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ABSTRACT: The aim in analyzing a 2k factorial design is to estimate the 2k main and interaction effects. If some 
of these main and interaction effects are known to be zero or negligible, it is not necessary to estimate all the main 
and interaction effects in 2k factorial design. When S main and interaction effects are non-zero, all possible sets 
of S treatment combinations are not sufficient for estimating these main and interaction effects. For this reason, a 
method is introduced to obtain the smallest set of the S treatment combinations. In this study, two smallest sets are 
obtained for all possible scenarios of interest for 23 factorial design using this method given by Tsao and Wibowo. 
An illustration of this method is solved for 23 factorial design by using SPSS 13.0 package program.

Keywords: 2k factorial design, mean response, linear programming, Simplex method

ÖZET: Bir 2k faktöriyel düzeni analiz etmekteki amaç, 2k tane etki ve etkileşimi tahmin etmektir. Bu etki ve etkile-
şimlerin bazıları sıfır veya önemsiz olarak biliniyorsa, 2k faktöriyel düzende yer alan tüm etki ve etkileşimi tahmin 
etmek gerekli değildir. Genelde, S tane etki ve etkileşim sıfırdan farklı olduğu zaman, sadece S tane deneme kom-
binasyonu, bu etki ve etkileşimlerin tahmini için gereklidir. S tane etki ve etkileşim sıfırdan farklı olduğu zaman, 
S tane deneme kombinasyonun mümkün her kümesi, bu etki ve etkileşimlerin tahmini için yeterli değildir. Bu ne-
denle, S tane deneme kombinasyonlarının en küçük kümesini elde etmek için bir yöntem tanıtılmıştır. Bu çalışma-
da, tanıtılan bu yöntem ile 23 faktöriyel düzenin tüm mümkün durumları için iki tane en küçük küme elde edilmiş-
tir. Ayrıca, bu kümelerin elde edilmesinde yararlanılan doğrusal programlama modelinin çözümünde WINQSB pa-
ket programı kullanılmıştır.

Anahtar kelimeler: 2k faktöriyel düzen,  ortalama yanıt, doğrusal  programlama, Simpleks yöntemi
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INTRODUCTION

In a 2k factorial design, there are k factors and each 
factor has two levels. When the number of factors k 
is large, the number of 2k treatment combinations will 
be large as well. Another method for minimizing the 
number of treatment combinations is fractional facto-
rial designs. For example, in a 27 factorial design, there 
are 128 treatment combinations. In this design, 7 de-
grees of freedom corresponds to the main effects, 21 
degrees of freedom corresponds to first order interac-
tions, 31 degrees of freedom corresponds to second or-
der interactions and 35 degrees of freedom corresponds 
to third order interactions. The degrees of freedom for 
the remaining interactions (fourth, fifth and sixth order 
interactions) add up to 29. For this reason, this situation 
will get more complicated as the number of factors and 
factor levels increase. Even if the high order interaction 
terms are not included in the analysis or they are con-
founded with blocks, the degrees of freedom for the es-
timation of error will still be large. In this case, instead 
of applying whole replications of 128 observations, we 
could get the necessary information by using half of the 
observations. When only a part of an experiment is ap-
plied, it is called the fractional factorial design. These 
factorial designs are widely used in quality control and 
industry. This method saves time and money, however, 
it has the disadvantage of not estimating the main and 
interaction effects separately since these effects are con-
founded with other effects (Cochran and Cox, 1992). 

In the literature, minimizing the number of treat-
ment combinations is very important. The minimiza-
tion procedure is based on determining the relation be-
tween all possible factors and the response variable. In 
a 2k factorial design, if an interaction term is known to 

be zero or negligible, this term can not be estimated. 
So, the number of treatment combinations decreases 
by 1. In general, when only S main and interaction ef-
fects are   non-zero, only S treatment combinations are 
needed to estimate these main and interaction effects. 
In this study, when only S main and interaction effects 
are non-zero, all possible sets of S treatment combina-
tions are not sufficient to estimate these effects. For this 
reason, a method is introduced to obtain the smallest 
set of S treatment combinations. With this method, two 
smallest sets for all possible scenarios of interest for 23 
factorial design is obtained (Jacob Tsao and Wibowo, 
2005).  For example, in a 23 factorial design, when AB, 
ABC interactions effects are assumed to be zero, S=6 
main and interaction effects, general mean ( ì ), A, B, 
C, AC, BC, is tested. For estimating these main and in-
teraction effects, it is necessary to choose a set of S=6 
treatment combinations (for example, (1), a, b, c, ac, 
bc). However in this study, assuming AB, ABC inter-
actions effects are zero, all possible sets of treatment 
combinations  {(1), a, b, c, ac, bc}, {(1), b, c, ac, bc, 
abc}…, are not sufficient for estimating these main and 
interaction effects. For this reason,  a method given by 
Tsao and Wibowo is introduced for obtaining the best 
set with 6 treatment combinations (Jacob Tsao and Wi-
bowo, 2005).  This method is thought to be more prac-
tical for most of the problems therefore this method is 
introduced with an application.

INTRODUCING THE METHOD FOR 23 FAC-
TORIAL DESIGN

There are 23=8 treatment combinations in 23 fac-
torial design. The coefficients table for this design is 

Table 1. Coefficients table in 23 factorial design
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given in Table 1. In this table, (-) is used to represent the 
low levels and (+) is used to represent the high levels of 
the factors and ì is the overall mean.

The estimation of these eight mean responses is 
an important step in the estimation of the eight main 
and interaction effects. The regression model for a 23 
factorial design is given as the following (Montgom-
ery,1984;  Wang, 2005).

 (1)

In this model, . Since this study 
is based on mean responses, the following equation 
plays a key role in the rest of the chapter 

 (2)

where . When the mean responses 
 and  are estimated, , A, 

B, C, AB, AC, BC, ABC  is solved as the functions of 
these mean responses. For example, if the AB, AC, BC 
and ABC interaction effects are known to be zero, the 
model is

    (3)

The unknown parameters in equation (3) are gen-
eral mean ( ) and A, B, C main effects. Only S=4 
mean responses are needed to estimate these unknown 
parameters.

Under the assumption that interaction effects AB, 
AC, BC and ABC are zero, the equations for each of 
the interaction effects given below can be written using 
Table 1.

  (4)

These four equations show the linear restrictions 
on the eight mean responses. The aim is to revise equa-
tion (4) in a canonical form as in equation (5). A method 
is introduced to obtain this canonical form. 

    (5)

In obtaining equation (5) from equation (4), Phase 
I Simplex Method is used. In this section, some con-
cepts are introduced based on this result. According 
to equation (5),  and  mean responses are 
given as a linear function of   and  mean 
responses. According to this equations set, {(1), ab, ac, 

bc} which corresponds to (1, 4, 6, 7) are called as treat-
ment combinations and from these treatment combina-
tions,  and  mean responses should be esti-
mated.  and  are called as redundant mean 
responses. Equation (5) can be revised to obtain equa-
tion (6).

    (6)

In equation (6), the coefficients related to  
and  form an identity matrix. At the same time, these 
coefficients construct the canonical form (Taha, 1982; 
Winston, 2004). In equation (6),  and  are 
basic variables while the remaining terms are non-basic 
variables. 

THE SOLUTION OF THE METHOD USING 
LINEAR PROGRAMMING MODEL

The most widely used method for solving linear 
programming models is the Phase I Simplex Method.  
Using this method, a canonical form as in equation (5) 
is obtained from equation (4). 

Linear programming model consists of n variables 
and m equations (n≥m). The objective function is ex-
pressed as the sum of artificial variables. This objec-
tive function is used to obtain m basic variables and 
(n-m) non-basic variables. In this study, basic variables 
represent the artificial variables and non-basic variables 
represent the mean responses. Therefore, using Y1, Y2, 
Y3 and Y4 artificial variables, the linear programming 
model will be as the following   (Taha, 1982; Winston, 
2004). 

Min  Z Y1+Y2+ Y3+ Y4

Restrictions

 (7) 

Note that all regular variables  can be any real 
number instead of being restricted to non-negative val-
ues. Unfortunately, this linear programming has a triv-
ial solution, which is Y1=0, Y2=0, Y3=0 and Y4=0, and 
this solution does not serve our purpose (Jacob Tsao, 
2005).  Due to the property of the canonical form, the 
values on the right side of the equation (7) do not really 
play any role. Therefore, the zero values on the right 
side of the equalities can be exchanged with any posi-
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tive constants due to our purpose (Taha, 1982; Winston, 
2004). In this case, we get a solution related with the 
objective of the study. If the values on the right side 
of equality (7) are chosen to be 1, 2, 3 and 4, the linear 
programming model will be like as the following:

Min Z  Y1+Y2+ Y3+ Y4

Restrictions

 (8)

.

This model is solved by simplex algorithm. The 
Phase I linear programming model used for obtaining 
two smallest sets is solved by using WINQSB. The op-
timum solutions of this linear programming model are 
given in Table 2. In this table, BV represents the basic 
variables. 

From Table 2, the restrictions can be written as

   (9)

As a result, due to Table 2, the treatment combi-
nations set {a, b, c, abc} corresponding to {2,3,5,8} 
are redundant treatment combinations.  The treatment 
combinations of interest are {(1), ab, ac, bc} corre-
sponding to {1,4,6,7}. Therefore, if in order to obtain 
a relation between mean responses  and 

 the values on the right side of the equal-
ity (9) are taken to be zero, the equations will become 
as in equations (10).

 

    (10)

Table 2. The optimum table for linear programming problem

Table 3. An alternative optimum table for linear programming problem

Table 4. Two smallest sets for all possible combinations in a 23 factorial design

Two-way 
interaction is 

zero

Three-way 
interaction is 

zero

Minimum number 
of treatment 
combinations

Redundant
treatment 

combinations

Minimal sets of treatment 
combinations

None ABC 7 a
b

(1), b, ab, c, ac, bc, abc
(1), a, ab, c, ac, bc, abc

AB ABC 6 a, c
b, c

(1), b, ab, ac, bc, abc
(1), a, ab, ac, bc, abc

AB, AC ABC 5 b, c, abc
(1), b, c

(1), a, ab, ac, bc
a, ab, ac, bc, abc

AB, AC, BC ABC 4 a, b, c, abc
(1), a, b, c

(1), ab, ac, bc
ab, ac, bc, abc
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APPLICATION

A study is done to determine which factors affect 
the time to swim 100m for male swimmers. In this study, 
there are three factors with two levels which affect 
the response variable which are age of swimmers(A), 
weights (B) and physical fitness(C). The levels for 
age factor are low (<35) and high (≥35), the levels for 
weight factor are low (<70) and high (≥70) and the 
levels of physical fitness factor are low and high. This 
study is an example for a 23 factorial design. There are 
2×2×2=23=8 treatment combinations in the design: (1), 
a, b, ab, c, ac, bc, abc. The data table for the design 
with three factors with two levels and two replications 
is given in Table 5 (Erbaş and Olmuş, 2005). 

The analysis of variance table for this data set is 
given in Table 6. The results given in the analysis of 
variance table below are found by using SPSS 13.0 
package program.

Since F1,8,0.05=5.32, age, weight and physical fit-
ness are found to be significant factors in explaining the 
time for male swimmers to swim 100m. In addition, the 
weight and physical fitness interaction effect is found 
to be significant. 

In this design, when the AB, AC, BC and ABC in-
teractions effects are assumed to be zero or negligible, 
we have obtained {(1), ab, ac, bc} as one of the smallest 
treatment combination sets for testing main effects A, 
B, C. According to this result, under the two replica-

Table 6. The analysis of variance table for male swimmers’ time to swim 100m
Source of variation Degrees of freedom Sum of squares Mean squares F

Age  (A) 1 10.56 10.56 21.12*

Weight  (B) 1 45.06 45.06 90.12*

AB 1 1.56 1.56 3.12
Physical fitness  (C) 1 52.56 52.56 105.12*

AC 1 0.56 0.56 1.12
BC 1 10.56 10.56 21.12*

ABC 1 0.56 0.56 1.12
Error 8 4.02 0.50
Total 15 125.44

Table 8. The analysis of variance table of time to swim 100m for male swimmers
Source of variation Degrees of freedom Sum of squares Mean squares F

Age (A) 1 21.125 21.125 56.333
Weight (B) 1 28.125 28.125 75.000

Physical fitness (C) 1 34.125 34.125 96.333
Error 4 1.500 0.375

Total 7 86.875

If the reduced cost of any of the non-basic variables 
of the optimal solutions is 0, then an alternative optimal 
solution exists (Taha, 1982;Winston, 2004) From here, 
an alternative set of four redundant treatment combina-
tions is obtained. In the simplex algorithm, substituting 

 with  gives an alternative solution. The redundant 
set of treatment combinations is {(1), a, b, c} corre-
sponding to {1, 2, 3, 5}. An alternative optimum table 
is given in Table 3.

Two smallest sets for all possible combinations in 
a 23 factorial design are given in Table 4.

Table 5. The data set of time to swim 100 m for male swimmers

Table 7. The data set of time to swim 100 m for male swimmers
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tions assumption, let the data set related to this design 
be revised as in  Table 7.

The analysis of variance table for the data set in 
Table 7 is given in Table 8.

Since, F1,4,0.05=7.71, age, weight and physical fit-
ness are found to be significant factors in explaining the 
time for male swimmers to swim 100m.

As a result, the outcome obtained using small-
est set of treatment combinations is the same with the 
outcome obtained using all treatment combinations in 
23 factorial design. For this reason, using smallest set 
of treatment combinations is more advantageous then 
using all treatment combinations in terms of time and 
cost. In light of this result, this method can be preferred 
over other methods due to providing practical solutions 
to most of the problems. 

CONCLUSION 

In general, when only S main and interaction ef-
fects are non-zero, all possible sets of S treatment com-
binations are not sufficient to estimate these effects in 
a 2k factorial design. For this reason, a method is in-
troduced to obtain the smallest set of S treatment com-
binations. Two smallest sets are given for all possible 
scenarios of interest for 23 factorial designs using this 
method. The Phase I simplex method used for solving 
linear programming models is used for obtaining these 
sets. WINQSB is used for solving this method.

The method introduced in this article can be used 
for any 2k factorial designs. Another method for obtain-
ing the smallest set of treatment combinations is frac-
tional factorial designs. The method introduced in this 
article is a better method than fractional factorial design 
method. Because fractional factorial designs method 
deals with the sum of treatment combinations. How-
ever, the method introduced gives the smallest set and 
the optimum number of treatment combinations. 

In addition, the method can produce multiple mini-
mal sets of treatment combinations by continuing to 
perform pivoting after having obtained the first optimal 
solution to the linear programming. As a conclusion, 
with this method the researcher obtains the smallest set 
of treatment combinations and tests the necessary main 
and interaction effects using this set. In this study, a 23 
factorial design is considered and shown to be very ad-
vantageous in some situations. The practical use of this 
method given by Tsao ve Wibowo can be extended to 
2k   factorial designs.
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