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Abstract
In this paper we introduce some new sequence spaces cI

0(F̂ , p), cI(F̂ , p) and `I
∞(F̂ , p) for p = (pn), a sequence of

positive real numbers. In addition, we study some topological and algebraic properties on these spaces. Lastly,
we examine some inclusion relations on these spaces.
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1. Introduction
Let N, R and C be the sets of all natural, real and complex numbers, respectively. We denote

ω = {x = (xk) : xk ∈ R or C}

the vector space of all real or complex sequences. Any vector subspace of ω is called a sequence space.

Definition 1.1. Let X be a linear space. A function g : X → R, is called paranorm if for all x,y ∈ X,

(i) g(x)≥ 0 for all x ∈ X,

(ii) g(−x) = g(x),

(iii) g(x+ y)≤ g(x)+g(y),∀x,y ∈ X,

(iv) (cn) is a sequence of scalars with cn→ c(n→ ∞) and (xn) is a sequence of vetors with g(xn− x)→ 0 as (n→ ∞), then
g(xncn− xc)→ 0 as (n→ ∞).

A paranorm g which g(x) = 0 implies that x = θ is called a total paranorm and the pair (X ,g) is called a totally paranormed
space. The concept of paranorm is related to the linear metric spaces given by some total paranorm [1]. The notion of
paranormed sequence was studied at the initial stage by Nakano[2] and Simons [3]. Later on it was investigated by Maddox
[4, 5] and others [6]. Tripathy and Hazarika [7] generalized the sequence spaces of Maddox to introduced the new idea of
paranorm I–convergent sequence spaces cI

0(p), cI(p), `I
∞(p) and `∞(p) where p = (pn) is the sequence of strictly positive real

numbers.
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Initially, as a generalization of statistical convergence which was first introduced by Fast [8] and Steinhaus [9] for real and
complex sequences, the notation of ideal convergence (I-convergence) was introduced and studied by Kostyrko et al.[10].

Recall that a family of sets I ⊆ 2N is called an ideal if (i) for each A,B ∈ I⇒ A∪B ∈ I, (ii) for each A ∈ I,B⊆ A⇒ B ∈ I.
An ideal I is said to be admissible if I 6= 2N and contains every finite subset of N and I is said to be maximal if there cannot
exist any non–trivial ideal J 6= I containing I as a subset. For each ideal I there is a filter F (I) which corresponds to I ( filter
associated with ideal I), defined by F (I) = {K ⊆ N : Kc ∈ I}. The notion of I–convergence defined in [10] as the sequence
(xn) ∈ ω is said to be I–convergent to a number L ∈ C if, for every ε > 0, the set {n ∈ N : |xn−L| ≥ ε} belongs to I. And we
write I–limxn = L. In case L = 0 then (xn) ∈ ω is said to be I–null. Where I assumed to be admissible. Some notions for usual
convergence have been extended with respect to the admissible ideal in N, such as the notions of bounded and Cauchy sequence
extended to I–bounded and I–Cauchy defined in [11], respectively, as follows: A sequence (xn) ∈ ω is said to be I–Cauchy if,
for every ε > 0, there exists a number N = N(ε) such that the set {n ∈ N : |xn− xN | ≥ ε} belongs to I. A sequence (xn) ∈ ω is
said to be I–bounded if there exists K > 0, such that, the set {n ∈ N : |xn|> K} belongs to I. Throughout the paper, cI , cI

0 and
`I

∞ represent the I–convergent, I–null and I–bounded sequence spaces, respectively. Further, details on ideal convergence see,
[12, 13, 14, 15, 16, 17] and their references.

Let λ and µ be two arbitrary sequence spaces and A = (ank) be an infinite matrix of complex numbers ank, where n,k ∈ N.
By the sequence space λA defined by λA := {x = (xk) ∈ ω : Ax ∈ λ}, we denote the domain of the matrix A in the space λ , the
sequence Ax = {An(x)} for all x ∈ λ , the A–transform of x, is in µ defined by An(x) = ∑

∞
k=0 ankxk, for each n ∈ N. By (λ ,µ),

we denote the class of all matrices A such that λ ⊆ µA. Many researchers have addressed this approach to constructing a new
sequence space by means of the matrix domain of a particular limitation method; see, for instance, [18, 19, 20, 21, 22, 23].
Recently, by using the sequence of Fibonacci numbers { fn}∞

n=0 defined by the linear recurrence equalities f0 = f1 = 1 and
fn = fn−1 + fn−2,n≥ 2, Kara [24] defined the Fibonacci band matrix F̂ = ( fnk) as follows:

f̂nk =


− fn+1

fn
, (k = n−1)

fn
fn+1

, (k = n)

0 , 0≤ k < n−1 or k > n

for all n,k ∈ N, and introduced some new difference sequence spaces by means of the matrix F̂ . Where the notion of difference
sequence spaces was firstly introduced by Kizmaz[25] for more detail [26, 27, 28, 29, 30]. Afterward, Kara and Demiriz [24]
introduced the paranormed sequence spaces c0(F̂ , p), c(F̂ , p) and `∞(F̂ , p) related to the matrix domain of F̂ . i.e.,

c0(F̂ , p) =
{

x = (xn) ∈ ω : lim
n→∞

∣∣∣∣ fn

fn+1
xn−

fn+1

fn
xn−1

∣∣∣∣pn

= 0
}

c(F̂ , p) =
{

x = (xn) ∈ ω : ∃L ∈ C 3 lim
n→∞

∣∣∣∣ fn

fn+1
xn−

fn+1

fn
xn−1

∣∣∣∣pn

= L
}

`∞(F̂ , p) =
{

x = (xn) ∈ ω : sup
n∈N

∣∣∣∣ fn

fn+1
xn−

fn+1

fn
xn−1

∣∣∣∣pn

< ∞

}
.

Lately, by combining the definitions of Fibonacci difference matrix F̂ and the notion of ideal convergence, Khan et al.[13]
introduced the sequence spaces cI

0(F̂), cI(F̂), and `I
∞(F̂) defined as the set of all sequences whose F̂–transforms are in the

spaces cI
0, cI and `I

∞, respectively, defined as follows:

λF̂ = {x = (xk) ∈ ω : F̂n(x) ∈ λ} for λ = {cI
0,c

I , `I
∞},

where the sequence F̂n(x) is frequently used as the F̂–transform of the sequence x = (xn) defined by

F̂n(x) =

{
f0
f1

x0 = x0 , n = 0
fn

fn+1
xn− fn+1

fn
xn−1 , n≥ 1 for all n ∈ N.

(1.1)

In this paper, by using the Fibonacci difference matrix F̂ and same technique we introduce the paranorm ideal convergent
Fibonacci difference sequence spaces cI

0(F̂ , p), cI(F̂ , p), and `I
∞(F̂ , p) related to the matrix domain of F̂ in the sequence spaces

cI
0(p), cI(p) and `I

∞(p). Further, we study some topological and algebraic properties on these spaces and examine some
inclusion relations concerning these spaces.
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Definition 1.2. [13] Let x = (xn) and z = (zn) be two sequences. We say that xn = zn for almost all n relative to I (in short
a.a.n.r.I) if the set {n ∈ N : xn 6= zn} ∈ I.

Definition 1.3. [31] A sequence space E is said to be symmetric, if (xπ(n)) ∈ E whenever (xn) ∈ E where π(n) is a permutation
on N.

Definition 1.4. [31] A sequence space E is said to be solid or normal, if (αnxn) ∈ E whenever (xn) ∈ E and for any sequence
of scalars (αn) ∈ ω with |αn|< 1, for every n ∈ N.

Definition 1.5. [31] Let K = {ni ∈ N : n1 < n2 < .. .} ⊆ N and E be a sequence space. A K–step space of E is a sequence
space

λ
E
K = {(xni) ∈ ω : (xn) ∈ E}.

A canonical pre–image of a sequence (xni) ∈ λ E
K is a sequence (yn) ∈ ω defined as follows:

yn =

{
xn , if n ∈ K
0 , otherwise.

A canonical pre–image of a step space λ E
K is a set of canonical pre–images of all elements in λ E

K . i.e., y is in canonical
pre–image of λ E

K iff y is canonical pre–image of some element x ∈ λ E
K .

Definition 1.6. [31] A sequence space E is said to be monotone, if it contains the canonical pre–images of its step space.

Lemma 1.7. [31] Every solid space is monotone.

Lemma 1.8. [ [31], Lemma 2.5] Let K ∈F (I) and M ⊆ N. If M /∈ I, then M∩K /∈ I.

Lemma 1.9. [ Lascarides [32], Proposition 1] Let h = inf pn, H = supn pn. Then the following conditions are equivalent:

(i) H < ∞ and h > 0,

(ii) c0(p) = c0 or `∞(p) = `∞,

(iii) `∞{p}= `∞(p),

(iv) c0{p}= c0(p),

(v) `{p}= `(p).

2. Main results
In this section, we introduce the paranormed sequence spaces cI

0(F̂ , p), cI(F̂ , p) and `I
∞(F̂ , p) related to the matrix domain

of F̂ in the sequence spaces cI
0(p), cI(p) and `I

∞(p). Further, we study some inclusion theorems and study some topological
and algebraic properties on these resulting. We assume throughout this section that the sequences x = (xn) and (F̂n(x)) are
connected by relation (1.1) and p = (pn) be a sequence of positive real numbers and I is an admissible ideal of subset of N. We
define

cI
0(F̂ , p) :=

{
x = (xn) ∈ ω :

{
n ∈ N : |F̂n(x)|pn ≥ ε

}
∈ I
}
,

cI(F̂ , p) :=
{

x = (xn) ∈ ω :
{

n ∈ N : |F̂n(x)−L|pn ≥ ε, for some L ∈ C
}
∈ I
}
,

`I
∞(F̂ , p) :=

{
x = (xn) ∈ ω : ∃K > 0 s.t

{
n ∈ N : |F̂n(x)|pn > K

}
∈ I
}
.

We write

mI
0(F̂ , p) := cI

0(F̂ , p)∩ `∞(F̂ , p),

and

mI(F̂ , p) := cI(F̂ , p)∩ `∞(F̂ , p).
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Theorem 2.1. The sequence spaces cI(F̂ , p), cI
0(F̂ , p), `I

∞(F̂ , p), mI
0(F̂ , p) and mI(F̂ , p) are linear spaces.

Proof. Let x = (xn), y = (yn) be two arbitrary elements of the space cI(F̂ , p) and α,β be scalars. Now, since x,y ∈ cI(F̂ , p),
then for given ε > 0, we have{

n ∈ N : |F̂n(x)−L1|pn ≥ ε

2
, for same L1 ∈ C

}
∈ I,

and {
n ∈ N : |F̂n(y)−L2|pn ≥ ε

2
, for same L2 ∈ C

}
∈ I.

Now, let

Ax =

{
n ∈ N : |F̂n(x)−L1|pn <

ε

2M1

}
∈F (I),

Ay =

{
n ∈ N : |F̂n(y)−L2|pn <

ε

2M2

}
∈F (I),

be such that Ac
x,A

c
y ∈ I, where M1 = D ·max{1,supn |α|pn}, M2 = D ·max{1,supn |β |pn} and D = max{1,2H−1} and H =

supn pn ≥ 0. Then

{
n ∈ N : |(αF̂n(x)+β F̂n(y))− (αL1 +βL2)|pn < ε

}
⊇

{{
n ∈ N : |α|pn |F̂n(x)−L1|pn <

ε

2M1
|α|pnD

}

∩
{

n ∈ N : |β |pn|F̂n(x)−L2|pn <
ε

2M2
|β |pn D

}}
.

(2.1)

Thus, the set on the right hand side of equation (2.1) belongs to F (I). By definition of filter associated with an ideal the
complement of the set on the left hand side of (2.1) belongs to I. This implies that (αx+βy) ∈ cI(F̂ , p). Hence, cI(F̂ , p) is a
linear space. The proof for other spaces will follow similarly.

Theorem 2.2. The classes of sequences mI(F̂ , p) and mI
0(F̂ , p) are paranormed spaces, paranormed by g(xn) = supn |xn|

pn
M ,

where M = max{1,supn pn}.

Proof. The proof of the result is easy, so omitted.

Theorem 2.3. The set mI(F̂ , p) is closed subspace of `∞(F̂ , p).

Proof. Let (x(m)
n ) is a Cauchy sequence in mI(F̂ , p) such that (x(m))→ x. We show that x ∈ mI(F̂ , p). Since (x(m)

n ) ∈ mI(F̂ , p),
then there exists (am), and for every ε > 0 such that

{n ∈ N : |F̂(m)
n (x)−am|pn ≥ ε} ∈ I.

We need to show that

(i) (am) converges to a.

(ii) If A = {n ∈ N : |F̂n(x)−a|pn < ε}, then Ac ∈ I.

(i) Since (x(m)
n ) be a Cauchy sequence in mI(F̂ , p) then for a given ε > 0 there exists n0 ∈ N such that

sup
n
|F̂(m)

n (x)− F̂(r)
n (x)|

pn
M <

ε

3
, for all m,r ≥ n0.

For a given ε > 0, we have

Bmr = {n ∈ N : |F̂(m)
n (x)− F̂(r)

n (x)|pn <
(

ε

3

)M
},

Br = {n ∈ N : |n ∈ N : |F̂(r)
n (x)−ar|pn <

(
ε

3

)M
},
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Bm = {n ∈ N : |F̂(m)
n (x)−am|pn <

(
ε

3

)M
}.

Then Bc
mr, Bc

r , Bc
m ∈ I. Let Bc = Bc

mr ∪Bc
m∪Bc

r , where

B = {n ∈ N : |am−ar|pn < ε}.

Then Bc ∈ I. We choose n0 ∈ Bc, then for each m,r ≥ n0 we have

{n ∈ N : |am−ar|pn < ε} ⊇

[{
n ∈ N : |am− F̂(m)

n (x)|pn <
(

ε

3

)M}
∩
{

n ∈ N : |F̂(m)
n (x)− F̂(r)

n (x)|pn <
(

ε

3

)M}
∩
{

n ∈ N : |F̂(r)
n (x)−ar|pn <

(
ε

3

)M}]
.

Then (am) is a Cauchy sequence in C. So, there exists a scalar a ∈ C such that am→ a, as m→ ∞.
(ii) For the next step, let 0 < δ < 1 be given. Then, we show that if

A = {n ∈ N : |F̂n(x)−a|pn < δ}

then Ac ∈ I. Since x(m)→ x, then there exists q0 ∈ N such that,

A1 = {n ∈ N : |F̂(q0)
n (x)− F̂n(x)|pn < (

δ

3D
)M} (2.2)

implies Ac
1 ∈ I. The numbers q0 can be so chosen that together with (2.2) , we have

A2 = {n ∈ N : |aq0 −a|pn < (
δ

3D
)M}

such that Ac
2 ∈ I. Since {n ∈ N : |F̂(q0)

n (x)−aq0 |pn ≥ δ} ∈ I, then, we have a subset A3 of N such that Ac
3 ∈ I, where

A3 =

{
n ∈ N : |F̂(q0)

n (x)−aq0 |
pn < (

δ

3D
)M
}
.

Let Ac = Ac
1∪Ac

2∪Ac
3, where A = {n ∈ N : |F̂n(x)−a|pn < δ}. Therefore, for each n ∈ Ac, we have

{n ∈ N : |F̂n(x))−a|pn < δ} ⊇

[{
n ∈ N : |F̂n(x)− F̂(q0)

n (x)|pn <
(

δ

3D

)M}
∩
{

n ∈ N : |F̂(q0)
n (x)−aq0 |

pn <
(

δ

3D

)M}
∩
{

n ∈ N : |aq0 −a|pn <
(

δ

3D

)M}]
.

Then the result follows.

Corollary 2.4. The set mI
0(F̂ , p) is closed subspace of `∞(F̂ , p).

Since the inclusions mI(F̂ , p) ⊂ `∞(F̂ , p) and mI
0(F̂ , p) ⊂ `∞(F̂ , p) are strict, so in view of last theorem, we have the

following result.

Theorem 2.5. The spaces mI(F̂ , p) and mI
0(F̂ , p) are nowhere dense subsets of `∞(F̂ , p).

Theorem 2.6. The spaces cI
0(F̂ , p) and mI

0(F̂ , p) are solid and monotone.
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Proof. We shall prove the result for cI
0(F̂ , p). The other result follows similarly. Let x = (xk) ∈ cI

0(F̂ , p) and α = (αn) be a
sequence of scalars with |α| ≤ 1, for all n ∈ N. Since |α|pn ≤max{1, |αn|pn} ≤ 1, for all n ∈ N, we have

|F̂n(αx)|pn ≤ |αF̂n(x)|pn ≤ |F̂n(x)|pn for all n ∈ N.

From this we have

{n ∈ N : |F̂n(αx)|pn ≥ ε} ⊆ {n ∈ N : |F̂n(x)|pn ≥ ε} ∈ I

which implies

{n ∈ N : |F̂n(αx)|pn ≥ ε} ∈ I.

Therefore, (αxn) ∈ cI
0(F̂ , p). Hence, the space cI

0(F̂ , p) is solid, and hence, by Lemma 1.7 the space cI
0(F̂ , p) is monotone.

Theorem 2.7. The spaces cI(F̂ , p), mI(F̂ , p) are neither monotone nor solid in general.

Proof. Here we give a counter example for establishment of this result.

Example 2.8. Let I = I f = {A⊆ N : A is finite }. Let pn = 1 if n is even and pn = 2 if n is odd. Consider the K–step spaces
EK(F̂ , p) of E(F̂ , p) defined as follows: Let x = (xn) ∈ E(F̂ , p) and y = (yn) ∈ EK(F̂ , p) be such that

F̂n(y) =

{
F̂n(x) , if n is even
0 , otherwise.

Consider the sequence x = (xn) ∈ ω such that F̂n(x) = 1
n , for all n ∈ N. Then (xn) ∈ E(F̂ , p), but its Kth–step space pre–image

does not belong to E(F̂ , p), where E = cI and mI . Thus cI(F̂ , p) and mI(F̂ , p) are not monotone and hence by Lemma1.7 the
spaces cI(F̂ , p) and mI(F̂ , p) are not solid.

Theorem 2.9. Let (pn) and (qn) be two sequences of positive real numbers. Then mI
0(F̂ ,q) ⊆ mI

0(F̂ , p), if and only if

lim
n∈A

in f
pn

qn
> 0, where A⊆ N such that A ∈F (I).

Proof. Let lim
n∈A

in f
pn

qn
> 0 and (xn) ∈ mI

0(F̂ ,q). Then there exists β > 0 such that pn > βqn, for all sufficiently large n ∈ A.

Since (xn) ∈ mI
0(F̂ ,q), for a given ε > 0, we have

B = {n ∈ N : |F̂n(x)|qn ≥ ε} ∈ I. (2.3)

Let G = Ac∪B. Then G ∈ I. Then for all sufficiently large n ∈ G,

{n ∈ N : |F̂n(x)|pn ≥ ε} ⊆ {n ∈ N : |F̂n(x)|βqn ≥ ε} ∈ I.

Therefore, (xn) ∈ mI
0(F̂ , p). The converse part of the result follows obviously.

Corollary 2.10. Let (pn) and (qn) be two sequences of positive real numbers. Then mI
0(F̂ , p) = mI

0(F̂ ,q) and only if
lim
n∈A

inf pnqn > 0, where A⊆ N such that A ∈F (I).

Theorem 2.11. If I neither maximal nor I = I f , then the space H(F̂ , p) are not symmetric, where H = cI
0,c

I ,mI
0, and mI .

Proof. We prove the result with the help of the following example.

Example 2.12. Let I = Ic = {A⊆ N : ∑n∈A n−1 < ∞}, (see [33]). Let

A = {n : n = s2 or t3, for s, t ∈ N}= {n ∈ N : n = s2, for n ∈ N}∪{n ∈ N : n = t3, t ∈ N},

then

∑
n∈A

n−1 < ∞.
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Let

pn =

{
1 , if n is even ,

2 , if n is odd .

Consider the sequence x = (xn) such that

F̂n(x) =

{
n−1 , if n = t3, t ∈ N,
0 , otherwise.

Consider the rearrangement F̂n(y) of F̂n(x) defined by

F̂n(y) = (F̂1(x), F̂3(x), F̂3(x), F̂8(x), F̂4(x), F̂5(x), F̂27(x), F̂6(x), F̂7(x), F̂64(x), F̂8(x), F̂9(x), . . .).

Then (yn) /∈ H(F̂ , p), but (xn) ∈ H(F̂ , p), where H = cI
0,c

I ,mI
0, and mI .

Theorem 2.13. The spaces mI
0(F̂ , p) and mI(F̂ , p) are not separable.

Proof. Let A = {m1 < m2 < .. .} be an infinite subset of N such that A ∈ I. Let

pn =

{
1, if n ∈ A;
2, otherwise.

Let P = {(F̂n(x)) : F̂n(x) = 0 or 1, if n ∈ A; F̂n(x) = 0,otherwise}. Since A is infinite, so P is uncountable. Consider the class
of open balls B1 = {B(F̂n(z), 1

2 ) : F̂n(z) ∈ P}. Let C1 be an open cover of mI
0(F̂ ,P) or mI(F̂ , p) containing B1. Since B1 is

uncountable, so C1 cannot be reduced to a countable subcover for mI
0(F̂ , p) as well as mI(F̂ , p). Thus, mI

0(F̂ , p) and mI(F̂ , p)
are not separable.

Theorem 2.14. Let H = supn pn < ∞ and I be a maximal admissible ideal. Then the following are equivalent:

(a) (xn) ∈ cI(F̂ , p),

(b) There exists (yn) ∈ c(F̂ , p) such that xn = yn, for a.a.n.r.I,

(c) There exists (yn) ∈ c(F̂ , p) and (zn) ∈ cI
0(F̂ , p) such that xn = yn + zn for all n ∈ N and {n ∈ N : |F̂n(x)−L|pn ≥ ε} ∈ I.

(d) There exists a subset K = {ni : i ∈ N,n1 < n2 < n3 < .. .} of N, such that K ∈F (I) and
lim
n→∞
|F̂ni(x)−L|pni = 0.

Proof. (a) implies (b). Let x = (xn) ∈ cI(F̂ , p), then for any ε > 0, there exists a number L ∈ C such that

{n ∈ N : |F̂n(x)−L|pn ≥ ε} ∈ I.

Let (mt) be an increasing sequence with mt ∈ N such that

{n≤ mt : |F̂n(x)−L|pn ≥ t−1} ∈ I.

Define a sequence y = (yn) as yn = xn for all n≤ m1. For mt < n < mt+1, for t ∈ N,

yn =

{
xn, if |F̂n(x)−L|pn < t−1

L, otherwise.

Then (yn) ∈ c(F̂ , p) and from the following inclusion

{n≤ mt : xn 6= yn} ⊆ {n ∈ N : |F̂n(x)−L| ≥ ε} ∈ I

we get xn = yn for a.a.n.r.I.
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(b) implies (c). For x= (xn)∈ cI(F̂ , p) there exists y= (yn)∈ c(F̂ , p) such that xn = yn for a.a.n.r.I. Let K = {n∈N : xn 6= yn},
then K ∈ I. Define a sequence z = (zn) as follows:

zn =

{
xn− yn, if n ∈ K
0, otherwise.

Then (zn) ∈ cI
0(F̂ , p) and so (yn) ∈ c(F̂ , p).

(c) implies (d). Suppose (c) holds. Let ε > 0 be given. Let P = {n ∈ N : |F̂n(x)|pn ≥ ε} ∈ I, and

K = Pc = {(ni ∈ N : i ∈ N,n1 < n2 < n3 < .. .} ∈F (I).

Then we have

lim
i→∞
|F̂ni(x)−L|pni = 0.

(d) implies (a). Let ε > 0 be given and suppose that (c) holds. Then for any ε > 0, and by Lemma 1.9 we have

{n ∈ N : |F̂n(x)−L|pn ≥ ε} ⊆ Kc∪{n ∈ K : |F̂n(x)−L|pn ≥ ε}.

Thus (xn) ∈ cI(F̂ , p).

Theorem 2.15. The sequence spaces:

(i) cI(F̂ , p) and `∞(F̂ , p) overlap but neither one contains the other,

(ii) cI
0(F̂ , p) and `∞(F̂ , p) overlap but neither one contains the other.

Proof. (i) We prove that cI(F̂ , p) and `∞(F̂ , p) are not disjoint. Consider the sequence x = (xn) ∈ ω such that F̂n(x) = 1
n for

n ∈ N. Then, x ∈ cI(F̂ , p) but x ∈ `∞(F̂ , p). Next, define the sequence x = (xn) ∈ ω such that

F̂n(x) =

{√
n, if n is square

0, otherwise.

Thus, x ∈ cI(F̂ , p) but x /∈ `∞(F̂ , p). Next, choose the sequence x = (xn) ∈ ω such that

F̂n(x) =

{
n, if is even
0, otherwise.

Then (x) ∈ `∞(F̂ , p) but x /∈ cI(F̂ , p).

(ii) The proof is similar to proof of part one.

3. Conclusion
In this paper, we defined some new paranorm ideal convergent Fibonacci difference sequence spaces cI

0(F̂ , p), cI(F̂ , p) and
`I

∞(F̂ , p) as the sets of all sequences are in the space cI
0(p), cI(p) and `I

∞(p) respectively. Furthermore, we studied some
topological and algebraic properties of these spaces such as solidity, monotonicity and overlap. Also, we provided an example
to show that these, new sequence spaces are not symmetric and show that the sets mI

0(F̂ , p) and mI(F̂ , p) are not separable.
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[6] H. Ellidokuzoğlu, S. Demiriz, A. Köseoğlu On the paranormed binomial sequence spaces, Univers. J. Math. Appl., 1(3)

(2018), 137-147.
[7] B. Tripathy, B. Hazarika, Paranorm I-convergent sequence spaces, Math. Slovaca, 59(4) (2009), 485-494.
[8] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
[9] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.

[10] P. Kostyrko, M. Macaj, T.Salat, Statistical convergence and I–convergence, Real Anal. Exchange, (1999).
[11] Dems, Katarzyna, On I-Cauchy sequences, Real Anal. Exchange, 30(1) (2004), 123-128.
[12] K. Vakeel, A. Kamal, A. Sameera, Spaces of ideal convergent sequences of bounded linear operators, Numer. Funct. Anal.

Optim., 39(12) (2018), 1278-1290.
[13] K. Vakeel, R. Rami, A. Kamal. A. Sameera, A. Ayaz, On ideal convergence Fibonacci difference sequence spaces, Adv.

Difference Equ., 2018(1) (2018), 199.
[14] K. Vakeel, R. Rami, A. Kamal. A. Sameera, A. Esi, Some new spaces of ideal convergent double sequences by using

compact operator, J. Appl. Sci., 17(9) (2017), 467-474.
[15] B. Tripathy, B. Hazarika, I-convergent sequence spaces associated with multiplier sequences, Math. Inequal. Appl., 11(3)

(2008), 543.
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