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Abstract

Lebesgue spaces are considered with Muckenhoupt weights. Fractional order mixed differ-
ence operator is investigated to obtain mixed fractional modulus of smoothness in these
spaces. Using this modulus of smoothness we give the proof of direct and inverse estimates
of angular trigonometric approximation. Also we obtain an equivalence between fractional
mixed modulus of smoothness and fractional mixed K-functional.
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1. Introduction

Let T := [0,27], T? :== T x T, and L?, := LP, (T?) be the weighted Lebesgue space of
functions f (z,y) : T? — R, 27m-periodic with respect to each variable x,%, and

171 = [ @)l (wy) dedy < .

A function w : T? — [0, 00) is called a weight on T? if w (x,y) is measurable and positive
almost everywhere on T?. We denote by A, := A, (T?,J), 1 < p < oo, the collection of
locally integrable weight functions w such that w (z,y) is 2m-periodic with respect to each
variable x,y and

p—1
C = supL /w (x,y) dzdy 1 / [w (:v,y)]P;—ll dxdy < 00, (1.1)
s )  J

where J is the set of rectangles in T? with sides parallel to coordinate axes. Least constant
C in (1.1) will be called the Muckenhoupt’s constant of w and denoted by [w] Ay In the
present paper we considered approximation properties of the two dimensional Fourier se-
ries in Lebesgue spaces L, with weights w belonging to the Muckenhoupt’s class A,. We
consider a weighted mixed modulus of smoothness and obtain several angular trigonomet-
ric approximation inequalities involving angular trigonometric approximation errors and
modulus of smoothness in L2, with w € A4,, 1 < p < 0.
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In the nonweighted case, on T2, with the classical nonweighted mixed modulus of
smoothness of functions given in the classical Lebesgue spaces LP := LP (TQ) , approxi-
mation by "angle" were investigated by several mathematicians. One can see the papers
([16-20]) written by M. K. Potapov. Also in the works [22,24], transformed Fourier series
and mixed modulus of smoothness were investigated. Embedding problems of the Besov-
Nikolskii and Weyl-Nikolskii classes are studied in [21,23]. Ul'’yanov type inequalities were
considered in [25] and [26]. Mixed K-functionals were considered by C. Cottin in [8]. For
the univariate case one can see the papers [10,12-14,29].

In the weighted spaces, generally, ordinary translation is not suitable to construct dif-
ference operator and modulus of smoothness. The modulus of smoothness defined here is
applicable in some weighted spaces.

Let

2
Yinymo (f)pw = 1§lf {Hf - ZTz
' i=1

:EG‘J'W},
p’w

where T, is the set of all two dimensional trigonometric polynomial of degree at most m;
with respect to variable z; (i = 1,2).
Define the following Steklov averages

o+h/2 y+k/2
ohof (2,y) : h/fty t, oorf(7,y): k/fﬂfT
z—h/2 y—k/2
1 z+h/2y+k/2
onid @)= [ [ e dear,
x—h/2y—k/2

UO,Of (‘T?y) = Uo,()f (:Z:ay) = UO,Of ('Zay) = f ("an) .
Let z,y € T, r,h,k >0, p € (1,00), w € Ap, and f € L. Define the quantities

Vo (@) o =T =opno) flz,-) =3 <T> (—1)" (onof) (z,-) (1.2)

=0 \"
V&Zf (7y) : (H_Uok : = Z( ) Jo kf) ( ) (13)

Vief @y) © =i (Vojkf) (,y) (1.4)

(;) S Gt St Ui m 2 ) R S S (1) =rand () :=1

where I is identity operator on T2, i

are binomial coefficients.

Definition 1.1. The fractional weighted mixed modulus of smoothness of f € LP 1 <
p < oo, w€ Ay, r€{0}URT, defined as

sup{HvZ’;fH 0<h<6,0<k<d} ,r>0,
h.k p.w

Hpr,w , = 0

In the present work we obtain main properties of the weighted fractional order mixed
modulus of smoothness (1.5). The first of them is given in following approximation error
estimate (direct theorem of angular trigonometric approximation):

Q (f,61,02),,, = { (1.5)
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Theorem 1.2. If 1 < p < oo, w € Ay, f € LP, and r € R, then there exists a constant
Clu] . pr depending only on Muckenhoupt’s constant [w]Ap of w and p,r such that
P

1 1
Ym17m2 (f>pw — C[OJ]A Dy T'QT’ (f7 " ) (16)

m1 m72 pw
holds for mi,mo € N.
We use the notation for fractional Weyl type derivatives f(%):= g;j;fs, f(ro) —ﬁ,
(0,8), =9 f. Let W3 r s € N respectively W°:  W<*) be denote the collection of
p,w y Dyw Dw

1ntegrable functions f with (™) ¢ LP (respectively fr°) g Lr: fles) e LP).

Definition 1.3. The quantity

891
ar

p,w }

is known as weighted mixed K-functional, where infimum is taken over g1, g2, g so that

g eEWps, 2 € Wik g I/V;;fj,WhererSE]RJr (0,00), 1 <p<oo,weA, fell.

1,92,9

8r+s
" Oy’

0* g2

7‘58

By Theorem 1.2 we get the following equivalence between Q,. (f,d1, 62)p7w and mixed
K-functional.

Theorem 1.4. If1 < p < oo, w € Ay, f € LP, and r € RT, then there exist constants
Clwl o > 0, C[W]A pr > 0, depending only on Muckenhoupt s constant [w ]Ap of w and
P P

p, 1, so that the equivalence
Q- (f,01,02),, < C[W]A K (f,01,02,p,w,2r) < C[w]Ap,p,rQr (f:61,02), 0
holds for 01,62 > 0.
Theorem 1.4 gives the following corollary.

Corollary 1.5. If 1 <p < oo, w € Ay, f € L, and r € RT then, there exist constants
depending only on [w]Ap and p,r such that

Q (£,26,08),, < c(L+ A (L4 [0)¥ 0 (£,6,8),,., 6,€>0,
Q’I’ (fa 517 62);)7“; < CQT (f7 tlu tz)p,w

2r S2r — 2r42r
51 52 tl t2

forO0<t; <é; i=1,2
where |z] :=max{z € Z: z < z}.
Converse estimate to (1.6) is given in the next theorem.

Theorem 1.6. If 1 < p < oo, w € Ay, f € L, and r € RT, then there exist constants
depending only on [w]Ap and p,r so that

<f7 1 ) - ’p: gl: % H [( )FT_IYZH’% (f)va‘

my’ my i =01;,=0j=1

In this paper, we will denote positive constant C, ..., depending only on the parameters
u, v, ... so that it can be different in different places.
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2. Preliminary definition and results

Suppose that L' is the collection of the Lebesgue integrable functions f (z,y) : T? —
(—00,00) such that f(x,y) is 2m-periodic with respect to each variable x,y respectively.
Let Ty, (respectively T, ) be the set of all trigonometric polynomial of degree at most
m (at most n) with respect to variable x (variable y). We set T, ,, as the collection of all
trigonometric polynomial of degree at most m with respect to variable x and of degree at
most n with respect to variable y. The best angular trigonometric approximation error is
defined as

Yoo (f)pew = inf {Hf T Ul T € Tmo, U € :ro,n}

where 1 <p <oo,w € Ay, and f € LP.
Using [15, Theorem 6] we have

Hf—Cﬁgan — 0, asm,n — 00,
’ p’w

where C%, . f is ath Cesaro mean of f. From this we can obtain that C (T?), the class of

continuous functions on T2, is a dense subset of LP, for 1 < p < 0o, w € Ap. Then

Ym,n (f)p,w < C[W]A,pp’r f N C%’anp:w -0

and hence
Yinn (f)pw N0, asm,n — oo.

This shows that approximation problems make sense in L?, for 1 < p < oo, w € A,
Define Steklov type operators

a+74+1/(2))

Saro fl2,y) = /\/ fu,y)du,
z+7—1/(2))
y+p+1/(260)

Soi0,p flz,y) == 9/ f(z,v)dv,
y+p—1/(20)

SA,T;B,p f(l‘, y) = 8)\,7'§0 (80§97Pf(x’ y)) = )\9/

z+7+1/(20)  ry+p+1/(20)
/ fu,v)dudv.

+7=1/20) Jy+p—1/(20)

Theorem 2.1. We suppose that 1 < p < oo and w € A,.

(i) If 1 < X < oo and |7| < wA7L, then, the family of operators {Sx .o 1<i<co
uniformly bounded (in \,7) in LP :

12 1
187,70l < 108272 [WIG £, -

(i) If 1 < 0 < oo and |p| < 707, then, the family of operators {80:0,p}1<0<00 1S
uniformly bounded (in 0,p) in LP :

12 1
1Scopfll | < 108575 (Wl £l -

(iii) If1 < X\, 0 < oo, |7| < AL, |p| < w01, then, the family of operators {8x,760,p F 1<) <00
is uniformly bounded (in X\, 7 and 0,p) in LP :

SIS

2 4
||8)\7T;9,pf“p’w < 108» 7 [W]AP Hpr,w'

In this case Theorem 2.1 yields the following lemma.

Lemma 2.2 ([11, Theorem 3.3], [4]). If 1 <p < oo, w € Ay, and f € LP,, then
{lonk s Nono s Noosfllye } < Crany Il

with constants depend only on [w]Ap and p.

(2.1)

p7w,
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2.1. Transference result

At this stage we will need a transference result. If f is 27 periodic locally integrable
function on T2, then (see Theorem 11.1 on page 211 of [9])

. x4h/2 y+k/2

i =
. — | rendr =gy
xz—h/2y—k/2

for almost every (x,%y) € T2. Then, for any ¢ > 0 one can find hq, kg < 1 such that

x+h0/2 y+ko /2

= f (@) dtdr > f(z,y) — ¢ (2.2)
hoko

x—ho/2y—ko/2

almost every (z,y) € T2. Throughout this work we will fix these hg, kq.
Let 1<p<oo,we A, felb,
p
== 2.3
q PR (2.3)

Gery (1),
and define, with hg, kg of (2.2),

Fy(w0)i= [ 84 g1 of (04 1.9+ 0) |G (2,) 0 (2,y) dady
'JI‘Q

for u,v € T satisfying [u| < ho, [v| < ko.

Gl g =1

Let Ff (u,v) be a continuous function defined on T? such that
i) Fy (u,v) coincides with Fy (u,v) on

ko .__
Iho =

{(u,0) € T2 - fu] < ho, [v] < ho}-

11) max(ujv) €T2

Fy (u,0)] < masx, e [F (00)]-
Let C (T?) denote the collection of continuous functions f : T? — R with

HfHC(T2) = ma‘X{|f (x,y)| HEANTES T} < 0.

Lemma 2.3. If 1 < p < 00, w € A, and f € LP, then the function Fy(u,v), defined
above, is uniformly continuous on I ,]fg

Lemma 2.4. Let 1 <p < oo, q:=p/(p—1) and v be a weight on T?. Then

sup
GeLL:|Gllg =

1 f(z,y) G (2, y)w (z,y) dzdy = | ]|,
w T2

for f e LP.

(2.4)

Theorem 2.5. If 1 <p<oo,w€c A, f,g€ Ll and

then

”anc(zjj()) <c HFfHC(

k b
IO
0 ho

2 4 2
9l < 1087 7r [w]G [ f]],.,



Fractional order mixed difference operator 1599

2.2. Fractional order modulus of smoothness

Now, we consider the fractional smoothness 2, (-, d, f)pw, r > 0, suitable for some
weighted spaces. Note that classical non-weighted fractional smoothness w, (f,-) , r > 0,

was defined by P. L. Butzer, H. Dyckhoff, E. Gérlich, R. L. Stens [7], and R. Taberski [28]
and may be some others. See also [27].
Firstly we discuss boundedness of Steklov operators.

Remark 2.6. (i) If F € C (T?) then we know that
lonoFllowms < I1Fle s loarFloms < 1Flomy s o lom, < 1Flem -
Hence
|77 ey <2 150y [ 9239
and these give that

oy S < 2" |Flloere)

|73 ?H < 2% | Fllgrey

for F € C (T?).
(ii) Using (i)

u,vel, ko

‘C(I:0> = max Vv2’728%,0;%70?(x +u,y+0) |G (z,y)|w(x,y) dedy
0 2

= Imnax

maX
u,vGI:(())

quI 0

i [8 0 o8 (o4, +0) 16 ,0) 0 (o) dady| =
T2

7,0
VhpF’f‘

< 2" max |Fy|=2"|Fy]l (I )
quI ho

The same method gives that
’ Foorg

ok:

io([;;g) <2 I -

Using the last two inequalities we find
Egrr < 2% || | -
7ozl (i)
Using Theorem 2.5 we find

Vikd
|ores], | <1083ms Wil 2 171, [w25s
Vho o = Ap o ||[Vok

and, therefore

2 4 2
= = ‘s
|, S 1080 [wlh 27 f,,  (25)

o ol 8 .2
|wia],, < 2ri08em s, 11, (2.6)
for f e LP.
The last remark implies the following.

Corollary 2.7. Letp € (1,00), w € Ay, r € RT and f € LF,. Then
(i) There exists a constant Cp, r > 0, independent of h, k, such that

{Iwier o} < ol

holds for r > 0.
(ii) There holds

(2.7)

p?w

|,
pw

QT (f’ 517 52)177(,,) S C[w]Ap,p,'l‘ ||f||p7w
with constant depending only on [w]Ap and p,r.
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(i) - (£,0,0),,, = 0.
(iv) Q- (f,61,02),,, is subadditive with respect to f.
(V) QT (f?éla(sz)pw— (f?tlatQ)pw f07"0<5 <tl; 22172

2.3. Some means of Fourier series

Let 1 < p < 0o, w € Ay, and f € LP, then one can find a p* € (1,00) with f € LP" (T?).
Hence,

P C LP,
Let 1 <p<oo,we€ Ay and
0.) o0
Z Z Any s (z,y) (2.8)
n1=0n9=0

be the corresponding Fourier series for f € LP, C L'. For the Fourier series (2.8) of f € L2,
1<p<oo,we A, we define

Sim.o (f) (z,y) = Z Z Aniing (z,y, f) » So,n (f) (z,y) = Z Z Anyng (z,y, f),

n1=0mn2=0 n1=0mn2=0

S () (2.9) = Smo (Sopn () (.y) = D D Anime (2,9, f),
n1=0mn2=0

and de la Vallee Poussin means of f

2m—1 2n—1
Vm,o(f) = m—|—1 Zsko V:an :n+1ZSOl (29)
2m—12n—1

1

Z > Sea(f (2.10)

k=m l=n

Vinn (f) = Vino (VOn (f)) = (n T 1

In what follows, A < B will mean that the inequality A < CB holds. If A < B and
B < A we will write A =~ B.

Lemma 2.8 ([4]). If1<p<oo,we€ Ay, feLl, then
(i)
(1m0 (D> 150 (Pl 11Smn (D)l b S 1F 1
(if)
{Vino ()l s Vo (D)l 1Vimin (D)} S 1
(iii)
1f = Wann Il o < Yo (£
where
Wit (2.9) = Vino () + Vo () = Vi (£)) (%)

and all constants depending only on [w]Ap and p.
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2.4. Bernstein inequalities

Lemma 2.9 (Bernstein’s Inequality, [4]). If1 <p < oo,w € Ap, T1 € Timo, T2 € Topn, T3 €
Tmn, J,l €N, then
|79 < mi i

p7w p?w ’

|70, < 'l

p7w )
and, as a result,

oo

Jol
. S 1Tl

with constants depending only on [w], ~and p.

Suppose that || - ||» is the one dimensional norm in Lf, (T),
1 z+h
= — t)dt
onfa)i= o [ 50

and 4L, is the collection of all one dimensional trigonometric polynomial of degree at most
n.

Lemma 2.10 ([3]). Letr e R, neN, pe (1,00), w € A, and U, € th,. Then
R\, S I = on) Ul

p ~
L

holds for any h € (0,7 /n] with some constant depending only on r,p and [w], .

From the last lemma we obtain that if 7T;,, € il,,, then

1/p
(/\Tgp @) w (@) dx) <m’ (/“Tm (x) ~ 01 T (@)
T T
1/p
<mr (/ T (2)P w (2) dx)
T

/’T},f) (@) w (x)dz 5mrp/\:rm (@) w (z) da. (2.11)
T T

» 1/p
w(x) dac)

and, accordingly

Lemma 2.11 (Fractional Bernstein Inequality). Let 1 <p < oo, w € Ap, T1 € T 0,1 €
Toms T3 € Trnn, Jol € RT. Then

|75 s mi|m|

pw P’

e I

p?w ’
and, as a result,
(4,1)
|z

Gl
|, Smin Tl
with constants depending only on [w]Ap and p.
As a corollary of Lemma 2.11 and [4] we have the following lemma.

Lemma 2.12. For 1 < p < oo, w € Ay, [ € LP, ¢,1 € RT there exists a constant
depending only on [w]Ap and p so that

s (£

P S 2i<YL2i’1J72" (Fpw s H[hiu’ ()" H

p,w S" 2ig2jlYL2i_1J7L2j_1J (f)p,w ’

|[wss ()

pw S QJZYQi»[?j’lJ (Fpew s
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where
Vai 93 (f) = Vai 125-1) (f) = Vigi-1) 2 (f) + Vigi-1),12i-1) () = i j (f) € Tair_q 05411,
Vaio (£ = Voor () = Vizimjo (F = Vos () =t i3 () € Totr 10,
Vo (f = Voo (5) = Voyziry (F = Varo (1) = hig () € Toir 1.
3. Favard inequalities

Lemma 3.1. Let 1 < p < 0o, w € Ay, and r € R*. Then, there exist constants depending
only on [w]AP and p,r such that

(2r,0)
1

Ym,n (gl)p,w S (m + 1)_2T g - ; i c W?T,o (31)

p7w ’

-2 072 o
Ym,'ﬂ« (92)p,w S (n + 1) " gé g Py , 92 € Wp;cgr?
Yo (9 S m+ D7 o+ D7 g2 gewzr. (32)

Theorem 3.2 ([5]). Let 1 < p < o0, w € A,, f € LV, and r € N. Then there ezist
constants depending only on [w]Ap and p,r so that

(9100 S 8 (609.0) g e W, (3.3)
Qr (927 '7£)p,w 5 £2Qr71 <g§o,2)7 'ag)pw , g2 € W;ﬁ, (34)
0 (9.6.8),, £ €0 (*0.06) . geW (35)

hold for §,& > 0.

Corollary 3.3. Let 1 < p < oo, myn € N, w € A,, and r € RT. Then there exist
constants depending only on [w]AP and p,r such that

(2r,0)

QT (Tl?ﬂ-/ (m+ 1)7')p,w SJ (m+1)_2r Tl pw’ Tl S Tm,o;
O (Do) 0+ 1))y & ()T T € Ton, and
Q (Ts,m/ (m+ 1), 7/ (n+ 1), S (m+1)(n+ 1) |12 Ty e T

hold.
For r =1 Corollary 3.3 was proved in [4].

4. Proof of the results
Proof of Theorem 2.1. From [6, Th.10] we have, for almost every vy,

[ 8t @)l o @,y) doe < 1087 ol [ 1£(,)f o (,y) do.
T T

The last inequality imply that

/ISA,T;of(fv,y)I%(fc,y) drdy < 1087° [w]Ap/lf(fﬂ,y)lpw(fﬂ,y) dxdy,
T2 T2

12 4
1870 fll., < 108577 [l [
Completely similar arguments give

12 1
1Ss0,p71, ., < 108575 [W]4 [1£]l0-

p7w.
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Summing up obtained inequalities

HS/\,T;G,prpM = ”8)\,7';0 (80; ,pf)pr

12 L 2 4 2
< 108575 [w]] [Sespfl,, < 108575 (w5 [I£1],.,
as desired. ]

Proof of Lemma 2.3. Since C [T?] is a dense subset of f € LP,, 1 < p < 00, w € Ay, we
consider only the case f € C [']I‘Z]. Let 0 < A,k <1 be given. Suppose that u,v € I,’fg and
e > 0. When max {|u1|, |vi|]} - 0wehave z +u+u; - z4+uwand y+v+uvy = y+ov.
Also
oppf(@+utu,y+v+o) = oppf(r+uy+o).
Then one can find a 6 (¢) > 0 so that
lonif (x+u+u,y+v+v)—oppf(@x+uy+v)<e

for |u1|,|v1] < 6. Hence,
|Ff (u+ug,v+v1) — Fy (u,v)]

= L/[Uh,kf (+utu,y+vtuv)—opef (@ +uy+0)]|G(2,y)|w(z,y) dedy
2
< e [1G @ plw (w,y) dedy < & [P 1G], == I}
q,w 1,1
T2
for |ui], |vi| < d. A density result now give that Fy (u,v) is uniformly continuous on I ,’fg
From this we can write .
F¢(u,v) € C (']I‘2> .
O

Proof of Lemma 2.4. (2.4) is known (see e.g., Proposition 3.1 of [9, p.250] for any
measure d :

sup f(:c,y)G(:v,y) dM: ||f||p,du
Ge€LqaullGlgau=17,
When dp = w (z,y) dedy (2.4) also holds. O

Proof of Theorem 2.5. Let 0 < h,k <1, w € A,, 1 <p < oo and f,g € LP. In this
case

151l (ho) < cllFyll (ho)

=c L/S ok Lof (@ 4+ u,y+0) |G (2, y)|w (2, y) dedy

k
c (%8)

= ¢| max /8 H,WOf (x+u,y+v) |G (z,y)|w(z,y) dedy

u,velh 02
<c ma}i S 1 0, Of ( +u,-+ ’U) ||G”q,w

U7U61h0 kO p,w
<c¢ max |81 . by Theorem 2.1
| R L >

2 4 2
< 108777 (W] £l -
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On the other hand, for any ¢ > 0 and appropriately chosen G € LY, (T?) with (g,G) =
f 9(z,y) G (z,y)w(z,y)dzdy > ||, ., — & |G, =1, (see Lemma 2.4 above), one can
ﬁnd

1l (ho)

mn>/s 008 @.9) |G (29| (2. ) dady

Y

/M%@W@ﬂWﬂ%wM@—C/W@wWMwwM@
T2

v

1
lgll,., — € — Cllwll}F -

Since €, > 0 is arbitrary, from the last inequality, we have

151, (ko) > gl

ho
and hence
2 4 2
lgllpe < 1E]l < c|Exll < c108r e (Wl (| f1],., -
S =Wl <0 L
This gives required result. ]
Proof of Theorem 2.7. Inequalities (2.7) hold with (2.5)-(2.6). O
Proof of Lemma 2.11. From (2.11), we have for almost every y
. » .
[1792 @[ w @y de s m [ T3 @) w (@) d
T T
Hence

p .
J1789 @p) w @9 dudy S v [ (T3 (@) (1) dudy,

T2
|75 s mlIml,,,
From (2.11), we have for almost every z

o p
[0 @l w @)y a [ (1 @) @,p) dy
T

T
Then
o,l p
[0 @] w @) dudy S 0 [ 1T @) (0, y) dody,
T2
o.l) !
[ T T

holds. t
Proof of Lemma 3.1. We consider (3.1). We have

”gl - Sm,o (91) - So,n (91) + Smn 91

Z ZA,]xygl

i=m+1 j=n+1

Z Z TTZQTA ( 2,y,gl> cos
i=m+1j= n+1l

Z Z (x y’g(Qr o))

i=m+1j= n+1

p,w

p7w

p7w
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Z Z [ [g(zm] — S [ggzr,o)} _ifi_l’j [g(wo)] b St [ §2T,O>H

i=m+1 j=n+1

p?w

[e.e]

>

1=m+1

00
< 2.
i=m-+

! 1 1
T ZQT] Sim (977) + TS (9)

1 1

p7w

G+ Smn (a7

> 1 1 1 C
P (iz%;rl (ZQT (it 1)%) i (m + 1)2r> = (m+ 1)

Ym,n (91)pw = Ym n (91 - Sm,o (91) - So,n (91) + Sm,n (91))p7w

< llgr = Smio (91) = Sopn (91) + Smm (91)1],,,,
one can find (3.1). The same method give

S () e

2r,0) (2r,0)

91

< H9§ :
p)w

Using

v
(n+1)%"

0,2
gs?")

192 = Son (92) = Smeo (92) + Smn (92)I],, S »

and

Ym,n (gQ)p,w = Ym,n (.92 - So,n (.92) - Sm,o (92) + Sm,n (92))10,0.)
1

(n + 1)27"

< 191 = o (91) = Sme (91) + S (91, S

Considering (3.2), we find
lg = Sm.o (9) = Son (9) + Sm,n (9l

Z Z Aij (2,9, 9)

i=m+1 j=n-+1

92 .
p7w

p?w

o 27“]27“ )
Z Z g Aij ($+ Y+ ,g>cos T
i=m+1 j=nt1 ' J

p,w

>y er o Aij (2.0.957)

i=m+1 j=n-+1

p,w

Z Z 27“27“ A;j(z,y,7T)

i=m+1j= n+1

p7w

Z Z Z2r 5 (915 (1) = Sij—1 (1) = Sim1,5 (1) + Si1,5-1 (1))

i=m+1 j=n+1

>

i=m+1 j=n+1

1 s 1 1 1 > 1 1
e L s i £ - e

p’w

p?w
1 1
G+ 5

2
(2 4 1) iQT

o
(m+D)™ 55, LG+D™ n+ 1% A= (41
+<m+11)27" (n +11)2’"Sm’”( ) »
Sz:imozruzi:;l (z; - (i +11)2'r’> (;r - ( +11)2r> 1S5 (T)pr-l-
(mil) j:nzﬂ L;_ ('+11) I8m. (F) ( +11)
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> 1 1 1 1
X — = ———= | ||Sin (T + S, T
< 1 Hfr| _ 1 g(27‘,27’) ’
~ (m + 1)27‘ (n + 1)27" pw (m + 1)2r (n + 1)27" pyw
and, hence,
Ym,n (g)PM = Ym,n (g - Sm,o (g) - SO,n (g) + Sm,n (g))lhw
1
< — S, — S, +S < (2r,2r)
<1lg = Sm,o (9) = Son (9) + Smm (I, S e b
which completes the proof. O
Here we give the proof of Potapov type Theorem 1.2.
Proof of Theorem 1.2. For r € N, this was obtained in [5]:
11
oo Dy < ot & (£33 -y

We suppose that r e RT\N. For 0 <a <3< 1

J]ir=onel? 1 @] w @y de S 17— 000" f (.9)F w @9 de,foralmost every
T T

ST = 0o’ 1 @) w i@y do S [ =00 £ (@) w (@y)d,  foralmostevery .
T T

were proved in [1, (2.5)]. The same proof also holds for 0 < o < § < co. Hence

Qﬁ (f7 y ')p,w 5 Qa (fﬂ y ')p,w .
From (4.1) and the last inequality we have
1 1 1
Ym,n (f)p,w S CQ[T]+1 <f7 %7 >p7w S CQT’ (f7 E) )pw ) m,n € N

n

Proof of Corollary 3.3. Let r € RT and p € (1,00). Suppose that w € 4, (T), T € U,
and 0 < h </ (n+1). From one dimensional inequality [1, 2]

I =on]" Ty S (n+1)7" | T

p
L

we obtain

/ = ou]" T ()P w (2) dz < (n+1)"27 / 76 (2)| w () dar. (4.2)
T T

From (4.2), we have for almost every y

Sl = a0 Ty (@)l w (g da S (m+ )77 [ 1) (@) w (2,9) da
T T

Then
" —ar 7,0 p
/ HI - O-h’O] I (w,y)|pw (:L“,y) dxdy S (m + 1) ’ p/ ’TI(Q ) (:E’y)‘ w (l';y) dl‘dya
T2 o
Q, (Tl,ﬂ'/ (m—}-l)’.)p’w S./ (m_}_1)72r T1(2r,o) o

holds. Other inequalities can be proved by the same method. ]
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Proof of Theorem 1.4 . For §,§ > 0, there exist natural numbers m,n so that 7 <
1/6 <27, 2<1/6 <22, Setting
Omn (f) = Sm,o (f) = Son (f) + Smn (f)

from Theorem 1.2 one can get

Ar = |f = Smo (f) = Somn (f) + Smn (f)”p,w

SYmn (f)pw S (fv L _1>p7w < Q, (f, Wm_l,wn_l)p’w .

Secondly, we set Ay = HSﬁ’? (f = Son (f))H and v = f— S, (f). By one dimensional
p,w

1/p
" (x) dac)

inequality (see Lemma 2.10)

1/p
52 (/‘T,gﬂ (x)‘pw(x)dx> S (/HTm(m)_U%Tm(:U)Y

T T
we get, for almost every v,

1/p
T T,0 p 7,0
X ( 185 [ w (@) dx> < ( |7 8o )
T T

621“;)/‘3 27‘0) ‘ W xay)de/‘vroosm,o (’Y)
T

» 1/p
w(z,y) daz) , and

p
w(z,y)dz.

’
L
m’

Then
P

w (z,y) dzdy, and

18 7,0 p 7,0
5 [[58) 0)w (@y) dody 5 [ |95 S ()
T2

SNED
m’ Dyw

= quo,of - VT7OSO,H (f)

p,w
Vo = 00 (VE8) = S (95,0 ) + 500 (97, 1)
7,0 7,0 1
SYon (Vi) 50 (9F,010)
pw m’ "/ pw

o,r r,0
VOJg (V17of)

p?w

5" Ay S Hvﬁﬁosm,o (7)

p?w

- va (f = Son (£)

p7w

S sup

= sup
p,w 0<k<1l/n

0<h<1
0<k<1/n

(e} (e} 1 ]_
s o |vis (veis)],. = (fmn> o (.2, n)
0<k<1/n

p7w

’vho Vok (vﬁfof)

Taking
and Ay = |[S@r20 ()|

S (1 = Sme (D)

similar arguments give us

§2rA3 <

~

p7w

-1 —1
| o (fmm )
p?w p?w

S8 (f = e (£)
5rer A, < HS@”’“ H <Q, (f,wmfl,mfl)pw,and

Ay + 6% Ay + 5’2’"A3 + 07 AL S (£,6,6),, -
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Definition of K-functional gives
K(f,0,6,p,,2r) < Ay + 6% Ay + €7 Ag + 877 Ay S Q0 (£,6,),
Consider reverse of the last inequality. For any g1 € W75, g2 € W35, g € W5, we have
Q (£,0,8)0, < (f—91— 92— 9,6,6),, + 2 (91,6,8),,, +
+(92:0,€) 0 + 0 (9,0,8), 0, SN =91 =92 — gl +
152 g§2r,0) p,w+£2r géo,%) » e "
From the last inequality, taking infimum on g1 € W7, g2 € W5, g € W75, one gets
Q (£.6,), S K(f,6,6,p,w,2r).

(2r,2r)

Proof of Theorem 1.6. Using the properties of 2. (f,-, ), we have

1 1 1 1 1 1
Qr <f> ) ) (f WQ” 2"f7 7) > + Qr <W2“ 2Vf> 0 ) ) and
m n pw n pw m n P

)

11
(£ Wonzfy i) SN = Wonizlyy S Yonse (£
p7w

By the property
12

n
Wonav f = Woof < (Wm‘,gvf - qumuf) +> (W2“,2jf - W2“7L2j*1Jf) -
i=0

J=0

[T
=D Waiaif = Wai joim f = Wigima o f + Wigima) i1
i=0 j=0

we find (see Lemma 2.12 for quantities ;. (f), huj (f), @i (f) )

1 1 1 1
Q <W2“2Vf77n> :QT‘ <W2“2”f W00f77n>
p,w p

)

11

Sigr(¢i,u(f)7m7n> +ZQ( 71[/7:1');7,0,)_’—
1 1
+§J§%Q <%’] m ”)Pﬂw
> [ (0], nngH p ()
ZZ H i (f (2r,2r)

=0 7=0

A 1 G oori
Z 22”YL22'—1J,21 (Fpe + n2r Z 22T]Y2i,t2j‘1i (f)p +
; §=0

p?w

<
pw ™

m2r n2r

1 1
m2r n2r

KoV . .
Z Z 222T+27’J YL2i,1J7L2j71J (f)p,w

i=0 j=0
Suppose that m,n satisfy 24 < m < 2#+1 2V < n < 2*1. Then, one can get

11 1 1 L 2ri+2rj
Q <f,m,> N d> 2 Yigi-1),12-1) ()

2r 27
pw TN 00
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ptlov41
2ri+2rj)
m27ﬂn27" Z 22 i JYLQZ 2971 (f)p,w
=0 5=0
1 m n . .
szTnerOX;J[(z+1)(g+ D2 Y (f),,
i=0 j=
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