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Abstract

In an a-series process, explicit estimators of the parameters o,y and o2
are obtained by using the methodology of modified maximum likelihood
(MML) when the distribution of the first occurrence time of an event
is assumed to be Weibull. Monte Carlo simulations are performed to
compare the efficiencies of the MML estimators with the corresponding
nonparametric (NP) estimators. We also apply the MML methodol-
ogy to two real life data sets to show the performance of the MML
estimators compared to the NP estimators.
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1. Introduction

In the statistical literature, a counting process (CP) {N(t),t > 0} is a common method
of modeling the total number of events that have occurred in the interval (0,¢]. If the
data consist of independent and identically distributed (iid) successive interarrival times
(i.e., there is no trend), a renewal process (RP) can be used. However, this is not always
the case because it is more reasonable to assume that the successive operating times will
follow a monotone trend due to the ageing effect and accumulated wear, see Chan et al.
[8]. Using a nonhomogeneous Poisson process with a monotone intensity function is one
approach to modeling these trends, see Cox and Lewis [9] and Ascher and Feingold [2]. A
more direct approach is to apply a monotone counting process model, see, for example,
Lam [13, 14], Lam and Chan [15], and Chan et al. [8]. Braun et al. [6] defined such a
monotone process as below.
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1.1. Definition. Let X}, be the time between the (k — 1) and k*" event of a counting
process {N(t),t > 0} for k¥ = 1,2,.... The counting process {N(¢),t > 0} is said
to be an «-series process with parameter « if there exists a real number « such that
k“Xg, k=1,2,... are iid random variables with a distribution function F .

The a-series process was first introduced by Braun et al. [6] as a possible alternative
to the geometric process (GP) in situations where the GP is inappropriate. They applied
it to some reliability and scheduling problems. Some theoretical properties of the a-series
process are given in Braun et al. [6, 7]. Clearly, the X}’s form a stochastically increasing
sequence when a < 0; they are stochastically decreasing when o > 0. When a = 0, all
of the X}, are identically distributed and an a-series process reduces to a RP.

If F is an exponential distribution function and « = 1, then the a-series process
{N(t),t > 0} is a linear birth process [7].

Assume that the distribution function F' for an «-series process has positive mean
w(F(0) < 1), and finite variance o®>. Then

1 o’

(1.1)  E(Xx) = T and Var(Xk):W,k:LZ... .
Thus, o, 1 and o2 are the most important parameters for an a-series process because
these parameters completely determine the mean and variance of Xj.

In this paper, we study the statistical inference problem for «-series process with
Weibull distribution and obtain the explicit estimators of the parameters «, 1 and o by
adopting the method of modified likelihood. We recall that the mean and variance of the
Weibull distribution are given by

(1.2) u:l“(l-l-%)bandaz: {F(HE)—FQ(Hé)}bi

respectively. Here, a and b are the shape and scale parameters of the Weibull distribution,
respectively.

Since obtaining explicit estimators of the parameters is similar to that given in [25],
we just reproduce the estimators and omit the details, see also [10], [11] and [23]. The
motivation for this paper comes from the fact that the Weibull distribution is not easy to
incorporate into the a-series process model because of difficulties encountered in solving
the likelihood equations numerically. To the best of our knowledge, this is the first study
applying the MML methodology to an a-series process when the distribution of the first
occurrence time is Weibull.

The remainder of this paper is organized as follows: Likelihood equations for esti-
mating the unknown parameters and the corresponding MML estimators are given in
Section 2. Section 3 presents the elements of the inverse of the Fisher information ma-
trix. Section 4 presents the simulation results for comparing the efficiencies of the MML
estimators with the NP estimators. Two real life examples are given in Section 5. Con-
cluding remarks are given in Section 6.

2. Likelihood equations

As mentioned in Section 1, Y, = k*Xg, kK = 1,2,...,n are iid Weibull random
variables. The likelihood equations, % =0, % =0 and % = 0 are obtained by
taking the first derivatives of the log-likelihood function with respect to the parameters

a,a and b. For example, we see that the likelihood equation for the parameter « is

dlnL ~ "R X\
— Ink — Ink =0.
I ;n z( : ) nk=0

k=1
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The solutions of the likelihood equations give us the ML estimators of the parameters «, a
and b. However, the ML estimators cannot be obtained explicitly or numerically because
the first derivatives of the likelihood function involve power functions of the parameter
a, as well as the shape parameter a.

To overcome these difficulties, we take the logarithm of the Yj’s as shown below:
(21) InYy=alnk+InXy, k=1,2,...,n.

It is known that the InY}’s are iid extreme value (EV) random variables with the prob-
ability density function given by
1 - -4
(2.2) flw) = = exp (w_) exp (—exp (w—))7 weR; >0, eR,
n n n
where § = Inb is the location parameter and n = 1/a is the scale parameter.

We first obtain the estimators of the unknown parameters in the extreme value distri-
bution, and then obtain the estimators of the Weibull parameters by using the following
inverse transformations:

(2.3) a=1/n and b= exp(d).
The likelihood function for In X%, k = 1,2,...,n is found by using (2.1) and (2.2):

1 " InX,+alnk—2§ InX,+alnk—24¢
2.4 L(a,d6,m) = — exp ——exp(—) .
@0 Lobn) = o (Y IS c

k=1
For the sake of simplicity, we use the notations cj instead of Ink in (2.4).

Then, it is obvious that maximizing L(«, §,n) with respect to the unknown parameters
a, 0 and 7 is equivalent to estimating the parameters in (2.5),

(25) Inzr=0—ack+er (1 <k<n),

when e, ~ EV(0, 7).
Then the likelihood equations are given by

dlnL 1< 1
81; ZEch——Zg(zk)ckZO

- ni=

9w - .

n n

= - g(zr) —— =0

96 n kzzl (z) n

and
Ol _1 g(zk)zk—lzzk—ﬁzoy

om  ni n= n

where
2K = i, (k=1,2,...,n) and g(z) = exp(z).
n

The ML estimators of the extreme value distribution parameters are the solutions of the
equations in (2.6). Because of the awkward function g(z), it is not easy to solve these
equations. The ML estimates are, therefore, elusive. Since it is impossible to obtain
estimators of the unknown parameters in a closed form, we resort to iterative methods.
However that can be problematic for reasons of
i) multiple roots,
ii) non-convergence of iterations, or
iii) convergence to wrong values;
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see, Barnett [4] and Vaughan [24]. If the data contain outliers, the iterations for the
likelihood equations might never converge, see Puthenpura and Sinha [17].

To overcome these difficulties, we use the method of modified maximum likelihood in-
troduced by Tiku [19, 20], see also Tiku et al. [22]. The method linearizes the intractable
terms in (2.6) and calls the resulting equations the “modified” likelihood equations. The
solutions of these equations are the following closed form MML estimators (see [10, 11,
23] and [25)):

~ /B2 = dnC
(2.7 a=nD-FE,d=Inz+ac)+ é’ﬁ and ) = B+ VB +4nC (bias corrected)
m 2y/n(n —2)
where

Z (1 — ak)(c[k] — 5[']) Z bk(ln Tk — In f['])(C[k] — E['])

D= k:ln , E= k=1 — ,
> bi(cp — )2 > bi(epy —€p)?
k=1 k=1
=, bk ln :E[k] kzl bkC[k] i i
Ingj="———, ¢j=—"—, A= (ax — 1), m = br,
m m k=1 k=1
B = Z(ak — 1) [(ln:c[k] —In :f[‘]) — E(C[k] — E[»])] and
k=1
~ _ _ 2
C = Z bk [(lnx[k] — lnx[,]) — E(C[k] — C['])] .

1
Then, by (1.2) and (2.3), the MML estimators of u and o2 are obtained as
(28) =T (1+n) exp(d) and 5 = [ (1+27) — > (1 +7)] exp(20)
respectively.

It should be noted that the divisor m in the denominator of 7 was replaced by
n(n — 2) as a bias correction. See Vaughan and Tiku [25] and Tiku and Akkaya [23]
for the asymptotic and small samples properties of the MML estimators.

3. The Fisher information matrix

The elements of the inverse of the Fisher information matrix (I™!) are given by

)

n n 2
V12:T]2zck (ani—(Z@c) >7 ‘/13207
k=1

k=1 k=1
n n n 2
Vao :772Zci (ani— (Z%) ) +(1_’Y)2/nﬂ'27
k=1 k=1 k=1
_ 2 2 a2 2
Vaz = —61n°(1 — ) /nm” and Vas = 6n° /nn”,

where 7 is the Euler constant.

It should be noted that the Fisher information matrix I is symmetric, so Vo1 =
Via, Va1 = Vig and Via = Va3. The diagonal elements in It provide the asymptotic

variances of the ML estimators, i.e., V (@), V(8) and V(7). These variances are also known
as the minimum variance bounds (MVBs) for estimating o, 6 and . The MML estimators
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are asymptotically equivalent to the ML estimators when the regularity conditions hold,
see Bhattacharrya [5] and Vaughan and Tiku [25]. Therefore, we can conclude that
the MML estimators are fully efficient, i.e., they are asymptotically unbiased and their
covariance matrix is asymptotically the same as the inverse of I. See Table 1 for the
simulated variances of the MML estimators in (2.7) and the corresponding MVB values.

Table 1. The simulated variances of the MML estimators and the
corresponding M VB values

Simulated variances MVB
n a 5 7 a 5 I
30 0.0132 0.0908 0.0054 0.0119 0.0828 0.0051
50 0.0069 0.0650 0.0031 0.0065 0.0623 0.0030
100 0.0030 0.0424 0.0015 0.0029 0.0415 0.0015

It is clear from Table 1 that the simulated variances of the MML estimators and the
corresponding MVB values become close as n increases. Therefore, the MML estimators
are highly efficient estimators.

4. Simulation results

An extensive Monte Carlo simulation study was carried out in order to compare the
efficiencies of the MML estimators and the NP estimators given below; see Aydogdu and
Kara [3].

n

>Ink > InXi—n > nXiInk

~ k=1 k=1 k=1
a= n n 2 ’
(4.1) ny (Ink)?— (Z lnk)
k=1 k=1
5 = exp(208)a:
and
root of 22 Infi — 2B — 52 =0, a<0
~ ) S kX S kT2, 0<a<07
H= k=1 k=1
S X/ S kTS, a>0.7
k=1 k=1
where
S In Z nXklnk—Z(lnk)QZInXk
5 _ k=1 k=1 k=1 k=1
(Z ) -n Z (In k)?
k=1 k=1
and

B (k; (In Xp)* — % (lenxkf) -a’ (él (Ink)* — 2 (k; In k)2>

e n—2
All the computations were conducted in MATLAB 7. The means and the MSEs were
calculated for different sample sizes, o parameters and shape parameters, based on
[100,000/n] Monte Carlo simulations. Here, [-] represents the greatest integer value.
The scale parameter b was taken to be 1 throughout the study. We consider the sample
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sizes n = 30, 50, 100, the a parameter values « = —0.5,0.5,0.9 and the shape parameters
a =1.5,2 and 3. The simulated means, the MSEs and the relative efficiencies (REs)

_ MSE(n) MSE(5?)

RE(fi/11) = MSB(R) < 100, RE(6°/5°%) = MSB(EE) 100,
RE(a/a) = %ﬁg x 100

of the NP and MML estimators are given in Table 2.

Table 2. The simulated means, nxMSEs and REs for the MML and NP
estimators of the parameters u, 0% and o

i 7
a=15 a=-0.5; u=0.9027; o2 =0.3757
n | Estimators | Mean | nxMSE | RE | Mean | nxMSE | RE | Mean | nxMSE | RE

30 MML 0.8965 | 3.43 55 | 0.4316 | 3.49 30 |-0.5117| 0.71 65

a

NP 0.9468 | 6.22 0.5160 | 11.73 -0.4931| 1.10

50 MML 0.8993 | 4.18 56 | 0.4005 | 4.94 44 | -0.5087 | 0.62 66
NP 09179 | 7.43 0.4483 | 11.33 -0.5020 | 0.94

100 MML 0.9040 | 5.66 58 | 0.3808 | 5.38 43 1-0.5048 | 0.49 61
NP 0.8945 | 9.72 0.3974 | 12.51 -0.4964 | 0.80

a=2; a=—05; u=0.882; o° =0.2146
30 MML [0.8737] 1.85 | 55]0.218 | 060 | 28 [-0.5127] 0.38 | 62

NP 0.9217 | 3.34 0.2745 | 2.16 -0.4943 | 0.61

50 MML 0.8797 | 2.74 57 10.2234 | 0.88 38 |-0.5091 | 0.39 66
NP 0.9105 | 4.77 0.2612 | 2.34 -0.4984 | 0.58

100 MML 0.8813 | 3.40 60 | 0.2186 | 0.99 41 |-0.5057 | 0.33 66
NP 0.8957 | 5.68 0.2471 | 2.39 -0.5018 | 0.50

a=3; a=—05; u=0.8930; o2 =0.1053
30 MML [0.8759] 0.91 | 66 ][0.1037] 0.06 |25 [-0.5077| 0.18 | 72

NP 0.9154 | 1.37 0.1366 | 0.25 -0.4991 | 0.26

50 MML 0.8864 | 1.17 65 | 0.1031 | 0.09 26 |-0.5048 | 0.17 69
NP 0.9084 | 1.78 0.1352 | 0.33 -0.5004 | 0.25

100 MML 0.8879 | 1.42 62 | 0.1040 | 0.09 26 |-0.5036 | 0.13 65
NP 0.9074 | 2.29 0.1211 | 0.34 -0.4986 | 0.20

a=15; a=0.5; u=0.9027; o2 =0.3757
30 MML [0.8901| 343 |76 [04201] 4.18 [31]04878 | 074 | 70

NP 0.9318 | 4.50 0.5266 | 13.32 0.5041 1.06

50 MML 0.8971 | 4.66 72 10.4048 | 4.06 47 | 0.4897 0.61 67
NP 0.9216 | 6.48 0.4492 | 8.56 0.5031 0.91

100 MML 0.8993 | 5.81 64 | 0.3861 | 4.76 52 | 0.4934 0.52 65
NP 0.9111 | 9.06 0.4082 | 9.11 0.5016 0.80

a=2; a=05; p=0.8862; o> =0.2146
30 ] MML |0.8671] 193 | 76 [0.2204] 062 |32 ] 04838 | 040 | 70

NP 0.9156 | 2.54 0.2757 | 1.93 0.5059 0.57
50 MML 0.8801 | 2.44 72 10.2166 | 0.72 38 | 0.4916 0.36 68
NP 0.8968 | 3.39 0.2415 | 1.90 0.4976 0.53

100 MML 0.8826 | 3.45 67 0.2162 | 0.84 37 | 0.4949 0.32 67
NP 0.8941 | 5.13 0.2363 | 2.25 0.4986 0.48
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Table 2 (continued)

fi | 5’ a
a=3; a=0.5 pu=0.8930; ¢ =0.1053
n | Estimators | Mean | nxMSE | RE | Mean | nxMSE | RE | Mean | nxMSE | RE

30 MML 0.8754 | 0.92 77 0.1012 | 0.07 28 10.4901 | 0.17 68

NP 0.9058 | 1.20 0.1368 | 0.25 0.5016 | 0.25

50 MML 0.8829 | 1.08 71 |0.1040 | 0.08 31 10.4948 | 0.15 65
NP 0.8957 | 1.52 0.1236 | 0.26 0.5026 | 0.23

100 MML 0.8878 | 1.50 68 [0.1049 | 0.10 31 10.4967 | 0.14 70
NP 0.8890 | 2.22 0.1187 | 0.32 0.5018 | 0.20

a=15; a=09; u=0.9027; o2 =0.3757
30 MML | 0.8908 | 3.47 | 73 |0.4103| 3.67 | 43 [0.8807| 0.75 | 69

NP 0.9497 | 4.77 0.4890 | 8.73 0.9020 | 1.08

50 MML 0.8930 | 4.40 72 10.4031 | 4.34 49 10.8896 | 0.61 64
NP 0.9313 | 6.10 0.4443 | 8.92 0.8981 | 0.95

100 MML 0.8943 | 5.87 70 10.3924 | 4.89 49 10.8939 | 0.57 62
NP 0.9221 | 8.40 0.4088 | 9.95 0.9018 | 0.92

a=2; a=0.9; u=0.8862; o> =0.2146
30 MML [0.8686| 2.01 |76 |0.2239] 067 |36 [0.8849] 0.41 | 71

NP 0.9258 | 2.66 0.2809 | 1.88 0.9064 | 0.58

50 MML 0.8764 | 2.47 70 10.2211 | 0.73 38 10.8901 | 0.36 67
NP 0.8987 | 3.52 0.2658 | 1.94 0.9017 | 0.54

100 MML 0.8825 | 3.39 71 |0.2155 | 0.87 40 10.8929 | 0.31 66
NP 0.8943 | 4.80 0.2513 | 2.19 0.8976 | 0.47

a=3; a=0.9; p=0.8930; 0 =0.1053
30 MML |o0.8742] 093 | 72 [0.1028 [ 0.07 [ 26 [0.8912] 0.18 | 67

NP 0.9166 | 1.30 0.1354 | 0.27 0.9020 | 0.27

50 MML 0.8865 | 1.17 71 |0.1027 | 0.08 24 10.8941 | 0.16 67
NP 0.9030 | 1.64 0.1274 | 0.33 0.8990 | 0.24

100 MML 0.8878 | 1.60 68 | 0.1030 | 0.10 32 10.8949 | 0.15 68
NP 0.8986 | 2.36 0.1176 | 0.31 0.8989 | 0.22

The results given in Table 2 show that the MML estimators are more efficient than the
NP estimators in every case.

5. Illustrative examples

In this section, the parameters o, and 2 in an a-series process are estimated on
two different real data sets by using the MML estimators and the NP estimators. The
first example uses data on coal-mining disasters and the second one is about the aircraft
6 data.

5.1. Coal-mining disaster data. This data set has 190 observations showing the in-
terval in days between successive disasters in Great Britain, see Andrews and Herzberg
[1]. The data contain one “zero” because there were two accidents on the same day.
The zero is replaced by 0.5 since two accidents on the same day usually are not at the
same time of the day, an approximate time interval between them should be 0.5 days,
see Jarrett [12].
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To obtain an idea about the underlying distribution of €; in the following model
Inzr =0 — ack +er (1 <k <190),

we first constructed a Q-Q plot of the 190 residuals, see Figure 1. It should be noted
that the EV Q-Q plot of the residuals are constructed by plotting the quantiles of the
EV distribution against the ordered residuals €x = Inx, — § + ack.

Figure 1. EV Q-Q plot of the coal-mining disaster data

3 L L L L L L L L L OU.

Quantiles of Input Sample

Extreme Value Quantiles

It is clear from Figure 1 that the data points do not deviate much from a straight line,
therefore we conclude that EV is the most appropriate distribution for ;. This is also
supported by the well-known Z* test statistic proposed by Tiku [21] (i.e., Ziiculated =
0.9499 and p — value = 0.1916), see also Surucu [18].

The estimates of the parameters a, i and ¢ obtained by using the MML estimators
and the NP estimators are given in Table 3.

Table 3. Parameter estimations for the coal-mining disaster data

Estimator a m 52

MML -0.393 36.311 1873.900
(£0.001) (£10.344)

NP -0.433 22.440 433.250
(£0.108) (£12.210)

*Values given in parentheses are the standard errors (SE) of the estimators
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Based on the simulation results given in Table 2, we conclude that the MML estimates
of the parameters are preferable to the NP estimates according to the MSE criterion,
since the MSE values of the MML estimators are smaller than the MSE values of the NP
estimators when o < 0 .

It should be noted that the variance of the Weibull distribution is very sensitive to
changes in the value of a, especially for a < 1. Since the value of a is less than 1 for
the coal-mining disaster data, the MML and NP estimators of the variance of Weibull
distribution are quite different from each other. This happens frequently in practice.
Similar statements can also be made for the Aircraft 6 data.

Let Sy, = Xi+Xo+-- -+ Xk, k=1,2,...,n. Then a fitted value of S; may be defined
by

k
Se=ny 1/5%
j=1

In Figure 2, we plot the coal-mining disaster times and their fitted times against the
number of disasters by using NP and MML estimators, respectively. It can be seen that
the MML estimators provide a better fit than the NP estimators.

Figure 2. Plot of S, against their fitted values using the NP and MML
estimators for the coal-mining disaster data

x 10
45 |5 L L |5 L L L L L

Observed
4 NP N
MML

3.5

0/’r r r r r r r r r

0 20 40 60 80 100 120 140 160 180 200
k

5.2. The aircraft 6 data. This data set has 30 observations showing the intervals
between successive failures of the air-conditioning equipment in Boeing 720 aircraft, see
Cox and Lewis [9]. The data is also studied by Proschan [16] and Cox and Lewis [9].

Following similar steps to those for the coal-mining disaster data in Subsection 5.1,
EV is again found to be the most appropriate distribution for the residuals, see Figure 3.
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Figure 3. EV Q-Q plot of the aircraft 6 data
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This is confirmed by the value of the Z* test statistic (i.e., Ziaculatea = 0.9203 and
p — value = 0.4300), see also Tiku [21] and Surucu [18]. The estimates of the unknown
parameters are given in Table 4.

Table 4. Parameter estimates for the aircraft 6 data set

Estimator a n 52

MML 0.4708 177.0362 40980
(£0.249) (£51.173)

NP 0.4775 163.1353 15061
(£0.272) (£56.234)

*Values given in parentheses are the standard errors (SE) of the estimators

Again, based on the simulation results given in Table 2, the MML estimators are chosen
for estimating the parameters o, and 02 because the MML estimators outperform the
NP estimators in terms of the MSE criterion as in the coal-mining disasters data.

In Figure 4, we plot the failure times of the air-conditioning equipment and their fitted
times against the number of failures by using the NP and MML estimators, respectively.
It can be seen that MML estimators provide a better fit than the NP estimators.



6.

Application of MML Methodology 459

Figure 4. Plot of S against their fitted values using the NP and MML
estimators for the aircraft 6 data
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Conclusions

We have compared the efficiencies of the MML estimators with the NP estimators

via a Monte Carlo simulation study. It is shown that the MML estimators have higher
efficiencies than the NP estimators.

We also applied the MML methodology two real life data sets. The parameters a, p

and o2 for an a-series process with Weibull distribution have been estimated and com-
pared with the NP estimators. We see that the MML estimators provide a better fit than
NP estimators.
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