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Abstract 

In this study, Kudryashov Method is used to find the wave solutions of the Gardner equation, fifth order 

Caudrey-Dodd-Gibbon equation and Sawada-Kotera equation, which are non-linear partial differential 

equations used as a mathematical model in the physics science field and engineering applications. The exact 

solutions obtained are compared with the results in the literature and hyperbolic type and soliton solutions are 

obtained. 

Keywords: Caudrey-Dodd-Gibbon equation, Gardner equation, Kudryashov Method, Sawada-Kotera 

equation 

 

Fizik Biliminde Kullanılan Bazı Denklemlere Kudryashov Metodun Uygulanması  

 

Öz 

Bu çalışmada fizik bilim alanında ve mühendislik uygulamalarında matematiksel model olarak kullanılan 

lineer olmayan kısmi türevli diferansiyel denklemlerden Gardner denklemi, beşinci mertebeden Caudrey-

Dodd-Gibbon denklemi ve Sawada-Kotera denkleminin dalga çözümlerini bulmak için Kudryashov Metot 

kullanılmıştır. Elde edilen tam çözümler literatürde bulunan sonuçlarla karşılaştırılmış ve hiperbolik tip ve 

soliton çözümler elde edilmiştir. 

 

Anahtar Kelimeler:  Caudrey-Dodd-Gibbon denklemi, Gardner denklemi, Kudryashov Metot, Sawada-

Kotera denklemi   

 

 

1. Introduction 

Nonlinear partial differential equations 

appear as mathematical modeling of many 

problems encountered in the field of 

science. It is important to know about the 

analytical solutions of these mathematical 

models. Because these solutions give 

information about the character of the 

problems modeled. The solutions of these 

nonlinear partial differential equations used 

in scientific fields such as plasma physics, 

solid state physics, laser optics, fluid 

dynamics, chemical kinetics and 

mathematical biology, shed light on the 

different disciplines and guide them. In 

addition, mathematical model of waves 

such as sound waves, water waves, radio 

and television waves is also expressed by 

partial differential equations. When these 
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partial differential equations which are 

considered as mathematical models are 

solved, a comment can be had about the 

problem. Therefore, many new methods 

have been developed to contribute to 

science. These developed methods reveal 

the different physical properties of 

mathematical models. Therefore, these 

methods have an important place in 

science. Some of these developed methods 

are as follows: Homotopy Perturbation 

Method He (2000), Adomian 

Decomposition Method Bildik et al (2006), 

(G'/ G,1/ G) -expansion method Daghan and 

Dönmez (2016) and Kudryashov Method 

(Ryabov et al, 2011; Kabir et al, 2011;  

Kudryashov, 2012; Mirzazadeh, 2014; 

Kaplan, 2016).  

In this study, exact solutions of the Sawada-

Kotera (SK) equation, Caudrey-Dodd-

Gibbon (CDG) equation and Gardner 

equation are obtained by using Kudryashov 

method. The obtained solutions are 

compared with the results in the literature 

and their graphs are demonstrated. 

In the first part of this manuscript, the 

method of Kudryashov is explained and it 

is shown how this method is used. In the 

following chapters, the solutions of the 

Gardner equation, Caudrey-Dodd-Gibbon 

and Sawada-Kotera equations which are 

non-linear partial differential equations and 

which are used in scientific fields such as 

plasma physics, quantum field theory and 

fluid dynamics, are obtained with the help 

of Kudryashov method. In the last section, 

the results and discussions are given. 

2. Kudryashov Method for NPDE  

Assume a general structure of a (1+1)-

dimensional nonlinear partial differential 

equation as  

 

    ,  , , , , , .. 0( ).x t xx tt xtT u u u u u u = ,         (1)                                                                             

 

where T is a polynomial in the unknown 

function ( ),u u x t=  and its partial 

derivatives. The steps of the Kudryashov 

Method can be summarized as follows: 

The first step : To obtain the solutions of  

Eq.(1),  Eq. (1) is turned into the following 

ordinary differential equation 

 

( ), , , ,.... 0D U U U U   = ,      (2)                        

 

using the transformation of 

( ) ( ) 1, ,u x t U k x t  = = +  where 1k  and 

  are constants.  

The second step: The solution of Eq. (2) is 

assumed to be as follows: 

 

( )
0

( )
n

i

i

i

U a 
=

=                                        (3)  

 

where (i 0,1,...)ia =  are constants that will 

be determined in a way that 0na  . The 

following function ( )   in Eq. (3) gives 

the nonlinear ordinary differential equation: 

 
' 2

0 1 2( ) ( ) ( )h h h     = + +             (4)                     

 

When 0 1 20, 1, 1h h h= = − =  in Eq.(4), the 

following nonlinear ordinary differential 

equation is obtained: 

 
' 2( ) ( ) ( )     = − .           (5)                                       

 

Eq. (5) is solved as follows: 
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1
( )

1 Ke
  =


 

 

where K  is integration constant. 

The third step: The positive integer n in Eq. 

(3) is obtained by taking by the balance 

between the highest order derivatives and 

the highest power nonlinear terms in Eq (2). 

The fourth step: If Bernoulli differential 

Eq.(5) and Eq. (3) are substituted into Eq. 

(2), all coefficients of (i 0,1,...)i =  are set 

to zero in the system of algebraic equations 

obtained for (i 0,1,...)ia = . 

The fifth step: The system of algebraic 

equations obtained in the previous step is 

solved using the programs such as 

Mathematica, Maple and the unknown 

parameters are found. More details can be 

seen in Refs. (Ryabov et al, 2011; Kabir et 

al, 2011; Kudryashov, 2012; Mirzazadeh, 

2014; Kaplan, 2016).  

 

3. Utilization of the Kudryashov Method 

to the Gardner Equation  

 

Combined KdV–mKdV equation or the 

Gardner equation  describe Eq. (6) (Zuntao 

et al, 2004; Wazwaz, 2007; Biswas, 2008; 

Kamchatnov et al, 2012; Betchewe et al, 

2013; Alam and Akbar, 2014; Daghan and 

Dönmez 2016 ) 

 
2  + + 0t x x xxxu uu u u qu  + =           (6)                            

 

where  ,  , q  arbitrary constants. The 

equation given in Eq. (6) can be converted 

into the following ordinary differential 

equation by using the transformation of 

( ) ( ), ,u x t U x pt = = − ,  

''' ' ' ' 2 0.qU pU U U U U − + + =         (7)         

 

The integral of Eq.(7)  based on the variable 

  is as follows 

 

'' 2 3 0
2 3

qU pU U U c
 

− + + + =     (8)                   

 

where c is an arbitrary integration constant. 

Balancing between therms U′′ and U³, we 

obtain the following form of solution  

 

( ) 0 1 ( )U a a  = +     (9)                                            

  

 

where ( )  =  satisfies Eq. (5) and a₀, a₁ 

are arbitrary constants. Substituting Eq. (9) 

into Eq. (8) along with Eq. (5)  and then 

equating all coefficients of the functions 
k

(k=0,1,…,5) to zero, we obtain  

 
2

1 0 0( )- 0:  6  pa a a q  + =+ , 

1 1 0 1

2 :  3 +  -(2 ) ,6 0a a a a q  =  

2

1 1

3 ( ) 0.:  2 +6a a   =  

 

By using Mathematica, the solutions of this 

system can be obtained as follows 

 

0 1

2 2
2

1 6 6
( ), ,

2

2 ( 6 )
, .

4 24

q q
a a

q q
p cb

 
  

    



− −
= − + =

− − +
= =

   (10)       

 

Hence, the solution of Eq.(8) is 
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6
(1 ) ( 1 )

( )
2 (1 )

Ke q Ke
q

U
Ke

 









−
− + + − +

=
+

.  (11)        

 

In the case of 1K =   in Eq.(11) is 

  

6 tanh
2

( )
2

q

U


 




 
+ −  

 = −          (12)                         

 

where .x pt = −  The graph of the 

conclusion given in Eq.(12) can be seen in 

Figure 1. 

The hyperbolic function solutions of the 

Gardner equation are compatible solutions 

with the literature (Wazwaz, 2007; Daghan 

and Dönmez 2016). 

 

 
Figure 1. The exact solution according to 

0, 1 = =  and 2q = −  for Gardner Equation  

 

4. The Generalized fifth-order KdV 

Equations  

 

The standard form of the fifth-order KdV 

equation (Salas, 2008; Wazwaz, 2011); 

 
2 0t xxxxx xxx x xx xu u uu u u u u  + + + + =  

 

where  ,   and   are arbitrary nonzero 

and real parameters. Some important 

particular states of the fifth- order Equation 

are: 

Caudrey–Dodd–Gibbon equation (CDG) 

 

230 30 180 0t xxxxx xxx x xx xu u uu u u u u+ + + + =  

 

and Sawada-Kotera Equation (SK) 

 

(5) 25(uu ) 0t x xxx x xx xu u u u u u+ + + + =  

 

for  =  ,  
21

5
 = . 

 

4.1 Utilization of the Kudryashov 

Method to the CDG Equation 

 

CDG equation is 

 
230 30 180 0t xxxxx xxx x xx xu u uu u u u u+ + + + =

(13) 

 

(Wazwaz, 2006; Salas et al, 2008; Wazwaz, 

2008; Jiang and Bi, 2010; Karaagac, 2019). 

The equation given in Eq. (13) can be 

converted into the following ordinary 

differential equation by using the 

transformation of  

 

( ) ( ), ,u x t U kx wt = = + , 

5 (5) 3 3' 30 ( '' ) ' 60 ( ) ' 0wU k U k U U k U+ + + = .   

(14) 

 

Integrating Eq. (14), we obtain  

 
5 (4) 3 330 '' 60 0wU k U k U U kU c+ + + + =   

(15) 
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where c  is an arbitrary integration constant. 

Balancing between therms (4)U  and U³, we 

obtain the following form of solution  

 
2

0 1 2U a a a = + +         (16)                                    

 

where ( )  =  satisfies (5) and 0 1 2, ,a a a  

are arbitrary constants. Substituting Eq.(16) 

into Eq.(15) along with Eq.(5) and then 

equating all coefficients of the functions 

(i 0,1,2,...6)i =  to zero, we obtain  

 
0 3

0 0: 60 30 0,a k a w c + + =  

( )1 2 3 5

1 0 0: 180 30 0,a a k a k k w + + + =  

2 2 3 5

2 0 2 0 2 2

2 2 3 3 5

1 0 1 1 0 1

:180 120 16

180 30 90 15 0,

a a k a a k a k a w

a a k a k a a k a k

 + + + +

+ − − =
 

3 2 2

2 1 0 2 1 2 0

4 3 2 2 2 4

2 1 1 1 0 1

:10 (36 15 30

13 6 9 6 5 ) 0,

k a a a a a k a a k

a k a a k a a k a k

 + − −

+ − + + =

 
4 2 2 2 2 2

2 0 2 2 1 2 1

2 4 2 4

2 0 2 1 1

: 30 (6 4 6 13

6 11 2 2 0,

k a a a k a a a a k

a a k a k a k a k

 + + − +

+ + − =
 

( )5 2 2 2 2 4 4

2 1 2 2 1 2 1:12 15 25 20 28 2 0,k a a a k a a k a k a k − + − + =

 

( )6 2 2 4

2 2 2: 60 3 2 0.a k a a k k + + =  

 

By using Mathematica, the solutions of this 

system can be obtained as follows 

 

2

0 ,
6

k
a

−
=  2

1 2 ,a k=  2

2 2 ,a k= −   

7

2

18 5
,

3

c k
w

k

−
=

7

9

k
c =             (17)                               

 

The solution of Eq. (15) corresponding to 

(17) is 

 
2 2 2

2

(1 10 )
( )

6(1 )

k Ke K e
U

Ke

 




− − +
=

+
.      (18)                 

 

In the case of 1K =   in Eq. (18) is 

 

2 (cosh 5)
( )

6(cosh 1)

k
U






− −
=

+
         (19)                                 

 

where kx wt = + . The graph of the 

conclusion given in Eq. (19) can be seen in 

Figure 2. 

 

 

 
 

Figure 2. The exact solution according to 

1K =  and 1k =  for CDG Equation 

 

The solutions of the CDG equation is 

compatible with solutions in the reference 

Wazwaz (2008). 
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4.2.  Utilization of the Kudryashov 

Method to the SK Equation  

 

The SK equation is  

 
(5) 25(uu ) 0t x xxx x xx xu u u u u u+ + + + =     (20)       

 

(Salas et al, 2008; Wazwaz, 2011; Shakeel 

and Mohyud-Din, 2014).  

The equation given in Eq. (20) can be 

converted into the following ordinary 

differential equation by using the 

transformation of  

( ) ( ), ,u x t U kx wt = = + , 

5 (5) 3 (3)

3 2

' 5

5 ' '' 5 ' 0

wU k U k UU

k U U kU U

+ + +

+ =
                 (21)                      

 

The integral of Eq.(21) based on the 

variable   is as follows 

 

5 (4) 3 35
5 '' 0

3

k
wU k U k U U U c+ + + + = (22) 

 

where c  is an arbitrary integration constant. 

Balancing between therms (4)U  and U³, we 

obtain the following form of solution  

 

2

0 1 2U a a a = + +                              (23)                                    

 

where ( )  =  satisfies (5) and 0 1 2, ,a a a  

are arbitrary constants. Substituting Eq.(23) 

into Eq.(22) along with Eq.(5) for 1K = and 

then equating all coefficients of the 

functions (i 0,1,2,...6)i =  to zero, we 

obtain  

 

( )2 2 4

2 2 26
5 18 72

: 0,
3

a k a a k k


+ +
=  

5 2 2 2 2

2 1 2 2 1

4 4

2 1

: (5 50 40

336 24 ) 0,

k a a a k a a k

a k a k

 − + −

+ =
 

4 2 2 2 2 2

2 0 2 2 1 2 1

2 4 2 2 4

2 0 2 1 1

: 5 ( 4 13

6 66 2 12 ) 0,

k a a a k a a a a k

a a k a k a k a k

 + + − +

+ + − =
 

3 2 2 4

2 1 0 2 1 2 0 2

3 2 2 2 4

1 1 1 0 1

5
: (6 15 30 78

3

9 6 30 ) 0,

k
a a a a a k a a k a k

a a k a a k a k

 + − − +

− + + =

 
2 2 3 5 2

2 0 2 0 2 2 0 1

2 3 3 5

0 1 0 1

: 5 20 16 5

5 15 15 0,

a a k a a k a k a w a a k

a k a a k a k

 + + + + +

− − =

 

( )1 2 3 5

1 0 0: 50 5 0,a a k a k k w + + + =  

3
0 0 05 3 3

: 0
3

a k a w c


+ +
=  

 

By using Mathematica, the solutions of this 

system can be obtained as follows 

 

2

2 12 ,a k= − 2

1 12 ,a k= 2

0 ,a k= −
5 ,w k= −

72

3

k
c =             (24)                                                     

 

The solution of Eq.(22) corresponding to 

(24) is 

 

( )2 2 2

2

1 10
( )

(1 )

k Ke K e
U

Ke

 




− − +
=

+
.              (25)         

 

In the case of 1K =   in Eq.(25) is  

 

( )2 5 cosh
( )

1 cosh

k
U






− +
= −

+
         (26)                               

 

where kx wt = + . The graph of the 

conclusion given in Eq. (26) can be seen in 

Figure 3. 
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The solutions of the SK equation is 

compatible with solutions in the reference 

Shakeel and Mohyud (2015). 

 

 Figure 3. The exact solution according to 

1K =  and 1k =  for SK Equation 

 

5. Discussions and Conclusion 

 

In this study, the exact solutions of 

Gardner, CDG and SK equations are 

obtained with the help of Mathematica by 

using the Kudryashov Method. 

Furthermore, given solutions are substituted 

in the Eq. (8), Eq. (15) and Eq. (22) and this 

process increased the reliability of the 

results. These soliton wave solutions are 

important for analyzing the physical 

aspects. Kudryashov method can be applied 

to other nonlinear equations used in physics 

and engineering. 
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