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ABSTRACT 
 

In this paper, we use a brand new chess engine programming technique which we name PECP 
(Positional Evolutionary Chess Programming), that brings the Artificial Intelligence and Genetic 
Programming approaches together, to construct a chess endgame analyzing engine. Throughout the 
paper, the technique and the algorithm are discussed in detail. Also,  using PECP, an  example 
program (RETI V1.0)  aimed to prove the correctness and performance of the rule-based theory and 
algorithm is written in PROLOG language. 
 
Keywords:  Genetic Programming, Chess Play, Endgame Engine , Positional Rule-based 
 

I. INTRODUCTION  
Evolutionary Computing (EC) is a rapid 
devoloping area in Computer Science.  It has 
been used for a wide range of applications from 
optimization, modeling and simulation to 
entertaintment.   
 
The one of  its important application areas is the 
chess programming  The complexity of the 
search space in chess is far beyond the 
imagination.  To be search exhaustively, for 
interesting games, trees of  possible 
continuations are very complex. Such complexity 
makes it practically impossible to evaluate all 
possible next moves that would occur from an 
initial position with any recent computer 
available. Thus, intelligent methods for tracing 
the search tree are necessary.   
 

The most popular among them is the minimax 
principle[2], was introduced by Shannon (1950).  
In minimax principle the search tree is only 
traced down to a few levels and a general idea of 
the forthcoming moves is predicted. For the 
nodes in the search tree represent the board 
positions, a minimax run can be schematized just 
as the fig.1.  

    
The minimax algorithm has to visit all of the 
nodes in the search tree before selecting the 
optimum move line indicated by bold arrows in 
fig.1. For this reason, a more economical 
approach inspired by the minimax principle 
called alpha-beta pruning, uses an advanced 
version of the minimax algorithm. Here, the 
algorithm keeps the minumum weight value 
estimated so far  (alpha) along with the maximum 
weight value (beta).  
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While evaluating some other node, if beta is 
exceeded, the process stops tracing on that branch 
and advances the search on another one[1]. 
 

 
 
 
 
 
 

 
 

 
 
 
 
 

Figure 1.  Minimax optimum play. 
 
[Root node indicates the initial position and its 
corresponding weight. The player with side to 
move is denoted as MAX and the opponent as 
MIN.MAX to play selects the highest weighted 
move and MIN to play selects the lowest]. 
The basic alpha-beta algorithm is as follows; 

I. Start with position a. 
II. Move down to b. 

III. Move down to d. 
IV. Take the maximum weight value among 

d’s children, (alpha). 
V. Backtrack to b and move down to e. 

VI. Search for a weight value among e’s 
children, w( max e), which  is greater 
than  alpha. When you encounter such a 
value, stop the search immediately. 
Because this is enough for MIN to 
realize that there is a better path for 
MAX after selecting move e than the 
successors of move d. This means MIN 
can decide position e is inferior for 
itself than position d, even without 
investigating all children nodes 
connected to node e [2]. 

  
In 1975, it was developed a more compact 
formulation of the above algorithm by Knuth and 
Moore  using the neg-max principle instead of 
minimax.  In 1980 and 1982-85, Advice 
Language approach using pattern knowledge 
(positional approach) was  introduced by Michie 
and developed by Bratko respectively.    
 
 

On the other hand, as opposed to search intensive 
approach, the different method to chess 
programming, knowledge-intensive (tactical) 
approach was introduced by Berliner and Pitrat 
in 1977.   
 
But, the increasing power of  computer hardwire 
and the implementing of special purpose chess 
hardwire have effected the search speed of  
millions of positions per second.  So, search 
intensive approach has gained the superiority on 
the knowledge intensive approach.  
 
Nearly all commercial chess engines use alpha-
beta pruning or advanced versions of it. For 
instance one of the most popular commercial 
chess engines Deep Junior, uses a method called 
Brute-Force approach culminated in 1997 which 
allows the program to ignore moves that threaten 
nothing in addition to alpha-beta pruning. This 
enables the tracing to dive deeper in the search 
tree but also creates a possibility to 
underestimate some good lines.   However, it has 
the shortcoming of the program.  
 
In this study,  using  genetic and artificial 
intelligent techniques, a new algorithm depends 
on the positioanal rule-based approach  is 
presented on the chess endgame application.  
 
 
2.   THE  APPROACH  METHOD 
In high level chess, there are two main styles of 
play;  tactical and positional.  
 
As it is well known, tactical play depends on 
calculating N moves further and discovering 
some piece capture there.  From tactical point of 
view, any recent computer chess program that 
chiefly uses alpha-beta pruning  can be really 
strong, but, as general, it is not  strong  from 
positional aspects.  
 
Opposed to tactical play, positional play requires 
strict book knowledge on positional themes such 
as centralization, open files, over-protection or 
maneuvering against weaknesses, etc [7].  
Positional play grants us the ability to choose the 
best move ‘without’ calculating N moves further. 
A positional player just examines the position; 
the relative places of the pieces, strong and weak 
points of both the enemy and his/her own, again 
he/she investigates the board from the view of 
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positional opportunities which is formally called 
‘small advantages’ that can only be obtained by 
the accompaniment of the ‘sense’ that leads to a 
‘plan’. Positional play depends on rules which 
are accepted as guidelines for specific chess 
phases. 
 
Although positional rules are the fundamental 
parts of chess, it’s interesting that there are few 
studies for rule-based computer chess 
programming in the literature and they are at 
most designed as natural language advice 
engines for intermediate players [5]. The main 
reason for rule-based programming being not so 
admired relies on the logical claim that one 
cannot generate every general rule, or a series of 
general rules which would cover all types of 
positions that may arise in chess. Although this 
may seem quite reasonable, such a claim just 
refutes itself because there is no need to find 
such general rules that can be applied to any 
probable random chess position while 
programming. It’s enough to express sufficient 
number of such rules. In chess, sometimes you 
have to give up a piece of your own in order to 
capture a more valued piece after N number of 
moves which we name ‘piece sacrifice’. Another 
claim against rule-based programming is said to 
be the impossibility of making piece sacrifices 
with such a chess engine. The claim depends on 
this theme; if you don’t calculate N moves 
further you will not be able to see such an 
advantaged line of play because giving up a 
piece always seems disadvantageous within the 
scope of one move.  
 
In the next chapter, using the positional rule-
based  approach, the PECP algorithm is given in 
detail,  on an endgame  application. 
 
3.    PECP  ALGORITHM   
PECP algorithm was intended to be a Genetic 
Algorithm (GA), so the terminology used here 
belongs mainly to Genetic Programming (GP). 
For GP being a relatively new programming 
technique, it’s important to have some biological 
background to understand the terminology here, 
references  [3] and [6] would provide some 
useful help. In this algorithm, a specific purpose 
(‘king & pawn vs. king’ endgame) is targeted. 
So, standart GA rules are not used, all of  time. 
 
The algorithm is as follows; 

• Preparation Phase; 
1. Define the chess board. 
2. Define adjacent squares. 
3. Define a function that finds the shortest 

distance between two given squares. For 
future use in larger functions, define the 
vertical, horizontal and diagonal 
distances separated from irregular 
distances. 

4. Define a list structure that will represent 
the board positions. 

5. Define list operation functions that will 
be used in displaying and modifying 
lists. Some of those must perform 
special element insertions or deletions 
according to the board representation 
used. (For example deleting the 2nd 
element e from some list L or 
enumerating list L by inserting 
corresponding indexes as the nth  
element). 

6. Define a function that is able to find all 
possible legal board positions. This 
function will also check if a given initial 
position by the user is a legal board 
position or not.  

7. Construct a user interface which is 
capable of getting the initial position of 
the pieces and the side to move from 
user. 

8. Define a function that transforms the 
information taken from user into a 
board representation. This same 
function should also be able to insert the 
initial board position to the database. 

 
• Defining Artificial Intelligence sub-
functions; 
9. Define a function for the attacking 

conditions of pieces. The function 
should be able to find all squares to 
which a piece attacks, from a given 
piece position.   

10. Define a function that manages the 
movement of pieces. The function 
should be capable of finding all squares 
to which a piece can move, from a 
given piece position. 

11. Define a function for the capturing 
conditions of the pieces.  

12. Define positional functions such as; 
opposition for white & black, distant 
and diagonal opposition, the endgame 
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rule for black king that decides the 
position of it to reach the white pawn 
(staying in the magic square) etc. Those 
functions should use the whole board 
representations as input. Define as many 
logical and theoretical functions as 
possible (We used basically references 
[8] and [9] to find out some important 
endgame rules).  

13.  Define a function that takes a board 
position as input, mutates it (makes a 
move), and gives the resulting board 
position as output. The resulting 
position should have generation number 
N + 1 and thus, must be a legal next 
position. This function should be able to 
make every possible legal move within 
every possible position. You can use the 
function defined in step 10 as a sub 
function to build this one.  

14.  Define absolute draw and absolute win 
positions as separate functions. In the 
program,      an absolute win is a 
position in which the white pawn had 
reached to 8th rank (queened) and black 
has a legal next move. Absolute drawn 
board positions should just contain legal 
drawn positions defined by chess rules.  

 
•    Defining Weights as AI functions; 

15. Define weight values for board 
positions. In the ‘king & pawn vs. king’ 
endgame stage there are only two 
possible outcomes for a problem; win or 
draw (a loss for black is accepted as a 
win for white). An absolute win position 
should have the weight value 1 and an 
absolute draw position should have the 
weight value 0.Between 0 and 1, define 
as much weight functions as possible. 
These vice-functions should check up to 
which of the positional rules, or a series 
of rules, a given position obeys, that 
were defined in step 12.The vice-
functions whose weights are extremely 
close to a win or draw (including the 
win and draw) should be deterministic. 
Other vice-functions should be non-
deterministic.For instance if the white 
pawn is on the 7th rank and if the black 
king is unable to prevent it from 
queening, then such a position (this is 
not an absolute win yet, but is likely to 

become an absolute win in one move), 
must have a deterministic weight value. 
If not, the position would also obey 
rules that were applied to less 
advantaged positions for white. For 
example, although the discussed 
position’s weight is 0.9 in our program, 
if the extreme weight function was 
designed to act non-deterministic, then 
the same position would also obey rules 
whose weights are, let’s say, 0.8 and 
0.75.This would cause the level-1 
selection algorithm to underestimate the 
move.This is one of the most important 
and brand new properties of PECP 
technique. Our rules are not position 
specific. Rather, the rules defined in the 
program are generalized. Usually a 
position can obey to several rules and 
this adds great dynamics to our level-1 
selection algorithm.   

 
•  The GA phase;  

16. Get the places of the pieces and whose 
side it is to move from user. 

17. Transform the user position into a board 
position represented as a function by 
assigning a generation number N = 0 to 
the initial position. Insert generation N 
to the database. 

18. While N ≤  50 do ; 
a. Create a list representation L of 

generation N. 
b. Create a population EL ‘Enumerated 

List’ , from L, which consists of all 
possible board positions represented as 
list structures with their corresponding 
individual numbers I and generation 
numbers N, which may arise from the 
next move.This process is equivalent to 
mutated reproduction of individual L. 
The mutation probability is %100 and 
the initialization method is full. The 
population size is the number of moves 
that the player with side to move can 
make and is not a fixed value. For a 
‘king & pawn vs. king’ endgame, 
maximum population size is 10 and 
minimum size is 0.  

c. Apply weight functions to all of the 
individuals in   EL and create WEL 
(weighted enumerated list) which is a 
list containing the same individuals with 
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EL but this time with their 
corresponding weight values Wi with i 
being the individual number. While 
applying weight functions, if a position 
obeys a deterministic rule it’s clear that 
it must only have one weight value, if 
not, find all possible weight values for 
that individual and take their arithmetic 
average and assign this value as  Wi. We 
call step-c and d as ‘level-1 selection 
algorithm’. 

d. Select the best 3 individuals from WEL 
and insert them into the population 
deleting the rest of the moves. If it’s 
white to move, select the highest 
weighted moves; else select the lowest 
weighted moves. New population is 
called Best3ofPop.(Of course, if there 
are only two possible moves, then the 
Best3ofPop will contain both of them, 
or if there is one then it will contain just 
that position.). 

e. Delete all of the weight values from 
Best3ofPop  and arrange a tournament 
selection  ; 
1. Select two individuals, i1 and i2 

from Best3ofPop and apply level-2 
selection algorithm to them. Winner 
of the two is denoted as SW (Sub 
winner).Since we are concerning 
about the endgame stage, the 
program again uses positional rules 
for level-2 selection criteria but this 
time with a higher understanding of 
the position. In this step it’s also 
possible to use alpha-beta pruning 
or some other selection criteria as 
well. In our program level-2 
selection is completely 
deterministic and is independent of 
weight values. 

2. Apply level-2 selection algorithm 
to the winner (SW) of step e-I and 
the remaining individual i3.The 
winner of the two is denoted as 
Winner. 

f. Insert generation N as move N to the 
database. 

g. Delete generation N from the database. 
h. If the Winner is an absolute draw or an     

absolute win (termination criteria) pass 
to  step  19, else ; 

i. Transform Winner into a generation 

function; generation (Winner) which 
already has generation number N + 1. 

j. NewN ← N + 1. 
k. Repeat step 18 for generation NewN 

 
19. Display ∑ (i = 0 , i = NewN)  move(i).     

 

4.  REALIZATION 
In this application, the chess board is represented 
by defining all of the squares as follow: 
 
[Square(1/1), Square(1/2), 
Square(1/3),..,Square(8/8)],  
 
where, Square(1/1) stands for a1 and Square 
(2/3) stands for b3 in chess notation. Also, the 
board positions are represented as;  
 
[ N,wk (WX / WY), wp (PX/PY), bk (BX/BY),  
Stm ],  
 
where N is the generation number, wk (WX / 
WY), wp (PX / PY), bk (BX / BY) are the piece 
positions, with WX, PX, BY being the pieces’ X 
coordinates and WY, PY, BY being the Y 
coordinates on board (wk = white king, wp = 
white pawn, bk = black king) and Stm being the 
side to move (black or white).  
 
One of the most important functions used 
frequently in larger procedures is visually 
Closer/3 which takes 3 squares S1, S2, S3 as 
input and generates a true value if S1 is closer to 
S2 than S3. Which means the shortest distance 
between S1 and S2 is less than the shortest 
distance between S2 and S3. 
 
We use many weight functions to determine the 
weight value of a position. The function can be a 
theoretical position or it can be a logical 
procedure. For example: 
draw ([ _, _, wk (3/8), wp (2/6), bk (1/8), black ] 
): - !.                        
                                                                         (1) 
(1) is a theoretically drawn position. Also, 
WhiteCanDrive 
( [I,N,wk(WX/WY),wp(PX/PY),bk(BX/BY), 
white] ):-         
PY2 is PY + 2, PX =\= 8, PX =\= 1, 
VisuallyCloser 
(Square(WX/WY),Square(PX/PY2),Square(BX/
BY)), 
not(cancapture 
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([I,N,wk(WX/PY2),wp(PX/PY),bk(BX/BY), 
white] ))                                                                   
                                                                         (2)  
is a logical procedure defining a position in 
which white king ‘seems’ to be able to drive 
black king from the queening square. If the 
reader takes a closer look at these procedures 
he/she will notice that although (1) is 
deterministic (2) is not. This is because; 

 
weight( P , 0 ):- draw  
and; 
weight( P , 0.58 ):- whiteCanDrive(P). 

 
That is to say; if a position is a definite drawn 
position which we represent as draw(P) then 
there is no need to look for if the same position 
is also draw, according to some other absolute 
draw rule, and again, there is no need to find 
alternative weight values for this position 
because the weight value for a draw position is 
an extreme weight value (0), and must strictly be 
deterministic to avoid it from being under or 
overestimated.  
 
In contrast with the previous rule, if a position 
doesn’t obey to an extreme weight function then 
find all other rules by which this position is also 
weighted with. For instance, for a whiteCanDrive 
position, try all other whiteCanDrive rules to 
which this position obeys, and find all other rules 
(such as opposition(P), instinct(P), 
intelligence(P) etc.) to which the position also 
obeys. This means, find all possible weight 
values for  position P whose weight is not an 
extreme weight value, even if there are multiple 
same weight values for P. Thus, non-extreme 
weighted positions’ weight functions must 
strictly be non-deterministic to provide 
sensitivity for level-1 selection. 

 
For example let’s consider position P, if P is a 
highestW position (a rule that indicates the 
highest wining probability), then it will only 
have a weight value of  0.80 which is limit for 
extreme values and is also accepted as an 
extreme weight value. On the other hand let’s 
consider P doesn’t obey any of the extreme 
weight functions but obeys 4 non-deterministic 
functions like whiteDrives, whiteCanDrive, 
instinctW1 and intelligenceB. The corresponding 
Weight List for this position could be  

[0.70, 0.58, 0.58, 0.47, 0.11, 0.11, 0.11] 

From the above Weight List we can conclude 
that P obeys 1 whiteDrives rule (weight = 0.70) , 
2 different whiteCanDrive rules (w=0.58), 1 
instinctW1 rule (w = 0.47) and 3 different 
intelligence B rules (w=0.11). The level-1 
selection takes the arithmetic average of all these 
values ; 

 
 Wp= (0.70+0.58+0.58+ 0.47+ 0.11+ 
0.11+0.11)/7  =  0.38 
 
From which we can conclude that P is a slightly 
better position for black (limit value is 0.4). 
Although taking the arithmetic average was 
sufficient in our case, of course more complex 
formulations other than just taking the arithmetic 
average can be developed for more complex 
phases of the game.  
 
After assigning all corresponding weight values 
to the individuals of a population, level-1 
selection selects the best 3 individuals amongst 
those. As we stated earlier, after this stage, level-
2 selection is applied to these best individuals. 
We need level-2 selection, because the weights 
assigned in level-1 selection were all singular 
values, by which we mean those weight values 
were determined by a judgment (rules) that were 
only applied to the singular properties of the 
position. 

 
Let’s consider the positions below; 

 
 
 
 
 
 
 
 
 
 
       (Pos1)                    (Pos2)                   (Pos3) 
 
Fig.2-  The positions selection based on a rule 
Pos1: Initial Position (white),  
Pos2: Probable next move (black) ,    
Pos3: Probable next move (black). 

 
From given initial position Pos1 (white to move), 
level-1 selection might have selected Pos2 (black 
to move), Pos3 (black to move) and some other 
next position as the best 3 individuals. Although 
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it’s obvious that Pos3 is preferable to Pos2, while 
level-1 selection is assigning weights, it just 
judges Pos2 within Pos2, and Pos3 within Pos3. 
It hasn’t got the ability to compare Pos2 and 
Pos3. Here, even the weight value of Pos2 could 
be slightly higher than Pos3, because in Pos2 
white has the direct opposition. So it’s level-2 
selection who decides which move is the ‘real’ 
best among the best 3 selected by level-1 
selection. As Pos2 and Pos3 are tested through 
double tournament selection, immediately the 
deterministic rule PY3 > PY2 (a rule being; white 
pawn is more advanced in Pos3 than in Pos2 and 
black is unable to reach it), will apply and Pos3 
will be selected as the sub winner.      
We can now pass to a test run the program with 
the initial position given in Fig.3; 
 
 
 
 
 
 
 

 
 
 
 
 

Fig.3 – Initial position to test the program. 
 
This position is a win for white with white to 
move and a draw for black with black to move. 
Our initial position was with white to move and 
test results are given below.  We must note that 
program had no specific knowledge on this 
position. 
 

5.  CONCLUSIONS 
The obtained results for the endgame analized in 
this study  prove that PECP method will give 
better results in any kind of endgame situation, 
than the classical methods. Recent commercial 
engines use tablebases in endgame but that 
reduces the speed of the evaluation process. 
Without tablebases alpha-beta pruning is not 
sufficient by itself, because endgame stages are 
fully described in chess literature; there is no 
point in calculating N moves further in the 
endgame stage.  
 
The program can also be used in creating 
tablebases, also in midgame too. 

Table I.  The positional test results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Initial Position: 
BestMove = [0, wk(5/3), wp(4/3), bk(4/6), white]; 
The ‘only’ move that leads to a win, 
BestMove = [1, wk(4/4), wp(4/3), bk(4/6), black] ;
BestMove = [2, wk(4/4), wp(4/3), bk(4/7), white]  
BestMove = [3, wk(4/5), wp(4/3), bk(4/7), black] ; 
BestMove = [4, wk(4/5), wp(4/3), bk(4/8), white]  
BestMove = [5, wk(4/6), wp(4/3), bk(4/8), black] ; 
BestMove = [6, wk(4/6), wp(4/3), bk(3/8), white]  
BestMove = [7, wk(5/7), wp(4/3), bk(3/8), black] ; 
BestMove = [8, wk(5/7), wp(4/3), bk(3/7), white]  
A hard choice but correct, 
BestMove =[9, wk(5/7), wp(4/4), bk(3/7), black]  
BestMove=[10,wk(5/7),wp(4/4),bk(3/6),white]  
Again the only move, 
BestMove=[11,wk(5/6),wp(4/4),bk(3/6),black]          
Almost equal to c7, 
BestMove=[12, wk(5/6), wp(4/4), bk(2/6), white]      
BestMove = [13, wk(5/6), wp(4/5), bk(2/6), black]  
BestMove = [14, wk(5/6), wp(4/5), bk(3/7), white]  
BestMove = [15, wk(5/6), wp(4/6), bk(3/7), black]  
A clever maneuver without any specific hint, 
BestMove = [16, wk(5/6), wp(4/6), bk(3/8), white]    
This was played according to a general rule, 
BestMove = [17, wk(5/7), wp(4/6), bk(3/8), black]  
BestMove=[18,wk(5/7),wp(4/6),bk(2/8),white] 
BestMove =[19, wk(5/7), wp(4/7), bk(2/8), black]  
And white queens. 
BestMove =[20, wk(5/7), wp(4/7), bk(2/7), white]
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