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1. Introduction
The Appell polynomials An(x) defined by

f(t)ext =
∞∑

n=0
An(x) tn

n!
, (1.1)

where f is a formal power series in t, have found remarkable applications in different
branches of mathematics, theoretical physics and chemistry [3,4,11,19,20]. A special case
of Appell polynomials are Bernoulli polynomials Bn(x), generated by f(t) = t

et − 1
in

(1.1). Also, Bernoulli numbers Bn := Bn(0) are of considerable importance in number
theory, combinatorics and numerical analysis. They are represented as

t

et − 1
=

∞∑
n=0

Bn
tn

n!
(|t| < 2π),

or by the recurrence relation
n∑

k=0

(
n + 1

k

)
Bk = 0 for n ≥ 1 and B0 = 1.
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Bernoulli numbers are directly related to several combinatorial numbers such as Stirling,
Cauchy and harmonic numbers. For example, except B1 we have

Bn = (−1)n
n∑

m=0

(−1)mm!
m + 1

S2(n, m),

where

S2(n, m) = 1
m!

m∑
j=0

(−1)j

(
m

j

)
(m − j)n,

denote the second kind of Stirling numbers [5, 9] with S2(n, m) = 0 for n < m.
These polynomials have found various extensions such as poly-Bernoulli numbers, which

are somehow connected to multiple zeta values. Al-Salam [1] introduced the first q-
extension of Bernoulli numbers and polynomials and gave many of their properties. The
q-extensions of Bernoulli numbers and polynomials have now found many applications in
combinatorics statistics and various branches of applied mathematics.

In [12], F. T. Howard considers the following generalization of Bernoulli polynomials

t2ext/2
et − 1 − t

=
∞∑

n=0
An(x) tn

n!
, (1.2)

and more generally in [13], he considers

tN ext/N !
et − TN−1(t)

=
∞∑

n=0
Bn(N, x) tn

n!
, (1.3)

where

TN (t) =
N∑

n=0

tn

n!
,

and N is any positive integer. For N = 1 and N = 2, (1.3) reduces to (1.1) and (1.2),
respectively.

The aim of this work is to introduce q-analogues of the hypergeometric Bernoulli poly-
nomials and numbers. The paper is organised as follows: Section 2 provides some pre-
liminary definitions and results useful for the reader. In Section 3, two q-analogues of
the Hypergeometric Bernoulli polynomials and numbers are introduced and several of
their properties are stated and proved. It is proved for example in Theorem 3.6 that the
q-hypergeometric Bernoulli polynomials of the first kind are the only q-Appell set with
zero moments. In Section 4, the q-hypergeometric Bernoulli polynomials with two real
parameters are introduced, Section 5 studies some multiplication formulas and Section 6
introduces q-hypergeometric Bernoulli polynomials of higher order.

2. Preliminary definitions and results
The following definitions can be found in [17]. Let n be a non-negative integer. The
so-called q-number is defined by

[n]q = 1 − qn

1 − q
.

For a non-negative integer n, the q-factorial is defined by

[n]q! =
n∏

k=0
[k]q for n ≥ 1, and [0]q! = 1.

The q-binomial coefficients are defined by[
n
k

]
q

= [n]q!
[k]q![n − k]q!

, (0 ≤ k ≤ n).
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The following so-called q-Pochhammer numbers (a; q)n are defined by

(a; q)0 = 1, (a; q)n =
n−1∏
k=0

(1 − aqk), (n ≥ 1).

It is not difficult to see that[
n
k

]
q

= (q; q)n

(q; q)k(q; q)n−k
, (0 ≤ k ≤ n).

For n = ∞ we set

(a; q)∞ =
∞∏

n=0
(1 − aqn), |q| < 1.

From the definition of (a; q)∞, it follows that for 0 < |q| < 1, and for a nonnegative integer
n, we have

(a; q)n = (a; q)∞
(aqn; q)∞

.

This enables an extension of the q-Pochhammer to any arbitrary complex number λ by

(a; q)λ = (a; q)∞
(aqλ; q)∞

, 0 < |q| < 1,

where the principal value of qλ is taken.
The following notation

(x ⊖ y)n
q = (x − y)(x − qy) · · · (x − qn−1y),

is called the q-power basis. It generalises the power and the q-pochhammer since
(1 ⊖ y)n

q = (y; q)n and (x ⊖ 0)n
q = xn.

We will use the following two q-analogues of the exponential function ex:

eq(x) =
∞∑

k=0

xk

[k]q!
,

and

Eq(x) =
∞∑

k=0

q(k
2)

[k]q!
xk,

These two functions are related by the equation (see [15])
eq(x)Eq(−x) = 1.

Remark 2.1. It is not difficult to see that [17, Eq. (1.14.1) and (1.14.2)]

eq(x) = 1
((1 − q)x; q)∞

, 0 < |q| < 1, |z| < 1

Eq(x) = (−(1 − q)x; q)∞, 0 < |q| < 1.

Definition 2.2 (q-addition, see [15]). Let x and y be two complex numbers and n a
nonnegative integer. We define the q-addition in the following way

(x ⊕q y)n :=
n∑

k=0

[
n
k

]
q

xkyn−k.

Definition 2.3 (See [8]). The basic hypergeometric or q-hypergeometric function rϕs is
defined by the series

rϕs

(
a1, · · · , ar

b1, · · · , bs

∣∣∣∣∣ q; z

)
:=

∞∑
k=0

(a1, · · · , ar; q)k

(b1, · · · , bs; q)k

(
(−1)kq(k

2)
)1+s−r zk

(q; q)k
,
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where
(a1, · · · , ar)k := (a1; q)k · · · (ar; q)k.

It is worth noting that the basic hypergeometric series fulfil the following identity also
known as the q-binomial theorem

1ϕ0

(
a

−

∣∣∣∣∣ q; z

)
=

∞∑
n=0

(a; q)n

(q; q)n
zn = (az; q)∞

(z; q)∞
, 0 < |q| < 1, |z| < 1. (2.1)

Definition 2.4. The q-derivative operator is defined by

Dqf(x) = f(qx) − f(x)
(q − 1)x

, x ̸= 0,

and Dqf(0) = f ′(0) provided that f is differentiable at x = 0.

The q-derivative fulfils the following product and quotient rules [15]

Dq (f(t)g(t)) = f(qt)Dqg(t) + g(t)Dqf(t). (2.2)

Dq

(
f(t)
g(t)

)
= g(qt)Dqf(t) − f(qt)Dqg(t)

g(t)g(qt)
. (2.3)

Definition 2.5 ([7, page 36], see [15]). Suppose 0 < a < b. The definite q-integral is
defined as ∫ b

0
f(x)dqx = (1 − q)b

∞∑
n=0

qnf(qnb),

and ∫ b

a
f(x)dqx =

∫ b

0
f(x)dqx −

∫ a

0
f(x)dqx.

Definition 2.6. The q-Gamma function is defined by

Γq(x) := (q; q)∞
(qx; q)∞

(1 − q)1−x, 0 < q < 1.

Remark 2.7. From Definition 2.6, the q-Gamma function is also represented by

Γq(x) = (1 − q)1−x(q; q)x−1.

Note also that the q-Gamma function satisfies the functional equation

Γq(x + 1) = [x]qΓq(x), with Γq(1) = 1.

For arbitrary complex α, [
α
k

]
q

= (q−α; q)k

(q; q)k
(−1)kqαk−(k

2).

Or more generally, for all complex α and β and 0 < |q| < 1, we have[
α
β

]
q

:= Γq(α + 1)
Γq(β + 1)Γq(α − β + 1)

= (qβ+1; q)∞(qα−β+1; q)∞
(q; q)∞(qα+1; q)∞

.

Definition 2.8 ([15]). The q-Beta function is defined for t, s > 0 by

Bq(t, s) =
∫ 1

0
xt−1(1 ⊖ qx)s−1

q dqx. (2.4)
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It is worth noting that the q-Beta function and the q-Gamma function are related by
[15, Eq (21.17)]

Bq(t, s) = Γq(t)Γq(s)
Γq(t + s)

. (2.5)

The following Cauchy product for infinite series applies( ∞∑
n=0

An

)( ∞∑
n=0

Bn

)
=

∞∑
n=0

(
n∑

k=0
AkBn−k

)
.

In particular, if An = anxn

[n]q!
and Bn = bnxn

[n]q!
, then we have( ∞∑

n=0

anxn

[n]q!

)( ∞∑
n=0

bnxn

[n]q!

)
=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

akbn−k

)
xn

[n]q!
.

3. q-hypergeometric Bernoulli polynomials with one parameter
The classical q-Bernoulli polynomials were introduced by Al Salam in [1] by the following
generating function

teq(xt)
eq(t) − 1

=
∞∑

n=0
Bn(x) tn

[n]q!
. (3.1)

We introduce the q-hypergeometric Bernoulli polynomials by the following generating
function

tN /[N ]q!
eq(t) − TN−1,q(t)

eq(xt) =
∞∑

n=0
Bn,q(N, x) tn

[n]q!
, (3.2)

where

TN,q(t) =
N∑

n=0

tn

[n]q!
,

and the q-hypergeometric Bernoulli numbers of the first kind by
Bn,q(N) = Bn,q(N, 0),

and they are generated by
tN /[N ]q!

eq(t) − TN−1,q(t)
=

∞∑
n=0

Bn,q(N) tn

[n]q!
.

Note that when N = 1, we recover the q-Bernoulli polynomials (3.1).
We also introduce the q-hypergeometric Bernoulli polynomials of the second kind by

the generating function

tN /[N ]q!
Eq(t) − SN−1,q(t)

Eq(xt) =
∞∑

n=0
q(n

2)Bn,q(N, x) tn

[n]q!
, (3.3)

where

SN,q(t) =
N∑

n=0

q(n
2)tn

[n]q!
,

and the q-hypergeometric Bernoulli numbers of the second kind by
Bn,q(N) = Bn,q(N, 0),

and they are generated by
tN /[N ]q!

Eq(t) − SN−1,q(t)
=

∞∑
n=0

q(n
2)Bn,q(N) tn

[n]q!
. (3.4)
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When N = 1, (3.3) reduces to (5.2) in [2] and (3.4) becomes (4.2) in the same paper. Note
also that both (3.2) and (3.3) are q-analogues of (1.3).
It should be noted that in [18], the authors introduced the two-dimensional generalization
of the Bernoulli polynomials B

[m−1,α]
n,q (x, y) defined by the generating function(

tm

eq(t) − Tm−1,q(t)

)α

eq(tx)Eq(ty) =
∞∑

n=0
B[m−1,α]

n,q (x, y) tn

[n]q!
,

and studied several of their properties. Another important generalization can be found in
[21] but all these generalizations are different from ours.

3.1. The q-hypergeometric Bernoulli polynomials Bn,q(N, x).
Proposition 3.1. The q-hypergeometric Bernoulli polynomials have the following repre-
sentation

Bn,q(N, x) =
n∑

k=0

[
n
k

]
q

Bk,q(N)xn−k =
n∑

k=0

[
n
k

]
q

Bn−k,q(N)xk. (3.5)

Proof. From definition (3.2), it follows that
∞∑

n=0
Bn,q(N, x) tn

[n]q!
= eq(xt) tN /[N ]q!

eq(t) − TN−1,q(t)
= eq(xt)

∞∑
n=0

Bn,q(N) tn

[n]q!

=
( ∞∑

n=0
xn tn

[n]q!

)( ∞∑
n=0

Bn,q(N) tn

[n]q!

)

=
∞∑

n=0

(
n∑

k=0

[
n
k

]
q

Bk,q(N)xn−k

)
tn

[n]q!
.

�
Proposition 3.2 (q-analog of [10, Eq. (2.13)]). The following power representation holds

xn = [N ]q!
n∑

k=0

[
n
k

]
q

[n − k]q!
[N + n − k]q!

Bk,q(N, x). (3.6)

Proof. First, observe that
eq(t) − TN−1,q(t)

tN /[N ]q!
= [N ]q!

tN

∞∑
n=N

tn

[n]q!
= [N ]q!

∞∑
n=0

tn

[N + n]q!
.

From (3.2), it follows that
∞∑

n=0
xn tn

[n]q!
= eq(xt) = eq(t) − TN−1,q(t)

tN /[N ]q!

∞∑
n=0

Bn,q(N, x) tn

[n]q!

= [N ]q!
( ∞∑

n=0

tn

[N + n]q!

)( ∞∑
n=0

Bn,q(N, x) tn

[n]q!

)

= [N ]q!
∞∑

n=0

(
n∑

k=0

[
n
k

]
q

[n − k]q!
[N + n − k]q!

Bk,q(N, x)
)

tn

[n]q!
.

The result follows by collecting the coefficients of tn on both sides. �
Corollary 3.3. The following equation applies

n∑
k=0

[
n
k

]
q

[n − k]q!
[N + n − k]q!

Bk,q(N) =


1

[N ]q!
if n = 0

0 if n > 0
. (3.7)
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Proof. Take x = 0 in (3.6). �

Theorem 3.4 (q-analog of [10, Eq. (2.16)]). Let N ∈ N∗, the following equation holds for
the q-hypergeometric Bernoulli polynomials∫ 1

0
(1 ⊖ qx)N−1

q Bn,q(N, x)dqx = 1
[N ]q

δn,0. (3.8)

Proof. From (3.5), we have:∫ 1

0
(1 ⊖ qx)N−1

q Bn,q(N, x)dqx =
n∑

k=0

[
n
k

]
q

Bk,q(N)
∫ 1

0
(1 ⊖ qx)N−1

q xn−kdqx.

Using the definition of the q-Beta function given by (2.4) and Relation (2.5), the previous
relation gives:∫ 1

0
(1 ⊖ qx)N−1

q Bn,q(N, x)dqx =
n∑

k=0

[
n
k

]
q

Bk,q(N)Bq(N, n − k + 1)

=
n∑

k=0

[
n
k

]
q

Bk,q(N) [N − 1]q![n − k]q!
[N + n − k]q!

.

From (3.7), it follows∫ 1

0
(1 ⊖ qx)N−1

q Bn,q(N, x)dqx = [N − 1]q!
n∑

k=0

[
n
k

]
q

[n − k]q!
[N + n − k]q!

Bk,q(N) = 1
[N ]q

δn,0.

�

Proposition 3.5. The following equation holds

DqBn,q(N, x) = [n]qBn−1,q(N, x).

Proof. First observe that

Dq(eq(xt)) =
+∞∑
n=0

Dqxn tn

[n]q!
= t

+∞∑
n=1

xn−1 tn−1

[n − 1]q!
= teq(xt).

Thus, we have
+∞∑
n=0

DqBn,q(N, x) tn

[n]q!
= teq(xt) tN /[N ]q!

eq(t) − TN−1,q(t)

=
+∞∑
n=0

Bn,q(N, x) tn+1

[n]q!

=
+∞∑
n=1

Bn−1,q(N, x) tn

[n − 1]q!

=
+∞∑
n=1

[n]qBn−1,q(N, x) tn

[n]q!
.

The result follows by identifying the coefficients of tn. �
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Theorem 3.6. The q-hypergeometric Bernoulli polynomials Bn,q(N, x) are the only q-
Appell polynomial set with zero moments, satisfying

B0,q(N, x) = 1, (3.9)
DqBn,q(N, x) = [n]qBn−1,q(N, x), (3.10)∫ 1

0
(1 ⊖ qx)N−1

q Bn,q(N, x)dqx = 1
[N ]q

δn,0. (3.11)

Proof. It is already clear from equation (3.8) and Proposition 3.5 that the Bernoulli
polynomials Bn,q(N, x) satisfy (3.9), (3.10) and (3.11). Conversely, assume that a family
of polynomials Pn,q(N, x) satisfies (3.9), (3.10) and (3.11). By defining the series

H(x, t) =
∞∑

n=0
Pn,q(N, x) tn

[n]q!
.

From (3.10), it follows that Dq,xH(x, t) = tH(x, t). Hence H(x, t) = eq(xt)h(t) where h(t)
is arbitrary unless additional constraints are given. It is now clear using the condition
(3.11) that∫ 1

0
(1 ⊖ qx)N−1H(x, t)dqx =

∫ 1

0
(1 ⊖ qx)N−1

( ∞∑
n=0

Pn,q(N, x) tn

[n]q!

)
dqx

=
∞∑

n=0

tn

[n]q!

∫ 1

0
(1 ⊖ qx)N−1Pn,q(N, x)dqx

= 1
[N ]q

.

The same integral can be computed otherwise in the following way∫ 1

0
(1 ⊖ qx)N−1H(x, t)dqx = h(t)

∫ 1

0
(1 ⊖ qx)N−1eq(xt)dqx

= h(t)
∫ 1

0
(1 ⊖ qx)N−1

∞∑
n=0

(xt)n

[n]q!
dqx

= h(t)
∞∑

n=0

tn

[n]q!

∫ 1

0
(1 ⊖ qx)N−1xndqx

= h(t)
∞∑

n=0

tn

[n]q!
Γq(n + 1)Γq(N)
Γq(N + n + 1)

= [N − 1]q!h(t)
∞∑

n=0

tn

[N + n]q!

= h(t)[N − 1]q!eq(t) − TN−1(t)
tN

.

Hence, we get

h(t) = tN /[N ]q!
eq(t) − TN−1(t)

and so Pn,q(N, x) = Bn,q(N, x). �

Remark 3.7. Theorem 3.6 says that the q-hypergeometric Bernoulli polynomials can be
defined by the three equations (3.9), (3.10) and (3.11).
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3.2. The q-hypergeometric Bernoulli polynomials Bn,q(N, x).
Proposition 3.8. The q-hypergeometric Bernoulli polynomials of the second kind have
the following representation

Bn,q(N, x) =
n∑

k=0

[
n
k

]
q

qk(k−n)Bk,q(N)xn−k

=
n∑

k=0

[
n
k

]
q

qk(k−n)Bn−k,q(N)xk.

Proof. From Definitions (3.3) and (3.4), it follows that
∞∑

n=0
q(n

2)Bn,q(N, x) tn

[n]q!
= Eq(xt) tN /[N ]q!

Sq(t) − SN−1,q(t)
= Eq(xt)

∞∑
n=0

q(n
2)Bn,q(N) tn

[n]q!

=
( ∞∑

n=0
q(n

2)xn tn

[n]q!

)( ∞∑
n=0

q(n
2)Bn,q(N) tn

[n]q!

)

=
∞∑

n=0
q(n

2)
(

n∑
k=0

[
n
k

]
q

qk(k−n)Bk,q(N)xn−k

)
tn

[n]q!
.

The result follows by identifying the coefficient of tn on the both sides of the equation. �

Proposition 3.9 (Second q-analog of [10, Eq. (2.13)]). The following power representa-
tion holds

xn = [N ]q!
n∑

k=0

[
n
k

]
q

q(k
2)+(n+N−k

2 )−(n
2) [n − k]q!

[N + n − k]q!
Bk,q(N, x).

Proof. First observe that

Eq(t) − SN−1,q(t)
tN /[N ]q!

= [N ]q!
tN

∞∑
n=N

q(n
2) tn

[n]q!
= [N ]q!

∞∑
n=0

q(n+N
2 ) tn

[N + n]q!
.

From (3.3), it follows
∞∑

n=0
q(n

2)xn tn

[n]q!
= Eq(xt) = Eq(t) − SN−1,q(t)

tN /[N ]q!

∞∑
n=0

q(n
2)Bn,q(N, x) tn

[n]q!

= [N ]q!
( ∞∑

n=0
q(n+N

2 ) tn

[N + n]q!

)( ∞∑
n=0

q(n
2)Bn,q(N, x) tn

[n]q!

)

= [N ]q!
∞∑

n=0
q(n

2)
(

n∑
k=0

[
n
k

]
q

q(k
2)+(n+N−k

2 )−(n
2) [n − k]q!

[N + n − k]q!
Bk,q(N, x)

)
tn

[n]q!
.

The result follows by collecting the coefficients of tn on both sides. �

Corollary 3.10. The following equation applies
n∑

k=0

[
n
k

]
q

q(k
2)+(n+N−k

2 )−(n
2) [n − k]q!

[N + n − k]q!
Bk,q(N) = 1

[N ]q!
δn,0.

Proposition 3.11. The following equation holds

DqBn,q(N, x) = [n]qBn−1,q(N, qx).
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Proof. Observe first that
Dq(Eq(xt)) = tEq(qxt).

Thus, we have
+∞∑
n=0

DqBn,q(N, x) tn

[n]q!
= tEq(qxt) tN /[N ]q!

Eq(t) − TN−1,q(t)

=
+∞∑
n=0

Bn,q(N, qx) tn+1

[n]q!

=
+∞∑
n=1

Bn−1,q(N, qx) tn

[n − 1]q!

=
+∞∑
n=1

[n]qBn−1,q(N, qx) tn

[n]q!
.

The result follows. �

4. The q-hypergeometric Bernoulli polynomials with two parameters
Note that

eq(t) − TN−1,q(t)
tN /[N ]q!

=
+∞∑
k=0

[N ]q!
[N + k]q!

tk

=
+∞∑
k=0

1
k∏

j=1
(1 − qN+j)

(1 − q)ktk

=
+∞∑
k=0

(q; q)k(0; q)k

(qN+1; q)k

(1 − q)ktk

(q; q)k

= 2ϕ1

(
q, 0

qN+1

∣∣∣∣∣ q, (1 − q)t
)

.

Thus, we observe that the generating function (3.2) can be expressed in terms of the basic
hypergeometric function (see Definition 2.3)

tN eq(xt)/[N ]q!
eq(t) − TN−1,q(t)

= eq(xt)

2ϕ1

(
q, 0

qN+1

∣∣∣∣∣ q, (1 − q)t
) =

∞∑
n=0

Bn,q(N, x) tn

[n]q!
(4.1)

We therefore use (4.1) to define the q-hypergeometric Bernoulli polynomials in two con-
tinuous parameters M and N by

eq(xt)

2ϕ1

(
qM+1, 0
qM+N+1

∣∣∣∣∣ q, (1 − q)t
) =

∞∑
n=0

Bn,q(M, N, x) tn

[n]q!
. (4.2)

Obviously, for M = 0 and N a positive integer, we have Bn,q(0, N, x) = Bn,q(N, x)
where Bn,q(N, x) is the q-hypergeometric Bernoulli polynomials defined by (3.2). These q-
hypergeometric Bernoulli polynomials with two parameters are q-analogs of the Bernoulli
polynomials in two parameters introduced in [6]. Also, we introduce the q-hypergeometric
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Bernoulli numbers in two parameters Bn,q(M, N) = Bn,q(M, N, 0) by the generating func-
tion

1

2ϕ1

(
qM+1, 0
qM+N+1

∣∣∣∣∣ q, (1 − q)t
) =

∞∑
n=0

Bn,q(M, N) tn

[n]q!
.

Proposition 4.1. The following equation holds
DqBn,q(M, N, x) = [n]qBn−1,q(M, N, x).

Proof. The proof is similar to the proof of Proposition 3.5. �
Proposition 4.2. The q-hypergeometric Bernoulli polynomials with two parameters sat-
isfy the following relation

Bn,q(M, N, (x ⊕q y)) =
n∑

k=0

[
n
k

]
q

Bk,q(M, N, x)yn−k. (4.3)

Proof. To prove (4.3), we first of all remark that the q-exponential function satisfies (see
for example [16])

eq(xt)eq(yt) = eq((x ⊕q y)t).
Using this equation, we have

∞∑
n=0

Bn,q(M, N, (x ⊕q y)) tn

[n]q!

= eq((x ⊕q y)t)

2ϕ1

(
qM+1, 0
qM+N+1

∣∣∣∣∣ q, (1 − q)t
) = eq(xt)eq(yt)

2ϕ1

(
qM+1, 0
qM+N+1

∣∣∣∣∣ q, (1 − q)t
)

=
( ∞∑

n=0
Bn,q(M, N, x) tn

[n]q!

)( ∞∑
n=0

yn tn

[n]q!

)
∞∑

n=0

(
n∑

k=0

[
n
k

]
q

Bk,q(M, N, x)yn−k

)
tn

[n]q!
.

This proves the proposition. �
Corollary 4.3. The q-hypergeometric Bernoulli polynomials with two parameters satisfy
the following relation

Bn,q(M, N, (x ⊕q 1)) − Bn,q(N, x) =
n−1∑
k=0

[
n
k

]
q

Bk,q(N, x).

Proof. Take y = 1 in (4.3). �
Corollary 4.4. The q-hypergeometric Bernoulli polynomials with one parameter satisfy
the following relation

Bn,q(N, (x ⊕q y)) =
n∑

k=0

[
n
k

]
q

Bk,q(N, x)yn−k.

Proof. Take M = 0 in (4.3). �
Proposition 4.5. The q-hypergeometric Bernoulli polynomials with two parameters have
the following explicit representation

Bn,q(M, N, x) =
n∑

k=0

[
n
k

]
q

Bk,q(M, N)xn−k. (4.4)
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Proof. The proof is similar to the proof of Proposition 3.1. �

Proposition 4.6 (q-analog of [10, Eq. (3.5)]). For real M > 0 and N > 0, the q-
hypergeometric Bernoulli polynomials with two parameters satisfy the following represen-
tation

xn = Γq(M + N + 1)
Γq(M + 1)

n∑
k=0

[
n
k

]
q

Γq(M + n − k + 1)
Γq(M + N + n − k + 1)

Bk,q(M, N, x). (4.5)

Proof. From the definition of the q-hypergeometric Bernoulli polynomials with two pa-
rameters (4.2), we have

∞∑
n=0

xn tn

[n]q!
= eq(xt) = 2ϕ1

(
qM+1, 0
qM+N+1

∣∣∣∣∣ q, (1 − q)t
)( ∞∑

n=0
Bn,q(M, N, x) tn

[n]q!

)

=
( ∞∑

n=0

(qM+1; q)n

(qM+N+1; q)n

tn

[n]q!

)( ∞∑
n=0

Bn,q(M, N, x) tn

[n]q!

)

=
∞∑

n=0

(
n∑

k=0

Bk,q(M, N, x)
[k]q!

(qM+1; q)n−k

(qM+N+1; q)n−k

1
[n − k]q!

)
tn

=
∞∑

n=0

(
Γq(M + N + 1)

Γq(M + 1)

n∑
k=0

[
n
k

]
q

Γq(M + n − k + 1)
Γq(M + N + n − k + 1)

Bk,q(M, N, x)
)

tn

[n]q!
.

The result is obtained by identifying the coefficients of tn on the both sides of the previous
equality. �

Corollary 4.7. For real M > 0 and N > 0, the following equation applies
n∑

k=0

[
n
k

]
q

Γq(M + n − k + 1)
Γq(M + N + n − k + 1)

Bk,q(M, N) =
{ Γq(M+1)

Γq(M+N+1) if n = 0
0 if n > 0

. (4.6)

Proof. Take x = 0 in (4.5). �

Theorem 4.8 (q-analog of [10, Eq. (3.3)]). For real M > 0 and N > 0, the following
equation holds for the q-hypergeometric Bernoulli polynomials with two parameters∫ 1

0
xM−1(1 ⊖ qx)N−1

q Bn,q(M, N, x)dqx = Γq(N)Γq(M)
Γq(M + N)

δn,0.

Proof. From (4.4) and (4.6), if follows∫ 1

0
(1 ⊖ qx)N−1

q xM−1Bn,q(N, M, x)dqx

=
n∑

k=0

[
n
k

]
q

Bk,q(M, N)
∫ 1

0
(1 ⊖ qx)N−1

q xM+n−k−1dqx

=
n∑

k=0

[
n
k

]
q

Γq(N)Γq(M + n − k)
Γq(M + N + n − k)

Bk,q(N, M)

= Γq(N)
n∑

k=0

[
n
k

]
q

Γq(M + n − k)
Γq(M + N + n − k)

Bk,q(N, M)

= Γq(N)Γq(M)
Γq(M + N)

δn,0.

�

Remark 4.9. Observe that (4.4) and (4.5) are inversions of each other. Moreover, The-
orem 4.8 reduces to the q-beta function Bq(M, N) for the case n = 0.
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5. Some multiplication formulas
Proposition 5.1. Let a be a non zero complex number. The following equations apply

Bn,q(M, N, x) =
n∑

k=0

[
n
k

]
q

(a; q)kxkBn−k(M, N, ax) (5.1)

anBn,q

(
M, N,

x

a

)
=

n∑
k=0

[
n
k

]
q

(a; q)kan−kxkBn−k(M, N, x). (5.2)

Proof. From (4.2) and the q-binomial theorem (2.1), we get
∞∑

n=0
Bn,q(M, N, x) tn

[n]q!
= eq(xt)

2ϕ1

(
qM+1, 0
qM+N+1

∣∣∣∣∣ q, (1 − q)t
)

= eq(axt)

2ϕ1

(
qM+1, 0
qM+N+1

∣∣∣∣∣ q, (1 − q)t
) eq(xt)

eq(axt)

=
( ∞∑

n=0
Bn,q(M, N, ax) tn

[n]q!

)( ∞∑
n=0

(a; q)n

[n]q!
xntn

)

=
∞∑

n=0

(
n∑

k=0

[
n
k

]
q

(a; q)kxkBn−k(M, N, ax)
)

tn

[n]q!
.

This proves (5.1). From (4.1) and the q-binomial theorem (2.1) again, we get
∞∑

n=0
Bn,q(M, N, x/a) tn

[n]q!
= eq(xt/a)

2ϕ1

(
qM+1, 0
qM+N+1

∣∣∣∣∣ q, (1 − q)t
)

= eq(xt)

2ϕ1

(
qM+1, 0
qM+N+1

∣∣∣∣∣ q, (1 − q)t
) eq(xt/a)

eq(xt)

=
( ∞∑

n=0
Bn,q(M, N, x) tn

[n]q!

)( ∞∑
n=0

(a; q)n

(
x

a

)n tn

[n]q!

)

=
∞∑

n=0

(
1
an

n∑
k=0

[
n
k

]
q

(a; q)kan−kxkBn−k(M, N, x)
)

tn

[n]q!
.

�

Note that (5.1) reduces to [1, Eq (6.2)] where as (5.2) reduces to [1, (6.3)] for M = 0
and N = 1.

Proposition 5.2. Let a be a non zero complex number. The following equations apply

Bn,q(N, x) = q−(n
2)

n∑
k=0

[
n
k

]
q

q(n−k
2 )(a ⊖ 1)k

q xkBn−k,q(N, ax) (5.3)

Bn,q(N,
x

a
) = q−(n

2)
n∑

k=0

[
n
k

]
q

q(n−k
2 )(a−1; q)kxkBn−k,q(N, x). (5.4)
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Proof. Let’s define the function H(t) = tN /[N ]q!
Eq(t) − SN−1,q(t)

. Then from (3.3) and the

identity (which follows from the q-binomial theorem (2.1))

Eq(xt)
Eq(axt)

= ((1 − q)xt; q)∞
((1 − q)axt; q)∞

=
∞∑

n=0

(a ⊖ 1)n
q

[n]q!
xntn,

it follows that
∞∑

n=0
q(n

2)Bn,q(N, x) tn

[n]q!
= H(t)Eq(xt) = H(t)Eq(axt) Eq(xt)

Eq(axt)

=
( ∞∑

n=0
q(n

2)Bn,q(N, ax) tn

[n]q!

)( ∞∑
n=0

(a ⊖ 1)n
q

[n]q!
xntn

)

=
∞∑

n=0

(
n∑

k=0

[
n
k

]
q

q(n−k
2 )(a ⊖ 1)k

q xkBn−k,q(N, ax)
)

tn

[n]q!
.

(5.3) follows. (5.4) follows from (5.3) by substituting x by x
a . �

6. Recurrence relations and q-difference equations
In this section we prove some recurrence relations and q-difference equations for the q-
hypergeometric Bernoulli polynomials.

Lemma 6.1. If G(x, t) = tN /[N ]q!
eq(t) − TN−1(t)

eq(xt), then,

tDq,tG(x, t) =
(
qN tx + [N ]q

)
G(x, t) − (t + [N ]qG(0, t)) G(x, qt). (6.1)

Proof. Applying the product and the quotient rules (2.2) and (2.3) with f(x, t) = tN

[N ]q!
eq(xt)

and g(t) = eq(t) − TN−1(t), it follows that

Dq,tf(x, t) = 1
[N ]q!

{
(qt)N xeq(xt) + [N ]qtN−1eq(xt)

}
=

{
qN x + [N ]q

t

}
f(x, t)

and

Dq,tg(t) = eq(t) − TN−2(t) = g(t) + tN−1

[N − 1]q!
.

Hence

Dq,tG(x, t) =
{

qN x + [N ]q
t

}
G(x, t) −

(
1 + tN−1

[N − 1]q!
1

g(t)

)
G(x, qt).

�

Theorem 6.2. The q-hypergeometric Bernoulli polynomials Bn,q(N, x) are solutions of
the following recurrence relation

([n]q − [N ]q)Bn,q(N, x) = [n]q
(
qN x − qn−1

)
Bn−1,q(N, x)

−[N ]qqn
n∑

k=0

[
n
k

]
q

Bn−k,q(N)Bk,q(N, x).
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Proof. Observing that

G(x, t) =
+∞∑
n=0

Bn,q(N, x) tn

[n]q!
,

the left-hand side of (6.1) gives

tDq,tG(x, t) =
+∞∑
n=0

[n]qBn,q(N, x) tn

[n]q!
. (6.2)

If we denote by A the right side of (6.1), then we have

A = qN t
+∞∑
n=0

xBn,q(N, x) tn

[n]q!
+ [N ]q

+∞∑
n=0

Bn,q(N, x) tn

[n]q!
−

+∞∑
n=0

Bn,q(N, x)qn tn+1

[n]q!

−[N ]q

(+∞∑
n=0

Bn,q(N)qn tn

[n]q!

)(+∞∑
n=0

Bn,q(N, x)qn tn

[n]q!

)

= qN
+∞∑
n=0

[n]qxBn−1,q(N, x) tn

[n]q!
+ [N ]q

+∞∑
n=0

Bn,q(N, x) tn

[n]q!
−

+∞∑
n=0

[n]qqn−1Bn−1,q(N, x) tn

[n]q!

−[N ]q
+∞∑
n=0

(
n∑

k=0

[
n
k

]
q

Bn−k,q(N)qn−kBk,q(N, x)qk

)
tn

[n]q!
.

Hence, the right side of (6.1) gives

A =
+∞∑
n=0

(
qN [n]qxBn−1,q(N, x) + [N ]qBn,q(N, x) − [n]qqn−1Bn−1,q(N, x)

−[N ]q

(
n∑

k=0

[
n
k

]
q

Bn−k,q(N)qn−kBk,q(N, x)qk

))
tn

[n]q!
. (6.3)

Considering the fact that (6.2)=(6.3), we get the proof of the Theorem. �

Theorem 6.3. The q-hypergeometric Bernoulli polynomials are solutions of the following
q-differential equation(

qN x − qn−1
)

DqBn,q(N, x) = ([n]q − [N ]q)Bn,q(N, x)

+
n∑

k=0

[N ]qqn

[k]q!
Bk,q(N)Dk

q Bn,q(N, x).

Proof. Using Theorem 6.2 and Proposition 3.5, we obtain the result. �

7. q-hypergeometric Bernoulli polynomials of higher order
Let r be an arbitrary complex number. We define the q-hypergeometric Bernoulli

polynomials of order r by

eq(xt)[
2ϕ1

(
qM+1, 0
qM+N+1

∣∣∣∣∣ q, (1 − q)t
)]r =

∞∑
n=0

B(r)
n,q(M, N, x) tn

[n]q!
, (7.1)

and the q-hypergeometric Bernoulli numbers of order r by the generating functions

1[
2ϕ1

(
qM+1, 0
qM+N+1

∣∣∣∣∣ q, (1 − q)t
)]r =

∞∑
n=0

B(r)
n,q(M, N) tn

[n]q!
, (7.2)
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Proposition 7.1. The q-hypergeometric Bernoulli polynomials of order r fulfil the follow-
ing representation

B(r)
n,q(M, N, x) =

n∑
k=0

[
n
k

]
q

B
(r)
n−k,q(M, N)xk.

Proof. From (7.1) and (7.2), it follows that
∞∑

n=0
B(r)

n,q(M, N, x) tn

[n]q!
= eq(xt)[

2ϕ1

(
qM+1, 0
qM+N+1

∣∣∣∣∣ q, (1 − q)t
)]r

=
( ∞∑

n=0
B(r)

n,q(M, N) tn

[n]q!

)( ∞∑
n=0

xn tn

[n]q!

)

=
∞∑

n=0

(
n∑

k=0

[
n
k

]
q

B
(r)
n−k,q(M, N)xk

)
tn

[n]q!

�

Let’s define the function Fr(t) = 1[
2ϕ1

(
qM+1, 0
qM+N+1

∣∣∣∣∣ q, (1 − q)t
)]r and Gr(x, t) = Fr(t)eq(xt).

It is obvious that Gr(x, t) generates the q-hypergeometric Bernoulli polynomials of order
r whereas Fr(t) generates the q-hypergeometric Bernoulli numbers of order r.

Proposition 7.2. The following q-addition formula holds

B(r+s)
n,q (M, N, (x ⊕q y)) =

n∑
k=0

[
n
k

]
q

B
(r)
k,q(M, N, x)B(s)

n−k(M, N, y).

Proof. The proof follows from the equation Gr+s((x ⊕q y), t) = Gr(x, t)Gr(y, t). �

Corollary 7.3. The following equation applies

(x ⊕q y)n =
n∑

k=0

[
n
k

]
q

B
(r)
k,q(M, N, x)B(−r)

n−k (M, N, y)

Corollary 7.4. The following equation applies

B(r+s)
n,q (M, N, x) =

n∑
k=0

[
n
k

]
q

B
(s)
n−k(M, N)B(r)

k,q(M, N, x).

For example, for s = 1, we get

B(r+1)
n,q (M, N, x) =

n∑
k=0

[
n
k

]
q

Bn−k(M, N)B(r)
k,q(M, N, x).

8. Conclusion and further remarks
In this paper we have introduced two kinds of q-hypergeometric Bernoulli polynomials
that generalized the hypergeometric Bernoulli polynomials introduced in [6], extensively
studied in [10,14] and the reference therein. Classical results are obtained from the results
of this paper by taking the limit as q tends to 1. These new families of q-Bernoulli
polynomials will probably find applications in many areas of applied mathematics.
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