
 
ISTANBUL UNIVERSITY –  
JOURNAL OF ELECTRICAL & ELECTRONICS ENGINEERING 
 

 
YEAR     
VOLUME 
NUMBER  
 

 
: 2003 
: 3 
: 1 
 

 
(673-681) 

 

 
Received Date : 10.04.2002 
Accepted Date: 12.12.2002 

 
  

 
SINGLE-FRAME SUPER-RESOLUTION BY INFERENCE 

FROM LEARNED FEATURES 
 

Olcay KURŞUN1   Oleg FAVOROV2 

 
1,2 School of Electrical Engineering and Computer Science 

University of Central Florida 
Orlando, FL 32816, USA 

  
 

kursun@cs.ucf.edu    favorov@cs.ucf.edu 
 
 

ABSTRACT 
 

Super-resolution is the creation of higher resolution views of pixel-based images through 
interpolation between the original pixels. Greater super-resolution can be achieved by taking 
advantage of local regularities inherent in natural images. In this paper, to learn regularities, we 
make use of the recently proposed SINBAD model of how the cerebral cortical network learns 
regularities by discovering regularity-simplifying environmental features [5, 14]. Using the 
regularities discovered with the SINBAD approach, we were able to predict more accurately the 
interpolated pixels from the ones in the original image and were able to generate visually plausible 
fine spatial details in the expanded image. 
 
Keywords: Neural Network Models, Learning Algorithms, Neurobiology. 
 

I. INTRODUCTION  
Super-resolution refers to generation of higher 
resolution views of pixel-based image 
representations. One way of achieving super-
resolution is to integrate information over 
multiple slightly shifted frames of the same 
image.  In contrast, single-frame super-
resolution is fundamentally a task of 
interpolating between the pixels in the original 
single frame image. Two-dimensional cubic 
spline interpolation [9] is probably the most 
commonly used interpolating technique (Adobe 
Photoshop, for example, uses it for image 
enlargements).  However, cubic spline suffers 

from blurring of lines, edges, and fine textural 
details in the enlarged image.   
 
Baker and Kanade [2] and Freeman et al. [8] 
propose that greater super-resolution can be 
achieved by taking advantage of local 
regularities inherent in natural images. Local 
groups of pixels in natural images have much 
less variability than they would have in 
randomly generated images (e.g., [6]).  Such 
regularities can be used to predict more 
accurately the interpolated pixels from the ones 
in the original image and thus generate visually 
plausible fine spatial details in the expanded 
image. 
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Identifying regularities, however, is a difficult 
task, and more so for more useful, higher-order 
regularities. A promising approach to 
discovering regularities has been developed by 
Favorov and Ryder [5, 14], aimed at explaining 
how the cerebral cortical network discovers 
regularities in its sensory inputs and how it uses 
these regularities to fill-in missing information.  
Implemented in the form of a neural network 
(SINBAD network) that is modeled after the 
cerebral cortical network, this approach is likely 
to be very successful in the task of super-
resolution. 
 
In this paper we briefly describe the SINBAD 
approach to discovering regularities, review the 
general design of the SINBAD network, explain 
how this network can be used for single-frame 
super-resolution, and present encouraging 
results of our initial experiments on natural 
images. 
 

2.  SINBAD APPROACH 
A major source of difficulties in learning 
regularities is not knowing about the existence 
of some of the factors contributing to them. If 
an environmental variable that plays an 
important role in some regularity is not among 
the variables known to the observer, but is 
reflected implicitly in the behaviors of some of 
the known variables, then the observer can still, 
in principle, learn the regularity.  However, the 
regularity will now become more complex, 
involving all these extra variables with their 
implicit information about the missed key 
variable.  This involvement of more variables 
and, likely, extra nonlinearities contributed by 
them, will make the regularity more difficult to 
learn.  Thus, to learn regularities, it is crucial 
first to learn separately the identities of as many 
environmental factors contributing to those 
regularities as possible. Clark and Thornton [4] 
call this “trading representation against 
computation.”     
 
According to Becker and Hinton [3], 
environmental variables that simplify 
regularities can be discovered through a search 
for different, but nevertheless highly correlated 
functions of any kind over non-overlapping 
subsets of the known variables. Such correlated 
functions must have a reason for their statistical 
interdependence, a causal source in the 

environment, and therefore these functions 
identify this source. That is, the correlated 
functions over different sets of environmental 
variables express a hidden environmental 
variable (a previously unrecognized feature of 
the environment) that is responsible for the 
correlation [3, 5, 12, 14].   
 
Such hidden variables are very likely to have 
other effects in the environment, besides the 
ones that led to their recognition.  And once 
they are recognized, it will become easier to 
notice their other effects.  Furthermore, once a 
number of hidden variables are discovered, 
correlated functions can be searched for among 
them, thus discovering higher-order hidden 
variables, etc. 
 
These new variables, as prominent 
environmental factors, will have inferential 
significance for other variables and thus will 
provide inferential links between the variables 
used to determine their states, and the variables 
whose states can be inferred from them.  Thus, 
placing the newly derived variables in-between 
the original ones will break down the complex 
inferential relations among the original 
variables into simpler inferential relations, from 
the original variables to the derived ones, and 
from the derived variables to other original 
ones. The more inferentially significant 
variables are added to the repertoire (deriving 
them from the original and the already derived 
ones), the more distant inferential relations will 
be broken down into ones that are simpler and 
easier to learn. 
 
Thus, the general approach should aim to derive 
as many regularity-simplifying variables as 
possible, and learn as many ways as possible to 
infer each variable from the other ones.  By thus 
expressing each variable in many different ways 
in terms of other variables, which in turn are 
expressed in terms of yet other variables, etc., 
this approach will construct a rich web of 
inferential relations.  In this web all the 
discovered inferential relations will be tied 
together into a single functional entity – an 
inferential model of the observed environment.   
 

3.  SINBAD CELL 
Favorov and Ryder [5, 14] proposed that the 
search for regularity-simplifying environmental 
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variables is performed in the cerebral cortex by 
the dendritic trees of individual pyramidal cells 
(the main type of neurons there).  According to 
the SINBAD model, the basic function of each 
pyramidal cell is (1) to discover and represent 
one of the regularity-simplifying environmental 
variables, and (2) to learn to infer the state of its 
variable from the states of other variables, 
represented by other pyramidal cells. A network 
of such cells – each cell just attending to 
representation of its variable – can function as a 
sophisticated and useful inferential model of the 
outside world. 
 
In the SINBAD model of pyramidal cells, 
several dendrites of a cell teach each other to 
produce correlated outputs to their different 
inputs.  As a result, the cell as a whole tunes to 
the environmental variable that is responsible 
for correlation.  Since each dendrite should be 

capable of learning functions over its inputs that 
are likely to be nonlinear, dendrites are viewed 
as functional analogs of error backpropagation 
networks [13], and a pyramidal cell is modeled 
as a set of several backprop nets whose outputs 
are added together to produce the cell’s output. 
The cell’s output is also used as the training 
signal for each dendrite.   
 
While real pyramidal cells have 5-8 dendrites, 
for simplicity the model cells so far have been 
given only 3 dendrites (Figure 1). Two of the 
dendrites, representing basal dendrites of 
pyramidal cells, are given afferent inputs 
carrying information about the states of 
environmental variables. The third dendrite, 
representing the apical dendrite of pyramidal 
cells, is given both afferent inputs and lateral 
inputs from other SINBAD cells. 

 
 

Σafferent
inputs

afferent
inputs

afferent and lateral inputs

Apical dendrite

Basal dendriteBasal dendrite

Soma

 

Figure 1.  The SINBAD model of a cortical pyramidal cell with three dendrites connected to the 
soma (shown as a triangle).  Each dendrite is modeled as an error backpropagation network with 
one output unit and a single layer of hidden units. 
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The activity of a hidden unit h in dendrite d is 
computed as a sigmoid function of the activities 
of its input sources: 
 

)tanh( ,,,, idhidihd AwH ⋅Σ= ,                    (1) 

 
where Ad,i is the activity of input source d,i and 
wd,i,h is the weight of its connection onto the 
hidden unit h of dendrite d.  The activity of the 
output unit, i.e. the output of dendrite d, is: 
 

d
h

hdd HwD ,

50

1
, ⋅= ∑

=

,                               (2) 

 
where wd,h is the weight of the connection from 
the hidden unit d,h to the output unit. The 
outputs of the three dendrites are summated to 
produce the cell’s output: 
 

21 DDDA ++= .                                (3) 
 
The cell’s output A is the principal contributor 
to the training signal T, used to adjust the 
weights of connections on the three dendrites. 
Additional factors contributing to the training 
signal are:  (1) the average output activity of the 
cell, Ā, driving the cell to have Ā = 0;  (2) 
deviation of the current output activity from the 
average, A – Ā, designed to expand the dynamic 
range of output values; and (3) lateral inhibition 
from other SINBAD cells, I.  Thus, 
 

IAAAAT −−⋅+⋅−= )(βα ,            (4) 
 
where α and β are scaling coefficients. 
Coefficient β  is determined by the variability 
of the output activity: smaller the variability, 
greater the value of β.  It is computed as: 
 

[ +

−⋅−= ||max AAγββ ] ,                      (5) 
 
where βmax and γ are controlling parameters, 
and [ . ]+ indicates that if the quantity is 
negative, the value is to be taken as zero. 
 
The somal inhibition I is computed as: 

),( jj
j

j AAwI −⋅⋅= ∑ −ι                         (6) 

where ι is a scaling constant, and , A−
jw j and 

jA  are the somal inhibitory connection weight, 
activity, and average activity, respectively, of 
SINBAD cell j.  The task of somal inhibition is 
to drive SINBAD cells to tune to different 
features of the environment, thus maximizing 
the number of environmental variables 
expressed by the network as a whole.  To 
accomplish this task [7], these connections are 
made anti-Hebbian (see below).   
 
The connections of the hidden units were 
adjusted according to the error backpropagation 
algorithm of Rumelhart et al. [13]. Specifically, 
the error signals δd are first computed for the 
three dendrites as: 
 

.3 dd DT ⋅−=δ                                        (7) 
 
For the hidden units, δ is backpropagated as: 
 

).1( 2
,,, hdhddhd Hw −⋅⋅= δδ                    (8) 

 
Connection weights are adjusted by: 
 
                                              

hdidihid Aw ,,,, δµ ⋅⋅=∆ and      

∆wd,h = µh ⋅ Hd,h ⋅δ d                                 (9) 
 
where µi and µh are learning rate constants for 
the input and hidden unit connections.  Somal 
inhibitory connections are adjusted by: 
 

[ ],)()( AAAAww jjjsj −⋅−+−⋅=∆ −− µ        (10) 
 
where µs is a learning rate constant, and , A−

jw j 

and jA  are the somal inhibitory connection 
weight, activity, and average activity, 
respectively, of presynaptic SINBAD cell j.  
This synaptic learning rule is anti-Hebbian in its 
effect, because it makes connection  track 
the covariance in activities of the two connected 
cells. 

−
jw
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4.  SINBAD NETWORK 
In our adaptation of the SINBAD network to 
the problem of image super-resolution, it 
receives its input from a 7x7 pixel window 
placed at various locations in the training or 
testing images. To enhance the contrast among 
the pixels, the value of the central pixel is 
subtracted from the values of all the other pixels 
and these 48 pixels are used as the original 
environmental variables.  Thirty-two SINBAD 
cells are organized into a “cortical” layer 
(Figure 2). Upon an exposure to an image, the 
sensory information from the pixels is 
transmitted to SINBAD cells via relay cells of 
the “thalamic” layer, with each thalamic cell 
reporting the state of one of the pixels.  The 
thalamic layer consists of 48 cells, representing 
the 48 pixels. 
 
For simplicity, in this exercise we do not take 
advantage of the cortical topographic mapping 
mechanisms [5] to arrange the thalamic 
connections among the dendrites of SINBAD 
cells. Instead, we distribute thalamic 

connections among SINBAD dendrites 
randomly, and thus not as efficiently as might 
otherwise be possible. Specifically, each 
thalamic cell connects to every SINBAD cell on 
the apical dendrite and on one of that cell’s two 
basal dendrites, chosen randomly for each 
thalamo-cortical pair.  Thus, basal dendrites of 
different SINBAD cells have afferent 
connections from different combinations of 
thalamic cells.  Furthermore, the two basal 
dendrites on the same SINBAD cell have 
connections from different thalamic cells and 
therefore receive explicit afferent information 
about different pixels. Consequently, in their 
search for correlated output functions, the two 
basal dendrites will have to discover and learn 
to respond to whatever implicit information 
they have in common, thus making this 
information explicit in the cell’s output.  In 
effect, the basal dendrites will tune the cell to 
one of the local image features (hidden 
variables) that contribute as significant factors 
to local image regularities. 
 

 
 

cortical layer

thalamic
layer

pixel 1        IMAGE   pixel 48

1 48

1 32

 

Figure 2.  The connectional diagram of the SINBAD network.  Thalamic and SINBAD cells are 
shown as solid circles and triangles, respectively, with their dendrites drawn as miniature hidden 
layer-to-output unit nets.  For clarity, output connections are shown only for one thalamic and one 
SINBAD cell. 
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SINBAD cells are interconnected via lateral 
connections, with each cell connecting to the 
apical dendrite of every other cell.  That means 
that each apical dendrite receives all the 
afferent information available from the thalamic 
layer about the pixels and all the lateral 
information available from other SINBAD cells 
about image features discovered by them.  In 
each SINBAD cell, then, the apical dendrite 
will have the most diverse and comprehensive 
information about the local image, which it will 
use to compute the state of the image variable 
chosen for that cell by its basal dendrites.  Thus, 
the web of inferential relations among image 
variables is captured in the SINBAD layer 
specifically by the net of its apical connections. 
 
SINBAD cells are also interconnected via 
inhibitory somal connections, with each cell 
connecting to 15 other, randomly chosen, 
SINBAD cells. The purpose of these 
connections is to make SINBAD cells tune to 
different image features. Finally, every 
SINBAD cell has a connection to every 
thalamic cell.  This feedback system of 
corticothalamic connections implements 
Mumford’s [10] idea of the thalamus being used 
by the cortex as a “blackboard,” on which the 
cortex draws its interpretation of the attended 
subject. The web of inferential relations learned 
by the cortical network acts as an inferential 
model of the outside world, and this internal 
model projects its picture of the outside world 
back on the thalamus, so that it can be returned 
again to the cortex for another pass of 
inferential adjustment and elaboration, and so 
on. This will enable the cortical inferential 
model to fill-in holes, when they happen, in the 
raw picture of the world that the thalamus 
receives from its sensory channels.  We will use 
this “filling-in” function of corticothalamic 
feedback to compute the values of the 
interpolated pixels in the super-resolution 
image. 
 
To implement Mumford’s idea, each thalamic 
cell is given a dendrite in the form of a 
backpropagation network, identical to that used 
to represent dendrites of SINBAD cells (eqs. 1, 
2). Hidden units of this dendrite receive 
connections from all the SINBAD cells. When a 
thalamic cell receives direct information from 
the outside world, it’s output is the average of 

the value of the pixel it represents and the 
output of its feedback dendrite.  But, when the 
cell does not receive information from the 
outside world, then its output is equal to the 
output of its feedback dendrite.  The weights of 
input connections to hidden units of the 
thalamic dendrites and of hidden unit 
connections to the output unit are adjusted by 
the error backpropagation algorithm (eqs. 7-9), 
using the output of the thalamic cell as the 
training signal T.  
 

5.  RESULTS 
After initially setting all the adjustable 
connections to randomly chosen strengths w’s, 
the network was exposed to grayscale images of 
grass, bushes, and landscapes. Each exposure 
lasted 7 time steps, during which the states of 
the SINBAD cells and the thalamic dendrites 
were computed iteratively from their previous 
states, thus giving lateral interactions among 
SINBAD cells time to express themselves. 
After the seventh time step, all the cortical and 
thalamic connections were adjusted according 
to the learning algorithms described above.  On 
50% of the image exposures, the eight central 
pixels were not shown to the network; i.e., their 
states were not given to the thalamic cells 
representing them, instead making those cells 
use cortical feedback to determine their outputs.  
 
The network was trained on 2000000 image 
exposures. During this time the dendrites in 
each SINBAD cell learned to produce closely 
correlated outputs, indicating that they tuned to 
some orderly local image feature. After 
training, the network was exposed to images in 
which every 2 out of 3 pixels in each dimension 
were blanked out (an example is shown in 
Figure 3). The network’s task was to infer the 
values of these missing pixels from the values 
of the remaining pixels. This inference is 
performed by the SINBAD layer and, since the 
SINBAD layer projects its representation of the 
outside world back on the thalamic layer, a 
thalamic cell that was denied the external 
information about the state of the pixel it 
represents should nevertheless represent that 
state more or less accurately, being informed of 
it by the SINBAD layer. 
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Thus, to fill-in the image, all the blanked out 
pixels were first given zero value. Next, the 
network’s 7x7 window was scanned over the 
entire image in 3-pixel steps, every time 
centered on one of the known pixels. The eight 
pixels around the central one were not shown to 
the thalamic cells, making the network infer 
them from the surrounding pixels. The not-
shown pixels were then assigned the values 
predicted by the network (i.e., the values of the 
thalamic cells representing those pixels). The 
image was scanned 7 times, during which the 
pixels gradually converged on the stable values. 
 
A typical result is shown in Figure 3. For a 
comparison we also show a cubic spline 

interpolation of the same image. This 
comparison shows that the SINBAD 
interpolation is visually significantly better than 
the cubic spline interpolation, filling the 
reconstructed image with realistic fine spatial 
details, such as sharp lines and edges. Some 
local distortions in the SINBAD reconstruction 
become apparent, when it is compared with the 
true image; specifically, some lines and edges 
are broken down into separate segments in the 
reconstructed image. These local distortions are 
due to the limited, 7x7 pixel, size of the 
SINBAD viewing window we used in this 
study. We expect that larger-size windows will 
alleviate this problem. 
 

 

 

Figure 3.  Image super-resolution.  A. The original image.  B. The reduced image in which every 2 out of 3 
pixels in both directions are masked. The task of super-resolution in this exercise is to reconstruct the masked 
pixels and thus approximate the original image.  C. SINBAD network’s reconstruction of the reduced image.  
D. Reconstruction of the reduced image by cubic spline interpolation. Note that D image is significantly 
blurrier than C image. 
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6.  CONCLUSION 
These initial results of using the SINBAD network 
for image super-resolution are very promising. They 
support the idea of Baker and Kanade [2] and 
Freeman et al. [8] that greater super-resolution can 
be achieved by taking advantage of higher-order 
regularities present in images at various spatial 
scales. The main aim of this paper is to relate the 
SINBAD approach to discovering regularities to the 
problem of super-resolution and to describe the basic 
design of the SINBAD network in its application to 
image enlargement.  
 
The network design described here is a minimal one, 
and in future we plan to expand it by incorporating 
additional features of the brain’s visual information 
processing. The planned additions include the 
following. First, we should incorporate visual data 
preprocessing, performed in the retina, which 
optimizes the input reaching the cortex by 
decorrelating information carried by individual 
channels [1].  
 
Next, the second stage of visual preprocessing is 
performed by the input layer of the primary visual 
cortex, resulting in extraction of such primitive 
features as local lines and edges [11]. By performing 
these operations on our image data prior to their 
delivery to the SINBAD layer will free SINBAD 
cells to learn higher-order visual features, enabling 
the network to make more insightful inferences. 
 
Finally, just as the cortex is made up of multiple 
areas that perform progressively higher-level 
processing, the SINBAD network also should be 
expanded to include more than one layer of SINBAD 
cells. This will enable higher-level SINBAD cells to 
learn progressively higher-order visual features of 
significance to image regularities, thus enhancing the 
network’s super-resolution capabilities.   
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