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Abstract
The Tutte polynomial of a graph is a polynomial in two variables defined for every simple
graph contains information about how the graph is connected. We prove some formulas
for computing Tutte polynomial of bicyclic and tricyclic graph and finally classify tricyclic
graph with respect to Tutte polynomial.

Mathematics Subject Classification (2010). 05C05, 90B10

Keywords. Tutte polynomial, bicyclic, tricyclic graph

1. Introduction
Let G be a simple graph. The vertex v is reachable from another vertex u if there is

a path in G connecting u and v. In this case we write vαu. A single vertex is a path of
length zero and so α is reflexive. Moreover, we can easily prove that α is symmetric and
transitive. So α is an equivalence relation on V (G). The equivalence classes of α is called
the connected components of G. A unicycle graph has only one cycle. An induced cycle
means a cycle which is not contained another cycle as subgraph. A bicyclic graph and
tricyclic graph mean, a graph contains two or three induced cycles, respectively. A bridge
is an edge whose removal will cause the number of connected components to increase and
a loop is an edge whose endpoints are the same vertex.
The Tutte polynomial of a graph G, T (G; x, y) defined by Tutte and Whitney is a poly-
nomial in two variables defined for every simple graph contains information about how
the graph is connected [1,2,6,8–11]. To define this concept, we need some notations. The
edge contraction G/uv of the graph G is a graph is obtained by merging the vertices u
and v and removing the edge uv. We write G − uv for the graph where the edge uv is
merely removed, see Figure 1. Then the Tutte polynomial of graph G is defined by the
recurrence relation between graph G, G − uv and G/uv as follows:

(i) If e is neither a loop nor a bridge edge, then T (G; x, y) = T (G − e; x, y) +
T (G/e; x, y),

(ii) If e is a bridge edge, then T (G; x, y) = xT (G − e; x, y),
(iii) If e is a loop edge, then T (G; x, y) = yT (G − e; x, y).
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Figure 1. The Graph G, G-uv and G/uv.

If G contained i bridges and j loops and G′ is obtained by deleting of all bridges and loops
of graph G, then T (G; x, y) = xiyjT (G′; x, y). If G contains i bridges and j loops and no
other edges, then T (G; x, y) = xiyj . In particular, T (G; x, y) = 1 if G contains no edges.

The importance of the Tutte polynomial T (G; x, y) comes from the algebraic graph
theory as a generalization of counting problems dependent to graph coloring. It is also
the source of several central computational problems in theoretical computer science. We
note T (G; x, y) = T (G) briefly. In this paper we study on the Tutte polynomial of bicyclic
and tricyclic graphs. In [3–5, 7]. We classify bicyclic and tricyclic graph with respect to
their Tutte polynomials. All over of this paper we assume that all graphs are simple.

2. Main results
In this section, at first we mention to the Tutte polynomial of special graph such as tree

and cycle. Then by using these results continue our argument for all class of bicyclic and
tricyclic graphs.
Lemma 2.1. Let Tn be a tree with n vertices. Then T (Tn) = xn−1.
Proof. The proof is straightforward by definition of Tutte polynomial. �

Lemma 2.2. Let Cn be a cycle on i vertices. Then T (Cn) = xn − x

x − 1
+ y.

Proof. Let e be an edge of cycle Cn. By definition of Tutte polynomial, we have

T (Cn) =T (Cn) − e + T (Cn/e)
=T (Pn) + T (Cn−1)
=xn−1 + T (Pn−1) + T (Cn−2)
...

=xn−1 + xn−2 + · · · + x4 + T (C3)
=xn−1 + xn−2 + · · · + x4 + x3 + x2 + x + y

=xn − x

x − 1
+ y.

�
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Remark 2.3. We note that in this paper C1 means a loop, then T (C1) = y. Also C2 means
a graph with two vertices and double edge between these vertices and it is easy to see that
C2 − e is a single edge and C2/e is a loop. Hence T (C2) = T (C2 − e) + T (C2/e) = x + y.

Theorem 2.4. Let G be a connected graph with t disjoint cycles of size n1, n2, · · · , nt.
Then the Tutte polynomial of G is

T (G) = xb(G)
t∏

i=1

(xni − x

x − 1
+ y

)
where b(G) is the number of bridges of G.

Proof. We begin by deleting the bridges of the graph G. Suppose B = {e1, e2, · · · , eb(G)}
is the set of all bridges of G. Then we have:

T (G) = xT (G − {e1}) = x2T (G − {e1, e2}) = · · · = xb(G)T (G − {e1, e2, · · · , eb(G)}).

Since all the cycles of the graph G − {e1, e2, · · · , eb(G)} are disjoint, then by a well-known

result we can conclude that T (G − {e1, e2, · · · , eb(G)}) =
∏t

i=1

(xni − x

x − 1
+ y

)
and then

T (G) = xb(G) ∏t
i=1

(xni − x

x − 1
+ y

)
, which completes the proof. �

Example 2.5. Let G be a graph with three disjoint cycles, Cm, Cn and Cl. All cases of
position of cycles are shown in Figure 2. Then the Tutte polynomial of G is obtained as,
T (G) = xb(G)T (Cm)T (Cn)T (Cl).

Figure 2. Different positions of cycles in the class of tricyclic graph with disjoint
cycles.

Theorem 2.6. Let G be a graph with two induced cycles, Cm and Cn, with a common
path Pt. Then, the Tutte polynomial of G is obtained as follows:

T (G) = xb(G)
(
T (Cm−t+1)T (Cn−t+1) + xt−1 − x

x − 1
T (Cm+n−2t+2)

)
.

Proof. By Theorem 2.4., one can see that if H is a graph, constructed by deleting
bridges of G then T (G) = xb(G)T (H). The graph H is a graph constructed by two
induced cycles, Cm and Cn, such that they have a path Pt in common, see Figure 3.
Let Pt : v1e1v2e2 · · · vt−1et−1vt be common path between Cm and Cn. Then we have
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Figure 3. Graph H with two induced cycles, Cm and Cn.

T (H) = T (H/e1) + T (H − e1). Since H − e1 is a unicycle graph, then T (H − e1) =
xt−2H(Cm+n−2t+2). By continuing this process, we have

T (H) =T (H/e1/e2) + T (H/e1 − e2) + T (H − e1)
=T (H/e1/e2/e3) + T (H/e1/e2 − e3) + T (H/e1 − e2) + T (H − e1)
...

=T (H/e1/e2/ · · · /et−1) + T (H/e1/e2/ · · · /et−2 − et−1)
+ T (H/e1/e2/ · · · /et−3 − et−2) + · · · + T (H/e1 − e2) + T (H − e1)

=T (Cm−t+1)T (Cn−t+1) + T (Cm+n−2t+2)
+ xT (Cm+n−2t+2) + · · · + xt−2T (Cm+n−2t+2)

=T (Cm−t+1)T (Cn−t+1) + xt−1 − 1
x − 1

T (Cm+n−2t+2).

Since T (G) = xb(G)T (H), then

T (G) = xb(G)
(
T (Cm−t+1)T (Cn−t+1) + xt−1 − 1

x − 1
T (Cm+n−2t+2)

)
,

and the proof is completed. �

Notation. Let G be a graph which instructed with two induced cycles, Cm and Cn,
such that they have a path Pt in common. We denote this graph by G = G(Cm, Cn, Pt).
By this notation, in Theorem 2.6, we have T (G) = xb(G)T (G(Cm, Cn, Pt)).

Corollary 2.7. Let G be a tricyclic graph with two non-disjoint cycles Cm, Cn, with a path
Pt in common, and a disjoint cycle Cl, all cases of position of cycles are shown in Figure
4. The strict formula for Tutte polynomial of G is T (G) = xb(G)T (G(Cm, Cn, Pt))T (Cl).

Theorem 2.8. Let G be a graph with three induced cycles, Cm, Cn and Cl, such that Cm

and Cn have a path Ps in common, Cn and Cl have a path Pr in common and Cl and Cm

have a path Pt in common. Then, the Tutte polynomial of G is obtained as follows:

T (G) =xb(G)
(
T (Cm−s−t+2)T (G(Cl−t+1, Cn−s+1, Pr))

+ xt−1 − 1
x − 1

T (G(Cn−s+1, Cm+l−2t−s+3, Pt))

+ xs−1 − 1
x − 1

T (G(Cl, Cm+n−2s+2, Pr+t−1))
)
.
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Figure 4. All positions of cycles of tricyclic graphs with two non-disjoint cycles
and one disjoint cycle.

Proof. By well known result in Theorem 2.4., if G has b(G) bridge and H obtained by
deleting bridges of G, then T (G) = xb(G)T (H). See H in Figure 5.
Let Ps : v1e1v2e2 · · · vs−1es−1vs be common path between Cm and Cn. Then

T (H) =T (H/e1/e2) + T (H/e1 − e2) + T (H − e1)
=T (H/e1/e2/e3) + T (H/e1/e2 − e3) + T (H/e1 − e2) + T (H − e1)
...

=T (H/e1/e2/ · · · /es−1) + T (H/e1/e2/ · · · /es−2 − es−1)
+ T (H/e1/e2/ · · · /es−3 − es−2)

...
+ T (H/e1/e2 − e3) + T (H/e1 − e2) + T (H − e1).

For each 1 ≤ i ≤ s − 2, we have

T (H/e1/e2/ · · · /ei − ei+1) = xs−i−2T (G(Cl, Cm+n−2s+2, Pr+t−1)).

Moreover T (H −e1) = xs−2T (G(Cl, Cm+n−2s+2, Pr+t−1)) and set K = H/e1/e2/ · · · /es−1.
Hence

T (H) = T (K) +
s−2∑
i=0

xs−i−2T (G(Cl, Cm+n−2s+2, Pr+t−1)).
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Figure 5. The Graph H.

On the other hands if Pt : w1e′
1w2e′

2wt−1e′
t−1wt be common path between Cm and Cl ,

then

T (K) =T (K/e′
1/e′

2/ · · · /e′
t−1) + T (K/e′

1/e′
2/ · · · /e′

t−2 − e′
t−1)

+ T (K/e′
1/e′

2/ · · · /e′
t−3 − e′

t−2)
...
+ T (K/e′

1/e′
2 − e′

3) + T (K/e′
1 − e′

2) + T (K − e′
1).

We have T (K/e′
1/e′

2/ · · · /e′
i − e′

i+1) = xt−i−2T (G(Cn−s+1, Cm+l−2t−s+3, Pr)) and
T (K − e′

1) = xt−2T (G(Cn−s+1, Cm+l−2t−s+3, Pr)) for each 1 ≤ i ≤ t − 2.
Set L = K/e′

1/e′
2/ · · · /e′

t−1, then T (L) = T (Cm−s−t+2)T (G(Cl−t+1, Cn−s+1, Pr)).
By the above argument, we conclude that

T (G) =xb(G)
(
T (K; x, y) +

s−2∑
i=0

xs−i−2T (G(Cl, Cm+n−2s+2, Pr+t−1))
)

=xb(G)
(
T (L; x, y) +

t−2∑
i=0

xt−i−2T (G(Cn−s+1, Cm+l−2t−s+3, Pt))

+
s−2∑
i=0

xs−i−2T (G(Cl, Cm+n−2s+2, Pr+t−1))
)

=xb(G)
(
T (Cm−s−t+2)T (G(Cl−t+1, Cn−s+1, Pr))

+ xt−1 − 1
x − 1

T (G(Cn−s+1, Cm+l−2t−s+3, Pt))

+ xs−1 − 1
x − 1

T (G(Cl, Cm+n−2s+2, Pr+t−1)
)
.

�

Theorem 2.9. Let G be a graph with three induced cycles, Cm, Cn and Cl, such that Cm

and Cn have a path Ps in common, Cn and Cl have a path Pr in common, see Figure 6.
Then, the Tutte polynomial of G is obtained as follows:

T (G) = xb(G)
(
T (Cs−1)T (G(Cn−s+1, Cl, Pr)) + xm−s+1 − 1

x − 1
T (G(Cn, Cl, Pr))

)
,
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Figure 6. All positions of cycles of tricyclic graphs with conditions of Theorem 2.9.

where

T (Cs−1) =


y s = 2

x + y s = 3.

Proof. By similar reason of Theorem 2.8., one can see that T (G) = xb(G)T (H), without
loosing generality assume that H is a graph like Figure 7(a).
Suppose that Cm : v1, v2, · · · , vm−s+2 = us, us−1, · · · , u1 = v1 and for 1 ≤ i ≤ m − s + 1 ,
put ei = vivi+1.

Figure 7. (a) The graph H, (b) The graph K.

Since T (H) = T (H −e1)+T (H/e1), then by deleting each ei = vivi+1, remaining graph
is a subgraph of H contains two induced cycle Cn and Cl with a common path Pr. By
using Theorem 4, we can obtain Tutte polynomial of H as follows:

T (G) =T (H − e1) + T (H/e1)
=T (H/e1/e2) + T (H/e1 − e2) + T (H − e1)
=T (H/e1/e2/e3) + T (H/e1/e2 − e3) + T (H/e1 − e2) + T (H − e1)
...

=T (H/e1/e2/ · · · /em−s+1) + T (H/e1/e2/ · · · /em−s − em−s+1)
+ T (H/e1/e2/ · · · /em−s−1 − em−s)

...
+ T (H/e1/e2 − e3) + T (H/e1 − e2) + T (H − e1).

For each 1 ≤ i ≤ m − s, T (H/e1/e2/e3/ · · · /ei − ei+1) = xm−s−iT (G(Cn, Cl, Pr)) and
T (H/e1) = xm−sT (G(Cn, Cl, Pr)). Set K = T (H/e1/e2/ · · · /em−s+1), see Figure 7(b).
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On the other hand, T (K) = T (Cs−1)T (G(Cn−s+1, Cl, Pr)). Hence, by above argument,
one can see that:

T (H) =T (Cs−1)T (G(Cn−s+1, Cl, Pr)) +
m−s∑
i=1

xm−s−iT (G(Cn, Cl, Pr)) + xm−sT (G(Cn, Cl, Pr))

=T (Cs−1)T (G(Cn−s+1, Cl, Pr)) + xm−s+1 − 1
x − 1

T (G(Cn, Cl, Pr))

and this completes the proof. �

Theorem 2.10. Let G be a graph with three induced cycles, Cm, Cn and Cl, such that Cl

and Cn have a path Pt in common and the path Ps is common between three cycles Cm,
Cn and Cl, Figure 8. Then, the Tutte polynomial of G is obtained as follows:

T (G) = xb(G)
(
T (Cs−1)T (G(Cn−s+1, Cl−s+1, Pt−s+1)) + xm−s+1 − 1

x − 1
T (G(Cn, Cl, Pt))

)
,

Figure 8. All positions of cycles of tricyclic graphs with conditions of Theorem 2.10.

Proof. By similar way of Theorem 2.8 and 2.9, T (G) = xb(G)T (H). Without loosing of
generality H is shown in Figure 9(a).
Suppose that Cm : v1, v2, · · · , vm−s+2 = us, us−1, · · · , u1 = v1 and for 1 ≤ i ≤ m − s + 1 ,
put ei = vivi+1 .

Figure 9. (a) The Graph H, (b) The Graph K.

Since T (H) = T (H −e1)+T (H/e1), then by deleting each ei = vivi+1, remaining graph
is a subgraph of H contains two induced cycle Cn and Cl with a common path Pr. By
using Theorem 2.6., we can obtain Tutte polynomial of H as follows:

T (H) = T (H/e1/e2/e3/ · · · /em−s+1) +
m−s∑
i=1

T (H/e1/e2/e3/ · · · /ei − ei+1) + T (H − e1).

For each 1 ≤ i ≤ m − s, T (H/e1/e2/e3/ · · · /ei − ei+1) = xm−s−iT (G(Cn, Cl, Pr)) and
T (H/e1) = xm−sT (G(Cn, Cl, Pr)). Set K = T (H/e1/e2/ · · · /em−s+1), see Figure 9(b). It
is easy to see that, T (K) = T (Cs−1)T (G(Cn−s+1, Cl−s+1, Pt−s+1)).
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Hence, by above argument, one can see that:

T (H) =T (Cs−1)T (G(Cn−s+1, Cl−s+1, Pt−s+1)) +
m−s∑
i=0

xm−s−iT (G(Cn, Cl, Pt))

=T (Cs−1)T (G(Cn−s+1, Cl−s+1, Pt−s+1)) + xm−s+1 − 1
x − 1

T (G(Cn, Cl, Pt)).

This completes the proof. �

3. Conclusion remarks
In this paper some strict formulas of bicyclic and tricyclic graphs are obtained. We

also characterize different classes of bicyclic and tricyclic graph by Tutte polynomial. We
classify bicyclic graphs in to two different classes and tricyclic graphs in five different
classes with respect to Tutte polynomial and collect all results in Figures 10-13.

Figure 10. (a) First class of bicyclic graph with the same Tutte polynomial,
(b) Second class of bicyclic graph with respect to Tutte polynomial.

Figure 11. (a) First class of tricyclic graph with the same Tutte polynomial, (b)
Second class of tricyclic graph with the same Tutte polynomial.
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Figure 12. (a) Third class of tricyclic graph with respect to Tutte polynomial,
(b) Forth class of tricyclic graph with respect to Tutte polynomial.

Figure 13. Fifth class of tricyclic graph with respect to Tutte polynomial.
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