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Abctract

The sedenions form a 16-dimensional non-associative and non-commutative algebra over the set of . R . The
main object of this paper is to present a systematic investigation of new classes of sedenion numbers associated
with the familiar Jacobsthal numbers. The various results obtained here for these classes of sedenion numbers
include recurrence relations, Binet formula, generating function, exponentinal generating functions, poisson
generating functions and also we presented the Cassini identity, Catalan’s identities and d’Ocagne’s identity by
their Binet forms

Keywords: Sedenion numbers, Jacobsthal numbers, Dual numbers

Dual Jacobsthal ve Dual Jacobsthal-Lucas Sedeniyonlar Uzerine
0z

Sedeniyonlar R iizerinde birlesmeli ve degismeli olmayan 16 boyutlu bir cebirdir. Bu ¢alismanin temel amaci
bilinen Jacobsthal sayilar ile ilgili sedeniyon sayilarin yeni bir sinifin1 sunmaktir. Rekiirans iliskilerini igeren
sedeniyon sayilarin bu sinifi i¢in; Binet formiilleri, tirete¢ fonksiyonlar, iistel iirete¢ fonksiyonlar, poisson iireteg
fonksiyonlar gibi ¢esitli sonuglar elde edildi ve ayni zamanda bu sayilarin Binet formiilleri yardimiyla Cassini
Ozdesligi, Catalan 6zdeslikleri ve d’Ocagne’s dzdesligi sunuldu.

Anahtar Kelimeler: Sedeniyon sayilar, Jacobsthal sayilar, Dual sayilar.

) . "
1. Introduction and Preliminaries s=Yae (L1)
i=0

Sedenions appear in many areas of science, where a,,a,,...,a, are reals.
such as electromagnetic theory and linear
gravity. Sedenion algebra, which is usually T
denoted by S, the structure of the sedenion (Cawagas, 2004) constructed multiplication

algebra is a  non-associative, non- table forthe basis of S.
commutative, and non-alternative but power- I [Cariow and Cariowa, 2015], the authors

associative 16— dimensional Cayley-Dickson derived —an  algorithm ~ for  the fast
algebra over the R . Because of their zero multiplication of two sedenions. In [Bilgici,
divisors. sedenions do not form a ¢t al, 2017], the authors defined as the

composition algebra or a division algebra. following the Fibonacci and Lucas sedenions

They are hyper-complex numbers, similar to  OVer the sedenion algebra S .
quaternions and octonions. The famous Fibonacci numbers are second

Throughout this paper, we take the basis Order recursive relation and used in various
disciplines. Some lesser known second order
elements of S as {e;e,...s5f Where rocirsive relations are Lucas numbers, Pell
e,e,,...6, are imaginaries. A sedenion S and Pell-Lucas numbers, Jacobsthal and
can be written as Jacobsthal-Lucas numbers, etc..
In [Horadam, 1996], Horadam defined the

By setting i=e, where i=012,..,15,
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classic Jacobsthal numbers and Jacobsthal-
Lucas numbers for all nonnegative integers,
by
J =3 ,+2) ,, J,=0, J =1
jn = jn—1+2jn—2’ jo =2, jl =1
respectively.
For convenience initial Jacobsthal numbers
and Jacobsthal-Lucas numbers are presented

in the following table.
njo0123 4 5 6 7 8 9 10
J,/01 1 3 5 11 21 43 8 171 341

n

12 1 5 7 17 31 65 127 257 511 1025

The following properties given for Jacobsthal
numbers and Jacobsthal-Lucas numbers play
important roles in this paper (see (Horadam,
1996)).

(1.2)
(1.3)

jn‘]n = ‘]Zn’ (14)
‘]n+jn :2‘]n+1' (15)
33, +j, =2"", (1.6)
jn+1+2jn—1 =9jn' (17)
‘]mjn +‘]njm :2‘]n+m’ (18)
1/, n
J, :5(2 ~(-1) ), (1.9)
jn = 2” +(_l)n [} (110)
‘]m jn - ‘]n jm = (_1)” 2n+1‘]m—n' (111)
Jrit i =3(J,p+d,)=32", (1.12)
=i, =33, -J
Jn+r Jn—r ( n+r n—r) (113)
— 2n+r +2n—r’
. s :3 J —J 4 _1 n+l
Jn+1 Jn ( n+1 n):_ ( ) (114)
=2"+2(-1)",
e + oy =3(3,,, +J 4(-1)""
Jn+r + Jn—r ( n+r + n-r )+ ( ) (115)

=2 42"+ 2.(-1)""
The set of dual numbers
Dz{a:a+ga* 1e#0,62=0,a,a eR}

iS a commutative ring with a unit. Dual
numbers were introduced by Clifford
(Clifford, 1873) in the 19th century.

They were applied to describe rigid body
motions in three- dimensional space by
Koltelnikov (Koltelnikov, 1895). With the
help of dual numbers, Yaglom (Yaglom, 1879)
described geometrical objects in three-
dimensional space. The notion of dual angle is
defined by Study (Study, 1903). Recently, dual
numbers have found applications in many
areas such as in kinematics, dynamics,

robotics, computer aided geometrical design,
mechanism design and modeling of rigid
bodies, group theory, and field theory.

Since a dual quaternion is usually described as a
quaternion with dual numbers as coefficient,
dual Fibonacci quaternions and octonions can be
defined in a similar way. That is a dual

quaternion P can be written as
P=p+qe, £2=0, =0, p,qeH. (1.16)
Like dual quaternions, dual octonions are also
useful tool for geometry (Kabadayi, 2016) and
electromagnetism [Bhupesh, et al., 2016].
Any dual octonion can be defined as
K=(k1)=k+le,e?=0,6£0, k,1 0. (1.17)

In [Halici, 2015], Halici investigated some
fundamental algebraic properties of the dual
Fibonacci octonions and quaternions and also
give the Binet formulas and the generating
functions of them. In [Unal, et al., 2017], the
authors investigated dual Fibonacci and dual
Lucas octonions and also obtain some identities
for these sequences such as Catalan's, Cassini's
and d'Ocagne's identities.

In [Cimen and lpek, 2017a], Cimen and Ipek
defined the Jacobsthal and Jacobsthal-Lucas
octonions over the octonion algebra. They
present generating functions and Binet formulas
for the Jacobsthal and Jacobsthal-Lucas
octonions, and derive some identities of
Jacobsthal and Jacobsthal-Lucas octonions. In
[Cimen and Ipek, 2017b], Cimen and Ipek
defined the Jacobsthal and Jacobsthal-Lucas
sedenions over the sedenion algebra S. Also,
they present generating functions and Binet
formulas for the Jacobsthal and Jacobsthal-
Lucas sedenions, and derive some identities of
Jacobsthal and Jacobsthal-Lucas sedenions.

In this study, we are mainly interested dual
Jacobsthal sequence as a generalization of linear
recurrence equations of order two. The various
results obtained here for these classes of
sedenion numbers include recurrence relations,
Binet formula, generating function,
exponentinal generating functions, poisson
generating functions and also we presented the
Cassini identity, sum formula and norm formula
by their Binet forms.
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2. Algebraic Properties of the Dual
Jacobsthal and Dual Jacobsthal-Lucas
Sedenions

In this section, we define new Kkinds of
sequences of Jacobsthal and Jacobsthal-
Lucas numbers called as Jacobsthal and
Jacobsthal-Lucas Sedenions. We give some
properties of these sedenions. Also, we
investigate  Binet  formula, generating
function, exponentinal generating functions,
poisson  generating  functions,  Cassini
identity, summation formula and norm value
for dual Jacobsthal and Jacobsthal-Lucas

Sedenions.

Now, in the following, we define the nth
dual  Jacobsthal sedenion and dual
Jacobsthal-Lucas sedenion numbers,

respectively, by the following recurrence
relations:

SJ,=(8J,,83,,)=SJ,+SJ,,.¢
=(J +J,.,¢)8 (1.18)

+...+ (‘]n+15 + ‘Jn+168)615’

n + JnJrlg)eO +(‘]n+1

and
Sy = (Sin:Siner) = Shy + Sin.é
= (ln + §ns18)€ + (o + Jnre€) e (1.19)
Fooet (Jnaas + Jness® ) Biss
where J. and j, are the nth Jacobsthal
number and Jacobsthal-Lucas number.
Let SG, and SM, be two dual Jacobsthal

sedenions such that SJ, =SJ, +SJ,,,&, and

QOM, =0QM, +QM .,&.  Therefore, the

addition, substraction of these sedenions
directly are obtained by from (1.12), (1.18),

respectively, as following
SJ,+QM, =(SJ, +QM,) (1.20)
+(S3,.+QM,)e

The conjugate of SJ, and Sj, are defined by

$,=53,+83,, (121
Sj, = S, + 51, .¢ (1.22)
respectively.
The norm of SJ, is defined by
N, =SJ,8J,
" (123

=(SJ, + SJMg)(gn + SJmlg).

Lemma 1 For n>1, we have the following
identities:

SJ,+83, =283, (1.24)
SJ2+8J,8),=28,83,.  (1.25)
Proof. From (1.18), (1.20) and (1.21), we get
SJ.+SJ, =SJ +S] e+SJ. ~S) &
=25J,.
On the other hand, from the equation (1.24),
we have

s3.% =53 83, =SJ. (2SJn —5)

n

~28.8] ~SJ_SJ.
and so
SJ2+81..8] =25J.8J .
Lemma 2 For n>1, we have the following
identities:
SJ, +Sj, =28J,.,, (1.26)
38J, +Sj, =27 (& + 28, +...+ 2%, ) (1+ 2¢),
(1.27)
Sj,.. +2Sj,, =9SJ,. (1.28)
Proof. By using of the equalities (1.18),
(1.19) and (1.20), we obtain,

SJ, +Sj,=S3,+SJ,.,6+S], +5j,.,€
=(SJ, +Sj,)+(SJ,
=[(3,+Jn) e +(In + Jour) &

oot (s + Jneas ) 8s |
[ (Jner + Ja )€ +(Jnaz + Jz )&

+...+(\]n+16 + jn+1e)el5:|8

+ Sjn+1)g

=(2J,,48+2J,,,8 +...+2] 18)
+(2J,.,8+ 2,08 +..+ 2] 1185 ) €

=2(8J,,,+8J, ,¢)

=283,

In a similar way we can show the second
equality. By using of the identities
33, +j,=2"" and
38J, +Sj, = 2" (&, + 26, + 2%, +...+ 2°¢,, ) are
obtained in [Horadam(1996), Cimen and
Ipek (2017b)], we have

38J, +Sj, =27 (& + 26, +2%€, +...+ 2%, ) (1+2¢), W
hich is the assertion. By using of the
identities joa+2§,, =93, and
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S, +2Sj,, =9(J,8 + a8 + oo+ JpssBis ) N

[Horadam (1996), Cimen and Ipek (2017b)],
we obtain

Syya +2Sih s = [ (s +2d01) € +(Jno +2J0) &
+. +(Jn+16+21n+14) ]
+|: Jn+2+2J ) +(Jn+3+2.ln+1)
)

+. +(Jn+17+2Jn+15 15]‘9

:9(‘] e +‘]n+1e1+"'+‘]n+15 15)
+9(J .18 + 38+ I oLiis ) €

n+l
=9(89, +8J,.¢)

=98J,
which is the assertion.
The characteristic equation of the classic dual
Jacobsthal and dual Jacobsthal-Lucas
numbers is
x> —x-2=0. (1.29)

It is known that this equation has two real
roots:

a=2and B=— (1.30)
Thus, Binet's formulas given in (1.31) and
(1.32) are obtained for the dual Jacobsthal
and dual Jacobsthal-Lucas sedenions such
that

SJ, =2A—ﬂ8 (1.31)
3 3
and
Sj, =2"A+(-1)"B, (1.32)
where A=Y22°e. and B=3YY (-1)°e

respectively.(Cimen and Ipek (2017b)) Now,
we will state the Binet's formulas for the dual
Jacobsthal sedenions and dual Jacobsthal-
Lucas sedenions,

SJ, =SJ,+S], &

15
- Z‘] n+s s +ZJn+1+ses€
s=0
S 1 n+s n+s
:[25(2 -(-1) )ej

s=0

+[z%(z ~(-1)"™)e, jg

s=0

= (ﬁ a- Y Bj+[£ A- D™ B]g
3 3 3 3

(1.33)

and

Sjn = SJn + Sjn+1g
15 15
= ijses + zjn+s+lesg
i=0 i=0
& n+s
:(2(2”*5 +(-1) )ej

s=0

+(i(2“+m + (=) )esjg

s=0

(1.34)

=(2"A+(-1)"B)+(2"" A+ (-1)""B)=.
where A=3%2:2°e. and B=32(-1e,,
respectively.
The recurrence relations for the Jacobsthal
sedenions of the nth dual Jacobsthal
sedenion and nth dual Jacobsthal-Lucas
sedenion are expressed in the following
corollary.
Corollary 1 For n>1,r>1 we have the
following identities:
83,1 +83, =2" (&, + 20 +2°€, +...+ 2, ) (1+ 2¢),

(1.35)

n+1

2" (e, +2e +2%, +..+42°
S] = (0 1 2 e15)

nel ~ 9¥n 3

2(-1)" (e,

SJ

(1+2¢)

—€, +€,—€ +..—
3

+

elS)(l—g)

(1.36)
2" (27 +1)

n+r n-r =
3

(e0 +2¢ +2%, +...+215e15)(1+ 2¢)

(1.37)
8J,,. -SJ = (HJ
3

(ep+26,+2°€, +..+ 2%, ) (1+ 2¢).

1.38

Proof. Write considering the equalities El.lsg
and (1.20) and using of the equality
Jni+ 3, =3(3,,+J,)=3.2", the following
sum can be calculated
83,1 +8J, =(83,., +83,.,,6)+ (S, +SJ,.,.€)

=(SJ,,,+S3,)+(83,., +SJ,.. )¢

=2" (e, + 26 + 2%, +..+ 2%, )

+27 (8, + 2, +2°€, +...+ 2%, ) £

=2" (e, +26,+ 2%, +...+ 2%, ) (1+ 2¢).
In a similar way we can show the equation

(1.36). By using of the equalities (1.18) and
(1.20) and

n+l
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83, - 83, =3[ 2" (e + 26, + 2%€, ..+ 28

+2(-1)" (e, —&, +e, —&, +...—e15)J
(Cimen and Ipek (2017b)), we have
SJ,,, —SJ, =(83,,,+8,.,8) (S, +8J, ,¢)

=(SJH+1—SJn) (SJn S‘]n+1)

:%[2” (ep+2¢,+2%€, +...+ 2%, ) (1+ 2¢)

)

+2(_1)n (& —& +e,—e,

and

S‘] +S‘]n+r+1‘9) (S‘]n r+1+S‘]n r+28)

S‘J +S‘]n r+1) (S‘Jn+r+1+s‘]n r+2)

=(
( 2r
[ ()

e0 +2e1+2292 +...+215e15)

.—els)}

znfrvl ZZr 1
+[ ( +)(e0+2e1+22e2+...+215e15)

.—els)}g

+2 (e -6 +6, -6, +€, -

2( l) n-r+2

+ (e, —& +e,—e;+e, —

3
2n (2 +1)
3
2(-)""
3

and thus

SJ n+r SJn—r = (SJn+r + S‘]n+r+1‘(")_(s‘]n—r + S‘]n—r+1‘(")
(S‘]n+r - S‘]n—r )+ (S‘] n+r+l SJ n—r+1)g

- (#j(ee +2¢ +...+215e15)

(e0 +2€ +..t 215e15)(1+ 2¢)

+ (e, —& +e,—

es)(1-¢)

2n+r+1 _2n—r+l
J{TJ(EO +2€ +..+ 215e15).9

3 2n+r _ 2]’1*[’
3

(e +2¢, +...+ 2%, ) (1+ 2¢).

Corollary 2 For n>1, r >1, we have the
following identities:
Sjn,1 +SJ, =3.2" (e, +2¢, + 2%€, +...+ 2%¢,, ) (1+ 2¢),
(1.39)
Sjp.y —Sin =2" (e, + 26, +2°¢, +...+ 28, )
+2(-1)"" (&, —&, +&, —&, +..— ;)

+[2n+1 (e)+26,+2°€, +...+ 2%)

€5 ):|8,
(1.40)

+2(-1)" (e, — €, +€, —€; +...—

Siner +Sin—r = 2n-r (22r +1)(e0 + 2e1

+...+215e15)(1+25) (1.41)

+2(—l)n_r+1 (eg—er+ep

-.as5)(1-¢)

Siv.y —Sin, = (2“*r -2" )(e0 +2e +2%, +...+215e15)
(1+2¢).

(1.42)
Proof. The proof of the identities (1.39)-
(1.42) of this corollary are similar to the
proofs of the identities of Corollary 1,
respectively, and are omitted here.
In the following theorem, we state to
different Cassini identities which occur from
non-commutativity of sedenion
multiplication.
Theorem 1 For dual Jacobsthal sedenions
and dual Jacobsthal-Lucas sedenions the
following identities are hold:

2"(-1)"
SJM.SJ“—Sanzﬁ{AB BA}
3 2

1 n+! n
+§[2 A +(-1)" B?
(4AB —%Ha
2

2" (-1)"
SJ .83 . -1 = %[%+ BA}

(1.43)

+E(22n+1 A _B?
9

2 (-1)° (§+4BAD

(1.44)
S0 Sy s —Si, =32 (~1)"" [2AB+BA](1-¢),
(1.45)
and
Sip 1:Sin.; — iy =32 (1) (1.46)

[AB+2BA|(1+¢)
where A=32:2°e. and B =3 (-1)°e..
Proof. Using of the Binet's formula for
Jacobsthal sedenions in equation (1.43) and

$3,..80, , —-SI2 =2 [ AB + £4]
and Ipek (2017b)), we get

(Cimen
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83,183, 1 —S3," =(83,., +83,,&).(SJ,, +S3,&)
~(83,+83,..¢)
=$J,,.83, , —SJ?

+(83,,,:83, 1 ~$3,83,., )¢

n n+l

0.2

Zn(fl)n n+l p2 n+l o2
+— [ A -(-1)"B

o2

3

o2

In a similar way, using the Binet's formula in
equation (1.44) and

2

SJ,,.8,,,-SI2 =2 [ 4 BA],
we obtain
SJ,4.83,,, -3, =(SJ, , +53,£).(S3,; +SJ,.,¢)
—(8J,+83,,.¢)
=SJ,,.80,,-S32+(83,,83,,,)¢e
=2n(—1)[AB BA} 1(22"*1A2—B2
3 2 9

2 () (§+4BAD

which is desired.

The proofs of the identities (1.45) and (1.46)
are similar to that of (1.43) and (1.44).
Theorem 2 For every nonnegative integer
numbers n and r such that r <n, we get

2"(-1)" Coa
3.8 . -81°= (9 ) ((-0-2)

[[#8(-1) ~BA(2)" ]

127 (1) [2 AB-BA(-1) ] |
(1.47)

Sj,... Sjy, —Si,” =2"(-1)" [AB (2 (-1 -1)

(1.49)
+BA(27 (-1) 1) |(+2),

and

2y KAB %j %[2”*1AZ+(—1)" B?

Sj, +Siy.y —Si, = 2" (-1)" [AB(Z” (1) -1)

+BA(2 (1) 1) |(1+2)
where A=32:2°e. and B=32(-1)%,.
Proof. The proofs of the identities (1.47)-
(1.50) of this theorem are similar to the
proofs of Theorem 1.
Theorem 3 For every nonnegative integer
numbers n and m such that m>n we get,

(1.50)

Lfom; o
SJm.SJn+1—SJm+1SJn—§[2 (-1)" AB (L51)
-2'(-1)" BA(1+2)
and
Sin-Sir.1 = Sin.1 iy =3[ 2" (~1)" AB (152)

+2'(-1)" BAJ(1+2)
where A=32:2°e and B=Y2(-1)°e,
Proof. The proofs of (1.51) and (1.52) are

similar to the previous theorems.
The ordinary generatig functions (OGF) of a

sequence {b,}" s given by
OGF (b,,x) = Sb,X".

The exponential generating function of a
sequence {b,}" s given by
0 b In

EG(D, )= = -

The poisson generatirn15 function of a

sequence {b, }" is given by
PG(b,,x)=e"EG(b,,x).

In the following theorem, we now derive the

ordinary generating functions

3(x) =D 83,x" and p(x) = > Sj, X",
n=0 n=0

exponential generating functions
E, ()= iSJ " and E, (1) = ZSJ”IH, poisson
generating fuﬁctlons |

- zSJ "
and |

_ - Sjn In -1
P, ()= e

n=0

for SJ, and §j, defined by (1.18) and
(1.29).
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Theorem 4 For SJ and Sj, defined by

(1.18) and (1.19), the following is its
ordinary generating functions:

SJy +(—=83,+8J; )

3(x) = T (1.53)
Sj, —(Si, —Si; ) x
P(x) = % (1.54)
—X—2X
and its the exponential generating fuctions:
N =83, 1" %([Aeﬂ _Be
(1.55)
—[2Ae2' +Be’ |2),
E.( Ae” —Be™
SJ( ) ;g; ([ J (1“5565)
—[2Ae” + Be"]g)
and its the poisson generating functions:
= SJ, |n
s, ()= Z e”
= %([Aez' —Be™ ] —[ZAez' +Be™ ]5)
(1.57)

8

Si, — 1

=" ([Ae” +Be " |+[2A¢” +Be ' |2).

(1.58)

Proof. Firstly, we need to write generating

function for SJ, ;
J(X) = SIX° +SI, X+ SI,X* +...+SI X" +...

Secondly, we need to calculate x3(x) and

2x°3(x) as the following equations;

x3(x) =D 83, x"* and 2x*J(x) =2) SJ, x"?
n=0 n=0

Finally, if we made necessary calculations,
then we have
SJ, +(-SJ, +SJ,)x
3(x) = (=53 - )
1-x-2x
which is the generating function for SJ
In a similar way, we can show generating

function gp(x) for §j, .

Using Binet Formulas for SJ,
= SJ, |n

EaM=2—

in the proof of

, We obtain

sy, |n
E, (D)= Z
(% A—";” B)+(% A-U"B)s
2, n! !
1 2n|n o0

[ Z:2”|.“ Z(l) |J}

- %([Aez' —Be ] —[2Ae2' +Be ]5)

I (G I
Y e,
n=0
In a S|m|Iar way, we can show exponential

where ZZ =

generating function E (1) = ZSJ“

=0

for §j, .

Using of the equality

PG(b,,x)=e"EG(b,,x),
the proofs completed of the identities (1.57)-
(1.58) of this theorem.

3. Conclusions

In this study, we presented new classes of
sedenion numbers (dual Jacobsthal and dual
Jacobsthal -Lucas sedenions) associated with
the familiar Jacobsthal and Jacobsthal-Lucas
numbers. Also, we obtained various results
obtained here for these classes of sedenion
numbers include recurrence relations, Binet
formula, generating function, exponentinal
generating functions, poisson generating
functions and also we presented the Cassini
identity, Catalan's identities and d'Ocagne's
identity by their Binet forms.
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