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1 Introduction

The idea of statistical convergence was given by Zygmund [1] in the first edition of his monograph published in Warsaw in 1935. The concept of
statistical convergence was introduced by Steinhaus [2] and Fast [3] and then reintroduced independently by Schoenberg [4]. Over the years and
under different names, statistical convergence has been discussed in the Theory of Fourier Analysis, Ergodic Theory, Number Theory, Measure
Theory, Trigonometric Series, Turnpike Theory and Banach Spaces. Later on it was further investigated from the sequence spaces point of view
and linked with summability theory by Gupta and Bhardwaj [5], Braha et al. [6], Çınar et al. [7], Connor [8], Et et al. ([9],[10],[11],[12],[13]),
Fridy [14], Işık et al. ([15],[16],[17]), Mohiuddine et al. [18], Mursaleen et al. [19], Nuray [20], Nuray and Aydın [21], Salat [22], Şengül et al.
([23],[24],[25],[26]), Srivastava et al. ([27],[28]) and many others.

The idea of statistical convergence depends upon the density of subsets of the set N of natural numbers. The density of a subset E of N is
defined by

δ(E) = lim
n→∞

1

n

n∑
k=1

χE(k),

provided that the limit exists, where χE is the characteristic function of the set E. It is clear that any finite subset of N has zero natural density
and that

δ
(
Ec
)
= 1− δ (E) .

A sequence x = (xk)k∈N is said to be statistically convergent to L if, for every ε > 0, we have

δ ({k ∈ N : |xk − L| ≥ ε}) = 0.

In this case, we write

xk
stat−→ L as k →∞ or S − limk→∞ xk = L.

In 1932, Agnew [29] introduced the concept of deferred Cesàro mean of real (or complex) valued sequences x = (xk) defined by

(Dp,qx)n =
1

(q (n)− p (n))

q(n)∑
k=p(n)+1

xk, n = 1, 2, 3, . . . ,

where p = {p (n)} and q = {q (n)} are the sequences of non-negative integers satisfying

p (n) < q (n) and lim
n→∞

q (n) =∞.

Let K be a subset of N and denote the set {k : p (n) < k ≤ q (n) , k ∈ K} by Kp,q (n) .
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Deferred density of K is defined by

δp,q (K) = lim
n→∞

1

(q (n)− p (n)) |Kp,q (n)| , provided the limit exists,

where, vertical bars indicate the cardinality of the enclosed set Kp,q (n) . If q (n) = n, p (n) = 0, then the deferred density coincides with
natural density of K.

A real valued sequence x = (xk) is said to be deferred statistically convergent to L, if for each ε > 0

lim
n→∞

1

(q (n)− p (n)) |{p (n) < k ≤ q (n) : |xk − L| ≥ ε}| = 0.

In this case we write Sp,q − limxk = L. If q (n) = n, p (n) = 0, for all n ∈ N, then deferred statistical convergence coincides with usual
statistical convergence [30].

2 Main Results

In this section, we give some inclusion relations between statistical convergence, deferred strong Cesàro summability and deferred statistical
convergence in general metric spaces.

Definition 1 Let (X, d) be a metric space and {p (n)} and {q (n)} be two sequences as above. A metric valued sequence x = (xk) is said
to be DSdp,q−convergent (or deferred d−statistically convergent) to a if there is a real number a ∈ X such that

lim
n→∞

1

(q (n)− p (n)) |{p (n) < k ≤ q (n) : d (xk, a) ≥ ε}| = 0.

In this case we write DSdp,q − limxk = a or xk → a
(
DSdp,q

)
. The set of all DSdp,q−statistically convergent sequences will be denoted by

DSdp,q . If q (n) = n and p (n) = 0, then deferred d−statistical convergence coincides d−statistical convergence.

Definition 2 Let (X, d) be a metric space and {p (n)} and {q (n)} be two sequences as above. A metric valued sequence x = (xk) is said
to be strongly Dwdp,q−summable (or deferred strongly d−Cesàro summable) to a if there is a real number a ∈ X such that

lim
n→∞

1

(q (n)− p (n))

q(n)∑
p(n)+1

d (xk, a) = 0.

In this case we write Dwdp,q − limxk = a or xk → a
(
Dwdp,q

)
. The set of all strongly Dwdp,q−summable sequences will be denoted by

Dwdp,q. If q (n) = n and p (n) = 0, for all n ∈ N, then deferred strong d−Cesàro summability coincides strong d−Cesàro summability.

Theorem 3 Let (X, d) be a linear metric space and x = (xk) , y = (yk) be metric valued sequences, then

(i) If DSdp,q − limxk = x0 and DSdp,q − lim yk = y0, then DSdp,q − lim (xk + yk) = x0 + y0,

(ii)If DSdp,q − limxk = x0 and c ∈ C, then DSdp,q − lim (cxk) = cx0,

(iii) If DSdp,q − limxk = x0, DS
d
p,q − lim yk = y0 and x, y ∈ `∞, then DSdp,q − lim (xkyk) = x0y0.

Theorem 4 Dwdp,q ⊆ DSdp,q and the inclusion is strict.

Proof. First part of proof is easy, so omitted. To show the strictness of the inclusion, choose q (n) = n, p (n) = 0, for all n ∈ N and a = 0 and
define a sequence x = (xk) by

xk =

{ √
n

2 , k = n2

0, k 6= n2 .

Then for every ε > 0, we have

1

(q (n)− p (n)) |{p (n) < k ≤ q (n) : d (xk, 0) ≥ ε}| ≤
[
√
n]

n
→ 0, as n→∞,

where d (x, y) = |x− y| , that is xk → 0
(
DSdp,q

)
. At the same time, we get

1

(q (n)− p (n))

q(n)∑
p(n)+1

d (xk, 0) ≤
[
√
n] [
√
n]

n
→ 1,

i.e. xk 9 0
(
Dwdp,q

)
. Therefore, Dwdp,q ⊆ DSdp,q is strict.
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Theorem 5 If lim infn
q(n)
p(n)

> 1, then Sd ⊂ DSdp,q.

Proof. Suppose that lim infn
q(n)
p(n)

> 1; then there exists a ν > 0 such that q(n)
p(n)

≥ 1 + ν for sufficiently large n, which implies that

q (n)− p (n)
q (n)

≥ ν

1 + ν
=⇒ 1

q (n)
≥ ν

(1 + ν)

1

(q (n)− p (n)) .

If xk → a
(
Sd
)
, then for every ε > 0 and for sufficiently large n, we have

1

q (n)
|{k ≤ q (n) : d (xk, a) ≥ ε}| ≥

1

q (n)
|{p (n) < k ≤ q (n) : d (xk, a) ≥ ε}|

≥ ν

(1 + ν)

1

(q (n)− p (n)) |{p (n) < k ≤ q (n) : d (xk, a) ≥ ε}| .

This proves the proof.
"In the following theorem, by changing the conditions on the sequences (pn) and (qn) we give the same relation with Theorem 5."

Theorem 6 If limn→∞ inf
(q (n)− p (n))

n
> 0 and q (n) < n, then Sd ⊆ DSdp,q.

Proof. Let limn→∞ inf
(q (n)− p (n))

n
> 0 and q (n) < n, then for each ε > 0 the inclusion

{k ≤ n : d (xk, a) ≥ ε} ⊃ {p (n) < k ≤ q (n) : d (xk, a) ≥ ε}

is satisfied and so we have the following inequality

1

n
|{k ≤ n : d (xk, a) ≥ ε}| ≥

1

n
|{p (n) < k ≤ q (n) : d (xk, a) ≥ ε}|

=
(q (n)− p (n))

n

1

(q (n)− p (n)) |{p (n) < k ≤ q (n) : d (xk, a) ≥ ε}| .

Therefore Sd ⊆ DSdp,q.

Theorem 7 Let {p (n)} , {q (n)} ,
{
p′ (n)

}
and

{
q′ (n)

}
be four sequences of non-negative integers such that

p′ (n) < p (n) < q (n) < q′ (n) for all n ∈ N, (1)

then

(i) If

lim
n→∞

q (n)− p (n)
q′ (n)− p′ (n) = m > 0 (2)

then DSdp′,q′ ⊆ DS
d
p,q,

(ii) If

lim
n→∞

q′ (n)− p′ (n)
q (n)− p (n) = 1 (3)

then DSdp,q ⊆ DSdp′,q′ .

Proof. (i) Let (2) be satisfied. For given ε > 0 we have{
p′ (n) < k ≤ q′ (n) : d (xk, a) ≥ ε

}
⊇ {p (n) < k ≤ q (n) : d (xk, a) ≥ ε} ,

and so

1

(q′ (n)− p′ (n))
∣∣{p′ (n) < k ≤ q′ (n) : d (xk, a) ≥ ε

}∣∣
≥ (q (n)− p (n))

(q′ (n)− p′ (n))
1

(q (n)− p (n)) |{p (n) < k ≤ q (n) : d (xk, a) ≥ ε}| .

Therefore DSdp′,q′ ⊆ DS
d
p,q.

(ii) Omitted.
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Theorem 8 Let {p (n)} , {q (n)} ,
{
p′ (n)

}
and

{
q′ (n)

}
be four sequences of non-negative integers defined as in (1) .

(i) If (2) holds then Dwdp′,q′ ⊂ Dw
d
p,q,

(ii) If (3) holds and x = (xk) be a bounded sequence, then Dwdp,q ⊂ Dwdp′,q′ .

Proof. Omitted.

Theorem 9 Let {p (n)} , {q (n)} ,
{
p′ (n)

}
and

{
q′ (n)

}
be four sequences of non-negative integers defined as in (1) . Then

(i) Let (2) holds, if a sequence is strongly Dwdp′,q′−summable to a, then it is DSdp,q−convergent to a,

(ii) Let (3) holds and x = (xk) be a bounded sequence, if a sequence is DSdp,q−convergent to a then it is strongly Dwdp′,q′−summable to
a.

Proof. (i) Omitted.

(ii) Suppose that DSdp,q − limxk = a and (xk) ∈ `∞. Then there exists some M > 0 such that d (xk, a) < M for all k, then for every
ε > 0 we may write

1

(q′ (n)− p′ (n))

q′(n)∑
p′(n)+1

d (xk, a)

=
1

(q′ (n)− p′ (n))

q′(n)−p′(n)∑
q(n)−p(n)+1

d (xk, a) +
1

(q′ (n)− p′ (n))

q(n)∑
p(n)+1

d (xk, a)

≤
(
q′ (n)− p′ (n)

)
− (q (n)− p (n))

(q′ (n)− p′ (n)) M +
1

(q′ (n)− p′ (n))

q(n)∑
p(n)+1

d (xk, a)

≤
(
q′ (n)− p′ (n)
q (n)− p (n) − 1

)
M +

1

(q (n)− p (n))

q(n)∑
p(n)+1

d(xk,a)≥ε

d (xk, a)

+
1

(q (n)− p (n))

q(n)∑
p(n)+1

d(xk,a)<ε

d (xk, a)

≤
(
q′ (n)− p′ (n)
q (n)− p (n) − 1

)
M +

M

(q (n)− p (n)) |{p (n) < k ≤ q (n) : d (xk, a) ≥ ε}|

+
q′ (n)− p′ (n)
q (n)− p (n) ε.

This completes the proof.
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