward. Lateral torsional buckling is a major 
problem especially for doubly symmetric I-shaped steel members 
subjected to flexure about their strong axis. If these members are not 
appropriately braced against lateral deflection and twisting, they are 
under the risk of failure by lateral torsional buckling prior to the reach 
their load carrying capacity. In this study, elastic lateral torsional 
buckling behavior of doubly symmetric I-shaped steel members under 
linear moment gradient is investigated considering a proposed method, 
several design standards and codes, approaches from the literature and 
finite element analysis. Proposed method herein is based on finite 
difference solution of lateral torsional buckling differential equation 
considering linear moment gradient. Different unbraced member 
lengths and various end moment values are considered in order to 
compare and evaluate these approaches in terms of critical moment and 
moment modification factor.  Analysis results show that lateral 
torsional buckling is a key issue for doubly symmetric I-shaped steel 
members that are under flexure and it is reflected satisfactorily with the 
proposed method considering the design codes and standards, 
approaches from the literature and finite element analysis results. 

 

 Çelik yapılardaki teknik gelişmeler ve daha geniş uygulama alanları 
nedeniyle yapısal stabilite problemleri üzerine yapılan araştırmaların 
önemi artmaktadır. Yanal burulmalı burkulma, özellikle kuvvetli 
eksenlerinde eğilmeye maruz kalmış çift simetri eksenli I-kesitli çelik 
elemanlar için önemli bir sorundur. Bu elemanlar yatay yer değiştirme 
ve dönmeye karşı uygun bir şekilde desteklenmezlerse, yük taşıma 
kapasitelerine ulaşamadan önce yanal burulmalı burkulma riski 
altındadırlar. Bu çalışmada, farklı uç moment etkisi altındaki çift 
simetri eksenli I-kesitli çelik elamanların elastik yanal burulmalı 
burkulma davranışı, önerilen bir yöntem ile birlikte çeşitli tasarım 
standartları, literatürdeki yaklaşımlar ve sonlu eleman analizleri 
dikkate alınarak incelenmiştir. Burada önerilen yöntem, doğrusal 
değişen moment etkisi altında yanal burulmalı burkulma davranışını 
temsil eden diferansiyel denklemin sonlu farklar yöntemi ile çözümüne 
dayanır. Kritik moment ve moment düzeltme faktörü açısından bu 
yaklaşımları karşılaştırmak ve değerlendirebilmek için farklı yatay 
yönde tutulma uzunlukları ve çeşitli uç moment değerleri dikkate 
alınmıştır. Analiz sonuçları, yanal burulmalı burkulmanın, eğilme 
altında bulunan çift simetri eksenli I-kesitli çelik elemanlar için önemli 
bir konu olduğu ve önerilen yöntem ile tasarım standartları, 
literatürdeki yaklaşımlar ve sonlu elemanlar sonuçları ile 
karşılaştırıldığında sonuçların tatmin edici bir şekilde yansıtıldığını 
göstermektedir. 

Keywords: Lateral torsional buckling, Doubly symmetric I-shaped 
steel member, Structural steel design, Moment modification factor 

 Anahtar kelimeler: Yanal burulmalı burkulma, Çift simetri eksenli I-
kesitli çelik eleman, Çelik yapı tasarımı, Moment düzeltme katsayısı 

1 Introduction 

In the design practice of steel members under flexure, local 
buckling potential and the post buckling resistance, the yield 
and/or rupture strength of cross-section have been significant 
parameters for structural engineers. Lateral torsional buckling, 
where the deformation changes from predominantly in-plane 
bending to combined lateral deflection and twisting, is one of 
the most important stability problems and should be controlled 
in the design phase of steel structural members. If adequate 
precautions have not been taken, the final failure pattern 
involves lateral deflection and twisting in combination with 
various extents of yielding and flange and/or web local 
buckling depending on the specific member characteristics [1]. 

Despite the fact that lateral torsional buckling is a key issue in 
structural steel design, the analytical aspects of determining 
lateral torsional buckling strength have been complex and 
closed form solutions exist only for few cases. Therefore, 

several design standards and codes have offered equations and 
approximations in order to calculate lateral torsional buckling 
behavior of steel members [2]. Because of its important effect 
on the design of steel structures, researchers maintain to 
investigate lateral torsional buckling from different aspects 
[3],[4]. Effects of lateral restraints on torsional and flexural 
bucking of members were examined for elastic and inelastic 
ranges [5],[6]. Additionally, geometric imperfection effects [7] 
and curved members [8] were discussed and influences on the 
member behavior are focused. Also, approaches using finite 
elements [9] and experimental studies [10],[11] were 
performed to evaluate lateral torsional buckling behavior. On 
the other hand, design standards and codes provided buckling 
solutions derived for uniform moment loading condition and 
account for variable moment along the unbraced length with 
moment modification factor, Cb applied to these. Consequently, 
moment modification factor have gained importance and 
studies have been performed to determine the moment 
capacity with adequate accuracy [12],[13]. One of the most 
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extensive early work for determining lateral torsional buckling 
moment capacity was performed by Salvadory [14] and their 
results have been verified many times by other researchers  
[3]-[15] using numerical techniques.  Kirby and Nethercot [16] 
presented an alternative equation for moment modification 
factor that can be applied to more general shapes of nonlinear 
moment diagrams. Besides, Serna et al. offered moment 
modification factor using finite element techniques [17]. Wong 
and Driver [18] proposed an equation for moment modification 
factor using improved quarter-point formula and their results 
were adequate for the majority of the cases they had 
considered. Lateral torsional buckling behavior and moment 
modification factors were also presented in stability books 
regarding their chronological order [19],[20]. 

In this study, lateral torsional buckling of I-shaped steel 
members under linear moment gradient were investigated and 
a function was proposed based on finite difference approach to 
be used in lateral torsional buckling calculations. Several design 
standard and code approaches, methods from the literature and 
finite element program outcomes were used for evaluating the 
proposed moment gradient function outcomes. Since different 
design standards vary substantially from one to another in the 
ways that they characterize the lateral torsional buckling 
behavior, this study also aimed to compare and evaluated these 
approaches using different unbraced member lengths and 
various end moment values.  Lateral torsional buckling 
behaviors of steel members were examined in terms of critical 
moment and moment modification factor using graphics. 

2 Lateral torsional buckling of steel members 

Lateral torsional buckling is one of the major stability problems 
for members under flexure and it influences structural steel 
design directly. Lateral torsional buckling may occur suddenly 
and the movement is perpendicular to the direction of the 
applied load. For lateral torsional buckling type of failure, the 
critical moment, which is a function of lateral and torsional 
stiffness, under the applied load or moment should be reached. 
Critical moment is affected by the material properties, 
boundary conditions, unbraced length, load pattern, and 
dimensions of the member’s cross section. However, the 
principal variable affecting lateral torsional buckling strength 
is the length of the unbraced segment of the member. 
Therefore, the distance between lateral and torsional braces 
has to be controlled precisely. Otherwise, beam may perform 
the influence of lateral torsional buckling, it experiences 
simultaneous in-plane displacement, lateral displacement and 
twisting because of bending.  

In this study, a function is proposed based on finite difference 
approach in order to calculate moment capacity of the steel 
members under the effect of lateral torsional buckling. 
Outcomes of this proposed function are evaluated considering 
globally accepted standards and codes such as; EN 1993-1-1 
[21], BS 5950 [22], AS 4100 [23], AISC 360-16 [24], TSDC-2016 
[25] and TS 4561 [26]. Moreover, finite element based software 
and modification factors given in the literature [14],[16],[18] 
are also presented for precisely evaluating the efficiency of the 
proposed function.   

In Figure 1 [27], I shaped steel member is subjected to uniform 
moment M0 with respect to its major bending axis and it is 
simply supported from its ends. For this case, differential 
equation for considering lateral torsional buckling is given in 
Eqn. 1 [28]. 

 

Figure 1: Lateral torsional buckling of doubly symmetric I 
shaped member under uniform moment 𝑀0 [27]. 

𝐸𝐶𝑤

𝑑4∅

𝑑𝑧4 − 𝐺𝐽
𝑑2∅

𝑑𝑧2 −
𝑀0

2

𝐸𝐼𝑦
∅ = 0 (1) 

Where: 𝐸 is the modulus of elasticity, 𝐺 is the shear modulus, 𝐽 
is the torsional constant, Cw is the warping constant, Iy is the 
moment of inertia with respect to the weak axis, and ∅ is the 
twisting angle.  

Nominal flexural strength according to the limit state of elastic 
lateral torsional buckling for a uniform bending moment 
diagram along the unbraced length L=Lb can be written as Eqn. 
2 if  boundary conditions are assumed for both ends of the beam 
are not twisted but warped [28]. 

𝑀0𝑐𝑟 =
𝜋

𝐿
√𝐸𝐼𝑦𝐺𝐽 + (

𝜋𝐸

𝐿
)

2

 𝐼𝑦𝐶𝑤  (2) 

2.1 Lateral torsional buckling analysis using finite 
difference approach 

Differential equation of lateral torsional buckling is a fourth 
order differential equation and finite difference approach is 
considered for the solution. In this approach, first term of 
Taylor series of each derivative is used. In order to obtain 
numerical solution of Ø, member is divided into equally spaced 
grid points. At a point z=zi, the first, second, third, and fourth 
derivatives of Ø(z) can be written as Eqn. 3 – Eqn. 6 . 

∅𝑖
′ =

1

2∆𝑧
(−∅𝑖−1 + ∅𝑖+1) (3) 

∅𝑖
′′ =

1

∆𝑧2 (∅𝑖−1 − 2∅𝑖 + ∅𝑖+1) (4) 

∅𝑖
′′′ =

1

2∆𝑧3 (−∅𝑖−2 + 3∅𝑖−1 − 3∅𝑖+1 + ∅𝑖+2) (5) 

∅𝑖
′′′′ =

1

∆𝑧4 (∅𝑖−2 − 4∅𝑖−1 + 6∅𝑖 − 4∅𝑖+1 + ∅𝑖+2) (6) 

Finite difference representation at a grid point for fourth order 
differential equation contains five function values. Therefore, 
the use of Eqn. 3-Eqn. 6 at a beam end, which is shown as grid 
point O in Figure 2, requires two extra function values, namely 
Ø-1 and Ø-2. Two equations at point O are required in order to 
represent boundary conditions at that point.  

If a beam is divided into m segments, then the use of finite 
difference methods requires four additional function values. 
There are (m+1) finite difference equations for (m+5) 
unknowns, so that four boundary conditions are needed. At 
each end, two boundary conditions are required, one condition 
involves torsion, and the other one involves warping. 
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Figure 2: Example of grid points in finite difference 
approximation. 

Finite difference representation of differential equation at any 
arbitrary point i. becomes as Eqn. 8 if we use three constants 
determined with Eqn. 7. 

𝑎 =
𝐸𝐶𝑤

∆𝑧4   𝑏 = −
𝐺𝐽

∆𝑧2   𝑐 = −
𝑀0

2

𝐸𝐼𝑦
 (7) 

𝑎(∅𝑖−2 − 4∅𝑖−1 + 6∅𝑖 − 4∅𝑖+1 + ∅𝑖+2)
+ 𝑏(∅𝑖−1 − 2∅𝑖 + ∅𝑖+1) + 𝑐∅𝑖=0         (8) 

If we assume the beam is divided into, for instance, ten 
segments. Eq. (8) is then evaluated at grid points i=0, 1, 2,…,10 
so there are eleven equations. The boundary conditions at the 
two ends are given with Eqn. 9 and Eqn. 10. 

∅ = 0 |
 

𝑧 = 0, 𝑧 = 𝐿
 (9) 

𝑑2∅

𝑑𝑧2 = 0│𝑧=0,𝑧=𝐿 
(10) 

In the finite difference approach, Eqn. 9 and Eqn. 10 can be 
written in the form as in Eqn. 11 and the beam is divided into m 
segments. 

∅𝑖 = 0

∅𝑖−1 − 2∅𝑖 + ∅𝑖+1 = 0
|

 𝑧 = 0 → 𝑖 = 0 

𝑧 = 𝐿 → 𝑖 = 𝑚
 

 

(11) 

Eleven finite difference representation at the grid points and 
two additional boundary conditions at each end make a linear 
simultaneous equation system of the size of fifteen.  

In this study, a member subjected to unequal end moments as 
in Figure 3 is focused and finite difference approach is applied 
using Matlab [29]. Afterwards, a function is proposed using the 
finite difference approach outcomes to be used in lateral 
torsional buckling calculations practically. 

 

Figure 3: Bending moment diagram in a member subjected to 
unequal end moments. 

In Figure 3, a member with an end moment M at one end and 
βM at the other end is shown. M is chosen the larger absolute 
end moment so that β ranges from -1 to +1 for considering 
potential different cases of member end moments. The bending 
moment equation for this case is shown with Eqn. 12. 

M0 = M − (1 + β)
M

L
. z (12) 

where z is measured from the beam end where the moment M 
acts. For finite difference approach, Eqn. 12 can be written as 
Eqn. 13. 

𝑀0 = 𝑀[1 − (1 + 𝛽)
𝑖

𝐿
. ∆𝑧] (13) 

where z=I·z. By substituting moment M0 in Eqn. 13 into Eqn. 1, 
the differential equation used in the finite difference approach 
for this load case becomes as Eqn. 14. 

𝐸𝐶𝑤

𝑑4∅

𝑑𝑧4 − 𝐺𝐽
𝑑2∅

𝑑𝑧2 −
𝑀0

2

𝐸𝐼𝑦
[1 − (1 + 𝛽)

𝑖

𝑚
]2∅ = 0 (14) 

Finite difference calculation procedure that is used for the basic 
case is followed for solving the differential equation in Eqn. 14. 
An analysis code is written using Matlab [29] and boundary 
conditions are considered in the calculations. In the analysis, 
member is divided into 300 elements considering accuracy of 
analysis results. Critical moment due to lateral torsional 
buckling is determined and moment modification factor is 
presented for each moment gradient value. Finite difference 
analysis results are shown in Table 1. 

Table 1: Moment modification factor for the member. 

β Cb Finite Difference Method 

-1.0 1.000 

-0.9 1.052 

-0.8 1.110 

-0.7 1.173 

-0.6 1.242 

-0.5 1.317 

-0.4 1.401 

-0.3 1.492 

-0.2 1.593 

-0.1 1.702 

0 1.820 

0.1 1.946 

0.2 2.080 

0.3 2.219 

0.4 2.359 

0.5 2.497 

0.6 2.625 

0.7 2.729 

0.8 2.792 

0.9 2.786 

1.0 2.693 

A practical function to be used in lateral torsional buckling 
calculations is proposed considering the β values and moment 
modification factors. This function is presented with Eqn. 15. 
Also, regression equation is calculated as R2=1.00 for the sixth 
degree proposed polynomial considering the data computed by 
using finite difference approach. 

𝐶𝑏 = −0.1452𝛽6 + 0.3063𝛽5 − 0.2576𝛽4 + 0.0667𝛽3

+ 0.4294𝛽2 − 1.2239𝛽 + 1.8294 
(15) 

Relationship between moment modification factor and β value 
of the end moments are shown in Figure 4. 
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Figure 4: Cb factors for a beam subjected to unequal end 
moments. 

2.2 Lateral torsional buckling analysis using design 
standards and codes 

Internationally accepted standards and codes such as; EN 
1993-1-1 [21], BS 5950 [22], AS 4100 [23], AISC 360-16 [24], 
TSDC-2016 [25] and TS 4561 [26] are presented for lateral 
torsional buckling equations. 

2.2.1 EN 1993-1-1 

Critical elastic lateral torsional buckling moment capacity for 
the case of beams with doubly symmetric sections and simply 
supported ends and subjected to a constant moment over the 
laterally unbraced length is given with Eqn. 16 in EN 1993-1-1 
[21]. In this Eurocode equation, member is assumed to be 
loaded from shear center. 

𝑀𝑐𝑟 = 𝐶1

𝜋2𝐸𝐼𝑧

(𝑘𝐿)2
[(

𝑘

𝑘𝑤
)

2 𝐼𝑤

𝐼𝑧
+

(𝑘𝐿)2𝐺𝐼𝑡

𝜋2𝐸𝐼𝑧
]

0.5

 (16) 

where: It is the torsion constant, Iw is the warping constant, Iz is 
the second moment of area about the minor axis and L is the 
length of the beam between points which have lateral restraint, 
E is the modulus of the elastic. The effective length factors k and 
kw vary from 0.5 for full fixity to 1.0 for no fixity, with 0.7 for 
one end fixed and one end free. For a case with k is equal to 1.0, 
the value of C1 for any ratio of end moment loading is given with 
Eqn. 17 [21]. 

𝐶1 = 1.88 − 1.4𝛹 + 0.52𝛹2 ≤ 2.70 , 𝛹 =
𝑀𝑠

𝑀𝐿
  (17) 

where: Ψ is the ratio of end moment loading. 

2.2.2 BS 5950  

British code for steelworks in buildings [22] presents a 
formulation in order to determine elastic moment capacity 
under lateral torsional buckling. BS 5950 provides an 
equivalent uniform moment factor with C1 as in Eqn. 18. 

𝐶1 =
𝑀𝑚𝑎𝑥

0.2𝑀𝑚𝑎𝑥 + 0.15𝑀𝐴 + 0.5𝑀𝐵 + 0.15𝑀𝐶
≤ 2.273 (18) 

Where: values of Mmax is the absolute maximum moment along 
Lb, MA, MB and MC , are the absolute moments at the quarter, 
center, and three-quarter point, respectively.  

2.2.3 AS 4100 

Australian steel design standard AS 4100 [23] gives nominal 
member moment capacity under elastic lateral torsional 
buckling with Eqn. 19. 

𝑀𝑏 = 𝛼𝑚𝛼𝑠𝑀𝑠 ≤ 𝑀𝑠 (19) 

where: Mb is the nominal member moment capacity, Ms the 
nominal section moment capacity, Moa is the reference buckling 
moment, αm and αs  are determined in Eqn. 20 and Eqn. 21, 
respectively. 

𝛼𝑚 =
1.7𝑀𝑚

√[𝑀2
2 + 𝑀3

2 + 𝑀4
2]

 ≤ 2.5 (20) 

𝛼𝑠 = 0.6 [√(
𝑀𝑠

𝑀𝑜𝑎
)

2

+ 3] − (
𝑀𝑠

𝑀𝑜𝑎
) (21) 

2.2.4 AISC 360-10  

AISC 360-10 [24] specification defines the nominal elastic 
lateral torsional buckling with Eqn. 22. 

𝑀𝑐𝑟 = 𝐶𝑏

𝜋

𝐿𝑏

√𝐸𝐼𝑧𝐺𝐼𝑡 + (
𝜋𝐸

𝐿𝑏
)

2

𝐼𝑧𝐼𝑤 (22) 

Where: Lb is the lateral buckling length and Cb is the moment 
modification factor. 

Moment modification factor is studied in order to improve the 
capability of representing lateral torsional buckling behavior. 
Since moment modification factor studies are evaluated in the 
present study, these factors are summarized considering the 
relevant literature. 

Moment modification factor is first studied by Salvadory (1955) 
with using Eqn. 23 considering linear moment distribution 
between the brace points [14]. 

𝐶𝑏 = 1.75 − 1.05𝛹 + 0.3𝛹2 ≤ 2.3 (23) 

Kirby and Nethercot (1979) presented an alternative equation 
for Cb, which is applicable for any shape of moment diagrams 
[26]. A slightly modified version is given in Eqn. 24 and is 
adopted by AISC 360-10 for any moment distribution [16]. 

𝐶𝑏 =
12.5𝑀𝑚𝑎𝑥

2.5𝑀𝑚𝑎𝑥 + 3𝑀𝐴 + 4𝑀𝐵 + 3𝑀𝐶
 (24) 

Wong and Driver (2008), proposed an equation for Cb factor 
and it is presented in Eqn. 25 [18]. 

𝐶𝑏 =
4𝑀𝑚𝑎𝑥

√𝑀𝑚𝑎𝑥
2 + 4𝑀𝐴

2 + 7𝑀𝐵
2 + 4𝑀𝐶

2
≤ 2.5 (25) 

2.2.5 TSDC-2016 

TSDC-2016 [25] presents an approach for determining the 
lateral torsional buckling effects for the steel frame members 
and it is summarized in this part. This approach is same as AISC 
360-10 [24] equations, and it classifies elastic and inelastic 
buckling considering unbraced length limits.  

In TSDC-2016, unbraced length exceeds unbraced length limit, 
elastic lateral torsional buckling may occur and Eqn. 26 and 
Eqn. 27 are used for calculating Mn. 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 25(6), 635-642, 2019 
E. T. Uzun, M. Seçer 

 

639 
 

𝑀𝑛 = 𝐹𝑐𝑟𝑊𝑒𝑥 ≤ 𝑀𝑝 (26) 

𝐹𝑐𝑟 =
𝐶𝑏𝜋2𝐸

(
𝐿𝑏

𝑖𝑡𝑠
)

2
√1 + 0.078

𝐽𝑐

𝑊𝑒𝑥ℎ𝑜
(

𝐿𝑏

𝑖𝑡𝑠
)

2

 (27) 

where: Fcr is the critical yielding point , Lb is the length of the 
unbraced segment of the member, E is the modulus elasticity of 
steel, Wex is the elastic section modulus about strong axis, J is 
the torsional constant, ho is the distance between the flange 
centroids. 

2.2.6 TS 4561 

Design standard TS 4561 [26] was used in structural steel 
design practice in Turkey up to publication of TS EN 1993-1-1 
[30]. After the publication of TS EN 1993-1-1 [30] in 2005, TS 
4561 [26] standard was abolished. In the present study, TS 
4561 [26] is considered for evaluating the development in the 
design procedure of the elastic buckling moment calculations. 
Eqn. 28, Eqn. 29 and Eqn. 30 are used to calculate critical 
buckling moment due to TS 4561 standard [26]. 

𝑀𝐾𝑟 = 𝑘𝐷𝑀𝑝 (28) 

𝑘𝐷 =
1

√1 + 1.3 (
𝑀𝑝

𝑀𝐷
)

33

 
(29) 

𝑀𝐷

= 𝐶1

𝜋2𝐸𝐼𝑦(ℎ − 𝑡𝑏)

2𝐿𝐷𝐿
[√1 + (𝜂𝐶2)2 +

𝐺𝐾𝑇

𝐸𝐼𝑦
(

2𝐿

𝜋ℎ
)

2

+ 𝜂𝐶2] 
(30) 

Where: MKr  is the maximum bending moment that the section 
can bear without lateral torsional buckling and axial load effect, 
Mp is plastic moment, MD is critical elastic moment for lateral 
torsional buckling, Iy is moment of inertia relative to the weak 
principal axis of the section, L is lateral unbraced length of the 
beam, GKT is section torsional stiffness, tb is section flange 
thickness, h is section height, η is the ratio of the distance 
between the load impact point and the centre of gravity to the 
half-height of the section, Cm  is a constant provided in the 
standard. 

2.3 Lateral torsional buckling using finite element 
analysis  

Beside the standard and codes, finite element based programs 
can be used to determine the critical moment for members 
under lateral torsional buckling. Finite element based software 
has high capacities and can consider both geometric and 
material nonlinearities in the analyses steps [31]. However, 
structural modelling and analysis steps are time-consuming 
and require over-qualified engineers.  

In Figure 5, lateral torsional buckling of I-shaped members are 
illustrated by using ANSYS [31]. When I-shaped members are 
loaded in its major principle plane, upper flange goes into 
compression, which means it is trying to get shorter. This flange 
will therefore tend to buckle out sideways. 

In the study, four side shell elements SHELL 43 from the ANSYS 
element library are used to model the web and both flanges. 
Buckling analyses are performed with mesh sizes about 40 x 40 

mm using finite element model. Mesh arrangement used in the 
analysis is also shown in Figure 5.  

  

Figure 5: Lateral torsional buckling with FE analysis [31]. 

3 Numerical examples 

Lateral torsional buckling behaviors of I-shaped steel member 
are examined considering a simply supported steel beam 
having IPE 500 section as shown in Figure 6. This beam is 
subjected to linear moment gradient and section is given in 
Figure 7. 

 

Figure 6: Simply supported I-shaped member under linear 
moment gradient. 

 

Figure 7: I-shaped steel member section. 

Section properties for IPE 500 section is defined considering 
Figure 7. Height of the section, h is 500 mm, width of the flange, 
bf is 200 mm, radius of the section, r is 21 mm, thickness of the 
flange, tf  is 16 mm, thickness of the web, tw is 10.2 mm, torsion 
constant, It is 89.3 x 104 mm4, warping constant, Iw is 1249 x 109 
mm6, second moment of area about the minor axis, Iz is 2142 x 
104 mm4.  Modulus of Elasticity and Poisson ratio are selected 
as 200 GPa and 0.3, respectively. 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 25(6), 635-642, 2019 
E. T. Uzun, M. Seçer 

 

640 
 

In the first step, proposed formula based on finite difference 
analysis is used for calculation of the moment modification 
factor due to moment gradient. Afterwards, outcomes of the 
proposed formula is evaluated considering several standards, 
codes such as; EN 1993-1-1 [21], BS 5950 [22], AS 4100 [23], 
AISC 360-10 [24], TSDC-2016 [25], TS 4561 [26] and 
recommended moment modification factor equations by the 
researchers from the literature [14, 16, 18]. Finally, finite 
element based ANSYS [31] is used to validate the proposed 
formula.  

In order to investigate the structural behavior and the 
efficiency of the proposed formula, various end moment ratios 
-1 < β < 1, different unbraced length conditions are considered 
in the present study.  These unbraced lengths Lb, are selected as 
8 m, 10 m, 12 m, and 16 m to represent realistic members.  

Unbraced member length of 8 m is first used for determining 
elastic lateral torsional buckling moment capacity considering 
the changes in the moment ratio values. Outcomes of the 
analyses are given in Figure 8 and Figure 9. 

 

Figure 8: End moment ratio (β) and Mcr for doubly symmetric 
I-beam with Lb = 8 m. 

 

Figure 9: End moment ratio (β) and Mcr for doubly symmetric 
I-beam with Lb = 8 m considering Cb factors. 

Unbraced member length of 10 m is analyzed and results are 
presented in Figure 10 and Figure 11. 

 

Figure 10: End moment ratio (β) and Mcr for doubly symmetric 
I-beam with Lb = 10 m. 

 

Figure 11: End moment ratio (β) and Mcr for doubly symmetric 
I-beam with Lb = 10 m considering Cb factors. 

Unbraced member length of 12 m is analyzed and results are 
presented in Figure 12 and Figure 13. 

 

Figure 12: End moment ratio (β) and Mcr for doubly symmetric 
I-beam with Lb = 12 m. 
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Figure 13: End moment ratio (β) and Mcr for doubly symmetric 
I-beam with Lb = 12 m considering Cb factors. 

Finally, unbraced member length of 16 m is analyzed and 
results are presented in Figure 14 and Figure 15. 

 

Figure 14: End moment ratio (β) and Mcr for doubly symmetric 
I-beam with Lb = 16 m. 

 

Figure 15: End moment ratio (β) and Mcr for doubly symmetric 
I-beam with Lb = 16 m considering Cb factor. 

4 Conclusions 

Lateral torsional buckling behavior of I-shaped steel members 
is investigated and a function based on finite difference 
approach is proposed for practical calculations. Proposed 
function is evaluated considering several design standard and 
code approaches, methods from literature and finite element 
program outcomes using different unbraced member lengths 
and linear moment gradient. Relationships between end 
moment ratio and critical moment are plotted and analysis 
results for moment modification factors are presented. The 
outcomes from the study are presented below.  

1) Lateral torsional buckling is a key issue for I-shaped 
steel members that are under linear moment gradient 
and it is reflected satisfactorily with the proposed 
function considering finite element analysis results, 
methods from literature and design codes and 
standards, 

2) According to the numerical example of the study; 
critical moment values for TS 4561 and AS 4100 are 
slightly low when compared other specification 
results. Therefore, they give more conservative 
results than the other approaches. BS 5950 give close 
results with AISC 360-10 and TSDC-2016 results. 
Results of EN 1993-1-1 are generally close to FEM and 
proposed equation results, 

3) Unbraced member length increases because 
significant decrease in elastic moment capacity under 
lateral torsional buckling as it can be realized from the 
graphics. For instance, considering β=0 end moment 
ratio, decrease in critical moment capacity for Lb=10 
m, Lb =12 m and Lb=16 m due to Lb=8 m is 26.4%, 
41.7% and 58.8% respectively. Therefore, differences 
in between analysis approaches results decrease with 
the increase of the unbraced member length, 

4) In order to improve the accuracy of determining the 
critical moment capacity, moment modification 
factors from the literature are also investigated in the 
study. Numerical examples of this study show that; 
proposed Cb equation give more close results to finite 
element analysis outcomes than any other 
approaches considered in the study, 

5) Proposed equation is derived for determining lateral 
torsional buckling behavior under linear moment 
gradient and therefore it is specific for the case. 
However, lateral torsional buckling equations in 
design standards and codes cover several load cases 
for structural members and therefore they are more 
general and useful. 
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