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ABSTRACT 
 

In this study, we evaluate the numerical solutions of the dissipative generalized symmetric regularized long wave equations 

with damping term. The problem is a nonlinear partial differential equations system. Numerical solutions of the problem are 

evaluated by using the meshless kernel-based method of lines for known initial-boundary conditions on the given solution domain. 

This used numerical method is known to be a truly meshless approximation. Radial basis functions are used as kernel functions on 

the meshless method. The performance of this meshless method is illustrated on many standard test problems. Numerical 

computations are performed by using Gaussian and Wendland’s radial basis functions. Error comparisons for computed 

numerical results are made in the sense of 𝐿∞ error norm. Graphs of wave simulations for test problems are plotted in this 

study. The results show that the used meshless method is suitable to solve numerically this specific type of nonlinear equations. 

 

Keywords: Meshless Method, Method of Lines, Damping term, Dissipative Symmetric RLW Equation 

 

 

1. INTRODUCTION 
 

The generalized symmetric regularized long wave (SRLW) equation has the following first-order 

equations system form: 

𝑢𝑥𝑥𝑡 − 𝑢𝑡 = 𝜌𝑥 +
1

𝑝
(𝑢𝑝)𝑥

𝜌𝑡 + 𝑢𝑥 = 0

 (1) 

where 𝑥 ∈  [𝑥𝐿 , 𝑥𝑅] , 𝑡 ∈ [0, 𝑇],  𝑝 ≥ 2 and 𝜌 and 𝑢 are the dimensionless electron charge density and 

the fluid velocity, respectively.  

 

While 𝑝 = 2 in Equation (1) symmetric regularized long-wave equation is obtained. SRLW equation 

was first described by Seyler and Fenstermacher [1] as a model of the propagation of weakly nonlinear 

ion-acoustic and space-charge waves.  

 

Guo [2] presented the existence, uniqueness and regularity of the numerical solutions for the periodic 

initial value problem of generalized SRLW equation. Also, solitary wave solutions of Equation (1) are 

evaluated as follows by Duan et. al in [3] 
 

𝑢(𝑥, 𝑡) = [
𝑝(𝑝 + 1)(𝑐2 − 1)

2𝑐
]

1
𝑝−1

sec ℎ2/(𝑝−1)  
𝑝 − 1

2𝑐
√𝑐2 − 1  (𝑥 − 𝑐𝑡)

 

 
(2) 

 

and  

𝜌(𝑥, 𝑡) =
1

𝑐
[
𝑝(𝑝 + 1)(𝑐2 − 1)

2𝑐
]

1
𝑝−1

sec ℎ2/(𝑝−1)  
𝑝 − 1

2𝑐
√𝑐2 − 1  (𝑥 − 𝑐𝑡)

 

 
(3) 
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where 𝑝 ≥ 2 is positive integer, 𝑐 is velocity and  𝑐2 > 1. Some articles about the SRLW equation are 

given in references [3 − 7]. 
 

In Equation (1), some physical phenomena such as the effect of gravity, resistance of the propagation 

medium and friction of air are neglected. However, these effects should be considered in the study of 

the movements of nonlinear waves. The dissipative generalized SRLW equation with damping terms is 

obtained by adding dissipative and damping terms to Equation (1). This equation has been defined in 

the following form by Zhou in [8]: 

𝑢𝑥𝑥𝑡 − 𝑢𝑡 + µ𝑢𝑥𝑥 = 𝜌𝑥 +
1

𝑝
(𝑢𝑝)𝑥

𝜌𝑡 + 𝑢𝑥 + 𝛾𝜌 = 0

 

 

(4) 

 

with initial conditions 

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝜌(𝑥, 0) = 𝜌0(𝑥),       𝑥 ∈  [𝑥𝐿 , 𝑥𝑅]   (5) 

 

and boundary conditions  

𝑢(𝑥𝐿 , 𝑡) = 𝑢(𝑥𝑅 , 𝑡) = 0,     𝜌(𝑥𝐿 , 𝑡) = 𝜌0(𝑥𝑅 , 𝑡),     𝑡 ∈ [0, 𝑇] (6) 

 

where µ and γ are positive constants. µ is the dissipative coefficient and γ is the damping term. In this 

study, numerical treatments will be performed for different values of 𝑝. 

 

While 𝑝 = 2 in Equation (4) dissipative symmetric RLW equation with damping term is obtained. If 

𝑝 ≥ 3 generalized forms of the equation is obtained. Some studies about the equation are given in the 

references [8-12]. 

 

The governing equation (4) is a nonlinear partial differential equations system. Since it is very difficult 

to find an analytical solution for the general case. Therefore, numerical solutions of the governing 

equation can be evaluated by using a suitable numerical technique. 

 

To our knowledge, Equation (4) is not solved by using the meshless kernel-based method of lines. That's 

why this method, this method is used in this paper to solve numerically the mentioned nonlinear 

equation. In algorithms, Gaussian and Wendland's compactly supported radial basis functions are used 

as kernel functions in the meshless method. For different values of 𝑝, numerical solutions will be 

obtained by using these kernel functions. 

  

The damping does not have an effect and dissipative is no appear on waveform for Equation (4) in the 

initial time. So the same initial conditions with generalized SRLW equation (1) are used for the 

numerical solution of  Equation (4). 
 

2. NUMERICAL METHOD 

 

The main purpose of this study is to obtain the numerical values of the unknown functions 𝑢(𝑥, 𝑡)  and 

𝜌(𝑥, 𝑡) in the solution domain [𝑥𝐿 , 𝑥𝑅] × [0, 𝑇]. For this purpose, the meshless method will be used with 

different radial functions. Approximation to the unknown functions 𝑢(𝑥, 𝑡) and 𝜌(𝑥, 𝑡) as defined in 

[13] as follows: 
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𝑢(𝑥, 𝑡) = ∑ 𝜈𝑗(𝑥)𝛼𝑗(𝑡)

𝑛

𝑗=1

,   𝜌(𝑥, 𝑡) = ∑ 𝑤𝑗(𝑥)𝛽𝑗(𝑡)

𝑛

𝑗=1

   
(7) 

 

where 𝛼𝑗(𝑡), 𝛽𝑗(𝑡)  are unknown time-dependent functions to be determined each time level as column 

vectors and 𝜈𝑗(𝑥), 𝑤𝑗(𝑥) are defined by any well-known radial basis functions. Derivatives in Equation 

(7) with respect to time and space variables can be described as: 

 

                                                 𝑢𝑡(𝑥, 𝑡) = ∑ 𝜈𝑗(𝑥)𝛼𝑗′(𝑡)

𝑛

𝑗=1

,   𝜌𝑡(𝑥, 𝑡) = ∑ 𝑤𝑗(𝑥)𝛽𝑗′(𝑡)

𝑛

𝑗=1

                          (8) 

 

                                            𝑢𝑥(𝑥, 𝑡) = ∑ 𝜈𝑗′(𝑥)𝛼𝑗(𝑡)

𝑛

𝑗=1

,   𝜌𝑥(𝑥, 𝑡) = ∑ 𝑤𝑗′(𝑥)𝛽𝑗(𝑡)

𝑛

𝑗=1

                              (9) 

 

                                                                𝑢𝑥𝑥𝑡(𝑥, 𝑡) = ∑ 𝜈𝑗′′(𝑥)𝛼𝑗′(𝑡)

𝑛

𝑗=1

                                                         (10) 

The formulas of the used basis functions are defined as follows: 

 

Gaussian radial basis function is an infinitely smooth function and it is defined in the following form: 

 

𝐺:      ϕ(𝑟) = exp (−
𝑟2

𝜀2)   
(11) 

 

where 𝑟 is the Euclidean distance between collocation points and 𝜀 is a shape parameter. 

 

Wendland’s functions [14] are a class of compactly supported radial basis function and have the 

following general form: 

 

 𝜙𝑙,𝑘(𝑟) = (1 − 𝑟)+
𝑛  𝑝𝑙,𝑘(𝑟) (12) 

with following conditions: 

 

(1 − 𝑟)+
𝑛 = {

(1 − 𝑟)𝑛 , 𝑖𝑓 0 ≤ 𝑟 < 1
0       , 𝑖𝑓 𝑟 ≥ 1 

 
(13) 

 

 

where 𝑝 is a prescribed polynomial for 𝑘 ≥ 1 and 𝑙 is the dimension number. In our calculations, 

following form of Wendland’s function is used: 

 

   𝜙7,5(𝑟) = (1 − 𝑟)+
12  (9 + 108𝑟 + 566𝑟2 + 1644𝑟3 + 2697𝑟4 + 2048𝑟5) (14) 

 

 

For ease of notation in tables 𝜙𝑙,𝑘(𝑟) will be used as 𝑊.  In approximation, the unknown functions’ 

computed values will be written in initial conditions (5) to find the numerical solutions of functions 𝑢 

and 𝜌. To apply the numerical scheme, derivatives of unknown functions 𝛼𝑗(𝑡) and 𝛽
𝑗
(𝑡)  are also 

required. The derivatives of unknown functions are taken with respect to time and spatial variables.  

 

Substituting Equations (7) − (10) derivatives into the main equations system (4) and rearrange the 

following equations system is obtained: 
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∑ 𝜈𝑗
′′(𝑥)

𝑛

𝑗=1

𝛼𝑗
′(𝑡) − ∑ 𝜈𝑗(𝑥)𝛼𝑗

′(𝑡)

𝑛

𝑗=1

+ µ ∑ 𝑣𝑗
′′(𝑥)

𝑛

𝑗=1

𝛼𝑗(𝑡) = ∑ 𝑤𝑗
′(𝑥)𝛽𝑗(𝑡) +

𝑛

𝑗=1

(∑ 𝜈𝑗(𝑥)𝛼𝑗(𝑡)

𝑁

𝑗=1

)

𝑝−1

∑ 𝑣𝑗
′(𝑥)𝛼𝑗(𝑡)

𝑁

𝑗=1

∑ 𝑤(𝑥)𝛽𝑗
′(𝑡)

𝑛

𝑗=1

+ ∑ 𝜈𝑗
′(𝑥)𝛼𝑗(𝑡) + 𝛾 ∑ 𝑤(𝑥)𝛽𝑗(𝑡)

𝑛

𝑗=1

= 0 

𝑛

𝑗=1

 

 

(15) 

 

 

The equations system (12) is solved by using an ode solver in the MATLAB. The system is written in 

the symbolic form as: 

(𝑉𝑥𝑥 − 𝑉) ∗ 𝛼′(𝑡) = −µ(𝑉𝑥𝑥 ∗ 𝛼(𝑡)) + (𝑊𝑥 ∗ 𝛽(𝑡)) + (𝑉 ∗ 𝛼(𝑡))
𝑝−1

 (𝑉𝑥 ∗ 𝛼(𝑡))

(𝑉𝑥 ∗ 𝛼(𝑡)) + (𝑊 ∗ 𝛽′(𝑡)) = − 𝛾(𝑊 ∗ 𝛽(𝑡))
 

 

(16) 

 

 

where the symbol ∗ means the pointwise product. Also, 𝑉, 𝑉𝑥, 𝑉𝑥𝑥, 𝑊 and 𝑊𝑥 are invertible matrices [15] 

consisted of 𝜈𝑗 (𝑥), 𝑤𝑗(𝑥),  𝛼(𝑡), 𝛼′(𝑡), 𝛽(𝑡) and 𝛽′(𝑡) are vectors consisted of 𝛼𝑗(𝑡) and its derivatives 

with respect to 𝑡. So following system of differential equations is obtained: 

 

𝛼′(𝑡) = (𝑉𝑥𝑥 − 𝑉)−1 ∗ (−µ(𝑉𝑥𝑥 ∗ 𝛼(𝑡)) + (𝑊𝑥 ∗ 𝛽(𝑡)) + (𝑉 ∗ 𝛼(𝑡))
𝑝−1

 (𝑉𝑥 ∗ 𝛼(𝑡)))

𝛽′(𝑡) = −𝑊−1 ∗ ( 𝛾(𝑊 ∗ 𝛽(𝑡)) + (𝑉𝑥 ∗ 𝛼(𝑡))

  

 

(17) 

 

 

Obviously the system (14) can be written in the following system: 

 
𝑑

𝑑𝑡
𝛼(𝑡) = 𝐹1(𝑡, 𝛼(𝑡), 𝛽(𝑡))

𝑑

𝑑𝑡
𝛽(𝑡) = 𝐹2(𝑡, 𝛼(𝑡), 𝛽(𝑡))

  

 

(18) 
 

 

where 
 

𝐹1(𝑡, 𝛼(𝑡), 𝛽(𝑡)) = (𝑉𝑥𝑥 − 𝑉)−1 ∗ (−µ(𝑉𝑥𝑥 ∗ 𝛼(𝑡)) + (𝑊𝑥 ∗ 𝛽(𝑡)) + (𝑉 ∗ 𝛼(𝑡))
𝑝−1

 (𝑉𝑥 ∗ 𝛼(𝑡)))

𝐹2(𝑡, 𝛼(𝑡), 𝛽(𝑡)) = −𝑊−1 ∗ ( 𝛾(𝑊 ∗ 𝛽(𝑡)) + (𝑉𝑥 ∗ 𝛼(𝑡))

 
(19) 

 

 

The system (15) is written in the vector form as follows 
 

𝑑

𝑑𝑡
𝑋(𝑡) = 𝐹(𝑡, 𝑋(𝑡)) (20) 

 

This first-order differential equation system is suitable to be solved by MATLAB solver. In our 

calculations, we used ode solver ode113. This is known as the Adams-Bashforth-Moulton method. 

Here, it can be used for any different method. 

 

3. NUMERICAL SIMULATIONS 

 

In the initial time, there isn’t any effect of damping and dissipation on the wave propagation. Thus, the 

governing equation (4) and generalized SRLW equation (1) have the same initial conditions. In other 

words, initial conditions for Equations (1) and (4) are the same to begin evaluations at 𝑡 = 0. There is 
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no exact solution of Equation (4) in the literature. Therefore, an error estimates method is used as in 

previous studies [8 − 11]. In this estimation method, the evaluated numerical solution for the selected 

fixed values of time step ∆𝑡 and space step ∆𝑥 is considered as a reference solution. We consider the 

solution on mesh ∆𝑥 = ∆𝑡 = 0.01 as the reference solution. Computed numerical solutions for larger 

time step and space step are compared with these reference solutions. Error comparisons will be made 

in the sense of 𝐿∞ error norm which can be calculated as follows: 

 

𝐿∞  = max
1≤𝑗≤𝑁

|𝑢𝑗
{𝑒𝑥𝑎𝑐𝑡}

− 𝑢𝑗
{𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙}

| 

 

In comparisons, we used step sizes for space and time as ∆𝑥 = ∆𝑡 = 0.2, ∆𝑥 = ∆𝑡 = 0.1, ∆𝑥 = ∆𝑡 =
0.05 and ∆𝑥 = ∆𝑡 = 0.02. Numerical experiments will be performed for µ = 𝛾 = 1  , µ = 𝛾 = 0.5 and 

𝑐 = 1.5 in the solution domain [−20,20] up to time 𝑇 = 5.  

 

3.1. Test Problems 

 

In this part, we present some numerical examples for different values of 𝒑. 
 

Case 1: When 𝑝 = 2, dissipative SRLW equations with damping term are obtained. Initial conditions 

from the solution functions (2) and (3) are taken as 

 

𝑢(𝑥, 0) =
5

2
𝑠𝑒𝑐ℎ2 √5

6
𝑥

 
  

 

(21) 

 

𝜌(𝑥, 0) =
5

3
𝑠𝑒𝑐ℎ2 √5

6
𝑥

 
  

 

 (22) 

 

 

Numerical values of 𝑢(𝑥, 𝑡) and 𝜌(𝑥, 𝑡) for different values of ∆𝑥 and ∆𝑡 are evaluated. The errors in 

the sense of 𝐿∞ norm for 𝑢 and 𝜌 are presented in Tables 1 and 2. Wave motions for 𝑢 and 𝜌 are plotted 

in the Figures (1 − 6) at different times. While time increases, it is seen that the height of wave functions 

𝑢 and 𝜌 decreases with the effect of damping term and dissipation. 

 

The value of the error norms decreases gradually as the value of ∆𝑥 = ∆t approaches the value in the 

reference solution. 

 
Table 1. Error norms of numerical solution 𝑢(𝑥, 5) for 𝑝 = 2. 

 

RBF ∆𝑥 = ∆𝑡 = 0.2 ∆𝑥 = ∆𝑡 = 0.1 ∆𝑥 = ∆𝑡 = 0.05 ∆𝑥 = ∆𝑡 = 0.02 

µ = 𝛾 = 1 

G 1.00871e-03 5.70213e-04 2.78068e-04 7.36005e-05 

W 8.20198e-03 5.59855e-04 2.98513e-04 3.80913e-05 

µ = 𝛾 = 0.5   

G 6.33803e-04 3.65172e-04 1.80020e-04 4.79804e-05 

W 3.88077e-03 4.74889e-04 2.05207e-04 6.80983e-05 
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Table 2. Error norms of numerical solution 𝜌(𝑥, 5) for 𝑝 = 2. 

RBF ∆𝑥 = ∆𝑡 = 0.2 ∆𝑥 = ∆𝑡 = 0.1 ∆𝑥 = ∆𝑡 = 0.05 ∆𝑥 = ∆𝑡 = 0.02 

µ = 𝛾 = 1 

G 3.35005e-04 1.89576e-04 9.24962e-05 2.50042e-05 

W 1.42835e-03 1.84598e-04 9.85389e-05 2.25869e-05 

µ = 𝛾 = 0.5   

G 9.57927e-04 1.70524e-04 9.67215e-05 2.28051e-05 

W 1.39325e-03 2.46834e-04 2.45140e-04 3.17313e-05 

 

 
 

Figure 1. Wave forms at the initial and end time 

 

 

 
 

Figure 2. Wave forms at the initial and end time 
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Figure 3. Simulation of the wave 𝑢(𝑥, 𝑡) 

 

 
Figure 4. Simulation of the wave 𝑢(𝑥, 𝑡) 

 

 

 
Figure 5. Simulation of the wave 𝜌(𝑥, 𝑡) 
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Figure 6. Simulation of the wave 𝜌(𝑥, 𝑡) 

 

 

Case 2 : When 𝑝 ≥ 3,  dissipative generalized SRLW equations with damping term is obtained. In this 

case, we take 𝑝 = 3, µ = 𝛾 = 1 and 𝑐 = 1.5. Initial conditions from Equations (2) and (3) are obtained 

as follows: 

𝑢(𝑥, 0) = √5𝑠𝑒𝑐ℎ
√5

3
𝑥

 
  

 

(23) 

 

𝜌(𝑥, 0) =
2√5

3
𝑠𝑒𝑐ℎ

√5

3
𝑥

 
  

 

(24) 

 

 

Numerical experiments will be performed in the solution domain [−20,20] up to time 𝑇 = 5.0. The 

errors in the sense of 𝐿∞ are compared with the reference solutions. The values of error norms are shown 

in Tables 3 and 4 depending on the selection of time and space step sizes.  

 

As in the previous case, the error values are getting smaller. Profiles of waves are plotted in the Figures 

(7 − 12). As time progresses, the waves are also smaller depending on the damping and dissipation. 
 

 

 

Table 3. Error norms of numerical solution 𝑢(𝑥, 5) for 𝑝 = 3. 
 

RBF ∆𝑥 = ∆𝑡 = 0.2 ∆𝑥 = ∆𝑡 = 0.1 ∆𝑥 = ∆𝑡 = 0.05 ∆𝑥 = ∆𝑡 = 0.02 

µ = 𝛾 = 1 

G 
4.22019e-04 2.37890e-4 1.15819e-4 3.06233e-05 

W 
6.79394e-04 1.90328e-04 1.42247e-04 3.13538e-05 

µ = 𝛾 = 0.5   

G 2.61658e-04 1.50345e-04 8.88174e-05 1.93906e-04 

W 2.97575e-04 1.80756e-04 7.92676e-05 3.06567e-05 
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Table 4. Error norms of numerical solution 𝜌(𝑥, 5) for 𝑝 = 3. 
 

RBF ∆𝑥 = ∆𝑡 = 0.2 ∆𝑥 = ∆𝑡 = 0.1 ∆𝑥 = ∆𝑡 = 0.05 ∆𝑥 = ∆𝑡 = 0.02 

µ = 𝛾 = 1 

G 1.41647e-4 7.99490e-5 3.89493e-5 1.05276e-5 

W 1.84418e-04 6.25287e-05 5.50829e-05 4.75557e-05 

µ = 𝛾 = 0.5   

G 1.38461e-04 1.37569e-04 1.37588e-04 3.82329e-04 

W 1.40798-04 8.56822e-05 6.47036e-05 4.64521e-05 

 

 
Figure 7. Wave forms at the initial and end time 

 

 

 
Figure 8. Wave forms at the initial and end time 
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Figure 9. Simulation of the wave 𝑢(𝑥, 𝑡) 

 

 

 
Figure 10. Simulation of the wave 𝑢(𝑥, 𝑡) 

 

 

 
Figure 11. Simulation of the wave 𝜌(𝑥, 𝑡) 
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Figure 12. Simulation of the wave 𝜌(𝑥, 𝑡) 

 

 

Case 3: Now for Dissipative GRLW equations with Damping term, we take 𝑝 = 5, µ = 𝛾 = 1 and       

𝑐 = 1.5. The simulation is carried out over the same domain. The initial conditions are 

 

𝑢(𝑥, 0) = √
25

2

4
√𝑠𝑒𝑐ℎ 

2√5

3
 𝑥

 

  

 

(25) 

 

𝜌(𝑥, 0) =
2

3
 √

25

2

4
√𝑠𝑒𝑐ℎ 

2√5

3
 𝑥

  

  

 

(26) 

 

 

A comparison with the reference solution is shown in Tables 5 and 6. As in other cases, the decrease in 

the error values is associated with the selection of ∆𝑥 and ∆𝑡. Simulations of two damped wave profiles 

are plotted in the Figures (13 − 18). It is seen that wave moves to the right as damped when time is 

increasing. 

 

 

 
Figure 13. Wave forms at the initial and end time 
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Figure 14. Wave forms at the initial and end time 

 

 

 
Figure 15. Simulation of the wave 𝑢(𝑥, 𝑡) 

 

 

 
Figure 16. Simulation of the wave 𝑢(𝑥, 𝑡) 
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Figure 17. Simulation of the wave 𝜌(𝑥, 𝑡) 

 

 

 
 

Figure 18. Simulation of the wave 𝜌(𝑥, 𝑡) 

 

 
Table 5. Error norms of numerical solution 𝑢(𝑥, 5) for 𝑝 = 5. 

 

RBF ∆𝑥 = ∆𝑡 = 0.2 ∆𝑥 = ∆𝑡 = 0.1 ∆𝑥 = ∆𝑡 = 0.05 ∆𝑥 = ∆𝑡 = 0.02 

µ = 𝛾 = 1 

G 2.24930e-04 1.265153e-04 6.15191e-05 1.62531e-05 

W 2.10505-04 1.51494e-04 6.23328e-05 1.99231e-05 

µ = 𝛾 = 0.5   

G 1.37951e-04 7.90442e-05 4.37893e-05 1.03305e-05 

W 1.62994e-04 9.63008e-05 7.31232e-05 5.91318e-05 
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Table 6. Error norms of numerical solution 𝜌(𝑥, 5) for 𝑝 = 5. 
 

RBF ∆𝑥 = ∆𝑡 = 0.2 ∆𝑥 = ∆𝑡 = 0.1 ∆𝑥 = ∆𝑡 = 0.05 ∆𝑥 = ∆𝑡 = 0.02 

µ = 𝛾 = 1 

G 7.58870e-05 4.27412e-05 2.07974e-05 5.62044e-06 

W 7.04934e-05 5.09357e-01 2.08800e-05 1.40657e-05 

µ = 𝛾 = 0.5   

G 1.37951e-04 8.35726e-05 1.101632e-04 9.26203e-06 

W 9.02156-05 9.16636e-05 1.35562e-05 1.34886e-05 

 

4. CONCLUSION 

 

The meshless kernel-based method of lines is implemented for the numerical solutions of the Dissipative 

Generalized Symmetric Regularized Long Wave (SRLW) Equations with Damping term. Since there 

isn’t an analytical solution of the governing equation a reference solution is considered as an exact 

solution for small step size. The evaluated numerical results using the larger step values are compared 

with the reference solutions. In this way, the accuracy of the results is tested in the sense of 𝐿∞ error 

norm. When ∆𝑥 and ∆𝑡 approach the used values in the reference solution, the value of error norms 

decreases.  

 

In the figures, the motion of the wave was monitored. The height of wave crest decreases due to the 

effect of the damping term γ and the dissipation term µ. Also, it is observed that the values of dissipation 

term µ and damping term γ are chosen bigger the height of wave decrease faster. 

 

As a result, it is said that the numerical calculations by using this meshless method are very successful 

and the method can be used as a powerful problem-solving method. 
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