JOURNAL OF SCIENCE

GU J Sci 34 (1): 63-82 (2021)

Gazi University Journal of Science

http://dergipark.gov.tr/gujs

DOI: 10.35378/gujs.679103

Predicting Stock Prices Using Machine Learning Methods and Deep Learning Algorithms: The Sample of the Istanbul Stock Exchange

Ugur DEMIREL⁽¹⁰⁾, Handan CAM⁽¹⁰⁾, Ramazan UNLU^{*} ⁽¹⁰⁾

Faculty of Economics and Administrative Sciences, Gumushane University, Gumushane, 29000, Turkey

Highlights

- The paper focusesed on Istanbul Stock Exchange (ISE) prediction
- MLP, SVM and LSTM models were compared with their forecasting performances
- MLP and LSTM models outperformed SVM model in estimating the stock prices

Article Info	Abstract
Received: 23/01/2020 Accepted: 01/07/2020	Stock market prediction in financial and commodity markets is a major challenge for speculators, investors, and companies but also profitable with an accurate prediction. Thus, obtaining accurate prediction results becomes extremely important especially while the stock market is essentially volatile, nonlinear, complicated, adaptive, nonparametric and unpredictable in nature. This study aims to forecast the opening and closing stock prices of 42 firms listed in Istanbul Stock Exchange National 100 Index (ISE-100) using well-known
Keywords	machine learning methods, Multilayer Perceptrons (MLP) and Support Vector Machines (SVM) models and deep learning algorithm, Long Short Term Memory (LSTM) by comparing their forecasting performances. The analysis includes 9 years of data from 01.01.2010 to 01.01.2019. For each firm 2249 data for the opening and 2249 for the closing stock prices were
Stock market prices Estimation Machine learning Deep learning Python language	established as daily data sets. Forecasting performance of these methods was evaluated by applying different criteria for each model: root mean squared error (RMSE), mean squared error (MSE) and R-squared (R2). The results of this study show that MLP and LSTM models become advantageous in estimating the opening and closing stock prices comparing to SVM model.

1. INTRODUCTION

Stock market prediction in financial and commodity markets is a major challenge facing speculators, investors, and companies assuming that future events are at least partly dependent on current and past events and data in their search for market forecasting. However, financial time series are among the noisiest and most difficult signals to predict since the stock market is essentially volatile, nonlinear, complicated, adaptive, nonparametric and unpredictable in nature [1-3]. In finance, many macro-economic issues such as firm policies, political events, general economic circumstances and expectations of traders affect the stock market's movements [3-5]. It is therefore quite difficult to predict changes in financial market prices. According to academic research, market price movements are not random. Instead, they act in a highly non-linear, dynamic way [2], [6]. However, in recent years, the development of computer hardware and software technologies has made it possible to support computation in finance. Thanks to its potential to generate great profits and capital, this use of artificial intelligence resources in the finance industry is of great interest. Therefore, an emerging discipline, computational finance which is the integration of economics, mathematics, and large-scale computation has gained considerable interest and motivated further researches in multi-disciplines [4-5].

^{*}Corresponding author, e-mail: ramazanunlu@gumushane.edu.tr

Machine learning methods widely used in the stock forecasting model are support vector machines (SVM), neural networks (NN), models combining them with other algorithms and Long Short-term Memory (LSTM) as a deep learning method. There have been a number of studies using artificial neural networks (ANNs) in time-series modeling and forecasting [7] and ANN models have been used successfully in forecasting studies across a wide range of disciplines. We will begin by presenting the most well-known and widely-used network, multi-layer feedforward networks, which is a particular structure of ANNs applied in a variety of applications including forecasting. One of the first successful applications of multilayer perceptron (MLP) was reported by [8] and following years many other problems have been solved by MLP including student grade point averages [9], ozone level [10], commodity prices [11], advertising [12], electric load consumption [13], forecasting macroeconomic data [14], railway traffic forecasting [15] and financial time series forecasting [16]. Forecasting financial markets such as the stock markets have been researched at length in [17]'s study. The same year, the Standard & Poors 500 Index has been modeled by [18] using different neural network architectures that can be trained to perform, vet the probabilistic neural network performs slightly better than the multilayer perceptron. Mostafa [19] used multi-layer perceptron (MLP) and generalized regression neural networks in order to forecast the Kuwait Stock Exchange (KSE) closing price changes using data for the period 2001-2003 which has concluded that neural networks are performing well in predicting stock exchange movements in developing markets. In their papers, Naeini et al. [20] have used two forms of neural networks, a feedforward Multilayer Perceptron (MLP) and an Elman recurrent network to estimate a company's stock value based on its market-value background. The experimental results show that the MLP neural network outperforms Elman recurrent network and linear regression method. Despite the volatility in the markets, multilayer networks with dynamic backpropagation have been used successfully by [21] to predict the stock price of Bombay Stock Exchange (BSE). In Turkey, Kutlu et al. [22] have used Multi-Layer Perceptron and Generalized Feed Forward networks which have better performances than moving averages to predict the Istanbul Stock Exchange (ISE) market index value including the data gathered for the period of July 1, 2001, through February 28, 2003, from the Central Bank of the Republic of Turkey. Yumlu et al. [23] have made a comparison of the multilayer perceptron (MLP), recurrent neural network (RNN) and the mixture of experts (MoE) structure including 12 years data of Istanbul stock exchange (ISE) index (XU100) between the years of 1990 to 2002. Each model has been compared with well-known market-return index criterions including correlation (ζ), mean absolute error (MAE), mean squared error (MSE), hit rate (H_R), positive hit rate (H_R^+) and negative hit rate (H_R^-) . Finally, it has been observed that the MoE neural structure is superior over other models. Guresen et al. [24] have assessed the feasibility of neural network models in stock-market predictions including the analyses of dynamic artificial neural network (DAN2), multi-layer perceptron (MLP), and the hybrid neural networks using generalized autoregressive conditional heteroscedasticity (GARCH) to extract new input variables. Each model is compared by Mean Absolute Deviate (MAD) and Mean Square Error (MSE) using actual exchange rate values of the NASDAQ Stock Exchange index on a daily basis.

Although the neural network has been widely used in the field of financial time series forecasting owing to its outstanding learning ability and broad applicability to a variety of business problems, recently the support vector machines (SVM), has been conducted successfully in the prediction of the stock price index movements. [25-28] have demonstrated that support vector machines (SVM), a novel neural network algorithm developed by Vapnik and his colleagues [29], has performed well in classification tasks, regression and time series prediction, respectively. Cao and Tay [30], Tay and Cao [31] recently have questioned whether the SVM is feasible to predict financial time series by comparing it with a multi-layer back-propagation (BP) neural network. For data sets, they used five real futures obtained from the Chicago Mercantile Market and several foreign bond indices. The experiment result shows that SVMs outperform the multi-layer back-propagation (BP) networks where mean absolute error, normalized mean square error, directional symmetry, and weighted directional symmetry has been conducted. By integrating SVR and self-organizing map (SOM), Tay and Cao [32] have introduced a two-stage architecture in order to properly identify the dynamic input-output relationships implicit in the financial data. The parameters such as C and

 ε used for the kernel functions are basically determined experimentally and it is shown that the overall approach has better prediction performance and higher convergence rate as in contrast to a single SVR approach. Tay and Cao [33] have suggested a modern version of SVR called C-ascending SVMs for the prediction of financial series as similar to the discounted least-squares approach whereby the most recent ε -insensitive errors are weighted and the more distant ones are deweighted. A variety of share indexes, including the S&P 500, have been evaluated for both exponential and linear weight functions and it has been concluded that, compared to a standard SVR method, this approach can present better performance. For the purpose of predicting the direction of the change in daily stock price in the Korea composite stock price index (KOS-PI), Kim [34] has used SVM with 12 technical indicators including A/D oscillator, CCI, disparity5, disparity10, momentum, stochastic K%, stochastic D%, stochastic slow D%, Williams' %R, OSCP, ROC and RSI which are used to make up the initial attributes. Analysis of the experimental results has proved that applying SVM in financial prediction by comparing it with a back-propagation neural network (BPN) and case-based reasoning (CBR) is feasible and it is advantageous. Pai and Lin [35], have developed a prediction model integrating ARIMA and SVM models in order to estimate the daily closing prices of ten companies. The hybrid model integrated ARIMA and SVM has been observed to significantly reduce all estimation errors when compared to models using only ARIMA and SVM only. In their study, Huang et al. [2] have investigated weekly movement direction of NIKKEI 225 with SVM by evaluating its performance with those of Elman backpropagation neural networks, linear discriminant analysis, and quadratic discriminant analysis. The findings of the experiment indicate that SVM exhibits better forecasting performance than the other classification methods. Kumar and Thenmozhi [36] in their study have presented SVM and random forest to forecast the direction of the change in the daily stock price in the S&P CNX NIFTY Market Index of the National Stock Exchange by comparing the results with those of the artificial neural network, logit models and discriminant analysis. Their results demonstrated that SVM outperformed the other methods like the random forest, neural networks, and other traditional models. Following year, Kumar and Thenmozhi [37] have examined the feasibility of ANN, ARIMA, SVM, and random forest regression models in forecasting the S&P CNX NIFTY Index return by measuring their performance statistically and financially through a trading experiment which propose that the SVM model demonstrates better performance than other models used in their research. Hsu et al. [38] have developed two-stage architecture by using the self-organizing map and support vector regression with an examination of seven major stock markets to forecast stock prices. The results suggest that the two-stage architecture offers a viable solution for forecasting stock prices. In their studies, Kara et al. [3] have compared the performance of ANN and SVM for the purpose of estimating the ISE-100 Index. For the analysis, the data set covering the closing prices in the period from 2 January 1997-31 December 2007 has been used with selected 10 technical indicators including A/D oscillator, CCI, MACD, momentum, RSI, stochastic K%, stochastic D%, simple moving average (SMA), weighted moving average (WMA) and Williams' %R. Although the results are successful in both methods, it is found that ANN has 75.74% and SVM had 71.52% predictive performance. In another study published at the same year, Ozdemir et al. [39] have estimated the movement direction of the ISE-100 Index return by using both Logistic Regression (LR) and Support Vector Machines (SVM) on monthly data covering the period of February 1997 – December 2010. A total of 167 data sets are divided into 138 data training sets in which the models were installed and 29 data sets of predictions of the validity of the models. According to the results of the study, support vector machines can be used effectively by investors and researchers to predict the stock returns as an alternative method. Tayyar and Tekin [40] have used Support Vector Machines (SVM) to forecast the movement direction of the Istanbul Stock Exchange National 100 Index (ISE-100). They compared the classification performance of SVM with Logistic Regression (LR) method used in this study in order to predict the movement direction of the ISE-100 Index. The analysis includes data sets of 4226 data that have been established daily, weekly and monthly from 03.04.1995 to 19.03.2013. They have built 4 models for each dataset and evaluated index movement direction forecasting performance of these methods by applying different criteria for each model. They observed that the best estimation of the movement direction of ISE-100 Index was in Model 1 (70.0%) among other models with an increase of (82.89%) and a decrease of (54.68%) direction. Yakut et al. [41] have attempted to estimate BIST index value by using feed-forward artificial neural networks and support vector machines methods. They have used the variables such as exchange rates and other countries' exchanges obtained from including America exchange rate of the dollar, overnight websites between 2005-2012 besides three days' values of the BIST index. According to the result, artificial neural networks and support vector machines methods can be used successfully to predict the stock market index.

In recent years, long-short-term memory (LSTM) networks for recurrent networks have been introduced by [42] and have become the cutting-edge models for a variety of machine learning problems. LSTM networks, one of the most powerful deep learning models, have demonstrated great performance in pattern learning tasks, such as speech recognition, human behavior recognition, and handwriting recognition or time series prediction [43-48]. Beside the tasks mentioned above, LSTM networks have been used in many different subjects such as producing musical compositions [49], detecting protein homology without alignment [50], designing a learning system to tie knots in heart surgery [51] and learning nonregular languages [52]. However, having surveyed the literature, it is seen that there have not been many attempts to deploy LSTM in financial market prediction tasks. Giles et al. [53] applied the RNN model to the daily foreign exchange rates forecasting, and gained success in prediction in thorough experiments predicting the direction of change correctly for the next day with an error rate of 47.1%. Through integrating Google's domestic patterns as public mood measures and macroeconomic factors, Xiong et al. [54] have utilized a Long Short-Term Memory neural network to model S&P 500 volatility, with a 24.2% of mean absolute percentage error, outperforming linear Ridge/Lasso and 31% by at least autoregressive GARCH benchmarks. Roondiwala et al. [55] have presented a recurrent neural network (RNN) and Long Short-Term Memory (LSTM) approach to estimate stock market indices. Shen et al. [56] used Bayesian-optimized recurrent neural network-LSTM to estimate the value of the coin, achieving 52% precision. Pang et al. [57] have proposed the deep long-short-term memory neural network (LSMN) with an embedded layer vectorizing the data to forecast the stock market. The results of the experiment indicate that the LSMN model with the embedded layer is state-of-the-art with an accuracy of 57.2% for the Shanghai A-shares composite and 52.4% for an individual stock. Fischer and Krauss [58] have deployed LSTM networks to forecast out-of-sample directional movements for the stakeholders' stocks in the S&P 500 from 1992 until 2015 and they find that LSTM networks outperform memory-free classification approaches with 0.46% of daily returns and a 5.8% of Sharpe Ratio prior to transaction costs.

Machine learning techniques are seen to be used increasingly in financial time series forecasting as an alternative to statistical methods due to their outstanding learning and generalization ability. The main objective of this paper is to predict stock prices in the daily Borsa Istanbul National 100 Index (BIST100) using multilayer perceptron neural networks (MLP), support vector machines (SVM) and long short term memory (LSTM) models. Thus, we collected 9 years of historical data of BIST 100 between 01.01.2010 - 01.01.2019 and used it for the training and validation purposes. From this literature survey, we find that no previous studies have attempted to predict the stock market prices of BIST 100 through all these three above mentioned models. In this study, we aim to fill this research gap by comparing these three models to forecast the stock market prices. The remainder of this paper is organized into 4 sections. Section 2 describes the methodology. Section 3 provides the computational results and finally, section 4 contains the concluding remarks and future research directions.

2. MATERIAL METHOD

In our study, we have collected stock price datasets obtained from BIST (Borsa İstanbul) website https://www.borsaistanbul.com/ana-sayfa for 42 different companies listed in Istanbul Stock Exchange. Each company has daily opening and closing prices which start from 2010 to 2019 for each company.

Figure 1 illustrates Türkiye İş Bankası A.Ş. closing stock price change over the years.

Figure 1. Türkiye İş Bankası A.Ş. closing stock prices from 2010 to 2019 (2249 days between these dates)

For the sake of comparison of traditional machine learning algorithms and deep learning models, we chose three different algorithms called Multilayer Perceptrons, Support Vector Machines, Long Short-term Memory (LSTM) which have different mathematical foundations.

Before implementing any machine learning model to a time series dataset, we made some pre-processing as listed below.

- If there is a particular trend, make dataset stationary by subtracting data at the time of t-1 from the data at the time of t.
- Create some lags to make data ready for the time series analysis. We have created lags from 2 to 20 and find the optimum number of lags for each company.
- After implementing the chosen methodologies, reverse data to the original scale.

Each dataset is split as being %80 training and %20 test set and evaluation of the prediction models are made based on the performance on test data. In order to do that, we have used some evaluation metrics given in Table 1.

<i>Table</i> 1. Evaluation	
Evaluation Metrics	Formulation
RMSE	$\sqrt{\frac{\sum_{i=1}^{n} (P_i - O_i)^2}{n}}$
MSE	$\frac{1}{n}\sum_{i=1}^{n}(y_i-\tilde{y}_i)^2$
R ²	$\left(\frac{n\sum(y\widetilde{y})-\sum y\sum \widetilde{y}}{\sqrt{n(\sum y^2)-(\sum y)^2}-\sqrt{n\sum(\widetilde{y}^2)-(\sum \widetilde{y})^2}}\right)^2$

Table 1. Evaluation Metri	С
---------------------------	---

2.1. Multilayer Perceptron Algorithm

Artificial Neural Network -also named Multilayer perceptron (MLP)- is one of the machine learning methods to extract the hidden nonlinear relation from the data [59-61]. It consists of some layers called input, hidden, and output as shown in Figure 2.

Figure 2. MLP Structure consisted of Input, Hidden, and Output layers

Data samples enter the network from input layers, and a linear combination of the values are forwarded to neurons in the next layer. This network process is called as feed-forwarded neural networks. Then the system takes the values from the output layer through the input layer to optimize weights by taking partial derivatives. This method is called backpropagation. The output of n^{th} neuron in l^{th} the layer is calculated based on Equation (1) as the linear combination of the previous layer such that:

$$o = y_l^n = w^T x + b \tag{1}$$

where w^T is the connection weights. The value of each node is transformed by an activation function. There are some available activation functions in the literature. We have used the sigmoid one which transforms the value as being 1 or 0 based on Equation (2)

$$\sigma(x) = \frac{1}{1 - e^{-(w^T x + b)}}.$$

Then, the weights should be adjusted based on Equation (3) to minimize the error for the given dataset.

$$D = \{(x_1, t_1), (x_2, t_2), \dots, (x_d, t_d), \dots, (x_m, t_m)\}$$
$$E[\vec{w}] = \frac{1}{2} \sum_{d \in D} (t_d - o_d).$$
(3)

In order to adjust w_i as $w_i := w_i + \Delta w_i$, following partial derivatived procedure should be utilized simultaneously for each w_i as shown in Equation (4)

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} \tag{4}$$

where $-\eta$ is the learning rate, Δw_i is the adjustment value. After taking the derivatives, we can wrap up the adjustment rules as shown in Equation (5)

$$\Delta w_i = -\eta \sum_{d \in D} (t_d - o_d) x_{id}. \tag{5}$$

One needs to note that, because our problem is a regression problem, there will be a single neuron in the output layer of the MLP model.

2.2. Support Vector Machines (SVM) Algorithm

Support Vector Machines is one of the widely used machine learning algorithm proposed by [62]. The SVM

is initially designed for the binary classification problem, then it is extended for the regression problem [63]. Assume we are given a dataset { $(x_1, y_2), ..., (x_l, y_l)$ }, where each $x_i \in R$ the decision function is given by Equation (6)

$$f(x) = w\phi(x) + b .$$
(6)

With respect to $w_i \in R$ and $b \in R$, where ϕ denotes a non-linear transformation from R^n to higherdimensional space. To make sure f(x) is as flat as possible, magnitude the of the w should be minimized as in Equation (7)

$$J(w) = \frac{1}{2} \|w\|.$$
(7)

Subject to all residuals having a value less than ε ; or, in Equation (8)

$$w\phi(x_i) + b - y_i \le \varepsilon . \tag{8}$$

It is expected that it is impossible to meet this condition for any dataset. So, we can add slack variables ξ^+ and ξ^- to give some flexibility and rewrite the formulations as shown below in Equation (9)

$$J(w) = \frac{1}{2} ||w|| + C \sum_{i}^{n} \xi^{+} + \xi^{-}.$$
(9)

Subject to:

$$y_i - (w\phi(x_i) + b) \le \varepsilon + \xi^+$$

$$(w\phi(x_i) + b) - y_i \le \varepsilon + \xi^-$$

$$\xi^+ \ge 0$$

$$\xi^- \ge 0$$

where *C* is a constant value that assigns some penalty values imposed to the variables which stay outside the ε margin and help to avoid being overfitting. Finally, we can calculate the loss function that ignores the error if the predicted value is less than or equal to ε . Thus, it can be formulated as shown in Equation (10)

$$f(x) = \begin{cases} 0, & \text{if } w\phi(x_i) + b - y_i \le \varepsilon \\ |w\phi(x_i) + b - y_i| - \varepsilon, & \text{otherwise} \end{cases}$$
(10)

For the sake of mathematical convenience, the given optimization problem described above can be solved in dual form.

2.3. Long-Short Term Memory Algorithm

Long-Short Term Memory is developed based on a recurrent neural network proposed by [42]. As opposed to a traditional neural network, LSTM network is designed to remember what happened in the past and how this affects the current situation. To make it more concrete assume that we are given a dataset $X = \{x^{<1>}, x^{<2>}, ..., x^{<t>}, ..., x^{<T_x>}\}$ (i.e X is a sentence and $x^{<t>}$ is the t^{th} word in that sentence). A RNN network takes the information from $x^{<t>}$ and activation value $a^{<t-1>}$ from the previous time step to help prediction with $y^{<t>}$. Based on the structure of the RNN we can build the formulation of the RNN as shown in Equations (11) and (12)

$$a^{} = g(W_{aa}a^{} + W_{ax}x^{} + b_a)$$
(11)

where $a^{<t>}$ is accounts for the activation value in time step *t*, *g* is the chosen activation function, W_{aa} is the parameter for the activation values, W_{ax} is parameters for the input values, an b_a is the bias value. The prediction of the corresponding sample $y^{<t>}$ can be made based on Equation (12) by using the value of $a^{<t>}$

$$\hat{y}^{} = g(W_{ya}a^{} + b_y) \tag{12}$$

where $W_{va}a$ is the parameter matrix for the activations and b_v is the bias value.

Optimizing the LSTM network is similar to a traditional neural network. To minimize the overall error of the system as shown in Equation (13) back-propagation algorithm can be used.

$$L(\hat{y}^{}, h^{}) = \sum_{t=1}^{T_x} (\hat{y}^{}, y^{}).$$
(13)

In addition to RNN systems, GRU system has an additional component called memory cell based on "remembering" what happened in the past. A simple structure is shown in the following Figure 3.

Figure 3. Simple GRU structure for sequential data

So, assume that $c^{<t>}$ used instead of $a^{<t>}$ is the memory cell works to save some important information. It needs to be decided to change the value of $c^{<t>}$ by first calculating candidate memory cell value $\hat{c}^{<t>}$ as shown in Equation (14)

$$\hat{c}^{} = g(W_{cc}c^{} + W_{cx}x^{} + b_c) \tag{14}$$

where g is the activation function, W_{cc} is the parameter for the memory cell values, W_{cx} is the parameter for the input data, and $c^{<t-1>}$ is the memory cell value from the previous time step. We define a parameter Γ_u named as update gate which takes either 1 or 0 meaning "update" and "do not update" respectively in order to update the memory cell value in a correct time. The formulation of Γ_u is as in Equation (15)

$$\Gamma_u = g(W_{uc}c^{} + W_{ux}x^{} + b_u) \tag{15}$$

where g is the activation function, W_{uc} and W_{ux} are the parameters for memory cell value and input data respectively during the update step.

Finally $c^{\langle t \rangle}$ value can be overwritten as in Equation (16)

$$c^{} := \Gamma_u \hat{c}^{} + (1 - \Gamma_u) c^{}.$$
(16)

In the case of Γ_u is equal to 1, $c^{<t>} = \hat{c}^{<t>}$ meaning that update $c^{<t>}$, otherwise $c^{<t>} = c^{<t>}$ meaning

that do not update. Now, we can extend the GRU structure as being an LSTM network. The assumption $c^{<t>} = a^{<t>}$ will be removed and two new parameters Γ_f and Γ_o named as forget gate and output gate respectively will be added. The revised formulation of the LSTM is shown in Equations (17)-(22)

$$\begin{aligned}
\hat{c}^{} &= g(W_{ca}a^{} + W_{cx}x^{} + b_c) & (17) \\
\Gamma_u &= g(W_{ua}a^{} + W_{ux}x^{} + b_u) & (18) \\
\Gamma_f &= g(W_{fa}a^{} + W_{fx}x^{} + b_f) & (19) \\
\Gamma_o &= g(W_{oa}a^{} + W_{ox}x^{} + b_o) & (20) \\
c^{} &= \Gamma_u \hat{c}^{} + \Gamma_f c^{} & (21)
\end{aligned}$$

$$a^{\langle t \rangle} = \Gamma_o c^{\langle t \rangle}. \tag{22}$$

Instead of calculating $c^{<t>}$ based on Equation (16), we imply the formula given in Equation (17) and activation $a^{<t>}$ is calculated based on Equation (22) instead of equalling it to $c^{<t>}$. The simple structure of the LSTM cell is shown in Figure 4.

Figure 4. The structure of LSTM model. \otimes = element-wise multiplication and \oplus = summation processes

3. THE RESEARCH FINDINGS AND DISCUSSION

The results of the accuracy measures calculated for the estimates of the models are shown in Table 2.

			MLP				SV	'M		LSTM			
	Method		Opening		Closing		Opening		Closing		Opening		Closing
AKBNK	RMSE	5	0,27463	2	0,17431	3	0,31276	2	0,24007	2	0,28089	5	0,17424
	MSE	.ag2	0,07542	.ag2	0,03038	.ag3	0,09782	.ag2	0,05763	.ag2	0,07890	.ag2	0,03036
	R-square	Ι	0,96449	Ι	0,98588	Ι	0,98738	Γ	0,99267	Ι	0,96291	Τ	0,98589
AKSA	RMSE	5	0,90378	3	0,28569	2	1,69791	5	1,61261	9	0,86830	4	0,28526
	MSE	ag	0,81682	Lag	0,08162	ag	2,88291	Lag	2,60050	ag	0,75394	Lag	0,08137
	R-square	Ι	0,83902	Ι	0,98269	Ι	0,79320	Ι	0,77006	Γ	0,83863	Ι	0,98277
ALARK	RMSE	1	0,46026	9	0,16701	5	0,74782	2	0,58869	č ^g	0,41068	9	0,16709
	MSE	ag1	0,21184	ag6	0,02789	.ag2	0,55923	.ag2	0,34655	ag	0,16866	ag6	0,02792
	R-square	Τ	0,92431	Γ	0,99002	Τ	0,92489	Γ	0,95663	Γ	0,93770	Ι	0,99001
AEFES	RMSE	3	0,58495	1	0,42600	2	0,59701	1	0,43512	3	0,53085	5	0,42310
	MSE	'ag	0,34216	ag1	0,18148	'ag'	0,35642	ag	0,18933	ag	0,28181	Lag5	0,17902
	R-square	Ι	0,94304	Ι	0,97033	Ι	0,98330	I	0,99181	Ι	0,95248		0,97061
ARCLK	RMSE	1	0,75585	5	0,42596	2	1,60018	1	1,26149	g2	0,62609	9	0,33090
	MSE	.ag1	0,57131	Lag5	0,18144	.ag2	2,56058	ag	1,59135	,a	0,39199	Lag6	0,10949
	R-square	Ι	0,96799	Ι	0,97034	Ι	0,95080	Γ	0,97203	Γ	0,97796	I	0,99389
ASELS	RMSE	2	1,59523	1	0,98026	3	7,17062	4	6,49366	5	1,60745	2	0,97990
	MSE	.ag2	2,54475	.ag1	0,96091	ag	51,41780	.ag4	42,16761	ag	2,58390	gg	0,96021
	R-square	Ι	0,90443	Γ	0,96212	Ι	0,10905	Γ	0,30025	Γ	0,90181	Γ	0,96209
BIMAS	RMSE	La	1,61346	La	1,09490	La	1,59721	La	1,36570	La	1,49377	La	1,09323

Table 2. Results of MLP, SVM, and LSTM models

						1	1						T
	MSE		2,60325		1,19881		2,55107		1,86513		2,23134		1,19516
	R-square		0,95155		0,97731		0,98760		0,99030		0,95784		0,97740
DOHOL	RMSE	1	0,04382	+	0,03157	2	0,04856	2	0,03839	+	0,04499	5	0,03150
	MSE	Lag1	0,00192	Lag4	0,00100	Lag2	0,00236	Lag2	0,00147	Lag4	0,00202	Lag6	0,00099
	R-square	Г	0,93516	Γ	0,96638	Г	0,97915	Г	0,98668	Г	0,93074	Γ	0,96670
DOAS	RMSE		0,43450		0,13622		0,44497	- >	0,36828	- >	0,34798		0,13633
	MSE	Lag3	0,18879	Lag3	0,01856	Lag3	0,19800	Lag2	0,13563	Lag2	0,12109	Lag4	0,01859
	R-square	Ľ	0,92594	Ľ	0,99276	Ľ	0,97615	Ľ	0,98372	Ľ	0,95221	Ľ	0,99275
ECZYT	RMSE		0,18222		0,08816		0,34586		0,33619		0,16916		0,08814
LCLII	MSE	Lag3	0,03321	Lag5	0,00010	Lag2	0,11962	Lag2	0,11302	Lag6	0,02862	Lag2	0,00777
	R-square	La	0,90289	La	0,97565	La	0,88959	La	0,86961	L_{a}	0,02802	L_{a}	0,97563
ENKAI	RMSE						0,88939		0,09202		0,90958		0,97303
ENKAI	MSE	Lag4	0,11063	Lag1	0,08353	Lag6		Lag1		Lag5		Lag4	
		La	0,01224 0,94476	La	0,00698	La	0,01457 0,98224	La	0,00847 0,99013	La	0,00953 0,95711	La	0,00696
EDCLI	R-square												0,96927
ERGLI	RMSE	Lag5	0,62450	Lag6	0,21762	50	2,97532	50	2,86993	50	0,62420	2	0,21824
	MSE	La	0,39000	La	0,04736	Lag1	8,85253	Lag1	8,23647	Lag1	0,38962	Lag4	0,04763
	R-square		0,88302		0,98536		-0,34481		-0,27215		0,88258		0,98529
FENER	RMSE	2	2,10802	1	0,86059	Lag1	5,20650	50	8,23015	45	1,88869	Lag5	0,85964
	MSE	Lag2	4,44374	Lag1	0,74062	Ľa	27,10768	Lag1	67,73531	Lag4	3,56716	Lag	0,73899
	R-square		0,95265		0,99186		0,90069		0,73611		0,96165		0,99188
FROTO	RMSE	S	3,52338	33	1,25739	2	9,87562		13,40055	4	3,42740	4	1,25897
	MSE	Lag5	12,41422	Lag3	1,58104	Lag2	97,52794	Lag1	179,57475	Lag4	11,74708	Lag4	1,58500
	R-square	[0,85115	_	0,97974		0,60282		-0,04225		0,85565	[0,97966
GSRAY	RMSE	2	13,88379	4	1,10785	2	32,44558	2	26,65017	5	9,86357	1	1,10774
	MSE	Lag2	192,75972	Lag4	1,22732	Lag2	1052,71533	Lag2	710,23163	Lag5	97,28993	Lag1	1,22710
	R-square	I	-0,02478	Ι	0,98478	Ι	-1,95721	Ι	-2,60928	Ι	-0,13029	I	0,98478
GARAN	RMSE	Ţ	0,29616	3	0,20367	3	0,07923	0	0,31701	3	0,29623	3	0,20241
	MSE	Lag1	0,08771	Lag3	0,04148	Lag3	0,00628	Lag2	0,10049	Lag3	0,08775	Lag3	0,04097
	R-square	Ι	0,96250	Ι	0,98246	Ι	0,75958	Ι	0,98786	Ι	0,96252	Ι	0,98271
GSDHO	RMSE	S	0,08387	4	0,01751	4	0,07923	S	0,04821	9	0,06394	4	0,01749
	MSE	Lag5	0,00703	Lag4	0,00031	Lag4	0,00628	Lag5	0,00232	Lag6	0,00409	Lag4	0,00031
	R-square	Γ	0,34252	Γ	0,96321	Г	0,75958	Γ	0,91500	Γ	0,48164	Γ	0,96331
GUBRF	RMSE	3	0,89998	4	0,07696	3	1,12782	6	0,80037	5	0,65931	6	0,07664
	MSE	Lag3	0,80997	Lag4	0,00592	Lag3	1,27198	Lag6	0,64060	Lag5	0,43470	Lag6	0,00587
	R-square	T	0,19014	Γ	0,99032		0,43540	Ч	0,52902	Γ	0,30812	Γ	0,99042
HALKB	RMSE	1	0,59764	10	0,24096	2	1,13610	2	1,07685	2	0,52225	2	0,24129
	MSE	Lag1	0,35717	Lag5	0,05806	Lag2	1,29072	Lag2	1,15960	Lag2	0,27274	Lag5	0,05822
	R-square	Г	0,94718	Γ	0,99152	Г	0,93686	Г	0,94471	Γ	0,95945	Г	0,99150
ISCTR	RMSE	10	0,20884	-	0,12609	10	0,29297		0,23080	10	0,19783	\$	0,12607
	MSE	Lag5	0,04361	Lag4	0,01590	Lag6	0,08583	Lag4	0,05327	Lag5	0,03914	Lag3	0,01589
	R-square	Γ	0,97279	Γ	0,99012	Γ	0,98455	Г	0,99082	Γ	0,97563	Γ	0,99013
ISGSY	RMSE	- >	0,05672		0,01755		0,09196		0,15950		0,04993	- >	0.01753
	MSE	Lag2	0,00322	Lag4	0,00031	Lag6	0,00846	Lag5	0,02544	Lag4	0,00249	Lag2	0,00031
	R-square	Ľ	0,93389	Ľ	0,99372	Ľ	0,93975	Ľ	0,77494	Ľ	0,94814	Ľ	0,99374
KRDMD	RMSE		0,25388		0,10073		0,98249		0,95262		0,25203		0,10046
	MSE	Lag4	0,06445	Lag4	0,01015	Lag1	0,96529	Lag1	0,90749	Lag2	0,06352	Lag4	0,01009
	R-square	Ľ	0,94765	Ľ	0,99163	Ľ	0,63021	Ľ	0,64835	Ľ	0,94828	Ľ	0,99168
KARSN	RMSE		0,04874		0,05036		0,05021		0,04333		0,04889		0,05014
1111011	MSE	Lag4	0,00238	Lag3	0,00254	Lag2	0,00338	Lag2	0,00336	Lag3	0,00239	Lag1	0,00251
	R-square	L	0,00238	L_{δ}	0,00234	Γ_{6}	0,00338	L_{6}	0,00330	L_{δ}	0,00239	Γ_{i}	0,00231
KCHOL	RMSE		0,97820		0,97031		1,51273		1,49492		0,97808		0,97037
MEHOL	MSE	Lag4	0,71300	Lag6	0,07355	Lag2	2,28835	Lag1	2,23479	Lag4	0,07028	Lag1	0,07314
	R-square	L^{a}	0,77940	L_{a}	0,96498	L_{a}	0,65723	La	0,60659	L^{a}	0,43730	L_{a}	0,96505
KOZAA	R-square RMSE		0,77940		0,96498		0,82797						0,98303
NULAA	MSE	Lag2	0,38706	Lag2		Lag3	0,82797	Lag3	0,80473 0,64759	Lag3	0,39341 0,15477	Lag4	0,22432
		La		La	0,05064 0,98257	La		La		La	0,13477	La	0,03041
METRO	R-square RMSE		0,94926				0,92782		0,92776	-			
METRO	BIVENE		0,04854	9	0,02837	3	0,04489	3	0,03158	9	0,04550	ŝ	0,02826
		പ	0.000226	pD	0.00000	on	0.00201	on	0.00100	OU)	0.00007	QI)	0 00000
	MSE R-square	Lag1	0,00236 0,89042	Lag6	0,00080 0,96265	Lag3	0,00201 0,97626	Lag3	0,00100 0,98840	Lag6	0,00207 0,90079	Lag3	0,00080 0,96317

MCDOS	DMCE	1	0.02054		0.46614		1.05215	1	0.76614		0.92625		0 46569
MGROS	RMSE	Lag3	0,93954	82	0,46614	Lag6	1,05315	Lag3	0,76614	Lag2	0,83635	63	0,46568
	MSE	La	0,88274	Lag2	0,21728	La	1,10911	La	0,58697	La	0,69948	Lag3	0,21686
NIETAC	R-square		0,96079		0,99056		0,98650		0,99345		0,96878		0,99059
NETAS	RMSE	-50	7,77737	<u>g</u> 0	0,32402	5	7,69263	ŝ	7,77190	<u>g</u> 6	5,77036	23	0,32366
	MSE	Lag1	60,48748	Lag6	0,10499	Lag1	59,17651	Lag5	60,40237	Lag6	33,29710	Lag2	0,10476
	R-square		-0,62799		0,98871		0,49865		-2,62104		-2,40533		0,98869
PETKM	RMSE	ŝ	0,20671		0,13671	22	0,26157		0,22806	5	0,20697		0,13715
	MSE	Lag5	0,04273	Lag1	0,01869	Lag2	0,06842	Lag1	0,05201	Lag5	0,04284	Lag1	0,01881
	R-square		0,96706		0,98528		0,98591		0,98843		0,96700		0,98520
SAHOL	RMSE		0,25282	33	0,15625	33	0,24520	5	0,17673	52	0,24244	5	0,15542
	MSE	Lag1	0,06392	Lag3	0,02441	Lag3	0,06012	Lag3	0,03123	Lag5	0,05877	Lag5	0,02415
	R-square		0,96535	[0,98679		0,99148		0,99571		0,96821	[0,98691
SISE	RMSE	2	0,26250	9	0,20919	22	0,62501	4	0,42362	4	0,26001	ŝ	0,21045
	MSE	Lag2	0,06891	Lag6	0,04376	Lag2	0,39064	Lag4	0,17946	Lag4	0,06761	Lag5	0,04429
	R-square		0,74140	-	0,82766		0,28107	Γ	0,65576		0,74117	I	0,82445
TSGYO	RMSE		0,10308	2	0,02545	1	0,29031	-	0,20924	5	0,08905	4	0,02544
	MSE	Lag1	0,01063	Lag2	0,00065	Lag1	0,08428	Lag1	0,04378	Lag5	0,00793	Lag4	0,00065
	R-square	Ι	0,88816	I	0,99308	Ι	0,65187	Ι	0,82113	Ι	0,91191	I	0,99310
TAVHL	RMSE	ςΩ	1,19369	ŝ	0,59178	4	2,01652	2	2,02184	5	1,16661	4	0,59295
	MSE	Lag3	1,42489	Lag5	0,35021	Lag4	4,06635	Lag2	4,08782	Lag5	1,36098	Lag4	0,35159
	R-square	Ι	0,91663	I	0,97905	Ι	0,92029	Ι	0,91248	Ι	0,91913	I	0,97895
TKFEN	RMSE	9	0,94140	-	0,40458	1	7,82695		7,46973	4	0,95855	3	0,40448
	MSE	Lag6	0,88623	Lag1	0,16369	Lag1	61,26110	Lag1	55,79687	Lag4	0,91881	Lag3	0,16360
	R-square	Ι	0,95289	Ι	0,99122	Ι	-1,23969	Ι	-0,99053	Ι	0,95064	Ι	0,99123
TOASO	RMSE	5	1,81918	2	0,47735	2	3,08997	3	3,11582	9	1,72115	4	0,47403
	MSE	Lag2	3,30940	Lag5	0,22786	Lag2	9,54790	Lag3	9,70834	Lag6	2,96236	Lag4	0,22471
	R-square	Ι	0,85766	Ι	0,98974	Ι	0,87800	Ι	0,83419	Ι	0,86375	Ι	0,98982
TRKCM	RMSE	-	0,15569	5	0,09227	1	0,55595	2	0,46875	9	0,14212	Ţ	0,09229
	MSE	Lag1	0,02424	Lag2	0,00851	Lag1	0,30908	Lag2	0,21972	Lag6	0,02020	Lag1	0,00852
	R-square		0,92784	Ι	0,97408	Ι	0,63393	Г	0,73563	Ι	0,93835	Ι	0,97408
TUPRS	RMSE	4	5,92613	4	2,45314	1	23,51079	1	23,22553	4	6,53149	9	2,44413
	MSE	Lag4	35,11898	Lag4	6,01791	Lag1	552,75745	Lag1	539,42505	Lag4	42,66032	Lag6	5,97379
	R-square		0,81766	Γ	0,96634	Γ	-0,21035	Г	-0,32792	Γ	0,78397	Γ	0,96633
THYAO	RMSE	1	0,95290	1	0,70796	1	4,15745	1	4,10337	3	0,91524	1	0,70845
	MSE	Lag1	0,90802	Lag1	0,50120	Lag1	17,28437	Lag1	16,83765	Lag3	0,83766	Lag1	0,50190
	R-square		0,95217	Γ	0,97318	Г	0,58631	Г	0,58923	Γ	0,95554	L	0,97314
TTKOM	RMSE	~	0,23473	1	0,11734	1	0,47836		0,46584	1	0,23717	3	0,11733
	MSE	Lag3	0,05510	Lag1	0,01377	Lag1	0,22883	Lag1	0,21700	Lag1	0,05625	Lag3	0,01377
	R-square	Г	0,95904	Γ	0,98985	Γ	0,94111	Г	0,94517	Γ	0,95795	Г	0,98985
	RMSE		0,29766	2	0,26035	2	0,44667		0,43790	2	0,29662	2	0,26003
TCELL	MSE	ag1	0,08860	ag2	0,06778	ag2	0,19951	ag1	0,19175	ag5	0,08798	ag5	0,06761
	R-square	Г	0,95939	La	0,96857	La	0,97382	La	0,97397	La	0,95945	La	0,96858
VAKBN	RMSE		0,22085	_	0,12277	<u> </u>	0,29220	<u> </u>	0,25462	0	0,22263	~	0,12226
	MSE	Lag4	0,04878	Lag4	0,01507	Lag4	0,08538	Lag4	0,06483	Lag2	0,04956	Lag3	0,01495
	R-square	Ľ.	0,96996	Ľ	0,99076	Ľ	0,98495	L L	0,98893	Ľ	0,96948	Ľ	0,99085
YKBNK	RMSE		0,22209		0,09537		0,42522	1	0,41442		0,22301		0,09540
	MSE	Lag1	0,04932	Lag1	0,00910	Lag1	0,12022	Lag1	0,17175	Lag6	0,04973	Lag3	0,00910
	R-square	Ľ	0,96465	Ľ	0,99353	Ľ	0,95679	Ľ	0,95862	Ľ	0,96453	Ľ	0,99353
L	it square	I	0,70-05		5,77555		0,75017	1	0,75002		0,70755	L	5,77555

The most important result of the presented measurements is that all measurements show the MLP and LSTM models as the most accurate forecasting models. These results are supported using some basic statistics. Tables (2)-(4) show the basic statistics of forecasting errors. Statistical analyses were performed with the help of IBM SPSS Statistics software and a two-tailed t-test analysis was used to determine whether there was any difference between the groups.

This table repo	orts the s	tatistics f	or the da	uly stock p	rices of	the companie	s listed	in BIST1	00 index	x (01/01/2	2010-01/	/01/2019)
		Resu	ilts for C	Dpening Sto	ock Pric	es		Resu	lts for C	Closing Sto	ock Pric	es
Companies	N	Corr.	Sig.	t	df	Sig. (2-tailed)	N	Corr.	Sig.	t	df	Sig. (2-tailed)
AKBNK	449	,982	,000,	-,360	448	,719	449	,993	,000,	-,003	448	,998
AKSA	449	,920	,000,	1,043	448	,297	450	,991	,000	-,593	449	,553
ALARK	449	,962	,000,	,369	448	,712	448	,995	,000	-,012	447	,991
AEFES	449	,972	,000,	-,753	448	,452	449	,985	,000	-,005	448	,996
ARCLK	449	,984	,000,	-,471	448	,638	449	,985	,000,	,101	448	,920
ASELS	449	,952	,000,	-,322	448	,748	449	,981	,000,	,409	448	,683
BIMAS	449	,976	,000	,372	448	,710	449	,989	,000,	1,387	448	,166
DOHOL	449	,968	,000,	1,062	448	,289	449	,983	,000,	,348	448	,728
DOAS	449	,963	,000	,357	448	,721	449	,996	,000,	-,324	448	,746
ECZYT	449	,952	,000,	1,241	448	,215	449	,988	,000,	,094	448	,925
ENKAI	449	,972	,000,	-,157	448	,875	449	,985	,000,	-,012	448	,991
ERGLI	449	,941	,000,	-,149	448	,882	448	,993	,000,	,355	447	,723
FENER	449	,977	,000,	-,993	448	,321	449	,996	,000,	-,088	448	,930
FROTO	449	,925	,000,	,167	448	,867	449	,990	,000	,371	448	,711
GSRAY	449	,487	,000,	,008	448	,994	449	,992	,000	,008	448	,994
GARAN	449	,981	,000	-,132	448	,895	449	,991	,000	-,164	448	,870
GSDHO	449	,671	,000	,323	448	,747	449	,982	,000	,316	448	,752
GUBRF	449	,596	,000,	,007	448	,994	448	,995	,000	,001	447	,999
HALKB	449	,974	,000,	-,015	448	,988	449	,996	,000	,642	448	,521
ISCTR	449	,986	,000,	-,383	448	,702	449	,995	,000	-,002	448	,998
ISGSY	449	,967	,000,	-1,837	448	,067	449	,997	,000	,026	448	,979
KRDMD	449	,974	,000,	,229	448	,819	449	,996	,000,	,145	448	,885
KARSN	449	,989	,000	-1,166	448	,244	449	,988	,000	-,268	448	,789
KCHOL	449	,890	,000,	,001	448	,999	448	,983	,000,	-,590	447	,555
KOZAA	449	,975	,000	1,274	448	,203	449	,991	,000,	1,240	448	,216
METRO	449	,945	,000,	,448	448	,655	448	,981	,000,	-,148	447	,883
MGROS	449	,980	,000,	,704	448	,482	449	,995	,000,	-,274	448	,784
NETAS	449	,187	,000,	,004	448	,997	448	,994	,000,	,143	447	,886
PETKM	449	,984	,000,	,414	448	,679	449	,993	,000,	,146	448	,884
SAHOL	449	,983	,000,	-,236	448	,814	449	,993	,000,	-,584	448	,559
SISE	449	,871	,000,	,268	448	,788	448	,914	,000,	,024	447	,981
TSGYO	449	,944	,000,	-1,347	448	,179	449	,997	,000	-,005	448	,996
TAVHL	449	,958	,000,	-,804	448	,422	449	,990	,000	,199	448	,843
TKFEN	448	,976	,000	,910	447	,363	449	,996	,000	,938	448	,349
TOASO	449	,929	,000	,175	448	,861	449	,995	,000	-,179	448	,858
TRKCM	449	,964	,000	,137	448	,891	449	,987	,000	-,008	448	,994
TUPRS	449	,910	,000	-,980	448	,328	449	,983	,000	,209	448	,834
THYAO	449	,976	,000	,733	448	,464	449	,987	,000	,580	448	,562
ТТКОМ	449	,980	,000	-,177	448	,860	449	,995	,000	,170	448	,865
TCELL	449	,980	,000	-,019	448	,985	449	,984	,000	-,084	448	,933
VAKBN	449	,985	,000	-,501	448	,616	449	.995	,000	-,288	448	,773
YKBNK	449	,982	,000	-,193	448	,847	449	,997	,000	-,107	448	,915

Table 3. Two-Tailed T-test Results for MLP

When the t values and P values obtained as a result of the difference analysis between the actual and forecast values of the companies are examined, it is seen that the H_0 hypotheses which support the absence of any difference are supported. In addition, the correlation values also confirm this indifference with values close to 1. The consistency of the predicted values obtained as a result of the MLP analysis was also supported by statistical difference analysis. According to the information obtained from Table 3, the hypotheses established for the MLP model are as follows;

*H*₀: μ 1 to μ 2 = 0, *H*₁: μ 1 to μ 2 \neq 0

Openingp-value = Sig. (2-tailed) = 0.650690ClosinPricesSince the p-value = 0.650690> 0.05 = α ,Pricesthe absence hypothesis is accepted.Prices

Closing p-value = Sig. (2-tailed) = 0.798048 Prices Since the p-value = 0.798048> 0.05 = α , the absence hypothesis is accepted.

Table 4. Two-Tailed T-test Results for SVM

This table repo				ailv stock i		of the company	ies liste	d in BIS	T100 inc	dex (01/01/20)10-01/	01/2019)
F				Dpening Sto						Closing Stoc		
Companies	N	Corr.	Sig.	t	df	Sig.	Ν	Corr.	Sig.	t	df	Sig.
I · · · ·						(2-tailed)			0			(2-tailed)
AKBNK	449	,996	,000	7,585	448	,000	449	,998	,000	8,864	448	,000
AKSA	449	,978	,000,	25,395	448	,000	450	,997	,000	33,420	449	,000,
ALARK	449	,990	,000	4,918	448	,000	450	,999	,000	9,053	449	,000
AEFES	449	,994	,000,	3,113	448	,002	450	,996	,000	1,578	449	,115
ARCLK	449	,995	,000	9,986	448	,000	450	,999	,000	17,408	449	,000
ASELS	449	,986	,000	46,057	448	,000	449	,990	,000	48,903	448	,000
BIMAS	449	,994	,000	3,927	448	,000	450	,997	,000	8,208	449	,000
DOHOL	449	,990	,000	3,231	448	,001	449	,994	,000	3,869	448	,000
DOAS	449	,994	,000	-2,230	448	,026	449	,999	,000	5,850	448	,000
ECZYT	449	,989	,000	29,291	448	,000	449	,996	,000	24,452	448	,000
ENKAI	449	,993	,000	9,272	448	,000	450	,996	,000	8,205	449	,000
ERGLI	450	,984	,000	49,738	449	,000	450	,998	,000	52,801	449	,000
FENER	450	,993	,000	-23,727	449	,000	450	,999	,000	-50,404	449	,000
FROTO	449	,981	,000	49,131	448	,000	450	,997	,000	57,502	449	,000
GSRAY	449	,867	,000	-53,655	448	,000	449	,998	,000	-139,394	448	,000
GARAN	449	,994	,000	7,886	448	,000	449	,997	,000	7,087	448	,000
GSDHO	449	,933	,000	-11,423	448	,000	449	,995	,000	-36,323	448	,000
GUBRF	449	,908	,000,	-23,317	448	,000	448	,998	,000	-36,094	447	,000
HALKB	449	,994	,000	-18,908	448	,000	449	,998	,000	-23,457	448	,000
ISCTR	449	,997	,000	11,393	448	,000	449	,998	,000	12,315	448	,000
ISGSY	449	,992	,000,	-12,565	448	,000	449	,999	,000,	-23,074	448	,000
KRDMD	450	,993	,000	25,255	449	,000	450	,999	,000	25,903	449	,000
KARSN	449	,996	,000	2,614	448	,009	449	,997	,000	-6,288	448	,000
KCHOL	449	,975	,000	38,681	448	,000	450	,995	,000	52,421	449	,000
KOZAA	449	,993	,000	27,365	448	,000	449	,996	,000	27,211	448	,000
METRO	449	,988	,000	-3,232	448	,001	449	,995	,000	-7,636	448	,000
MGROS	449	,995	,000	-7,075	448	,000	449	,998	,000	-16,813	448	,000
NETAS	450	,768	,000	-9,310	449	,000	449	,998	,000	-78,313	448	,000
PETKM	449	,996	,000	16,091	448	,000	450	,998	,000	-15,301	449	,000
SAHOL	449	,996	,000	-2,081	448	,038	449	,998	,000	2,194	448	,029
SISE	449	,966	,000	31,914	448	,000	449	,975	,000	17,693	448	,000
TSGYO	450	,985	,000	-35,265	449	,000	450	,999	,000	-30,383	449	,000
TAVHL	449	,986	,000	15,200	448	,000	449	,996	,000	19,488	448	,000
TKFEN	450	,993	,000	42,328	449	,000	450	,999	,000	42,083	449	,000
TOASO	449	,983	,000	28,790	448	,000	449	,996	,000	26,835	448	,000
TRKCM	450	,990	,000	37,150	449	,000	449	,995	,000	33,213	448	,000
TUPRS	450	,970	,000	55,089	449	,000	450	,996	,000	68,724	449	,000
THYAO	450	,994	,000	30,643	449	,000	450	,997	,000	31,174	449	,000
TTKOM	450	,994	,000	-13,613	449	,000	450	,999	,000	-17,802	449	,000
TCELL	449	,994	,000	14,965	448	,000	450	,996	,000	18,816	449	,000
VAKBN	449	,996	,000	8,239	448	,000	449	,998	,000	13,909	448	,000
YKBNK	450	,995	,000	-11,394	449	,000	450	,999	,000	-13,912	449	,000

When the t values and P values obtained as a result of the difference analysis between the actual and forecast values of the companies are examined, it is seen that the H_0 hypotheses which do not show any difference are not supported. The inconsistency of the estimation values obtained as a result of SVM analysis was also supported by statistical difference analysis. The hypotheses established for the SVM model are as follows according to the information obtained from Table 4;

*H*₀: μ 1 to μ 2 = 0, *H*₁: μ 1 to μ 2 \neq 0

Opening p-value = Sig. (2-tailed) = 0.001833 Closin prices Since the p-value = $0.001833 < 0.05 = \alpha$, prices the absence hypothesis is rejected.

Closing p-value = Sig. (2-tailed) = 0.003429prices Since the p-value = $0.003429 < 0.05 = \alpha$, the absence hypothesis is rejected.

This table reports the statistics for the daily stock prices of the companies listed in BIST100 index (01/01/2010-01/01/2019) Results for Opening Stock Prices Results for Closing Stock Prices Ν Corr. df Companies Corr. Sig. t df Sig. Ν Sig. t Sig. (2-tailed) (2-tailed) 449 .000 449 .993 .000 ,122 448 AKBNK .981 -,139 448 ,903 ,889 AKSA 449 ,925 ,000, -1,538 448 ,125 449 ,991 ,000, -,064 448 .949 ALARK 449 .973 448 .995 ,000 -,553 448 580 .000 -,155 447 .877 AEFES 449 ,976 ,000 .469 448 ,640 449 ,985 .000 ,073 448 .942 ARCLK 449 989 738 448 .997 000 334 448 ,000 .660 447 510 ASELS 449 .951 .000 584 448 559 449 .981 .000 .025 448 .980 BIMAS 449 .979 ,000 .088 448 ,930 449 .989 000 -,059 448 ,953 DOHOL 449 ,965 ,000 -,410 448 448 ,983 .000 447 ,682 ,165 ,869 449 .976 ,000 .964 448 ,336 449 .996 ,000 ,208 448 ,835 DOAS ECZYT 448 ,958 ,000 -,398 447 ,691 449 ,988 ,000 -,001 448 .999 ENKAI 449 .979 ,000 ,652 448 515 449 .985 ,000, -,067 448 .947 449 ,941 449 ERGLI ,000 366 448 ,715 ,993 000 -,115 448 ,909 FENER 449 ,981 ,000 -,379 448 ,705 449 ,996 .000 ,121 448 904 FROTO 449 .929 ,000 1,244 448 ,214 449 .990 .000 ,129 448 .898 GSRAY 449 ,694 ,000 -,151 448 ,880 449 .992 ,000 ,204 448 ,838 449 .981 449 .991 ,012 GARAN .000 ,452 448 .651 ,000 448 .990 **GSDHO** 448 .790 .000 1,678 447 .094 449 .982 .000 -,200 448 .842 **GUBRF** 449 ,757 ,000 2,275 448 .023 448 .995 ,000 -,079 447 .937 ,000 HALKB 449 ,980 ,652 448 ,515 449 ,996 .000 ,060 448 ,952 ISCTR 449 449 ,026 .979 ,988 ,000 -,314 448 ,754 .995 ,000 448 449 449 .997 ISGSY ,974 ,000, ,345 448 ,730 ,000, -,306 448 ,760 ,066 449 .974 .550 449 .996 448 KRDMD ,000 448 .583 ,000, .947 449 KARSN .989 .000 -,458 448 .647 449 .988 .000 ,132 448 .895 **KCHOL** 449 900 ,000 -,084 448 .933 449 .983 .000 -,212 448 .832 449 .974 449 .991 .000 -,028 .978 KOZAA .000 .737 448 .461 448 METRO 448 .951 ,000 1,258 447 ,209 449 .982 .000 .494 448 ,622 -<u>,</u>597 MGROS 449 ,985 ,000 448 ,551 449 ,995 ,000, -,020 448 ,984 NETAS 448 ,362 ,000 -,721 447 ,471 449 ,994 ,000 ,243 448 ,808 PETKM 449 ,983 ,000 -,030 448 ,976 449 ,993 ,000 ,073 448 ,942 449 ,993 ,984 448 449 ,000 -,339 448 ,735 SAHOL ,000 -,887 ,376 449 449 -,163 SISE ,872 ,000 ,508 448 ,913 ,000, 448 ,612 ,871 449 449 ,997 TSGYO ,958 ,000 -,325 448 ,745 000 -,114 448 .909 TAVHL 449 .960 .000 -,211 448 ,833 449 .989 .000 ,115 448 .908 TKFEN 449 ,976 .000 1,101 448 ,272 449 .996 .000 ,763 448 .446 TOASO .935 449 .995 -1,537 .125 448 ,000, .833 447 ,405 ,000 448 TRKCM 448 .970 .000 -2.712447 .007 449 .987 .000 .160 448 .873 TUPRS 449 .892 ,000 .099 448 .921 448 .983 .000 .135 447 .893 448 THYAO 449 ,978 .000 .579 ,563 449 .987 .000 ,346 448 .729 448 TTKOM 449 .979 449 .995 -,174 ,000 -,400 448 .690 ,000 ,862 -,202 TCELL 449 ,980 449 ,984 ,000 448 ,840 ,000 ,173 448 ,862 449 ,926 ,197 VAKBN ,985 ,093 448 449 ,995 ,000, 448 ,844 ,000 ,997 YKBNK 448 ,982 ,000, -,282 447 ,778 449 ,000, ,124 448 ,901

Table 5. Two-Tailed T-test Results for LSTM

When the t values and P values obtained as a result of the difference analysis between the real and forecast values of the companies are examined, it is seen that the H_0 hypotheses which support the absence of any

difference are supported. In addition, the correlation values also confirm this indifference with values close to 1. The consistency of the predicted values obtained as a result of LSTM analysis was also supported by statistical difference analysis. The hypotheses established for the LSTM model are as follows according to the information obtained from Table 5;

*H*₀: μ 1 to μ 2 = 0, *H*₁: μ 1 to μ 2 \neq 0

Opening	p-value = Sig. (2-tailed) = 0.590167	Closing	p-value = Sig. (2-tailed) = 0.850405
prices	Since the p-value = $0.590167 > 0.05 = \alpha$,	prices	Since the p-value = $0.850405 > 0.05 = \alpha$,
	the absence hypothesis is accepted.		the absence hypothesis is accepted.

4. CONCLUSION

This study attempted to forecast the opening and closing stock prices of 42 firms listed in the Istanbul Stock Exchange National 100 Index (ISE-100) using machine learning methods and deep learning algorithms. For this purpose, two well-known machine learning methods, Multilayer Perceptrons (MLP) and Support Vector Machines (SVM) models and deep learning algorithm, Long Short Term Memory (LSTM) were constructed and applied to the daily data from 2010 to 2019 by comparing their forecasting performances. The analysis includes 9 years of daily data from 01.01.2010 to 01.01.2019. For each firm 2249 data for the opening and 2249 data for the closing stock prices were established as daily data sets which make 188,196 data in total.

Multilayer Perceptrons (MLP) model as a type of artificial neural network method has been applied in many fields and it has been seen that it has achieved successful results in forecasting. The reason why this model has been preferred as an ANN method is that it gives easy, fast, flexible and consistent results. Another model Support Vector Machines (SVM) has been chosen in this study as it has been recently applied successfully in classification, regression and time series forecasting applications. LSTM (Long Short Term Memory) is the last model used in this study as a type of recurrent neural networks designed to recognize patterns in data sequences such as text, genomes, handwriting, spoken word or numerical time series data obtained from sensors, stock markets and government agencies, as it is one the most powerful and useful types of recurrent neural networks. The results show that the MLP model outperforms SVM and LSTM models in predicting the opening stock prices while the LSTM model outperforms MLP and SVM models has the worst forecasting performance among other models used in this study. Figure 5. illustrates Türkiye İş Bankası A.Ş. forecasted closing stock prices compared in three models on test dataset.

Figure 5. Türkiye İş Bankası A.Ş. Closing Stock Prices Forecast

When we look at the statistical measure for goodness-of-fit, it is observed that both MLP and LSTM models have a good fit. As seen in table 6, the MLP model reached the highest (R^2) value (0,831719 %) in opening stock prices and (0,977674%) in closing stock prices; and LSTM model reached the highest (R^2) value

(0,796815%) in opening stock prices and (0,978206%) in closing stock prices. SVM model reached the lowest (R^2) values for both opening and closing stock prices (0,66195\%, 0,580348\% respectively).

	Opening Values	Closing Values
MLP	0,831719	0,977674
SVM	0,661956	0,580348
LSTM	0,796815	0,978206

Table 6. *R*-squared (R²) Results for MLP, SVM and LSTM Models (Averages)

In this study, two paired t-test was used for the analysis and the Sig (2-Tailed) value which is referred to as the p-value was preferred as 0.005. With a 95% confidence interval, it was revealed that statistically there was no significant difference between the actual values and the forecasted values for both opening and closing stock prices according to the statistical results (Table 7) obtained from MLP and LSTM models.

Table 7. Two-Tailed T-test Results for MLP, SVM and LSTM Models (Averages)

	Opening Values	Closing Values
MLP	0,650690 %	0,798048 %
SVM	0,001833 %	0,003429 %
LSTM	0,590167 %	0,850405 %

The hypotheses were established as shown below:

*H*₀: μ 1 - μ 2 = 0, *H*₁: μ ₁ - μ ₂ \neq 0

For opening stock prices;

MLP	p-value = Sig. (2-tailed) = 0,650690	N
	Since <i>p</i> -value = $0,650690 > 0.05 = \alpha$,	
	we fail to reject the null hypothesis	
	p-value = Sig. (2-tailed) = 0,001833	S
SVM	Since <i>p</i> -value = $0,001833 < 0.05 = \alpha$,	
	we reject the null hypothesis	

LSTM p-value = Sig. (2-tailed) = 0,590167 Since p-value = 0,590167 > 0.05 = α , we fail to reject the null hypothesis

For closing stock prices;

MLP	<i>p</i> -value = Sig. (2-tailed) = 0,798048
	Since <i>p</i> -value = $0,798048 > 0.05 = \alpha$,
	we fail to reject the null hypothesis
SVM	p-value = Sig. (2-tailed) = 0,003429
	Since <i>p</i> -value = $0,003429 < 0.05 = \alpha$,
	we reject the null hypothesis
LSTM	p-value = Sig. (2-tailed) = 0,850405
	Since <i>p</i> -value = $0,850405 > 0.05 = \alpha$,
	we fail to reject the null hypothesis

Overall, we can say that both MLP and LSTM models are useful in time series for predicting stock prices. However, as opposed to previous studies proposing that SVM is an alternative model for financial timeseries forecasting, this study concluded that SVM still needs to be enhanced for prediction applications. The results also showed that the more training cases we use; the better results we get in forecasting time series.

In future studies, it is believed that comparative analysis of MLP and LSTM models with other large scale data collected from various sectors and other methods used in time series forecasting applications will contribute to the literature in determining the effectiveness of MLP and LSTM models. The findings of these additional studies will lead us to several important models of forecasting financial time series.

CONFLICTS OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

- [1] Abu-Mostafa, Y. S., Atiya, A. F., "Introduction to financial forecasting", Applied Intelligence, 6(3): 205-213, (1996).
- [2] Huang, W., Nakamori, Y., Wang S. Y., "Forecasting stock market movement direction with support vector machine", Computers and Operations Research, 32(10): 2513-2522, (2005).
- [3] Kara, Y., Boyacioglu, M. A., Baykan, O. K., "Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange", Expert Systems with Applications, 38(5): 5311-5319, (2011).
- [4] Northover, K., Lo, A. W., "Computational finance", Computer in Science & Engineering, 1(6): 22, (2000).
- [5] Tan, T. Z., Quek, C., Ng, G. S., "Biological brain-inspired genetic complementary learning for stock market and bank failure prediction", Computer Intelligence, 23(2): 236-261, (2007).
- [6] Blank, S. C., "Chaos' in futures markets? A nonlinear dynamical analysis", The Journal of Futures Markets, 11(6): 711, (1991).
- [7] Zhang, G., Patuwo, B. E., Hu, M. Y., "Forecasting with artificial neural networks: The state of the art" International Journal of Forecasting, 14(1): 35-62, (1998).
- [8] Lapedes, A., Farber, R., "Nonlinear signal processing using neural networks: Prediction and system modelling", 1. IEEE international conference on neural networks, San Diego, CA, USA, No. LA-UR-87-2662; CONF-8706130-4, (1987).
- [9] Gorr, W. L., Nagin, D., Szczypula, J., "Comparative study of artificial neural network and statistical models for predicting student grade point averages", International Journal of Forecasting, 10(1): 17-34, (1994).
- [10] Ruiz-Suarez, J., Mayora-Ibarra, O., Torres-Jimenez, J., Ruiz-Suarez, L., "Short-term ozone forecasting by artificial neural networks", Advances in Engineering Software, 23(3): 143-9, (1995).
- [11] Kohzadi, N., Boyd, M. S., Kermanshahi, B., Kaastra, I., "A comparison of artificial neural network and time series models for forecasting commodity prices", Neurocomputing, 10(2): 169-81, (1996).
- [12] Poh, H. L., Yao, J., Jašic, T., "Neural networks for the analysis and forecasting of advertising and promotion impact", Intelligent Systems in Accounting, Finance and Management, 7(4): 253-68, (1998).
- [13] Darbellay, G. A., Slama, M., "Forecasting the short-term demand for electricity: Do neural networks stand a better chance?", International Journal of Forecasting, 16(1): 71-83, (2000).
- [14] Aminian, F., Suarez, E. D., Aminian, M., Walz, D. T., "Forecasting economic data with neural networks", Computational Economics, 28(1): 71-88, (2006).
- [15] Zhuo, W., Li-Min, J., Yong, Q., Yan-Hui, W., "Railway passenger traffic volume prediction based on neural network", Applied Artificial Intelligence, 21(1): 1-10, (2007).

- [16] Yu, L., Wang, S., Lai, K. K., "A neural-network-based nonlinear metamodeling approach to financial time series forecasting", Applied Soft Computing, 9(2): 563-74, (2009).
- [17] Kaastra, I., Boyd, M., "Designing a neural network for forecasting financial and economic time series", Neurocomputing, 10(3): 215-36, (1996).
- [18] Schierholt, K., Dagli, C. H., "Stock market prediction using different neural network classification architectures", IEEE/IAFE 1996 Conference On Computational Intelligence for Financial Engineering (CIFEr), 72-8, (1996).
- [19] Mostafa, M. M., "Forecasting stock exchange movements using neural networks: Empirical evidence from Kuwait", Expert Systems with Applications, 37(9): 6302-9, (2010).
- [20] Naeini, M. P., Taremian, H., Hashemi, H. B., "Stock market value prediction using neural networks", 2010 International Conference On Computer Information Systems and Industrial Management Applications (CISIM), 132-6, (2010).
- [21] Devadoss, A. V., Ligori, T. A. A., "Forecasting of stock prices using multi-layer perceptron", International Journal of Computing Algorithm, 2: 440-9, (2013).
- [22] Kutlu, B., Ozturan, M., Badur, B., "Stock market prediction using artificial neural networks", Proceedings of the 3rd International Conference on Business, Hawaii, (2003).
- [23] Yumlu, S., Gurgen, F. S., Okay, N., "A comparison of global, recurrent and smoothed-piecewise neural models for Istanbul stock exchange (ISE) prediction", Pattern Recognition Letters, 26(13): 2093-103, (2005).
- [24] Guresen, E., Kayakutlu, G., Daim, T. U., "Using artificial neural network models in stock market index prediction" Expert Systems with Applications, 38(8): 10389–97, (2011).
- [25] Burges, C. J., "A tutorial on support vector machines for pattern recognition", Data Mining and Knowledge Discovery, 2(2): 121–67, (1998).
- [26] Mukherjee, S., Osuna, E., Girosi, F., "Nonlinear prediction of chaotic time series using support vector machines", Neural Networks for Signal Processing VII Proceedings of the 1997 IEEE Signal Processing Society Workshop, 511-20, (1997).
- [27] Müller, K. R., Smola, A. J., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V., "Predicting time series with support vector machines", International Conference on Artificial Neural Networks, 999-1004, (1997).
- [28] Smola, A. J., Schölkopf, B., "A tutorial on support vector regression", Statistics and Computing, 14(3): 199-222, (2004).
- [29] Vapnik, V., "Statistical learning Theory", John Wiley and Sons Inc., (1998).
- [30] Cao, L., Tay, F. E., "Financial forecasting using support vector machines", Neural Computing and Applications, 10(2): 184-92, (2001).
- [31] Tay, F. E., Cao, L., "Application of support vector machines in financial time series forecasting", Omega, 29(4): 309-17, (2001).

- [32] Tay, F. E., Cao, L., "Improved financial time series forecasting by combining support vector machines with self-organizing feature map", Intelligent Data Analysis, 5(4): 339-54, (2001).
- [33] Tay, F. E., Cao, L., "Modified support vector machines in financial time series forecasting", Neurocomputing, 48(1-4): 847-61, (2002).
- [34] Kim, K., "Financial time series forecasting using support vector machines", Neurocomputing, 55(1-2): 307-19, (2003).
- [35] Pai, P. F., Lin, C. S., "A hybrid ARIMA and support vector machines model in stock price forecasting", Omega, 33(6): 497-505, (2005).
- [36] Kumar M., Thenmozhi M., "Forecasting stock index movement: A comparison of support vector machines and random forest", 9th Capital Markets Conference, Indian Institute of Capital Markets Paper, (2006).
- [37] Kumar, M., Thenmozhi, M., "Support vector machines approach to predict the S&P CNX NIFTY index returns", 10th Capital Markets Conference, Indian Institute of Capital Markets Paper, (2007).
- [38] Hsu, S. H., Hsieh, J. P. A., Chih, T. C., Hsu, K. C., "A two-stage architecture for stock price forecasting by integrating self-organizing map and support vector regression", Expert Systems with Applications, 36(4): 7947-51, (2009).
- [39] Özdemir, A. K., Tolun S., Demirci, "Endeks Getirisi Yönünün İkili Sınıflandırma Yöntemiyle Tahmin Edilmesi: İMKB 100 Endeksi Örneği", Ömer Halisdemir Üniversitesi İktisadi Ve İdari Bilim Fakültesi Dergisi, 4(2): 45, (2011).
- [40] Tayyar, N., Tekin, S., "İMKB-100 endeksinin destek vektör makineleri ile günlük, haftalık ve aylık veriler kullanarak tahmin edilmesi", Abant İzzet Baysal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 13(1): 189-217, (2013).
- [41] Yakut, E., Elmas, B., Yavuz, S., "Yapay sinir ağları ve destek vektör makineleri Yöntemleriyle borsa endeksi tahmini", Süleyman Demirel Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 19(1): 139-57, (2014).
- [42] Hochreiter, S., Schmidhuber, J., "Long short-term memory", Neural Computation, 9(8): 1735-80, (1997).
- [43] Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., Baskurt, A., "Sequential deep learning for human action recognition", International Workshop on Human Behaviour Understanding, 29-39, (2011).
- [44] Fernandez, S., Graves, A., Schmidhuber, J., "An application of recurrent neural networks to discriminative keyword spotting", International Conference on Artificial Neural Networks, 220-9, (2007).
- [45] Graves, A., Mohamed, A., Hinton, G., "Speech recognition with deep recurrent neural networks", 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 6645-9, (2013).
- [46] Graves, A., Schmidhuber, J., "Framewise phoneme classification with bidirectional LSTM and other neural network architectures", Neural Networks, 18(5-6): 602-10, (2005).
- [47] Graves, A., Schmidhuber, J., "Offline handwriting recognition with multidimensional recurrent

neural networks", Advances in Neural Information Processing Systems, 545-52, (2009).

- [48] Schmidhuber, J., "Deep learning in neural networks: An overview", Neural Networks, 61: 85-117, (2015).
- [49] Eck, D., Schmidhuber, J., "Learning the long-term structure of the blues", International Conference on Artificial Neural Networks, 284-9, (2002).
- [50] Hochreiter, S., Heusel, M., Obermayer, K., "Fast model-based protein homology detection without alignment", Bioinformatics, 23(14): 1728-36, (2007).
- [51] Mayer, H., Gomez, F., Wierstra, D., Nagy, I., Knoll, A., Schmidhuber, J., "A system for robotic heart surgery that learns to tie knots using recurrent neural networks", Advanced Robotics, 22(13-14): 1521-37, (2008).
- [52] Schmidhuber, J., Gers, F., Eck, D., "Learning nonregular languages: A comparison of simple recurrent networks and LSTM", Neural Computation, 14(9): 2039-41, (2002).
- [53] Giles, C. L., Lawrence, S., Tsoi, A. C., "Noisy time series prediction using recurrent neural networks and grammatical inference", Machine Learning, 44(1-2): 161-83, (2001).
- [54] Xiong, R., Nichols, E. P., Shen, Y., "Deep learning stock volatility with google domestic trends" ArXiv Prepr ArXiv151204916, (2015).
- [55] Roondiwala, M., Patel, H., Varma, S., "Predicting stock prices using LSTM", International Journal of Science and Research, 6(4): 1754-6, (2015).
- [56] Shen, F., Chao, J., Zhao, J., "Forecasting exchange rate using deep belief networks and conjugate gradient method", Neurocomputing, 167: 243-53, (2015).
- [57] Pang, X. W., Zhou, Y., Wang, P., Lin W., Chang, V., "Stock market prediction based on deep long short term memory neural network", Complexis, 102-8, (2018).
- [58] Fischer, T., Krauss, C., "Deep learning with long short-term memory networks for financial market predictions", European Journal of Operational Research, 270(2): 654-69, (2018).
- [59] Kohonen, T., "An introduction to neural computing", Neural Networks, 1(1): 3-16, (1988).
- [60] Lippmann, R. P., "An introduction to computing with neural nets", Artificial Neural Networks: Theoretical Concepts, 36–54, (1988).
- [61] Rumelhart, D. E., McClelland, J. L., Group, P. R., "Parallel distributed processing: Exploration in the microstructure of cognition, Vol. 1", (1986).
- [62] Cortes, C., Vapnik, V., "Support-vector networks", Machine Learning, 20(3): 273-97, (1995).
- [63] Vapnik, V., Golowich, S. E., Smola, A. J., "Support vector method for function approximation, regression estimation and signal processing", Advances in Neural Information Processing Systems, 281-7, (1997).