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Highlights
* The paper focused on the numerical solution of singularly perturbed boundary value problem.
« To obtain the approach of difference scheme, finite difference method is used.
« Stability and uniform convergence of presented difference method are investigated.
* The examples are solved by using Thomas algorithm.
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This study deals with a new approach method for solving singularly perturbed boundary value
Received: 21/03/2019 problem of convection-diffusion type. Firstly, bounds on the solution and its derivative of solution
Accepted: 16/07/2019 to be used later in the article are obtained. This robust method is constructed with fitted difference

scheme on a uniform mesh. It is proved that the presented method is first-order convergent with
respect to the perturbation parameter ¢ in the discrete maximum norm. Two examples are given

Keywords to illustrate the efficiency of the method. The numerical results are presented in tables and figures.

Singular perturbation,
Finite difference
scheme

Uniform mesh
Uniform convergence

1. INTRODUCTION

Here we handle the following convection-diffusion problem with boundary layer behavior:
eu”(x)+a(x)u’'(x)=b(x)u(x)= f(x),0<x<l, (1)

u(0)=Au(l)=B., @)

where A and B are given constants and 0 < € < 1 is a very small positive parameter. It is supposed that
the functions a(x), b(x) and f(x)are continuous differentiable in interval [0, I] and besides, our
conditions are

a(x)>a>0, (3)
b(x)> >0, 4

Differential equations with a small parameter £ multiplying the highest-order derivative terms are called
singularly perturbed differential equations. Standard numerical methods for solving singularly perturbed
problems are unstable and do not give accurate results due to the perturbation parameter &. If suitable
numerical methods such as finite difference method and finite element method [1-8] for solving these
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problems are developed, then the stable and accurate results are obtained. Therefore, we prefer to apply
finite difference method for this problem in this paper.

There are the various approaches to the design and analysis of appropriate numerical methods for singularly
perturbed differential equations in [9-17] and the references therein. Singular perturbation problems are
located in various fields. For example, chemical-reactor theory, control theory, oceanography, fluid
mechanics, quantum mechanics, hydro mechanical problems, meteorology, electrical networks and other
physical models [18-25]. There is study of existence and uniqueness of singularly perturbed problems in
[26].

The present study is organized as follows: In Section 2, we state some required properties of the exact
solution for analysis of numerical method. Then, the finite difference discretization is given in Section 3.
In Section 4, we investigate the error evaluation on uniform mesh for the approximate solution of the
problem (1)-(2). Furthermore, numerical results supporting the theory are presented. The obtained results
are shown via tables and figures.

Throughout the paper, C,C,,C, denote generic positive constants independent of ¢ and the mesh

g(x)|

parameter. For any continuous function g(x) denote norms which g, = 9, [0, = MaxX

0<x<I

2. SOME PROPERTIES OF CONTINUOUS PROBLEM

Here we give asymptotic estimates for the solution of continuous problem (1)-(2). These estimates will be
used to analysis of the uniform convergence of difference approximations in the next sections.

Lemma 2.1 Let us accept that the function u(x) is the solution of (1)-(2) and
a(x),b(x), f (x) e C*[0,1]. Then the equalities

u, <C,, (5)
C, =|Al+|B|+a*f,

and

‘u'(x)‘ sC{l+%e_oj}, (6)
hold.

Proof. We first show the proof of (5). Here we define the maximum principle for the problem (1)-(2).
Let L be the differential operator in (1)-(2) andx € C*[0,1] if x(0)>0, x(1)>0 and Lx <0,

O0<x<l,then x(x)>0 for 0<x<I.
Using the barrier function, we have

W* (x) =2u(x) +|A+|B[+a™ (I-x) f,.
By applying the maximum principle to the function above, we find
¥+ (0)=+A+|Al+|B|+a(I-x) f, >0,
¥*(0)=+B+|B|+|A|+|A[20,

and
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LY (x)=+f (x)—(|A/+[B])b(x)+a*[a(x)-b(x)](1-x)f,
<—(|A+[B)b(x)£]f (x)| - 1, <0

According to maximum principle, we get

¥(x)>0.

From this inequality, we obtain

x) f

su(x)+| A+ [+ ) s g
(94

[SoR}

() =[A-+[B+ = (1-x)

which gives the proof of (5).
We now show the proof of (4). We rewrite the problem (1)-(2) as

eu (x)+a(x)u (x)=F(x),

where

F(x)=f(x)+b(x)u(x).

From the relation (7), we have

X 1)(
1 a(r)dr = a

u(x)=u(0)e ™ += IF Je df.

We need an estimate for u'(0) in (8). Integrating this equality over (0, 1), we have

. | 7%Xa(r)dr 1 1 x —%Ia(r)dr
B-A=u'(0)fe dx+;”F(§)e © o dedx
0 00

From this equality we obtain

J« .[ - a(r)drdgdx

L,ef‘

We evaluate integral in denominator of (9) as

u(0)=

aI
X X 1 e &
L -2fa(e)or | 2fadr I a'x
J'e 0 dsz'e 0 = = 7/
0

where 2" = rRa}i({a(x)} .

Applying the mean value theorem to integral in (9), we find

%JL['X[F (f)exp(—%ja(r)dr]df} dx

<= HJ\F exp(——%f (f)dr]dﬁ}dx

(")

(8)

9)

(10)
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I x  a(x- | ax
si”e_ : d§dx:a‘1FmJ'{1—e_8}dxsi"lsq. (11)
& 00 0 a
By writing the evaluations (10) and (11) in (9), we get
‘u'(o)‘gng_ (12)
Ve &

Using the estimate (12) in (8), we have
. C - F, =)y C 2% F
‘u (x)‘ —e ¢ 4= (1 e f)g—e £ =
£ a £ a

which gives proof of (6). So, we have completed the proof of Lemma 2.1.

3. CONSTRUCTION OF DIFFERENCE SCHEMES

Let wy be a uniform mesh on [0,1] as follows:

:{xi,:ih, i=12,...,N-L h:L},

@y =o, U{x=0,x=1}.
Before describing our numerical method, we introduce some notation for the mesh functions. For any mesh
function g (x) defined on @, we use

g, = g(Xi)’ g;'i — 9i —0ia g|+1 0 g|+l g|—l

- ’ gXI — ’ g, u;X'i — gi+1_2gi +0i,
n-1
9, =0, =N |9l

h2

’

h X,i 2h
i1

Here we construct difference approximate on a uniform mesh for the problem (1)-(2). To obtain the
approach of difference scheme, we will integrate equation (1) over (x;_1,X;1+1)-

h- TLU(DI dx=h" f @ (x)dx, (13)

Xia Xi1

where the basis functions ¢; (x) are as follows:

_1+exp(_ai(x—xi-1)j
‘Pi(l) (X)= agh , Xe ( X X ),
—1+exp (—(‘9)
o (x)= 1- eXp( a(X';X)J
o? (x)= - , Xe (X0 X)),
1-exp (—;)
0, Xg(xi—l’ Xi+1)'

The functions ¢; 1)(x) and ¢; @) (x) are the solution of the following problems, respectively:
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ep —ap =0, Xe(X,.%),
o (%4)=0, ¢ (x)=1,

ep —ap =0, Xe(X,Xy),
7.(%)=1 9,(%.)=0.

We can continue from (13) as

%jl[gu"(x)+a(x)u'(x)—b<x)u(x)]¢>i<X>dX:%jff (e ().

Xis1

%I—gu() (X)dx+= .[a1u (x)dx—%:rb(x)u(x)goi(x)dx:fi+§i,

—I —eu ( X)dx += J'au X)g (x)dx—bu, = f, +R,,

where we can express the reminder term R; as
R =R +Rb,i = Ra,i +Rf,i +Rb,i’

with

'_\

= Ju(x)[a(x)-a()]g (x)dx

I—‘D'

_J' [bOx)u(x) —b(x )u(x)] e (x)dx,

3'

Ry =%X£[f(x)— f ()] (x)dx

Using the quadrature rules in (2.1) and (2.2) from [1], we obtain the following precise relation:

h‘lj [gu'(pi(l)'(x)Jraiu( ) ( )de+h I[gng, (x )+aiu'(x)goi(2)(x)]dx

=—sh™u_+au h° j(p, X)dx-sh™u_+au,;h" jgo, (x)dx,

Xia X

—u
—e M iau P +rau,oc?=¢cu_ +au_ oc®+au, c?,
h Xl XX, 1 X ,

e, 1
ah 1-e*

&

aih)
&

_Mxp[_amx—xu)jd

X =

=h™ I(”. x)dx =h" Xj _1+exp(_

(14)

(15)

(16)

(17)

(18)

(19)
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" . 1—exp(—"’li (XH;_X)J 1 )

=h [ (x)dx=h" j - _£
[ ) ahle )
" 1_exp(_amj e*" -1 ah
£
Using the relations
h
U, —U-. =—U-
X,i X1 2 XX, 1
and
h
Uo —Uy; =S Uy
X,i ' 2

in (19), we obtain

eu. +aou, ,—ao!
XX, 1

Xi (| 2 XX, i i i (| 2 XX, i
B g{lJrai_h(Gi(z) - Ui(l))} Ui T8 (Ui(l) + Ui(z))u o = E6U +aU,, (20)
E ! X,i ’ X,i
where
0, —8{1+a—h( i(z)—ai(l))}:yi coth(7,).7 zai—h, (21)
g 2¢
Gi(l) h J‘(DI dX 1.

Then, by using the relation (20) in (14), we get
ly, =0y +ay -by, =f+R, 1<i<N-I. (22)

XX, i

Neglecting R; in the relation (22), we propose the following finite difference approximate for the problem

D-@):
ly, =6y +ay0 -by, = f, (23)

Yo=AYy =B, (24)

where @, is defined by (21).

4. STABILITY AND ¢— UNIFORM CONVERGENCE

Here we will give stability and uniform convergence of presented difference method.

Lemma 4.1. If we accept the smoothness assumptions of Lemma 2.1, then the truncation function R
satisfies the following inequality.

IRl <Ch. (25)

0,0y

Proof. We first show that
IR, <ch. (26)

0,y
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Applying the mean value theorem to function in (18), we get

f(x)-f(x)

X=X

:‘f'(f)‘smax‘f’(x)“x—xi|£C, Ee(X,X).

Hence, we obtain

IR, <ch.

0,

In second case let us indicate that

||Ra||w’wN <Ch, -
By applying the mean value theorem to the function in (16), we have
% =[a’ ()| < max|a (&)[lx—x[<Csh, £ (x;,x).

From this, we obtain

N-1%41 1 = le,ll —oex
IRill .., <ChY €, (1+ e Jd<CCh 2+ [ =e dx

=1y, =1y, &

<CCh[2I+ je s ]dx<Ch

In the same way, we can demonstrate the following inequality as similar to the inequality (27).

IRl

<Ch. (28)

|1 ﬂ’N

Applying the mean value theorem to the function in the relation (17), we take

b(x)u(x) % () (£)) | maxfu(x)b*(x) +u ()b (x) x|

X—X,
s(max|u(x)b'(x)|+max‘u'(x)b(x)‘)|x—xi|SClh, X <E<X,

From this, we get

oo

i=1 x

which leads to (28).
Hence, from the inequalities (26), (27) and (28) we have (25).

Lemma 4.2. Error function z,, 0<i< N satisfies the following inequality:
n-1

|2 <CRy,,, =Ch2_IR]. (29)
i=1

Proof. According to maximum principle, we have
|Zi|S77il i:llzf"'lN_la

where the function n; is the solution of the following difference problem.
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50i77gxyi +arn, = _|Ri |’ (30)
770 = O’ 77N = 0 (31)
Let n,; = V;. Then we rewrite the relation (30) as

s0V, +a S R

Solving the first order difference with respectto V; for1 <i < N — 1, we obtain

_ ha,
256’
\Y/ VH ha, —hz (32)
1+—
20, 2

a a
Using the inequality 1—x <e *and % =cot h(k?pj <1 we get

k

ak
i R ' a; /&b
M =eferp| -0y, |5 Rl | ny 2l | @
L1+ &6, +ha g +—
28(9k 2 2

For the second term in the relation (33), we found

a;
1 i 80j
- _ <
max Bexp hJZH:llJr ha <C.
| 20,

From this, the second term in the relation (33) is obtained as follows.

La;/ée0,
g Bmen] 03 s <R

1=1 80 +7 j=l+1
2

and

|R| 1 ahIdeJ

N-1 i
hZi:O hlel 20 + HJ '+1(1+ah/250
I

V, = 2 — . (34)
h N-1 i ak &0,
T

By setting the relation (34) in (32), we take
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a.h

i a 2560, n-1
oL 1| —5n | <RI (35)
1+ —~— =1
20,

By using the relation (33) and (35) in (32) we obtain
n-1

vi|<Ch> IR (36)
i=1

So, we have

n-1
z|<ChY |R.
i=1

The Lemma 4.2 is proven.
We now give the following uniform convergence result.

Theorem 4.3. Suppose that a, b, f € C1[0,1]. Let u(x) be the solution of the problem (1)-(2) and y be the
solution of the problem (23)-(24). Uniform error estimate

1Y =Ullg(s, < Ch,
holds.
Proof. This follows immediately by combining the two previous lemmas.

5. NUMERICAL RESULTS
Here we test two examples for applying of the theoretical results.

Example 5.1. Our first test problem is as follows [27].
gu"(x)+(1_§ju'(x)_o.su(x):o, xe(0,1), @)
u(0)=0, u(1)=1. (38)

Its exact solution is given by

u(x):(Z—x)fl—O.Sexp 4

We describe the maximum errors el and the errors e? as follows:

e = max
1<i<N

u’—yf

: e" =maxe).
&

We also describe the following convergence rates and the computed parameter uniform convergence rates,
respectively:

N
In eg eN
2N In——
N € N e
pg - 1 p -

In2 In2
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Table 1. The calculated maximum errors and the orders of convergence for the numerical solution of

problem (37)-(38)

e/N 8

16

32

64

128

256

512

103 | 0.0291666
0.94

0.0151209
0.97

0.0076884
0.98

0.0038760
0.97

0.0019725
0.79

0.0011393
0.78

0.0006604

0.0291666
0.94

1074

0.0151206
0.97

0.0076884
0.98

0.0038754
0.99

0.0019454
0.90

0.0010393
0.85

0.0006304

0.0291665
0.95

1073

0.0151206
0.98

0.0076884
0.99

0.0038774
0.99

0.0019456
0.99

0.0009754
0.99

0.0004878

0.0291543
95

10-°

0.0151203
0.98

0.0076884
0.99

0.0038756
1.00

0.0019123
0.97

0.0009798
1.00

0.0004878

0.0290543
0.95

1077

0.0151204
0.98

0.0076882
0.99

0.0038742
0.99

0.0019419
0.99

0.0009772
1.00

0.0004878

0.0290342
0.94

1078

0.0151202
0.98

0.0076884
0.99

0.0038750
1.00

0.0019312
1.00

0.0009623
0.98

0.0004878

0.0290540
0.94

107°

0.0151200
0.98

0.0076884
0.99

0.0038751
1.01

0.0019134
0.99

0.0009601
0.98

0.0004878

0.0290342
0.94

10—10

0.0151201
0.98

0.0076884
0.99

0.0038705
1.01

0.0019017
0.99

0.0009512
0.96

0.000487

T T T 1
o.2s o.= 0.75 1.0

r=256 . ep=siloan=10"~-5)
r=256 . ep=siloan=10"~-5)

Figure 2. Exact solution and Numerical solution of problem (37)-(38) for varied values of & and N on
uniform grid
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Figure 3. Errors of problem (37)-(38) for values ¢ =10, 10°, 10®,107° and N =256 on the
uniform grid

Example 5.2. We secondly present the following example [27].
eu (x)+u (x)-1-2x=0, 0<x<1,
u(0)=0, u(1)=1.

(39)
(40)

Exact solution of example above is as follows.

e |
o)

Table 2. The calculated maximum errors and the orders of convergence for the numerical solution of
problem (39)-(40)

U(x)=x*+x-2xe+

e/N

8

16

32

64

128

256

512

10~*

0.1092000
0.90

0.0584062
0.95

0.0300796
0.98

0.0151839
1.00

0.0075530
1.03

0.0036917
1.07

0.0017497

0.1093575
0.90

0.0585750
0.95

0.0302541
0.97

0.0153611
099

0.0077316
099

0.0038710
1.00

0.0019293

0.1093732
0.90

0.0585918
0.95

0.0302715
0.97

0.0153788
0.98

0.0077494
0.99

0.0038889
0.99

0.0019473

0.1093748
090

0.0585935
0.95

0.0302732
0.97

0.0153806
0.98

0.0077512
0.99

0.0038907
0.99

0.0019491

0.1093749
0.90

0.0585937
0.95

0.0302734
0.98

0.0153808
0.99

0.0077513
0.99

0.0038909
1.00

0.0019499

0.1093749
0.90

0.0585937
0.95

0.0302734
0.98

0.0153808
0.99

0.0077514
0.99

0.0038909
1.00

0.0019493

10—10

0.1093749
0.89

0.0585937
0.95

0.0302734
0.98

0.0153808
0.99

0.0077514
0.99

0.0038909
1.00

0.0019491
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Figure 4. Numerical solution of problem (37)-(38) for values ¢ =10, 10°, 10° and N =64 onthe
uniform mesh

8
n
AEEEENEE
b
4}

Figure 5. Exact solution and Numerical solution of problem (39)-(40) for values of & = 10 , 107, 10°
and N =64 on the uniform mesh

15 00—
125,

10.04

Figure 6. Errors of problem (39)-(40) for values of £ =10, 10°, 10,107 and N =64 on the
uniform mesh
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According to above tables and figures, the curves of exact and approximate solutions are compared in
Figures 2 and 5. In Figures 1 and 4, as & values decrease, the curves go towards the coordinate axes around

X =0. In Figure 3 and 6, the errors in the boundary layer region are maximum for different values & . The
values of ¢ and N for which we solve the test problems are £ =27, k=4,..,10; N=2% k=3,..,9.

The resulting error e" and the uniform convergence rates pN are given in Tables 1 and 2.

6. CONCLUSION

In this study, we have offered an effective finite difference method for solving second-order linear
singularly perturbed boundary value problem. It is given that this method displays uniform convergence
with respect to the perturbation parameter&. We apply two examples to show the advantages and
effectiveness of this novel approach. The algorithm, figures and tables are generated in Maple. In table and
graphics, when N takes increasing values, it is seen that the convergence rate of the smooth convergence
speed p¥ is first order. The curves of exact solutions and approximate solutions are almost identical as
shown in Figures 2 and 5. In Figures 1 and 4, as € values decrease, the graph approaches more towards the
coordinate axes in the boundary layer region around x = 0. In Figure 3 and 6, the errors in these regions
are maximum because of the irregularity caused by the sudden and rapid change of solution in the boundary
layer region around x = 0 for different values €. As a result, the proposed scheme has worked very well
as numerical results show. This method can also be used for solving other more different problems.
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