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Abstract

In this paper, we study the computation of Lyapunov exponents for deterministic dynamical
systems via a general piecewise spline maximum entropy method. We present a comparison
of computations of Lyapunov exponents between a piecewise linear, a piecewise quadratic
and a piecewise cubic maximum entropy methods. In order to compute Lyapunov exponents
for deterministic maps, we also compute density functions of their invariant measures via
piecewise spline maximum entropy method.

1. Introduction

In a chaotic dynamical system, inaccuracies in specifying the initial state of the system are rapidly amplified in time and therefore, it is
impossible to predict the long term system state. If nearby trajectories of a dynamical system diverges exponentially then the dynamical
system possesses chaotic behaviour [1]-[3]. The rate of increase of perturbations of initial conditions is described by the Lyapunov exponent
[4]. The Lyapunov exponent of a dynamical system classifies the dynamics of the system. A dynamical system with positive Lyapunov
exponent exhibits chaotic nature of the system. Let τ : [0,1]→ [0,1] be a measure preserving deterministic dynamical system (map) and µ

be a τ-invariant measure on the probability space [0,1]. For any x ∈ [0,1], the Lyapunov exponent h(x) of the trajectory of x is defined as
(see, for example, [5])

h(x) = lim
n→∞

ln(|((τn(x))′|)
1
n

= lim
n→∞

1
n

(
ln|τ ′(x)|+ ln|τ ′(τ(x)|+ · · ·+ ln|τ ′(τn−1(x)|

)
= lim

n→∞

1
n

n−1

∑
i=0

ln|τ ′(τ i(x))| (1.1)

provided the limit exists. If the function ln(τ ′(x)) is integrable and τ is ergodic, then the Birkhoff Ergodic Theorem [6] gaurantees that for
almost all x ∈ [0,1] the above limit exists, it is a constant (say, l) and if f is the density of the invariant measure dµ(x) = f (x)dλ (x), then the
Lyapunov exponent

l =
∫ 1

0
ln|τ ′(x)|dµ(x) =

∫ 1

0
ln|τ ′(x)| f (x)dλ (x), (1.2)

where λ is the underlying Lebesgue measure on [0,1]. Therefore, if the invariant measure µ or the density function f is known, then one
can calculate the Lyapunov exponent of τ in (1.1). Unfortunately, except for some cases, the analytical formula of the invariant measure
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µ or the density function f for most of the deterministic maps is not known. Therefore, the computation of Lyapunov exponent havily
rely on numerical approximation of invariant measures or density functions of the corresponding deterministic maps. Computations of
Lyapunov exponents for deterministic dynamical systems are well studied by many researchers. A spatial average estimation method for
Lyapunov exponents of deterministic maps is presented in [7] by G. Froyland. A numerical scheme is described in [8] for the n Lyapunov
exponents of an n-dimensional unknown dynamical system. In [4], A. Boyarsky presented a matrix method for the approximation of
Lyapunov exponents and invariant measures. Lyapunov exponents from observed time series is studied in [9]. For Jacobian-based estimates
of Lyapunov exponents from data, convergence rates and data requirements are studied in [10].

In the context of information theory, the principle of maximum entropy [11] was introduced by E. T. Jaynes [12] in 1957. Since then,
mathematicians, physicists and engineers have widely used the maximum entropy method in many different directions for solving problems
in mathematics, mathematical physics and other related branches of Science and Engineering. A maximum entropy method was described by
Lawrence R. Mead and N. Papanicolaou in [11] for solving moment problems. For finite approximation of the Frobenius-Perron operator of
deterministic dynamical systems the maximum entropy methods were described by many authors [13]-[18] and [19]. In [20], C. Bose and
R. Murray presented dynamical conditions for convergence of a maximum entropy method for Frobenius-Perron operator equations. For
approximation of invariant measures for position dependent random maps we have described maximum entropy methods in [21, 22]. An
iterative maximum entropy method is presented in [23] for Lyapunov exponents and invariant densities for deterministic chaotic maps. In
this paper, we compute Lyapunov exponents via a general piecewise spline maximum entropy method. Moreover, we compare our results
between piecewise linear, piecewise quadratic and piecewise cubic maximum entropy methods for the computation of Lyapunov exponents.

In Section 2, we present a general piecewise spline maximum entropy method for approximation of invariant measures of deterministic
dynamical systems. Moreover, we present convergence analysis of maximum entropy method. In Section 3, we present calculations
of Lyapunov exponents of deterministic dynamical systems using general piecewise spline maximum entropy method. We present two
numerical examples with a comparison between piecewise linear, piecewise quadratic and piecewise cubic maximum entropy method.

2. A general piecewise spline maximum entropy optimization method for invariant measures of
deterministic chaotic dynamical systems

Let (I = [0,1],B,λ ) be a measure space, where B is a σ -algebra on I = [0,1] and λ is the Lebesgue measure on B. Let τ : I → I be
a deterministic map such that τ has a unique absolutely continuous invariant measure µ∗ with density f ∗. Using (1.2) one can find the
actual Lyapunov exponent L for τ. In this section, first we revisit a general piecewise spline maximum entropy optimization method for the
approximation fn of the density function f ∗. In the next section, using the approximate density fn we compute an approximate Lyapunov
exponent ln. We also present the convergence analysis of the general piecewise maximum entropy method. We closely follow [6] and [13].

Let
· · ·< x−2 < x−1 < x0 = 0 < x1 < x2 < .. .

be an infinite set of nodes on the real line. The B-splines of degree k are defined recursively as follows:

B0
i (x) =


1, x ∈ [xi,xi+1),

0, x /∈ [xi,xi+1),
, i ∈ {. . . ,−2,−1,0,1,2, . . .}

and

Bk
i (x) =

x− xi

xi+k− xi
Bk−1

i (x)+
xi+k+1− x

xi+k+1− xi+1
Bk−1

i+1 (x), i ∈ {. . . ,−2,−1,0,1,2, . . .}.

Each Bk
i (x) is a piecewise polynomial of degree k and Bk

i (x) are called B-splines of degree k. The family {Bk
i } of B-splines satisfies the

following properties (see Proposition 1 in [13]):

Properties of B-splines:

1. If x /∈ [xi,xi+k+1), then Bk
i (x) = 0;

2. If x ∈ (xi,xi+k+1), then Bk
i (x)> 0;

3. ∑i Bk
i (x) = 1 for all x;

4. For fixed k, the set {Bk
i |[xo,xn]} : −k ≤ i ≤ n− 1} of functions constitute a basis for the space ∆k

n consisting of all functions in
Ck−1[x0,xn] which are piecewise polynomials of degree ≤ k on the n subintervals [x0,x1], [x1,x2], . . . , [xn−1,xn].

Let τ : I→ I be a deterministic map such that τ has a unique absolutely continuous invariant measure µ∗ with density f ∗. A particular
choice of τ is a Lasota – Yorke map described in [24]. Note that the invariant density f ∗ of the unique acim µ∗ is the fixed point of the
Frobenius-Perron operator PT . In the following, we describe a general spline maximum entropy approximation scheme for f ∗.
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Let D be the set of all densities, that is,

D = { f ∈ L1(0,1) such that f≥ 0 and ‖ f ‖1=
∫ 1

0
f(x)dλ (x) = 1}.

The Boltzmann entropy [6] of f ≥ 0 is defined by

H( f ) =−
∫

I
f (x) log f (x)dλ (x). (2.1)

For properties of H see [6]. Using the Gibbs inequality

u−u logu≤ v−u logv,u,v≥ 0,

it can be shown that ∫
I

f (x) log f (x)dλ (x)≥
∫

I
f (x) logg(x)dλ (x) ∀ f ,g ∈D . (2.2)

The above inequality in (2.2) leads to the following optimization problem [14]:

maxH( f ) such that f ∈D and
∫

I
f(x)gn(x)dλ (x) = mn, 1≤ n≤ N, (2.3)

where m1,m2, · · · ,mN are given moments of the unknown density with respect to the moment function {g1,g2, ...,gN} ⊂ L∞(I), respectively.

Proposition 2.1. [6] Suppose that a1,a2, · · · ,aN are real numbers such that the function

fN(x) =
e∑

N
n=1 angn(x)∫ 1

0 e∑
N
n=1 angn(x)dλ (x)

satisfies the constraints in (2.3), that is, ∫ 1
0 gi(x)e∑

N
n=1 angn(x)dλ (x)∫ 1

0 e∑
N
n=1 angn(x)dλ (x)

= mi, i = 1,2, . . . ,N.

Then fN is a unique solution of the maximum entropy problem (2.3).

Proof: See [6].

Let P(n) = {I1, I2, . . . , In} partition of [0,1] into n equal subintervals, where Ii = [bi−1,bi],
bi = ih, i = 1,2, . . . ,n,b0 = 0,bn = 1,h = 1

n . Without loss of generality and for convenience, we consider n = 2s = l ·q, where l is a positive
even integer and q is the number of the sub-intervals of the partition J on which the maps τ is piecewise one-to-one and monotonic.
Consider 2k additional nodes: b− j =− jh,bn+ j = (n+ j)h, j = 1,2, . . . ,k. These nodes are needed to express all the involved B-splines for
the state space I = [0,1]. Moreover, for fixed k, the set

{Bk
i |[0,1]} : i =−k,−k+1, . . . ,0,1,2, . . . ,n−1}

of functions constitute a basis for the space ∆k
n consisting of all functions in Ck−1[0,1] which are piecewise polynomials of degree ≤ k on the

n subintervals [b0,b1], [b1,b2], . . . , [bn−1,bn] of I = [0,1]. ∆k
n has dimension n+ k and Bk

k,B
k
−k+1, . . . ,B

k
0,B

k
1, . . . ,B

k
n−1 are elements of the

basis for ∆k
n.

Let f ∗ be an unique density function of the acim µ∗ for the map τ. Then the moments of f ∗ with respect to B-spline Bk
i , i = −k,−k+

1, . . . ,0,1,2, . . . ,n−1 is

mi =
∫ 1

0
f ∗(x)Bk

i (x)dλ (x). (2.4)

Proposition 2.2.

n−1

∑
i=−k

mi = 1.

Proof:

n−1

∑
i=−k

mi =
n−1

∑
i=−k

∫ 1

0
f ∗(x)Bk

i (x)dλ (x) =
∫ 1

0
f ∗(x)

n−1

∑
i=−k

Bk
i (x)dλ (x)

=
∫ 1

0
f ∗(x)dλ (x) = 1,

since ∑
n−1
i=−k Bk

i (x) = 1, by Property (iii).
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Proposition 2.3. Suppose that m−k,m−k+1, . . . ,m0,m1, . . . ,mn−1 are moments defined in (2.4) of the probability density function f ∗ of the
map τ. If a−k,a−k+1, . . . ,a0,a1, . . .an−1 are constants which satisfy∫ 1

0
Bk

i (x)e
∑

n−1
i=−k aiBk

i (x)dλ (x) = mi, i =−k,−k+1, . . . ,0,1, . . . ,n−1,

then

f k
n (x) = e∑

n−1
i=−k aiBk

i (x) (2.5)

is a density.

Proof. ∫ 1

0
f k
n (x)dλ (x) =

∫ 1

0
e∑

n−1
i=−k aiBk

i (x)dλ (x)

=
∫ 1

0
e∑

n−1
i=−k aiBk

i (x)
n−1

∑
i=−k

Bk
i (x)dλ (x)

=
n−1

∑
i=−k

∫ 1

0
Bk

i (x)e
∑

n−1
i=−k aiBk

i (x)dλ (x)

=
n−1

∑
i=−k

mi = 1

If we solve the maximum entropy problem

maxH( f ) such that f ∈D and
∫

I
f (x)Bk

i (x)dλ (x) = mi, − k ≤ i≤ n−1,

then f k
n (x) = e∑

n−1
i=−k aiBk

i (x) is a solution of (2.6) such that there exists constants a−k,a−k+1, . . . ,a0,a1,a2, . . . ,an−1 satisfying∫ 1

0
Bk

i (x)e
∑

n−1
i=−k aiBk

i (x)dλ (x) = mi, i =−k,−k+1, . . . ,0,1, . . . ,n−1. (2.6)

Now, using the Birkhoff’s Ergodic Theorem (see below), we describe a method for estimating the moments m−k,m−k+1, . . . ,m0,m1, . . . ,mn−1
in (2.6) for the unknown invariant density f ∗ of a map τ:

Theorem 2.4. If µ∗ is τ-invariant, µ∗ is absolutely continuous and unique among absolutely continuous invariant measures, Pτ satisfies

‖ Pn
τ f ‖BV≤ A ‖ f ‖BV +B ‖ f ‖1,

where A > 0 and B > 0 are constants defined in [24]. Then for µ∗ almost every x with probability 1,

1
M

M−1

∑
i=0

f (τ i(x))→ µ
∗( f ),

for any f ∈ L1([0,1]). Moreover, if [0,1 is a probability space (that is, µ∗ is a probability measure on [0,1]) and τ is ergodic, then there
exists a function f̂ ∈ L1([0,1]) such that

lim
M→∞

1
M

M−1

∑
i=0

f (τ i(x)) = f̂ (x),∀x ∈ [0,1]µ∗−a.e.

and f̂ is constant and f̂ =
∫ 1

0 f (x)dµ∗(x).

Note that f ∗ is the density of the map τ with respect to the acim µ∗. Thus, dµ∗(x) = f ∗(x)dλ (x). If we replace f by Bk
i , i = −k,−k+

1, . . . ,0,1,2, . . . ,n−1 and f̂ by mi then from Equation (2.7) we obtain

mi = lim
M→∞

1
M

M−1

∑
j=0

Bk
i (τ

j(x)),∀x ∈ [0,1] a.e., i = k,−k+1, . . . ,0,1, . . . ,n−1. (2.7)

For large M, define

m̂i =
1
M

M−1

∑
j=0

Bi(τ
j(x)),∀x ∈ [0,1] a.e., i = k,−k+1, . . . ,0,1, . . . ,n−1.

Note that the choice of x almost surely doesn’t matter asymptotically. Now, we consider the following normalized approximation for
moments (for convenience, we denote them by mi.):

mi ≈
m̂i

∑
n−1
i=−k m̂i

, i = k,−k+1, . . . ,0,1, . . . ,n−1.
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Note that if a−k,a−k+1, . . . ,a0,a2, . . . ,an−1 satisfy (2.5) then a−k,a−k+1, . . . ,a0,a2, . . . ,an−1 also satisfy∫ 1
0 Bk

i (x)e
∑

n−1
i=−k aiBk

i (x)dλ (x)∫ 1
0 e∑

n−1
i=−k aiBk

i (x)dλ (x)
= mi, i =−k,−k+1, . . . ,0,1,2, . . . ,n−1.

The nonlinear equations in (2.5) form the following system of n+ k nonlinear equations:

G(a) = 0, (2.8)

where G : Rn+k→ Rn+k defined by

Gi(a−k,a−k+1, . . . ,a0,a1, . . . ,an−1) =
∫ 1

0
Bk

i (x)e
∑

n−1
i=−k aiφ

k
i (x)dλ (x)−mi,

i =−k,−k+1, . . . ,0,1, . . . ,n−1.

The Jacobian matrix G′ =
(

g′i, j
)
−k≤i, j≤n−1

of G is defined by

g′i, j =
∂Gi

∂a j
=
∫ 1

0
Bk

i (x)e
∑

n−1
i=−k aiBk

i (x)Bk
j(x)dλ (x), i, j =−k,−k+1, . . . ,0,1, . . . ,n−1.

Proposition 2.5. The system (2.5) has a unique solution a = (a−k,a−k+1, . . . ,a0,a1, . . . ,an−1).

Proof. Since support of Bk
i and Bk

j are disjoint for |i− j|> k, it is clear that Jacobian matrix G′ of G is symmetric. Let

β = (β−k,β−k+1, . . . ,β0,β1, . . . ,βn−1) ∈ Rn+k.

Then,

βG′β T =
n−1

∑
i=−k

n−1

∑
j=−k

βiβ j

∫ 1

0
Bk

i (x)e
∑

n−1
i=−k aiBk

i (x)Bk
j(x)dλ (x)

=
∫ 1

0

n−1

∑
i=−k

n−1

∑
j=−k

βiBk
i (x)e

∑
n−1
i=−k aiBk

i (x)Bk
j(x)β jdλ (x)

=
∫ 1

0

(
n−1

∑
i=−k

βiBk
i (x)

)
e∑

n−1
i=−k aiBk

i (x)

(
n−1

∑
j=−k

Bk
j(x)β j

)
dλ (x)> 0.

Thus, G′ is positive definite. Let

g(a−k,a−k+1, . . . ,a0,a1, . . . ,an−1) =
∫ 1

0
e∑

n−1
i=−k aiBk

i (x)dλ (x)−
n−1

∑
i=−k

aimi.

Now, consider the following global minimization problem:

min
(a−k ,a−k+1,...,a0,a1,...,an−1)∈Rn+k

g(a−k,a−k+1, . . . ,a0,a1, . . . ,an−1) (2.9)

It can be shown that the system (2.5) of equations is the gradient equation of the global minimization problem (2.9). Since G′ is positive
definite, the objective function g is strictly convex on Rn+k. Moreover, g(a−k,a−k+1, . . . ,a0,a1, . . . ,an−1) is coercive on its domain. Thus,
the above global unconditioned convex programming problem (2.9) has a unique solution and therefore, the system (2.5) has a unique
solution.

Algorithm: Choose n and k. Calculate the moments mi, i = −k,−k + 1, . . . ,0,1 . . . ,n− 1 using (2.8) and use these moments mi, i =
−k,−k+1, . . . ,0,1 . . . ,n−1 to find a = (a−k,a−k+1, . . . ,a0,a1, . . . ,an−1). Then the solution of the the maximum moment problem (2.6) is

f k
n (x) = e∑

n−1
i=−k aiBk

i (x)

which is an approximation of the density function f ∗ of the acim µ∗ for the map τ.

For convergence analysis, we also assume that the unique invariant measure f ∗ of τ is used in Equation (2.4) for the calculations of moments
mi, i =−k,−k+1, . . . ,0,1, . . . ,n−1. Our convergence analysis is based on the following general convergence theory for moment problem
developed by Borwein and Lewis in [25].

Let X be a locally convex topological vector space with nested sequence of compact subsets {Gn}. Let W : X → [−∞,∞) be a functional
with compact level sets. Let gn be an optimal solution of max{W (h) : h ∈Gn} and g∞ be the unique optimal solution of the limiting problem
max{W (h) : h ∈ ∩∞

n=1Gn} with W (g∞) > −∞. It was proved in [25] that limn→∞ gn = g∞ under the topology of X and limn→∞ W (gn) =
W (g∞). For our B-spline maximum entropy method of degree k, we partition the interval [0,1] in the following special way so that the
feasible sets are monotonically decreasing. First we divide [0,1] into k+1 equal subintervals. Then we divide one subinterval of the current
partition into k+1 equal parts at each step in succession. Thus the corresponding n+ k-dimensional spaces ∆k

n of spline functions of degree
k are monotonically increasing, which guarantees that the feasible sets of the maximum entropy method are monotonically decreasing.
Furthermore, by property of the Boltzmann entropy in the previous section, these feasible sets are weakly compact in L1(0,1). Since L1(0,1)
is a locally convex topological vector space in the weak topology, the above weak convergence implies the weak convergence of our method.
Thus, we have the following theorem:
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Theorem 2.6. Let τ : I → I be a deterministic dynamical system with the unique fixed point f ∗ of the Frobenius - Perron operator Pτ

satisfying H( f ∗)>−∞ and fn be the sequence of solutions in (2.10). Then limn→∞ fn = f ∗ weakly and limn→∞ H( fn) = H( f ∗).

Note that a functional W on a normed space X into [−∞,∞) is called a Kadec if xn→ x weakly and W (xn)→W (x) imply xn→ x strongly.
It can be shown that Boltzmann entropy functional H in (2.1) is Kadec (see [25]). Thus, we have the following strong convergence result.

Theorem 2.7. Let τ : I → I be a deterministic dynamical system with the unique fixed point f ∗ of the Frobenius - Perron operator Pτ

satisfying H( f ∗)>−∞ and fn be the sequence of solutions in (2.10). Then limn→∞ ‖ fn− f ∗ ‖1= 0.

3. Numerical examples for Lyapunov exponents and invariant measures of one dimensional chaotic
maps via piecewise spline maximum entropy method

In this section, we give two the results from two numerical examples to illustrate our method. Our first example uses the well-known logistic
map for which the density function f∗ of the acim is known and hence hence the analytical Lyapunov exponent l is also known. The second
example uses a piecewise polynomial mapping whose corresponding density function is not known. For both of these examples we apply our
piecewise spline maximum entropy method using piecewise linear, piecewise quadratic, and piecewise cubic splines.

Example 3.1. We consider the well known logistic map τ : [0,1]→ [0,1] defined by τ(x) = 4x(1− x). The actual density f ∗ of τ is given

by f ∗(x) =
1

π
√

x(1− x)
. The logistic map τ is topologically conjugate to the tent map and it is known that the Lyapunov exponent for the

logistic map τ is l = ln2 = 0.693147. Now, we apply (a) piecewise linear maximum entropy method; (b) piecewise quadratic maximum
entropy method; (c) piecewise cubic maximum entropy method and we compute approximate Lyapunov exponent ln, error En = |ln− l|, the
approximate density function fn and the L1−norm ‖ fn− f ∗ ‖1 .

In Figure 3.1, using (a) piecewise linear maximum entropy method; (b) piecewise quadratic maximum entropy method and (c) piecewise cubic
maximum entropy method, we present the graph of the actual density function f ∗(x) = 1

π
√

x(1−x)
(red) and the graph of the approximate

density function fn (blue). Gauss quadrature method is used for integrations. 500,000 iterations are used for the approximation of moments.

(a) A subfigure (b) A subfigure (c) A subfigure

Figure 3.1: This is lot of figures arranged side by side in matrix form with captions for each and a main caption

(a) (b) (c)

Figure 3.2: Approximate density fn of the density function f ∗ of invariant measure µ∗ for the map τ via piecewise spline maximum entropy method: Figure
3.1 (a) approximate density f32 (blue) via piecewise linear maximum entropy method and the actual density f ∗ (red); Figure 3.1 (b) approximate density f32
(blue) via piecewise quadratic maximum entropy method and the actual density f ∗ (red); Figure 3.1 (c) approximate density f16 (blue) via piecewise cubic
maximum entropy method and the actual density f ∗ (red).
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n ln (piecewise linear) |ln− l| (piecewise linear) ‖ fn− f ∗ ‖1 (piecewise linear)
4 0.68775 0.00539 0.22098
8 0.69363 0.00049 0.15821

16 0.69355 0.00040 0.10494
32 0.69361 0.00046 0.07745

.

n ln (piecewise quad) |ln− l| (piecewise quad) ‖ fn− f ∗ ‖1 (piecewise quad)
4 0.67348 0.01965 0.17346
8 0.69092 0.00222 0.12631
16 0.693443 0.0002 0.08778
32 0.69352 0.00037 0.05108

.

n ln (piecewise cubic) (piecewise cubic) ‖ fn− f ∗ ‖1 (piecewise cubic)
4 0.70605 0.01290 0.15001
8 0.69570 0.00255 0.10621
16 0.69391 0.00255 0.06343
32 0.69352 0.00037 0.05108

.

The density function f ∗(x) =
1

π
√

x(1− x)
of the invariant measure µ∗ is known for the logistic map τ(x) = 4x(1− x). Therefore, instead

of (2.7) one can use (2.4) for the calculations of moments. In the following tables we present some approximate Lyapunov exponents ln
and error |ln− l| using piecewise linear, piecewise quadratic and piecewise cubic maximum entropy method, where we have used (2.4) for
moments.

piecewise spline method n ln |ln− l|
piecewise linear 4 0.68812 0.00503
piecewise linear 32 0.69363 0.00048
piecewise quad 32 0.69349 0.00034
piecewise cubic 32 0.69352 0.00037

.

Example 3.2. We consider the map τ : [0,1]→ [0,1] defined by

τ(x) =


3
2 x2 + 5

4 x, 0≤ x < 1
2 ,

3
2 (1− x)2 + 5

4 (1− x), 1
2 ≤ x≤ 1,

The map τ is is a piecewise expanding map. However, analytical density function of τ is not known. We apply (a) piecewise linear
maximum entropy method; (b) piecewise quadratic maximum entropy method; (c) piecewise cubic maximum entropy method and we compute
approximate Lyapunov exponent ln.

n ln (piecewise linear) ln (piecewise quadratic) ln (piecewise cubic)
4 0.63118 0.63104 0.63132
8 0.63105 0.63104 0.63114
16 0.63105 0.63104 0.63105

.

In Figure 3.2, using (a) piecewise linear maximum entropy method; (b) piecewise quadratic maximum entropy method and (c) piecewise
cubic maximum entropy method, we present the graph of the histogram (with 500,000 iterations) of an approximate density function (black)
and the graph of the approximate density function fn (red). Gauss quadrature method is used for integrations.

Example 3.3. We consider the map τ : [0,1]→ [0,1] defined by

τ(x) =


2x

1−x , 0≤ x < 1
3 ,

1−x
2x , 1

3 ≤ x≤ 1,

The actual density f ∗ of τ is given by f ∗(x) =
2

(1− x)2 . The Lyapunov exponent for the map τ is l ≈= 0.693147. Now, we apply (a)

piecewise linear maximum entropy method; (b) piecewise quadratic maximum entropy method; (c) piecewise cubic maximum entropy method
and we compute approximate Lyapunov exponent ln, error En = |ln− l|.

In Figure 3.3, using (a) piecewise linear maximum entropy method; (b) piecewise quadratic maximum entropy method and (c) piecewise cubic

maximum entropy method, we present the graph of the actual density function f ∗(x) =
2

(1− x)2 . (red) and the graph of the approximate

density function fn (blue). Gauss quadrature method is used for integrations. 500,000 iterations are used for the approximation of moments.
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(a) (b) (c)

Figure 3.3: Histogram and approximate density via piecewise spline maximum entropy method: Figure 3.2 (a) the histogram of the density function of the
map τ with 500,000 points on the trajectory of the map τ with 1000 subintervals for [0,1]. and the graph of the approximate density function f16 via piecewise
linear maximum entropy method; Figure 3.2 (b) the same histogram and the graph of the approximate density function f8 via piecewise quadratic maximum
entropy method; Figure 3.2 (c) the same histogram and the graph of the approximate density function f16 via piecewise cubic maximum entropy method;

(a) (b) (c)

Figure 3.4: Approximate density fn of the density function f ∗ of invariant measure µ∗ for the map τ via piecewise spline maximum entropy method: Figure
3.3 (a) approximate density f32 (blue) via piecewise linear maximum entropy method and the actual density f ∗ (red); Figure 3.2 (b) approximate density f32
(blue) via piecewise quadratic maximum entropy method and the actual density f ∗ (red); Figure 3.3 (c) approximate density f16 (blue) via piecewise cubic
maximum entropy method and the actual density f ∗ (red).

n ln (piecewise linear) |ln− l| (piecewise linear)
4 0.69323 0.00009
8 0.69316 0.00001

16 0.69316 0.00001
32 0.69314 0.0000008

.

n ln (piecewise quad) |ln− l| (piecewise quad)
4 0.69323 0.00008
8 0.69314 0.00005
16 0.69313 0.00001
32 0.69314 0.000001

.

n ln (piecewise cubic) (piecewise cubic)
4 0.69300 0.00014
8 0.69325 0.00010
16 0.69314 0.00003

.

The density function f ∗(x) =
2

(1− x)2 of the invariant measure µ∗ is known for the map τ. Therefore, instead of (2.7) one can use (2.4) for

the calculations of moments. In the following tables we present some approximate Lyapunov exponents ln and error |ln− l| using piecewise
linear and piecewise quadratic maximum entropy method, where we have used (2.4) for moments.
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piecewise spline method n ln |ln− l|
piecewise linear 4 0.69324 0.00008
piecewise linear 16 0.69314 0.000005
piecewise quad 16 0.69314 0.000005

.

4. Conclusion

In this paper, we study numerical computations of Lyapunov exponents for deterministic chaotic dynamical systems in one dimension. First,
we discuss the fact that the Lyapunov exponent is one of the key tools for determining whether a deterministic dynamical system is chaotic
or not. Moreover, we show that the computation of Lyapunov exponents of dynamical systems depends on the computation of invariant
measures of dynamical systems. Then, we study a general piecewise spline maximum entropy method for the computation of Lyapunov
exponents and invariant measures for deterministic dynamical systems. We present a proof of convergence of the general piecewise spline
maximum entropy method. The general piecewise spline maximum entropy method includes piecewise linear, piecewise quadratic, piecewise
cubic and higher order maximum entropy methods. Finally, we present two examples where we compute Lyapunov exponents of dynamical
systems via piecewise linear, piecewise quadratic and piecewise cubic maximum entropy methods. Moreover, we compute invariant measures
of the dynamical systems. In the first example we present errors between the numerical results and analytical results (both for Lyapunov
exponent and invariant measures). The numerical examples show that the piecewise spline maximum entropy method is a useful method for
the computation of Lyapunov exponents and invariant measures for deterministic dynamical systems. In future we plan to study the speed of
convergence of the piecewise spline maximum entropy method for the computation of Lyapunov exponents and invariant measures.
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