
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 50 (2) (2021), 511 – 515

DOI : 10.15672/hujms.659795

Research Article

A lexicographical order induced by Schauder
bases

Neşet Özkan Tan

Department of Mathematics, Uşak University, 1 Eylül Kampusu, Uşak

Abstract

In this paper, we show that every Banach space with a Schauder basis can be seen as
a totally ordered vector space. Indeed, this order can be considered as a lexicographical
order since it is a generalization of lexicographical order in Rn. We also provide order
structural properties of the order by approaching geometrical (cone) sense.
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1. Introduction
The ordered vector spaces have been studying since at the beginning of the last century

and it has efficient applications the other disciplines, see [1, 2, 4, 5]. Since the significant
properties of the optimization problems in a vector space are frequently based on an
order-structure, the optimality concept has been started to approached by the properties
of the cone which is a geometric way to understand order structures in the vector spaces.
Some of these studies have a wide range of applications such as equilibrium theory and
well-posedness problems, see [7, 9–11,16].

In this study, we show that we can obtain a totally order by using projections of a
Schauder basis of a Banach space that gives us a lexicographical-like order structure.
In fact, this cone can be considered as a "generalization" of the lexicographical cone in
Rn. We also show that the equivalent Schauder basis generates order-isomorphic vector
lattices. By associating our findings with some well-known results in Banach space theory,
such as every infinite-dimensional Banach space has a subspace that has a Schauder basis
[6], we can immediately get the following conclusions: Every separable Banach space
has a totally ordered subspace, every infinite-dimensional Banach space has an infinite-
dimensional quotient space which can be considered as a totally ordered vector lattice.
Among the other things mentioned above, we obtain a generalization of the main results
of the papers [9, 10].
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2. Preliminaries
Let us recall some of the notions of the ordered vector spaces. In this section, all

definitions and aligned properties can be found in [3, 4, 8, 12–14, 19]. Throughout of this
section, let E be a real vector space and θ be zero vector in E. A subset K of E is called
a cone if: K + K ⊂ K, α.K ⊂ K for all α ∈ R≥0 and −K ∩ K = {θ}. A subset W of
E is called a wedge if it satisfies all cone axioms except the axiom −K ∩ K = {θ}. The
Minkowski sum of A, B ⊆ E is defined by A + B = {a + b : a ∈ A and b ∈ B} and the
scalar multiplication is defined by α.A = {α.a : a ∈ A}. It is well known that if K is a
cone in a vector space E then :

a ≤ b if and only if b − a ∈ K

is a partial order in E. So that, the vector space E with a cone structure K can be seen
as a pair (E,K) which is ordered vector space. Two ordered vector spaces (E,K) and
(M,L) is called order isomorphic if there is a linear bijection, T : E → M such that
T (K) = L. If a pair (E,K) has lattice property (i.e., sup{x, y} or inf{x, y} exists for every
pair of x, y ∈ E) then the pair (E,K) is called an ordered vector lattice or a Riesz space.
A sequence {xn : n ∈ N} in the ordered vector lattice E is called order convergent to an
element x ∈ E if there exits a monotone decreasing sequence {qn : n ∈ N} in E with
inf{qn} = θ such that sup{(xn − x), (x − xn)} < qn for all n ∈ N.

If a cone K has additional property that −K∪K = E, then the cone K is called a totally
ordering cone. In this case, the order relation which is induced by the cone structure is
called a totally order. Let us introduce some of subspaces of an ordered vector lattice
which provide useful information about whole vector lattice. Let I be a subspace of E. If
I has lattice property then I is called a vector sub-lattice of E. If a vector sub-lattice I
has solid property (i.e, if a triple of x, y, y − x ∈ K with y ∈ I implies that x ∈ I) then
I is called an order ideal of E. The Minkowski sum of order ideals and intersection of
order ideals is an order ideal as well. An order ideal I is called a maximal order ideal if
it is the only proper ideal which is contained by itself. Let (E,K) be an ordered vector
lattice, (E,K) is called an Archimedean vector lattice if for all n ∈ N and for any x ∈ E,
y, y−nx ∈ K implies that x = θ or x ∈ −K. It is well known that the unique totally ordered
Achimedean vector lattice is R with the cone [0, ∞), up to vector lattice isomorphism. The
lexicographical order is a non-Archimedean totally order which is defined on Rn≥2, with
the following relation: (x1, x2, ..., xn) < (y1, y2, ..., yn) ⇐⇒ xi < yi for the smallest i for
which xi ̸= yi. A sequence (bn) in a Banach space X is called a Schauder basis of X if
for every x ∈ X there is an unique sequence of scalars (αn) so that x =

∑∞
n=1 αn.bn. We

should emphasise that for a Schauder basis, there is not only countability, but a specific
ordering of base elements. Let E and L be two Banach spaces with Schauder basis (bn)
and (cn), respectively. Basis (bn) and (cn) are called equivalent base if any convergence of∑∞

n=1 αn.bn or
∑∞

n=1 αn.cn implies each other.

3. Totally ordering cones with Schauder basis
Let E be an infinite dimensional Banach space with Schauder basis (bn). Each of element

x ∈ E correspond to unique scalar sequence (αn) where x =
∑∞

n=1 αn.bn, in the sense of
norm convergence. The linear mappings Pn : E → E, defined by

Pn(x) =
n∑

k=1
αk.bk.

Let b∗
n : E → R denote the functional, where b∗

n assigns to every vector x in E the
coordinate αn of x in the above expansion. Each b∗

n is a bounded linear functional on E.
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Let us define the sequence of sets
B1 = {x ∈ E : b∗

1(x) > 0},

B2 = {x ∈ E : b∗
1(x) = 0 and b∗

2(x) > 0}, ...

Bn = {x ∈ E : (b∗
i (x) = 0 for all i < n)and b∗

n(x) > 0}, ...

If K =
∪∞

n=1 Bn ∪ {θ} then K is cone in E that produces totally order for the elements of
E.
Theorem 3.1. (E,K) is a totally ordered vector lattice.
Proof. We will show that K =

∪∞
n=1 Bn ∪ {θ} is a totally ordered cone. Let us first show

that K + K ⊂ K. If at least one of x, y ∈ K is zero vector then x + y ∈ K. If x ̸= θ
and y ̸= θ then b∗

i (x) > 0, b∗
j (y) > 0 for some i, j ∈ N, and b∗

n(x) = b∗
n(y) = 0 for all

n < min{i, j} Since b∗
k is a linear functional for all k ∈ N, x + y ∈ Bmin{i,j}, and so

K + K ⊂ K. The linearity of b∗
k’s implies that αK ⊂ K for all α ≥ 0. Thus K is a wedge.

The linearity of b∗
k’s also implies that −K ∩ K = {θ} . Now let θ ̸= x ∈ E then let us

define k := min{i ∈ N : b∗
i (x) ̸= 0}. Thus x ∈ −Bk ∪ Bk ⊂ −K ∪ K. Therefore, the cone

K is a totally ordering cone in E. �
The rest of the paper, the notation "(E,K)" means that totally ordered vector lattice

with the cone K which is induced by Schauder basis of the vector space E.
Proposition 3.2. Let E and L be two Banach spaces with equivalent basis (bn) and (cn),
respectively. If B and C are totally ordering cones induced by (bn) and (cn), respectively,
then (E,B) and (L,C) are order isomorphic vector lattices.
Proof. From Closed Graph Theorem, bn and cn are equivalent basis if and only if there
is an isomorphism T : E → L such that T (bn) = cn for all n ∈ N. It is easy to see that
for each x ∈ E, we have b∗

n(T (x)) = c∗
n(x) for all n ∈ N. Therefore the equality T (B) = C

holds and so, T is an order isomorphism. �
The following corollary is immediately obtained from Proposition 3.2 by considering the

case E = L.

Corollary 3.3. Let B and C be totally ordering cones in a Banach space E which are
induced by equivalent basis bn and cn, respectively. Then (E,B) and (E,C) are order
isomorphic vector lattices.
Proposition 3.4. The subset I1 = {x ∈ E : b∗

1(x) = 0} of E is a maximal order ideal in
(E,K).
Proof. Firstly, let us show that I1 is an order ideal in (E,K). It is not hard to see that
I1 is a vector sub-lattice of E. To show I1 has the solid property, let x, y, y − x ∈ K with
y ∈ I1. Since b∗

1(y) = 0 and b∗
1(y − x) = b∗

1(y) − b∗
1(x), then b∗

1(x) is zero or a negative real
number. But the case being negative contradicts with being x ∈ K. Therefore x ∈ I1 and
so that I1 is an order ideal in E.

Now let us show that it is a maximal order ideal. Suppose L is an order ideal in E such
that I1 ( L. If x ∈ L \ I1 then b∗

1(x) ̸= 0. We will show that L = E. Let us assume that
there exists e ∈ E \ L, then it is easily to see that b∗

1(e) ̸= 0. We can assume that both of
b∗

1(e) and b∗
1(x) are positive otherwise we can rearrange −x or −e as the positive values.

Now, since real numbers are Archimedean there exists α ∈ R such that αb∗
1(x) > b∗

1(e).
The solid property of L implies e ∈ L. Therefore L = E and I1 is a maximal order ideal
in (E,K). �

Indeed, it is not hard to see that In = {x ∈ E : b∗
i (x) = 0 for all i ≤ n} is an order

ideal for each n ≥ 1. Let I(E) be the family of all order ideals in E. It is well known that
I(E) has a lattice structure if one consider Minkowski sum and intersection as the lattice
operations.
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Proposition 3.5. I(E) has countable cardinality.

Proof. We will show that all order ideals of E, except itself and {θ}, are one of the
In = {x ∈ E : b∗

i (x) = 0 for all i ≤ n} for some n ∈ N. Suppose that a proper order ideal
M ̸= In for all n ≥ 1. Then from maximality of I1, it is easy to see that M ⊂ I1. Otherwise,
by following second part of proof of Proposition 3.4, M must contain all elements of E.
Indeed, M should be also a subset of I2. If it is between I1 and I2 then again by following
second part of proof of Proposition 3.4, M should be equal I1. Now, one can get the
desired result by induction over n ≥ 1. Therefore all order ideals of E must be equal one
of {In}, {θ} or E. �
Corollary 3.6. The lattice I(E) is totally ordered.

It is well known that if I is an order ideal in a vector lattice E, then the quotient vector
space E/I is a vector lattice with the following order : ϕ(x) > 0 if x + y > θ for all y ∈ I,
where ϕ is the canonical map from E to E/I. If I is a maximal order ideal in a vector
lattice E then the quotient vector lattice E/I is order isomorphic to the real numbers, see
[17]. So the following corollary is obtained immediately from the proof of Proposition 3.5,
since I1 is the unique maximal ideal of E we have the following corollary.

Corollary 3.7. E/I1 is lattice isomorphic to R.

The cone K is not Archimedean (A totally ordered cone is closed if and only if it has
at most 1 dimension, see [4]), nevertheless, we have following relationship between order
convergence and base projections.

Lemma 3.8. If a sequence {xn} of E is order convergent to x ∈ E, then the real sequence
{b∗

k(xn − x)} converges to zero for each k ∈ N.

Proof. First of all, let us show that if qn ↓ θ in E, then b∗
k(qn) ↓ 0 for each k ∈ N. Let us

assume that qn ↓ θ in E but r := infn∈N b∗
k0

(qn) ̸= 0 for a k0 ∈ N. We can assure that this
infimum exits because of that the sequence b∗

k0
(qn) is bounded below from zero. Let y be

chosen such that 0 < b∗
k0

(y) < r and b∗
k(y) = 0 for all k < k0. Then obviously y ̸= θ and

qn > y for all n ∈ N which contradicts with being qn ↓ θ.

Now, let xn be order convergent to x ∈ E. Then there exits a sequence qn ↓ θ such
that |xn − x| < qn for each k ∈ N. From the inequality b∗

k(|xn − x|) < b∗
k(qn) and with the

previous observation, we obtain that the sequence b∗
k(|xn − x|) converges to zero for each

k ∈ N. By using linearity of b∗
k, we can easily get the desired result. �

Example 3.9. The norm convergence does not imply the order convergence and vice
versa. Let us consider the Banach space c0 with sup norm. Now consider sequence of
xn = ( 1

n , 0, 0, ...) for n ∈ N. It is easy to see that the sequence {xn : n ∈ N} converges to
zero with sup norm. But it does not order converge to zero . To see this, it is enough to
observe that infn∈N{xn} > (0, 1, 0, 0, ...) > θ.

In order to see that order convergence does not imply norm convergence, let us con-
sider the Schauder basis (en)∞

n=1 of c0 which is not a Cauchy sequence with respect to sup
norm, but it is order convergent to zero vector. It is clear that zero vector is a lower bound
for the sequence {en} and let us assume that e ∈ E is another lower bound for {en} such
that e > θ. Since e > θ then there exits an integer n0 such that n0th term of the sequence
e is a positive real number. But in this case we obtain en0+1 < e and this contradict with
property of e that being lower bound of {en}. Therefore θ is greatest lower bound of {en},
so that it is order convergent to zero vector.

It is well known that Hamel base of the finite dimensional Banach spaces can be seen
as a Schauder basis and they are all equivalent to Hamel base of Rn. Since there is only
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one totally ordering cone in Rn and by Proposition 3.2, we can re-state the following
well-known corollary.

Corollary 3.10. Every finite dimensional totally ordered vector lattice is order isomorphic
to (Rn, <lex).

Indeed, it is well known that in a Hilbert space, all orthonormal basis are equivalent.
Since every orthogonal base in a separable Hilbert space can be seen as a Schauder basis,
Proposition 3.2 gives us the following corollary which is the main result of [10].

Corollary 3.11. Every separable Hilbert space has totally ordering cone.
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