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Gülşah Aktüre,
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İstanbul University,
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Abstract

This paper presents kinematics form of pronation and supination movement. The algorithm

of Stewart platform motion can be used to create a new motion of supination (or pronation)

motion. Pronation motion can be taken as Stewart motion which has not any rotation

on x-axis and y-axis. In this case, pronation motion has only one parameter. Supination

movement creates a helix curve. Additionally, the correlation between rotation angle and

extension is 1. This allows us to use artificial intelligence in pronation motion. In this

article, the algorithm and Matlab applications of pronation motion are given in the concepts

of artificial intelligence approach. This is a new and important approach.

1. Stewart platform

A Stewart platform is called a form of manipulator with six degrees of freedom, which allows one to provide a given position and orientation

of the surface in the vicinity of any point of the platform on its three cartesian coordinates and projections of the unit normal vector [1]. A

mathematical model of the mechanism of movement of an undeformed platform with six degrees of freedom is proposed [2].

The Stewart platform consists of two rigid frames connected by 6 variable length legs. The base is considered to be the reference frame work,

with orthogonal axes x, y, z. The platform has 6 degrees of freedom with respect to the base. The origin of the platform coordinates can be

defined by 3 translational displacements with respect to the base, one for each axis [3, 4].

Three angular displacements then define the orientation of the platform with respect to the base. A set of Euler angles is used in the following

sequence:

1. Rotate an angle ψ (yaw) around the z-axis,

2. Rotate an angle θ (pitch) around the y-axis,

3. Rotate an angle ϕ (roll) around the x-axis.

P = i′x′+ j′y′+ k′z′ = ix+ jy+ kz

x = OA−BC = x′ cosψ − y′ sinψ

y = AB+PC = x′ sinψ + y′ cosψ

z = z′

(Figure 1.1). The rotation matrix of the platform relative to the base is given by

PRB = Rz(ψ)Ry(θ)Rx(ϕ)

=





cosψ −sinψ 0

sinψ cosψ 0

0 0 1









cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ









1 0 0

0 cosϕ −sinϕ

0 sinϕ cosϕ





=





cosθ cosψ −cosϕ sinψ + sinθ cosψ sinϕ sinψ sinϕ + sinθ cosψ cosϕ

cosθ sinψ cosψ cosϕ + sinθ sinψ sinϕ −cosψ sinϕ + sinθ cosϕ sinψ

−sinθ cosθ sinϕ cosθ cosϕ




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Figure 1.1: Rotation around z-axis

[5, 6]. Now consider a Stewart platform. For the i− th leg (Figure 1.2):

Figure 1.2: Stewart platform

The coordinates qi of the anchor point with respect to the base reference framework are given by the equation

qi = T +P RB.pi, i = 1,2,3

where T is the translation vector, giving the positional linear displacement of the origin of the platform frame with respect to the base

reference framework, and pi is the vector defining the coordinates of the anchor point pi with respect to the platform framework.

Similarly the length of the i− th leg is given by

li = T +P RB.pi −bi, i = 1,2,3

where bi is the vector defining the coordinates of the lower anchor point Bi. These 6 equations give the lengths of the 6 legs to achieve the

desired position and attitude of the platform.

2. Pronation motion in the concepts of artificial intelligence approach

In kinematics applications, axis, points, orbits are main and important. Especially orbits of points are important and informative. For

example, if the orbit of a point under a displacement is on the sphere with radius r and center P, then the displacement is a rotation with pole

point P. If the orbits of every points under the displacement is on the perpendicular circular cylinder then the displacement is a rotation with

translation. Stewart platform can make rotation, translation or rotation with translation. Let S be a cylinder in Figure 2.1.

Bottom cover is fixed platform, and top cover is moving platform. Every point moves during the movement, and movement is rotation with

translation.

Supination and pronation motions can be considered inverse motion each other [7, 8, 9]. So we study only one of them in this study as

modelling. Main structure of the model is as follows.

1. The forearm is considered as a cylinder or cone. We consider cylinder.

2. The planes at the elbow and wrist are considered as fixed and moving planes of Stewart platform. The elbow plane is fixed and wrist

plane is moving plane.

3. Suppose that the forearm is the cylinder (Figure 2.1).

In (Figure 2.2), L line part is

L : (r,0,z)
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Figure 2.1: Elbow and wrist plane

Figure 2.2: ψ(z0) rotating angle

a < z < b, a,b ∈ R. As a Stewart platform, the matrix of displacement is

T +Rz(ψ)Ry(θ)Rx(ϕ).

There are not rotation around x−axis and y−axis because fixed and moving platforms are parallel to each other. So, displacement matrix in

this case is

T +Rz(ψ).

Translation part of displacement, in case of pronation motion, must be evaluated in pronation. Rotation angle is limited ψ0 and ψe,

ψ0 ≤ ψz ≤ ψe where ψ0 = 0 and ψe is final value.

At the z = z0 rotation plane, rotation angle is

ψz0
=

z0

L
ψe.

So, Pm pronation rotation matrix is given as follows

Pm =





cosψz −sinψz 0

sinψz cosψz 0

0 0 1



 . (2.1)

Let X be a representative point of the line d, d = {(x0,y0,z) | 0 ≤ z ≤ ze}, then we have

α(z) = PmX =





cosψz −sinψz 0

sinψz cosψz 0

0 0 1









x0

y0

z



 , X = (x0,y0,z), x2
0 + y2

0 = r2

and

α(z) = (x0 cosψz − y0 sinψz,x0 sinψz + y0 cosψz,z). (2.2)
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3. Properties of the motion

We will give some theorems about the motion using the equations (2.1) and (2.2).

Theorem 3.1. α(z) = Pm(d) is a helix.

Proof.

α(z) = (x0 cosψz − y0 sinψz,x0 sinψz + y0 cosψz,z)

α ′(z) = (−λx0 sinψz −λy0 cosψz,λx0 cosψz −λy0 sinψz,1)

α ′′(z) = (−λ 2x0 cosψz +λ 2y0 sinψz,−λ 2x0 sinψz −λ 2y0 cosψz,0)

∥

∥α ′(z)
∥

∥ = λ 2x2
0 sin2 ψz +λ 2y2

0 cos2 ψz +2λ 2x0y0 sinψz cosψz

+λ 2x2
0 cos2 ψz +λ 2y2

0 sin2 ψz −2λ 2x0y0 sinψz cosψz +1)

=
√

λ 2x2
0 sin2 ψz +λ 2x2

0 cos2 ψz +λ 2y2
0 cos2 ψz +λ 2y2

0 sin2 ψz +1

=
√

λ 2x2
0 +λ 2y2

0 +1

=
√

λ 2r2 +1.

Let k =
√

λ 2r2 +1, λ = ψe

L , so we have Frenet vectors as follows.

−→
t (z) =

1

k
(−λx0 sinψz −λy0 cosψz,λx0 cosψz −λy0 sinψz,1)

−→n (z) =
1

λ 2r
(−λ 2x0 cosψz +λ 2y0 sinψz,−λ 2x0 sinψz −λ 2y0 cosψz,0)

=
1

r
(−x0 cosψz + y0 sinψz,−x0 sinψz − y0 cosψz,0)

−→
b (z) = (

1

k
(x0 sinψz + y0 cosψz),

1

k
(−x0 cosψz + y0 sinψz),

λ r

k
)

= (
x0

k
sinψz +

y0

k
cosψz,

−x0

k
cosψz +

y0

k
sinψz,

λ r

k
).

The first and second curvature of α(z) are

κ =
∥

∥α ′′(z)
∥

∥= λ 2r = (
ψe

L
)2r,

τ =
∥

∥b′(z)
∥

∥=
λ r

k
=

ψer

Lk
.

Therefore,

κ

τ
=

ψek

L

is fixed. Hence, α(z) is a helix.

Theorem 3.2. Let X be series of z, and Y be series of the length of the curve α(z). Then correlation between X and Y is equal to 1.

Proof.

α(z) = (x0 cosψz − y0 sinψz,x0 sinψz + y0 cosψz,z)

is the picture of X .

α ′(z) = (−λx0 sinψz −λy0 cosψz,λx0 cosψz −λy0 sinψz,1)

and we calculate ‖α ′(z)‖ as

∥

∥α ′(z)
∥

∥=
√

λ 2r2 +1, λ =
ψe

L
.

Then every point at z0, we have

Lz0
=

z0
∫

0

√

λ 2r2 +1dz =
√

λ 2r2 +1z0.

In this case, the series X and Y are written.

X = {0,0.1, ...,Ze},
Y = {0, ...,ϕe},
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where Ze is the last value of z and ϕe is the last rotation angle. For every xi, we have yi =
√

λ 2r2 +1xi,
√

λ 2r2 +1 = c,c > 0.

We know that correlation of the series X and Y is given by

cor(X ,Y ) =
n∑xiyi − (∑xi)(∑yi)

√

n∑x2
i − (∑xi)2

√

n∑y2
i − (∑yi)2

.

For our series, we have

cor(X ,Y ) = =
n∑xi(cxi)− (∑xi)(∑cxi)

√

n∑x2
i − (∑xi)2

√

n∑(cxi)2 − (∑cxi)2

=
c(n∑x2

i − (∑xi)
2)

c

√

n∑x2
i − (∑xi)2

√

n∑xi
2 − (∑xi)2

= 1.

4. Application

Example 4.1. Let L = 20cm, r = 3cm, ψe =
π
3 , step= 0.5. Then we have the series X and Y .

X = { 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, ..., 19, 19.5, 20 }
Y = { 0.50615, 1.0123, 1.51845, ..., 18.2214, 18.72755, 19.2337, 19.73985, 20.246 }
Thus, we have cor(X ,Y ) = 1.

Matlab programme m-file and (Figure 4.1) of this example are as follows.

cc=5

grid on

axis([-cc cc -cc cc 0 4*cc])

xlabel(’x axis’); ylabel(’y axis’); zlabel(’z axis’)

line([2 2],[0 0],[0 20],’LineWidth’,4,’color’,[.2 .2 .5]);

line([0 0 ],[2 2 ],[0 20],’LineWidth’,4,’color’,[.2 .3 .5]);

line([-2 -2],[0 0],[0 20],’LineWidth’,4,’color’,[.2 .4 .5])

L=20

for z=0:0.1:20

d=(pi/3)/20

r=3

c=((rˆ2*dˆ2+1))ˆ(1/2)

u=((pi/3)/L)*z

A=[ cos(u) sin(u) 0

-sin(u) cos(u) 0

0 0 1]

P=[2 ; 0; z]

Q=[0 ;2; z]

D=[-2 ; 0; z]

E=A*Q

B=A*P

C=A*D

hold on

plot3(C(1),C(2),C(3),’.r’)

plot3(B(1),B(2),B(3),’.r’)

plot3(E(1),E(2),E(3),’.r’)

pause(0.01)

end

hold on

text(2+0.5,0, 0, ’P’)

text(2,0,21,’Q’)

for t=0:1:360

r=2

plot3(r*cosd(t), r*sind(t), 0,’.r’)

plot3(r*cosd(t), r*sind(t), 20,’.r’)

end



6 Journal of Mathematical Sciences and Modelling

−5

0

5

−5

0

5
0

5

10

15

20

x axis

P

Q

y axis

z
 a

x
is

Figure 4.1: Orbits of points

5. Conclusion

We can use the algorithm of Stewart platform motion to create a new motion of supination(or pronation) motion. Supination and pronation

motions are inverse motion to each other. So it is sufficient study only one of them. Pronation motion can be taken as Stewart motion which

no rotation on x-axis and y-axis. In this case pronation motion has only one parameter. Translation part of pronation motion is uploaded the

moving points. We give a relation between rotation angle and third component of moving platform which first and second components are

fixed. The Frenet elements of the curve of the motion are calculated. We prove that the image curve is a helix. The correlation between

rotation angle and extension of the image curve is exactly equal to 1.
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Abstract

The theory of curves has a very long history. Moving frames defined on curves are important

parts of this theory. They have never lost their importance. A point particle of constant

mass moving along a trajectory in space may be seen as a point of the trajectory. Therefore,

there is a very close relationship between the differential geometry of the trajectory and the

kinematics of the particle moving on it. One of the most important elements of the particle

kinematics is the jerk vector of the moving particle. Recently, a new resolution of the jerk

vector, along the tangential direction and two special radial directions, has been presented

by Özen et al. (JTAM 57(2)(2019)). By means of these two special radial directions, we

introduce a new moving frame for the trajectory of a moving particle with non vanishing

angular momentum in this study. Then, according to this frame, some characterizations for

the trajectory to be a rectifying curve, an osculating curve, a normal curve, a planar curve

and a general helix are given. Also, slant helical trajectories are defined with respect to this

frame. Afterwards, the necessary and sufficient conditions for the trajectory to be a slant

helical trajectory (according to this frame) are obtained and some special cases of these

trajectories are investigated. Moreover, we provide an illustrative numerical example to

explain how this frame is constructed. This frame is a new contribution to the field and

it may be useful in some specific applications of differential geometry, kinematics and

robotics in the future.

1. Introduction and preliminaries

In differential geometry, the local theory of space curves plays an important role. The discovery of the Serret-Frenet formulas in 1847

was a milestone for the researchers who are interested in this theory. Despite its long history, it is still an issue of interest. The moving

frames adapted to curves are useful tools for investigating this theory. From the discovery of the Serret-Frenet frame until now, many

researchers have presented lots of interesting studies on this theory by using Serret-Frenet frame. Some of these studies can be found in [1]-[6].

From past to present, many researchers have developed new moving frames which have a common base vector with the Serret-Frenet frame.

For example R. L. Bishop introduced parallel transport frame (or Bishop frame) in 1975 [7]. The first base vector of Serret-Frenet frame is

included by this frame. A similar study was carried out by Yılmaz and Turgut in 2010 by using the third base vector of the Serret-Frenet

frame [8]. The authors called this frame as Type-2 Bishop frame. In 2019, a new version of Bishop frame was introduced by inspiring from

these studies and by taking into consideration the second base vector of Serret-Frenet frame [9]. This frame is called Type-3 Bishop frame.

There can be found many interesting studies such as [7]-[13] on various moving frames in the literature.

In Euclidean 3-space, a moving point particle of constant mass has a position vector according to the moving frame we are working

on. By this way, any point on the trajectory can be represented by this particle. So, there is a very close relationship between the kinematics

of a moving particle and the differential geometry of the trajectory which is the oriented curve traced out by this particle. As a result of this

Email addresses and ORCID numbers: kahraman.ozen1@ogr.sakarya.edu.tr, 0000-0002-3299-6709 (K. E. Özen), tosun@sakarya.edu.tr, 0000-

0002-4888-1412 (M. Tosun)
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case, moving frames have been used as very useful tools to investigate the concepts on the kinematics of a moving particle such as position,

velocity, acceleration and jerk vectors. Kinematics equations are used to determine the motion and to reach a desired position in robotics. To

obtain an equation which includes all the position, velocity, acceleration and jerk, and to give the relationship between them provides various

advantages for investigating some concepts in robotics such as minimum jerk trajectory generation. These facts and the importance of the

position vector have motivated us in the process of preparing this study. We have constructed a new moving frame for the trajectories having

non-vanishing angular momentum by using the own position vector of the moving particle. We expect that for the researchers studying on

modern robotics, this moving frame will enable more convenient observation environment to understand the relationships between the basic

concepts of kinematics and the basic concepts of inverse kinematics in the future.

Let us take into consideration the 3−dimensional Euclidean space E3 with the standard inner product:

〈K,L〉= k1l1 + k2l2 + k3l3 (1.1)

where K = (k1 , k2 , k3) , L = (l1 , l2 , l3) are arbitrary vectors in this space. The norm of the vector K is expressed as ‖K‖ =
√

〈K , K〉. If

a differentiable curve χ = χ (s) : I ⊂ R → E3 satisfies the equality

∥

∥

∥

dχ
ds

∥

∥

∥
= 1 for all s ∈ I, this curve is said to be a unit speed curve. In that

case, s is said to be arc-length parameter of this curve. A differentiable curve is called regular curve if its derivative is nonzero along the

curve. Any regular curve can be reparameterized by the arc-length [14]. In the rest of this section, curves will be supposed to be regular and

unit speed. Another thing that can be of importance is that the differentiation with respect to the arc-length parameter s will be denoted by a

dash throughout the present study.

It is well known that the unit tangent vector T = δ ′ of a given curve δ is determined uniquely. When the tangential components of

two moving frames are common, these frames are called as equivalent frames. For example, Serret-Frenet frame and Bishop frame are

equivalent frames.

Let {T, N1, N2} be a moving frame of a space curve which includes the unit tangent vector T and two normal unit vectors N1, N2.

These three vectors together form a positively oriented orthonormal basis of the 3−dimensional Euclidean space E3 attached to each point of

the curve. Because of the orthonormality, the matrix form of derivative formulas are given as in the following:




T′

N1
′

N2
′



 =





0 k1 k2

−k1 0 k3

−k2 −k3 0









T

N1

N2



 (1.2)

where k1, k2, and k3 are continuous coefficient functions. These coefficient functions are sufficient to characterize the geometry of the curve

[15].

For the Serret-Frenet frame k2 = 0. Also, N1,N2,k1 and k3 are commonly denoted by N,B,κ and τ , respectively. So, the derivative

formulas take the following form:




T′

N′

B′



 =





0 κ 0

−κ 0 τ
0 −τ 0









T

N

B



 . (1.3)

Here, the vector N = δ ′′

‖δ ′′‖ and B = T∧N are specially called as principal normal vector and binormal vector of the given curve δ , respectively.

Also, the function κ = 〈T′, N〉 is called as the curvature function, while the function τ =−〈B′, N〉 is called as the torsion function [14]. In

the rest of the study, we assume everywhere κ 6= 0.

This article is organized as follows. In Section 2, we explain how our frame is constructed and give the relation matrix between this

frame and Serret-Frenet frame. Then, we obtain derivative formulas and complete the set of apparatus of this frame. Also, an illustrative

example is given and the angular velocity vector is obtained for this frame. In Section 3, we obtain some necessary and sufficient conditions

for the trajectory to be a rectifying curve, an osculating curve, a normal curve, a planar curve and a general helix. In Section 4, we define

slant helical trajectories according to this frame. Then we give a characterization for these trajectories and investigate some special cases of

these trajectories.

2. Positional adapted frame

Let us take into consideration a moving point particle of constant mass m in space E3. Choose an arbitrary fixed origin O in space and denote

by x the position vector of this particle at time t. Let the curve α = α(s) be the unit speed parametrization of the trajectory of the particle

where the arc-length s of α corresponds to time t. Then, the unit tangent vector, velocity vector and linear momentum vector at the point

α(s) (at time t) are given by

T(s) =
dx

ds

v(t) =
dx

dt
=

(

ds

dt

)

T(s) (2.1)

p(t) = mv(t) = m

(

ds

dt

)

T(s),

respectively [16]. On the other hand, we can write the following:

x = 〈α(s), T(s)〉T(s)+ 〈α(s), N(s)〉N(s)+ 〈α(s), B(s)〉B(s) (2.2)
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at the point α(s) (at time t) with respect to Serret-Frenet frame. By vector product of the position vector and the linear momentum vector at

time t, the angular momentum vector of the particle about O is obtained as follows:

HO = m 〈α(s), B(s)〉
(

ds

dt

)

N(s)−m〈α(s), N(s)〉
(

ds

dt

)

B(s). (2.3)

In the rest of the study, we assume that angular momentum vector of the particle never vanishes. That is, we restrict ourselves to the

trajectories having non-vanishing angular momentum. By this assumption, we ensure the coefficient functions 〈α(s), N(s)〉 and 〈α(s), B(s)〉
of the position vector not to be zero at the same time. In other words, we ensure that the tangent line never passes through the origin along

the trajectory. Here we will use the special radial directions discussed in the study [17].

Now we return to the position vector in the equation (2.2). The opposite of this vector is given by

−x = 〈−α(s), T(s)〉T(s)+ 〈−α(s), N(s)〉N(s)+ 〈−α(s), B(s)〉B(s). (2.4)

The projections of this vector on the instantaneous osculating plane π1(s) and instantaneous rectifying plane π2(s) give us two vectors which

will play an important role to construct our moving frame. These cases are explained in detail below:

The vector, whose starting point is α (s) and endpoint is the foot of the perpendicular that is from O to π1(s), can be written as

r(s) = 〈−α(s), T(s)〉T(s)+ 〈−α(s), N(s)〉N(s) (2.5)

and corresponds to the aforesaid projection on π1(s). On the other hand, the vector, whose starting point is α (s) and endpoint is the foot of

the perpendicular that is from O to π2(s), can be written as

r∗(s) = 〈−α(s), T(s)〉T(s)+ 〈−α(s), B(s)〉B(s) (2.6)

and corresponds to the aforesaid projection on π2(s). Since the coefficient functions of the unit tangent vector are same in both equations

(2.5) and (2.6), we can easily obtain the following vector

r(s)− r∗(s) = 〈−α(s), N(s)〉N(s)+ 〈α(s), B(s)〉B(s) (2.7)

whose starting point is α (s) and which lies on the instantaneous normal plane π3(s). Notice that the vector r(s)− r∗(s) is equivalent to the

vector whose starting point is the aforementioned foot on π2(s) and endpoint is the other aforementioned foot on π1(s) (see Figure 2.1).

Let us discuss on the determination of the unit vector in direction of the vector r(s)− r∗(s). When both the planes π1(s) and π2(s)
do not contain the origin, the foots are distinct from each other and from the origin. Thus two distinct points (foots) generate the non-zero

vector r(s)− r∗(s). So, the desired unit vector can be immediately determined. If only one of the planes π1(s) and π2(s) passes through the

origin, the foot of the perpendicular on the plane, containing origin, is taken as the origin. Of course, the other foot on the other plane is

distinct from the origin. Then, the desired unit vector is obtained similarly. The case both the planes π1(s) and π2(s) contain the origin

simultaneously causes not to be determined of the desired unit vector since the both of the aforementioned foots correspond to the origin in

this case. That situation occurs only when the tangent line passes through the origin. Fortunately, our assumption, on the angular momentum

vector, averts this case. Let the unit vector in direction of the vector r(s)− r∗(s) be shown with Y(s). That is,

Y(s) =
r(s)− r∗(s)
‖r(s)− r∗(s)‖ =

〈−α(s), N(s)〉
√

〈α(s), N(s)〉2 + 〈α(s), B(s)〉2
N(s)+

〈α(s), B(s)〉
√

〈α(s), N(s)〉2 + 〈α(s), B(s)〉2
B(s). (2.8)

By vector product the vectors Y(s) and T(s), we can obtain the another basis vector. We denote it by M(s). Then, we have

M(s) = Y(s)∧T(s) =
〈α(s), B(s)〉

√

〈α(s), N(s)〉2 + 〈α(s), B(s)〉2
N(s)+

〈α(s), N(s)〉
√

〈α(s), N(s)〉2 + 〈α(s), B(s)〉2
B(s). (2.9)

This completes the positively oriented orthonormal moving frame {T(s) , M(s), Y(s)}.

Since the vectors N(s), B(s), M(s) and Y(s) lie on the instantaneous normal plane π3(s), there is a relation between the Serret-Frenet frame

and this frame as in the following:





T(s)
M(s)
Y(s)



=





1 0 0

0 cosΩ(s) −sinΩ(s)
0 sinΩ(s) cosΩ(s)









T(s)
N(s)
B(s)



 (2.10)

where Ω(s) is the angle between the vectors B(s) and Y(s) which is positively oriented from B(s) to Y(s) (see Figure 2.1).

By using the matrix equations (1.3) and (2.10), we can easily write

M′(s) = (cosΩ(s)N(s)− sinΩ(s)B(s))′

= −Ω
′(s)sinΩ(s)N(s)+ cosΩ(s)(−κ(s)T(s)+ τ(s)B(s))−Ω

′(s)cosΩ(s)B(s)+ τ(s)sinΩ(s)N(s)

= −κ(s)cosΩ(s)T(s)+
(

τ(s)−Ω
′(s)
)

[sinΩ(s)N(s)+ cosΩ(s)B(s)]

= (−κ(s)cosΩ(s))T(s)+
(

τ(s)−Ω
′(s)
)

Y(s)
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and

Y′(s) = (sinΩ(s)N(s)+ cosΩ(s)B(s))′

= −Ω
′(s)cosΩ(s)N(s)+ sinΩ(s)(−κ(s)T(s)+ τ(s)B(s))−Ω

′(s)sinΩ(s)B(s)− τ(s)cosΩ(s)N(s)

= −κ(s)sinΩ(s)T(s)+
(

Ω
′(s)− τ(s)

)

[cosΩ(s)N(s)− sinΩ(s)B(s)]

= (−κ(s)sinΩ(s))T(s)+
(

Ω
′(s)− τ(s)

)

M(s).

Then, differentiating the vector M(s)∧Y(s) yields the following:

T′(s) = (M(s)∧Y(s))′

= M′(s)∧Y(s)+M(s)∧Y′(s)

=
[

(−κ(s)cosΩ(s))T(s)+
(

τ(s)−Ω
′(s)
)

Y(s)
]

∧Y(s)+M(s)∧
[

(−κ(s)sinΩ(s))T(s)+
(

Ω
′(s)− τ(s)

)

M(s)
]

= (−κ(s)cosΩ(s))(T(s)∧Y(s))+(−κ(s)sinΩ(s))(M(s)∧T(s))

= (κ(s)cosΩ(s))M(s)+(κ(s)sinΩ(s))Y(s).

Thus, the matrix form of the derivative formulas is immediately given by





T′(s)
M′(s)
Y′(s)



 =





0 k1(s) k2(s)
−k1(s) 0 k3(s)
−k2(s) −k3(s) 0









T(s)
M(s)
Y(s)



 (2.11)

where

k1(s) = κ(s)cosΩ(s)

k2(s) = κ(s)sinΩ(s)

k3(s) = τ(s)−Ω
′(s) (2.12)

tanΩ(s) =
k2(s)

k1(s)

κ(s) =

√

k1
2(s)+ k2

2(s).

Based on the relationship of the frame {T(s),M(s),Y(s)} to the position vector, we call it as ”Positional Adapted Frame”. For con-

venience, we will use the abbreviation PAF instead of the ”Positional Adapted Frame” in the rest of the study. Also, we call the set

{T(s),M(s),Y(s),k1(s),k2(s),k3(s)} as PAF apparatus of the curve α = α (s).

 

 

 

 

 

 

 

 

T(s) 
α 

‒x 

O 

r(s) 

r*(s) 

N(s) 

B(s) 

π1(s) 

π2(s) 

α(s) 

‒r*(s) 
Y(s) 

Ω(s) 
B(s) 

N(s) 

Y(s) 

‒N(s) 

‒B(s) 

Ω(s) 

Y(s)ʌT(s)=M(s) 

α(s) 

π3(s) 

Fig. 2.1-A Fig. 2.1-B 

Figure 2.1: An illustration for explaining the construction of PAF

It is well known from linear algebra that a vector can be written uniquely in terms of the basis vectors. This basic knowledge yields the

equations

sinΩ(s) =
−〈α(s), N(s)〉

√

〈α(s), N(s)〉2 + 〈α(s), B(s)〉2
(2.13)

cosΩ(s) =
〈α(s), B(s)〉

√

〈α(s), N(s)〉2 + 〈α(s), B(s)〉2
(2.14)
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if we compare the equation (2.10) with the equations (2.8) and (2.9). Then, we get

tanΩ(s) = − 〈α(s), N(s)〉
〈α(s), B(s)〉 . (2.15)

Considering the information given in (2.13), (2.14) and (2.15), the rotation angle Ω(s) is determined as follows:

Ω(s) =















































arctan
(

− 〈α(s),N(s)〉
〈α(s),B(s)〉

)

i f 〈α(s), B(s)〉> 0

arctan
(

− 〈α(s),N(s)〉
〈α(s),B(s)〉

)

+π i f 〈α(s), B(s)〉< 0

− π
2 i f 〈α(s), B(s)〉= 0 , 〈α(s), N(s)〉> 0

π
2 i f 〈α(s), B(s)〉= 0 , 〈α(s), N(s)〉< 0.

(2.16)

One can easily complete the calculations by the aid Mathematica program. In the case 〈α(s), B(s)〉= 0, 〈α(s), N(s)〉> 0, the PAF apparatus

{T(s),M(s),Y(s),k1(s),k2(s),k3(s)} correspond to {T(s),B(s),−N(s),0,−κ(s),τ(s)}. Similarly, when 〈α(s),B(s)〉= 0,〈α(s), N(s)〉< 0,

the PAF apparatus {T(s), M(s), Y(s), k1(s), k2(s), k3(s)} correspond to {T(s),−B(s), N(s), 0, κ(s), τ(s)}.

Now, we will obtain the angular velocity vector for PAF. A better insight into the structure of the derivative formulas, given in (2.11), is

presented by means of the angular velocity vector ω(s). The evolution of PAF {T(s), M(s), Y(s)} is specified by its angular velocity via

following relations:

T′(s) = ω(s)∧T(s)

M′(s) = ω(s)∧M(s) (2.17)

Y′(s) = ω(s)∧Y(s).

Let us determine the vector ω(s). Suppose that it is written with respect to PAF as in the following:

ω(s) = a(s)T(s)+b(s)M(s)+ c(s)Y(s)

where a(s), b(s) and c(s) are real-valued functions of the parameter s. Then (2.17) becomes

T′(s) = −b(s)Y(s)+ c(s)M(s)

M′(s) = a(s)Y(s)− c(s)T(s) (2.18)

Y′(s) = −a(s)M(s)+b(s)T(s).

By comparing (2.11) with (2.18) we get

a = k3

b = −k2

c = k1.

Therefore, the angular velocity vector is given by

ω(s) = k3(s)T(s)− k2(s)M(s)+ k1(s)Y(s) (2.19)

for PAF.

Example 2.1. In E3, assume that a point particle P of constant mass moves on the trajectory δ : (0, k)→E3,δ (s)=
(

8cos s
17 ,8sin s

17 ,15 s
17

)

,

which is a unit speed curve, where k is a positive real constant. See the trajectory δ = δ (s) in Figure 2.2. The Serret-Frenet apparatus of this

trajectory are expressed as in [18]:

T(s) =

(

− 8

17
sin

s

17
,

8

17
cos

s

17
,

15

17

)

N(s) =
(

−cos
s

17
,−sin

s

17
, 0
)

B(s) =

(

15

17
sin

s

17
, −15

17
cos

s

17
,

8

17

)

κ(s) =
8

289

τ(s) =
15

289
.
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θ(s)=s/17 

15θ(s)=15s/17 

δ 

Figure 2.2: An illustration for the trajectory given in Example 2.1

Then, 〈δ (s), N(s)〉=−8 and 〈δ (s), B(s)〉= 120
289 s are easily obtained. Since 〈δ (s), B(s)〉> 0 for all s ∈ (0, k), we get Ω(s) = arctan

(

289
15s

)

.

The above information gives us the PAF apparatus as follows:

T(s) =

(−8

17
sin

s

17
,

8

17
cos

s

17
,

15

17

)

M(s) =

(

−cos

(

arctan

(

289

15s

))

cos
s

17
− 15

17
sin

(

arctan

(

289

15s

))

sin
s

17
,−cos

(

arctan

(

289

15s

))

sin
s

17
+

15

17
sin

(

arctan

(

289

15s

))

cos
s

17
,
−8

17
sin

(

arctan

(

289

15s

)))

Y(s) =

(

−sin

(

arctan

(

289

15s

))

cos
s

17
+

15

17
cos

(

arctan

(

289

15s

))

sin
s

17
,−sin

(

arctan

(

289

15s

))

sin
s

17
− 15

17
cos

(

arctan

(

289

15s

))

cos
s

17
,

8

17
cos

(

arctan

(

289

15s

)))

k1(s) =
8

289
cos

(

arctan

(

289

15s

))

k2(s) =
8

289
sin

(

arctan

(

289

15s

))

k3(s) =
15

289
+

4335

83521+225s2

in the light of the equations (2.10) and (2.12).

3. Some characterizations for the special cases of the trajectory

In this section, we obtain some conditions including the PAF apparatus for the trajectory to be a rectifying curve, an osculating curve, a

normal curve, a planar curve and a general helix in E3.

It is not difficult to see

k1(s) = κ(s)





〈α(s), B(s)〉
√

〈α(s), N(s)〉2 + 〈α(s), B(s)〉2





k2(s) = κ(s)





−〈α(s), N(s)〉
√

〈α(s), N(s)〉2 + 〈α(s), B(s)〉2





considering the above derivation. Then, by keeping κ 6= 0 and the assumption related to angular momentum in mind, it can be said that k1(s)
and k2(s) can not be equal to zero at the same time and they verify the propositions

k1(s) = 0 ⇔ 〈α(s), B(s)〉= 0

k2(s) = 0 ⇔ 〈α(s), N(s)〉= 0.

So, the equation k1(s)〈α(s), N(s)〉+ k2(s)〈α(s), B(s)〉= 0 is satisfied if k1(s) = 0. Also, from the above propositions and the equations

(2.12)4 and (2.15) we have the following:

k2(s)

k1(s)
=−〈α(s), N(s)〉

〈α(s), B(s)〉 (3.1)

where k1(s) 6= 0. Thus, the aforementioned equation

k1(s)〈α(s), N(s)〉+ k2(s)〈α(s), B(s)〉= 0 (3.2)

is satisfied for all the s values of parameter.

A curve α = α (s) is called as osculating curve (rectifying curve or normal curve) if its position vector always lies in its osculating

plane (rectifying plane or normal plane) (see [4]-[6] for more details). Considering these definitions, the following theorems can be given.
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Theorem 3.1. In E3, suppose that a point particle of constant mass moves on its trajectory having non-vanishing angular momentum. Let

α = α (s) be the unit speed parametrization of the trajectory with κ 6= 0. Then, α is a rectifying curve if and only if k2 = 0.

Proof. Let α = α (s) be the unit speed parametrization of the trajectory with κ 6= 0. Assume that α is a rectifying curve. Then its position

vector always lies on its rectifying plane. So, 〈α(s), N(s)〉= 0 for all the values s of the arc-length parameter. Taking into consideration the

equation (3.2), we get

k2(s)〈α(s), B(s)〉= 0 (3.3)

for all s. Due to the non-vanishing angular momentum, the tangent line never passes through the origin O. Thus, 〈α(s), B(s)〉 never vanishes

along the rectifying trajectory α . Using this information in the equation (3.3) completes the first part of the proof.

On the contrary, assume that k2 = 0. From (3.2), we get

∀s, k1(s)〈α(s), N(s)〉= 0.

We know that k1(s) and k2(s) can not be equal to zero at the same time. So, we can ensure that k1(s) never vanishes. This yields the following

∀s, 〈α(s), N(s)〉= 0

which means that α = α (s) is a rectifying curve.

Theorem 3.2. In E3, assume that a point particle of constant mass moves on its trajectory having non-vanishing angular momentum. Let

α = α (s) be the unit speed parametrization of the trajectory with κ 6= 0. In this case, α is an osculating curve if and only if k1 = 0.

Proof. Let α = α (s) be the unit speed parametrization of the trajectory with κ 6= 0. Suppose that α is an osculating curve. In that case, its

position vector always lies on its osculating plane. Thus, 〈α(s), B(s)〉= 0 for all the values s of the arc-length parameter. Considering the

equation (3.2), we get

k1(s)〈α(s), N(s)〉= 0

for all s. Similarly previous proof, in the light of non-vanishing angular momentum we can ensure that the tangent line never passes through

the origin O. So, 〈α(s), N(s)〉 never vanishes along the osculating trajectory α . Then we conclude

∀s, k1(s) = 0

and finish the first part of the proof.

On the contrary, suppose that k1 = 0. Then from the equation (3.2)

∀s, k2(s)〈α(s), B(s)〉= 0

can be written. Since k1(s) and k2(s) are not equal to zero at the same time, we can say

∀s, k2(s) 6= 0.

This gives us the following

∀s, 〈α(s), B(s)〉= 0

which means that α = α (s) is an osculating curve.

Theorem 3.3. In E3, assume that a point particle of constant mass moves on its trajectory having non-vanishing angular momentum. Let

α = α (s) be the unit speed parametrization of the trajectory with κ 6= 0. Then the following properties hold:

1. If α is a normal curve, then the differential equation k2k1
′− k1k2

′− k3(k1
2 + k2

2)−Ω
′(k1

2 + k2
2) = 0 is satisfied along α .

2. If the differential equation k2k1
′− k1k2

′− k3(k1
2 + k2

2)−Ω
′(k1

2 + k2
2) = 0 is satisfied along α with k1,k2 6= 0, then α is a normal

curve.

Proof. Before starting the proofs of items, we need some preparation. Let α = α (s) be the unit speed parametrization of the trajectory with
κ 6= 0. One can easily find the equation

(

k1(s)

√

k1
2(s)+ k2

2(s)

)

〈α(s), T(s)〉+
(

k2(s)(k3(s)+Ω
′(s))− k1

′(s)
)

〈α(s), N(s)〉+
(

−k1(s)(k3(s)+Ω
′(s))− k2

′(s)
)

〈α(s), B(s)〉= 0 (3.4)

by differentiating the equation (3.2) and using the relations between the PAF apparatus and Serret-Frenet apparatus. We can obtain the
equation

(

−k1(s)k2(s)

√

k1
2(s)+ k2

2(s)

)

〈α(s), T(s)〉+
(

k2(s)k1
′(s)− k1(s)k2

′(s)− k3(k1
2(s)+ k2

2(s))−Ω
′(s)(k1

2(s)+ k2
2(s))

)

〈α(s), N(s)〉= 0 (3.5)

if we apply necessary operations to the equations (3.2) and (3.4) side by side. Note that the equation (3.5) plays an important role in the rest

of the proof. Now we can discuss the items:
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1. Assume that α is a normal curve. Then its position vector always lies on its normal plane. So,

〈α(s), T(s)〉= 0 (3.6)

for all the values s of the arc-length parameter. Taking into account of the equation (3.5), we obtain

(

k2(s)k1
′(s)− k1(s)k2

′(s)− k3(k1
2(s)+ k2

2(s))−Ω
′(s)(k1

2(s)+ k2
2(s))

)

〈α(s), N(s)〉= 0 (3.7)

for all s. On the other hand, differentiating the equation (3.6) yields the following:

∀s, 〈α(s), N(s)〉=− 1

κ(s)
6= 0. (3.8)

From the equations (3.7) and (3.8), we conclude

k2k1
′− k1k2

′− k3(k1
2 + k2

2)−Ω
′(k1

2 + k2
2) = 0

and finish the proof of this item.

2. Assume that the differential equation k2k1
′− k1k2

′− k3(k1
2 + k2

2)−Ω
′(k1

2 + k2
2) = 0 is satisfied along α with k1,k2 6= 0. From the

equation (3.5), we can write

∀s,

(

−k1(s)k2(s)

√

k1
2(s)+ k2

2(s)

)

〈α(s), T(s)〉= 0.

Since k1,k2 6= 0, we obtain

∀s, 〈α(s), T(s)〉= 0

which means that α = α (s) is a normal curve.

It is well known that a unit speed curve in E3 is a planar curve if and only if the torsion vanishes along this curve (see [14]). Considering this

information and the equation (2.12)3, the following corollary can be given according to PAF without proof.

Corollary 3.4. In E3, assume that a point particle of constant mass moves on its trajectory having non-vanishing angular momentum. Let

α = α (s) be the unit speed parametrization of the trajectory with κ 6= 0. In this case, α is a planar curve if and only if k3 =−Ω
′.

Another well-known class of curves is the class of general helices. In E3, a unit speed curve α = α (s) is a general helix if the unit tangent

vector of this curve makes a constant angle θ with a fixed unit vector u; namely,

〈T(s), u〉= cosθ

for all the s values of parameter. Also, in E3, the necessary and sufficient condition for the curve with κ 6= 0 to be general helix is that ratio

of torsion to curvature is constant (see [19]). In the light of this information, we can give the following corollary according to PAF.

Corollary 3.5. In E3, assume that a point particle of constant mass moves on its trajectory having non-vanishing angular momentum. Let

α = α (s) be the unit speed parametrization of the trajectory with κ 6= 0. In this case, α is a general helix if and only if

k3 +Ω
′

√

k1
2 + k2

2
= constant.

Proof. Let the trajectory α = α (s) be general helix in 3-dimensional Euclidean space E3. Then, we have a fixed unit vector u and a constant

angle θ satisfying

〈T, u〉= cosθ

from the definition. By differentiating this equation we obtain

〈

T′, u
〉

= 〈k1M+ k2Y, u〉=
〈
√

k1
2 + k2

2 cosΩM+

√

k1
2 + k2

2 sinΩY, u

〉

=

√

k1
2 + k2

2 〈cosΩM+ sinΩY, u〉= 0

and so

〈cosΩM+ sinΩY, u〉= 0.

Since T∧ (cosΩM+ sinΩY) = −sinΩM+ cosΩY, the unit vectors T , cosΩM+ sinΩY ,−sinΩM+ cosΩY compose a right-handed

orthonormal system. Then, we can conclude u ∈ Sp{T,−sinΩM+ cosΩY}. Hence

u = cosθ T+ sinθ(−sinΩM+ cosΩY).
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By differentiation we get

0 = cosθ T′+ sinθ(−sinΩM+ cosΩY)′

= (k1 sinΩ− k2 cosΩ)T+
(

k1 cosθ −Ω
′ sinθ cosΩ− k3 sinθ cosΩ

)

M+
(

k2 cosθ −Ω
′ sinΩsinθ − k3 sinΩsinθ

)

Y.

This last equation yields the equation system

k1 sinΩ− k2 cosΩ = 0

k1 cosθ −Ω
′ sinθ cosΩ− k3 sinθ cosΩ = 0

k2 cosθ −Ω
′ sinΩsinθ − k3 sinΩsinθ = 0.

Due to the equation (2.12)4, the first equation of this system is satisfied always. Let us consider the second and third equations together.

Then, we can write

k1 cosθ = sinθ cosΩ(k3 +Ω
′)

k2 cosθ = sinθ sinΩ(k3 +Ω
′).

Applying necessary operations these two equations, we obtain

cos2θ(k1
2 + k2

2) = sin2θ(k3 +Ω
′)2

and so

k3 +Ω
′

√

k1
2 + k2

2
= cotθ = constant.

On the contrary, suppose that cotθ = k3+Ω
′√

k1
2+k2

2
. In this case, we can write

√

k1
2 + k2

2 cosθ − (k3 +Ω
′)sinθ = 0. (3.9)

Differentiating the vector u= cosθ T+sinθ(−sinΩM+cosΩY) and using the equalities k1 =
√

k1
2 + k2

2 cosΩ and k2 =
√

k1
2 + k2

2 sinΩ,

we can easily obtain

u′ = (k1 sinΩ− k2 cosΩ)T+

(
√

k1
2 + k2

2 cosΩcosθ − sinθ cosΩ(k3 +Ω
′)
)

M+

(
√

k1
2 + k2

2 sinΩcosθ − sinθ sinΩ(k3 +Ω
′)
)

Y.

This gives us the following

u′ =
(
√

k1
2 + k2

2 cosθ − (k3 +Ω
′)sinθ

)

(cosΩM+ sinΩY) .

Substituting the equation (3.9) in the last equation yields

u′ = 0.

This means that u is a constant vector. Thus the proof is completed.

4. Slant helical trajectories according to PAF

Similar to general helix, the slant helix was defined in [20] as a curve whose principal normal vector makes a constant angle with a fixed

direction in E3. That is, if a unit speed curve α = α (s) is a slant helix, then there exist a constant angle γ and a fixed unit vector w satisfying

〈N(s), w〉= cosγ

for all the s values of parameter. Throughout the study, we refer it classic slant helix by following the known terminology. The characterization

for classic slant helices is given by the equation

κ2

(

κ2 + τ2
)3/2

( τ

κ

)′
= constant

in [20]. After this study, several kind of slant helices have been defined and studied (see [21]-[24] for details). In this section, we define and

consider the slant helical trajectories according to PAF and investigate some special cases of them. Note that similar methods and approaches,

given in [25], will be followed in this section.

Firstly, we define M−PAF spherical image of the trajectory. We give this spherical image since it is an important part of the charac-

terization of our slant helical trajectories. The remaining PAF spherical images can be topic of a different study of researchers interested.

Definition 4.1. In E3, assume that a point particle of constant mass moves on its trajectory having non-vanishing angular momentum. Let

α = α (s) be the unit speed parametrization of the trajectory with κ 6= 0. If we move the second vector field M of PAF to the center O of the

unit sphere S2, we get a curve which M(s) draws on S2. We call this curve as M−PAF spherical image of the trajectory α = α (s) and show

it with ξM .
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For M−PAF spherical image of the trajectory α = α (s)

ξM(s) = M(s)

can be written. If we differentiate this equation with respect to s, we obtain

ξ ′
M(s) = −k1(s)T(s)+ k3(s)Y(s)

ξ ′′
M(s) =

[

−k1
′(s)− k2(s)k3(s)

]

T(s)−
[

k1
2(s)+ k3

2(s)
]

M(s)+
[

−k1(s)k2(s)+ k3
′(s)
]

Y(s)

ξ ′′′
M(s) =

[

−k1
′′(s)− k2

′(s)k3(s)−2k3
′(s)k2(s)+ k1(s)

(

k1
2(s)+ k2

2(s)+ k3
2(s)

)]

T(s)−3
[

k1(s)k1
′(s)+ k3(s)k3

′(s)
]

M(s)

+
[

k3
′′(s)− k2

′(s)k1(s)−2k1
′(s)k2(s)− k3(s)

(

k1
2(s)+ k2

2(s)+ k3
2(s)

)]

Y(s).

These equations give us the curvature κM and the torsion τM of ξM as follows:

κM(s) =
‖ξ ′

M(s)∧ξ ′′
M(s)‖

‖ξ ′
M(s)‖3

=

√

1+(ζM(s))2
(4.1)

τM(s) =
〈ξ ′

M(s)∧ξ ′′
M(s), ξ ′′′

M(s)〉
‖ξ ′

M(s)∧ξ ′′
M(s)‖2

=
ζ ′

M(s)
(

1+(ζM(s))2
)

(

k1
2(s)+ k3

2(s)
)11/2

(4.2)

where

ζM(s) =

(

k3
′k1 − k1

′k3 − k2(k1
2 + k3

2)

(k1
2 + k3

2)
3/2

)

(s). (4.3)

Now, we return to slant helices and define the slant helical trajectories having non-vanishing angular momentum according to PAF as in the

next definition.

Definition 4.2. In E3, assume that a point particle of constant mass moves on its trajectory having non-vanishing angular momentum.

Let α = α (s) be the unit speed parametrization of the trajectory with κ 6= 0. The trajectory α = α (s) is called a slant helical trajectory

(according to PAF) if the second vector field M of PAF makes a constant angle with a fixed direction.

As a result of this definition, if the trajectory α = α (s) is a slant helical trajectory according to PAF, then there exist a constant angle β and a

fixed unit vector g satisfying

〈M(s), g〉= cosβ

for all the s values of parameter.

Theorem 4.3. In E3, assume that a point particle of constant mass moves on its trajectory having non-vanishing angular momentum.

Let α = α (s) be the unit speed parametrization of the trajectory with κ 6= 0 and (k1(s), k3(s)) 6= (0, 0). In that case, α is a slant helical

trajectory according to PAF if and only if the function, given in the equation (4.3), is a constant function.

Proof. Let the trajectory α = α (s) with κ 6= 0 and (k1(s), k3(s)) 6= (0, 0) be slant helical trajectory according to PAF in 3-dimensional

Euclidean space E3. In that case, from the Definition 4.2, the second vector field M of PAF makes a constant angle with a fixed direction.

Therefore, M−PAF spherical image ξM of the trajectory α = α (s) is part of a circle. In other words, it has constant curvature and zero

torsion. As we mentioned earlier, the curvature κM and the torsion τM of ξM are as in the equations (4.1) and (4.2). Using the information of

constant curvature and zero torsion, we can immediately conclude ζM(s) = constant.

On the contrary, assume that ζM(s) = constant. In that case, it is very easy to see that κM(s) = constant and τM = 0. Thus, M−PAF

spherical image ξM of the trajectory α = α (s) is part of a circle. This means that M makes constant angle with a fixed direction and the

proof is completed.

Corollary 4.4. Let the trajectory α = α (s) be a rectifying curve with κ, k1 6= 0. Then, α is a slant helical trajectory according to PAF if

and only if

(

k1
2

(k1
2 + k3

2)
3/2

(

k3

k1

)′)

(s) (4.4)

is a constant function.

Proof. Let the trajectory α = α (s), which is a rectifying curve with κ, k1 6= 0, be a slant helical trajectory according to PAF. Since α = α (s)
is a rectifying curve we obtain k2 = 0 according to Theorem 3.1. If k2 = 0 is substituted in the equation (4.3), we get this equation as

ζM(s) =

(

k1
2

(k1
2 + k3

2)
3/2

(

k3

k1

)′)

(s).

Then, Theorem 4.3 finishes the first part of the proof. The other part of the proof can be completed in a similar way.

Corollary 4.5. Let the trajectory α = α (s) be a rectifying curve with κ, k1 6= 0. Then, α is a slant helical trajectory according to PAF if

and only if α = α (s) is a classic slant helix.
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Proof. Let the trajectory α = α (s), which is a rectifying curve with κ, k1 6= 0, be a slant helical trajectory according to PAF. Due to the

Theorem 3.1, we obtain k2 = 0 for rectifying curve α = α (s). Considering k2 = 0, we get sinΩ = 0 and so k3 = τ , k1 = ±κ . Let us

substitute this information in the equation (4.4) and remember the characterization of slant helices given in the beginning of this section.

Then, Corollary 4.4 finishes the first part of the proof. In a similar way, one can easily complete the other part of the proof.

Corollary 4.6. Let the trajectory α = α (s) be an osculating curve with κ, k3 6= 0. Then, α is a slant helical trajectory according to PAF if

and only if

(

k2

k3

)

(s) (4.5)

is a constant function.

Proof. Let the trajectory α = α (s), which is an osculating curve with κ, k3 6= 0, be a slant helical trajectory according to PAF. Since

α = α (s) is an osculating curve we obtain k1 = 0 according to Theorem 3.2. If k1 = 0 is substituted in the equation (4.3), we get this

equation as

ζM(s) =

(

− k2

k3

)

(s).

In that case, Theorem 4.3 finishes the first part of the proof. The other part of the proof can be completed in a similar way.

Corollary 4.7. Let the trajectory α = α (s) be an osculating curve with κ, k3 6= 0. Then, α is a slant helical trajectory according to PAF if

and only if α = α (s) is a general helix.

Proof. Let the trajectory α = α (s), which is an osculating curve with κ, k3 6= 0, be a slant helical trajectory according to PAF. Due to

the Theorem 3.2, we obtain k1 = 0 for osculating curve α = α (s). Considering k1 = 0, we get cosΩ = 0 and so k3 = τ , k2 =±κ . Let us

substitute this information in the equation (4.5) and remember the characterization of general helices given in the previous section. Then,

Corollary 4.6 finishes the first part of the proof. In a similar way, one can easily complete the other part of the proof.

Now, we will discuss on the determination of the fixed direction (helix axis) for a slant helical trajectory according to PAF. Assume that a

point particle of constant mass moves on a slant helical trajectory (according to PAF) having non-vanishing angular momentum in E3. Let

α = α (s) be the unit speed parametrization of this trajectory with κ 6= 0. In this case, there exist a constant angle β and a fixed unit vector g

satisfying

〈M, g〉= cosβ = λ2

where g = λ1T+λ2M+λ3Y. From the last equation, we get

〈−k1T+ k3Y, g〉= 0 (4.6)

by means of differentiation with respect to s. This time, let us differentiate the vector g. Then we get

(λ1
′−λ2k1 −λ3k2)T+(λ1k1 −λ3k3)M+(λ3

′+λ1k2 +λ2k3)Y = 0.

This yields the following equation system:

λ1
′−λ2k1 −λ3k2 = 0

λ1k1 −λ3k3 = 0 (4.7)

λ3
′+λ1k2 +λ2k3 = 0.

Here, we will follow similar steps given in [25] to solve this system. If we write λ1 =
k3

k1
λ3, k1(s) 6= 0 in the equations (4.7)1 and (4.7)3 and

multiply (4.7)1 with k3

k1
, we get the differential equation

(

1+

(

k3

k1

)2
)

λ3
′+

k3

k1

(

k3

k1

)′
λ3 = 0.

One can find the general solution λ3 = µ k1√
k1

2+k3
2

of this differential equation where µ is the constant of integration. Then, it is not difficult

to obtain λ1 = µ k3√
k1

2+k3
2

from the relation λ1 =
k3

k1
λ3. Since the vector g = µ k3√

k1
2+k3

2
T+ cosβM+µ k1√

k1
2+k3

2
Y is taken as a unit vector,

we can derive the integration constant as µ =±sinβ . So,

g =± k3
√

k1
2 + k3

2
sinβT+ cosβM± k1

√

k1
2 + k3

2
sinβY

can be written. Finally, we must determine the constant angle β . By differentiating the equation (4.6) with respect to arc-length parameter s

of the trajectory,

〈

(−k1
′− k2k3)T+(−k1

2 − k3
2)M+(k3

′− k1k2)Y, ± k3
√

k1
2 + k3

2
sinβT+ cosβM± k1

√

k1
2 + k3

2
sinβY

〉

= 0
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is obtained. So, we have

±sinβ

(

k1k3
′− k3k1

′− k2k1
2 − k2k3

2

√

k1
2 + k3

2

)

− cosβ
(

k1
2 + k3

2
)

= 0.

This yields the following:

tanβ =±
(

k1
2 + k3

2
)3/2

k1k3
′− k3k1

′− k2k1
2 − k2k3

2
.

In the light of the above information, one can easily find β and determine the fixed direction generated by the constant vector g (see g is

constant) for the slant helical trajectory according to PAF.

5. Conclusion

Since there is a very close relation between a moving point particle of constant mass and the trajectory of it, moving frames adapted to the

trajectories are very useful tools for studying the kinematics theory. Considering this relation, a new moving frame, which we call it PAF for

short, is introduced for the trajectories with non-vanishing angular momentum in this study. Then, some basic topics are investigated by

means of PAF. It may be useful for the researchers studying on modern robotics in their observation environment. Furthermore, we expect

that it will be one of the preferred tools for discussing many topics of kinematics and differential geometry.

A natural question is to investigate the special trajectories generated by the TM, TY, MY and TMY−Smarandache curves according to PAF

in Euclidean 3-space. We leave that as a future project.
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[2] K. Eren, H. H. Kösal, Evolution of space curves and the special ruled surfaces with modified orthogonal frame, AIMS Math., 5(3) (2020), 2027-2039.

[3] Ö. G. Yıldız, M. Akyiğit, M. Tosun, On the trajectory ruled surfaces of framed base curves in the Euclidean space, Math. Methods Appl. Sci., 1-8,
(2020), https://doi.org/10.1002/mma.6267

[4] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Am. Math. Mon., 110(2) (2003), 147-152.
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[6] Z. Bozkurt, İ. Gök, O. Z. Okuyucu, F. N. Ekmekci, Characterizations of rectifying, normal and osculating curves in three dimensional compact Lie
groups, Life Sci. J., 10(3) (2013), 819-823.

[7] R. L. Bishop, There is more than one way to frame a curve, Am. Math. Mon., 82 (1975), 246-251.
[8] S. Yılmaz, M. Turgut, A new version of Bishop frame and an application to spherical images, J. Math. Anal. Appl., 371(2) (2010), 764-776.
[9] M. A. Soliman, N. H. Abdel-All, R. A. Hussien, T. Youssef, Evolution of space curves using Type-3 Bishop frame, Caspian J. Math. Sci. 8(1) (2019),

58-73.
[10] M. Dede, C. Ekici, H. Tozak, Directional tubular surfaces, Int. J. Algebra, 9(12) (2015), 527-535.
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Abstract

In this study, we investigate the norm of difference operator on some sequence spaces such

as Hilbert and Cesàro matrix domains. Therefore the present study is a complement for

those results obtained in [1].

1. Introduction

Let p > 1 and ω denote the set of all real-valued sequences. The Banach space ℓp is the set of all real sequences x = (xk)
∞
k=0 ∈ ω such that

‖x‖ℓp
=

(
∞

∑
k=0

|xk|
p

)1/p

< ∞.

We use the notations ∆B and ∆F to indicate the backward and forward difference matrices, respectively. These matrices are defined by

δ B
j,k =





1 k = j

−1 k = j−1

0 otherwise,
and δ F

j,k =





1 k = j

−1 k = j+1

0 otherwise.
(1.1)

Also Roopaei in [2] has introduced the notations ℓp(∆
B) and ℓp(∆

F ) for the backward and forward difference sequence spaces defined by,

ℓp(∆
B) =

{
x = (xn) :

∞

∑
n=1

|xn − xn−1|
p < ∞

}
,

and

ℓp(∆
F ) =

{
x = (xn) :

∞

∑
n=1

|xn − xn+1|
p < ∞

}
,

respectively. The domains c0(∆
F ), c(∆F ) and ℓ∞(∆

F ) of the forward difference matrix ∆F in the spaces c0, c and ℓ∞ are introduced by

Kizmaz [3]. Aftermore, the domain bvp of the backward difference matrix ∆B in the space ℓp have recently been investigated for 0 < p < 1

by Altay and Başar [4], and for 1 ≤ p ≤ ∞ by Başar and Altay [5].

The infinite Cesàro operator is defined by

c j,k =

{
1

j+1 0 ≤ k ≤ j

0 otherwise,
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for all j,k ∈ N. That is,

C =




1 0 0 · · ·
1/2 1/2 0 · · ·
1/3 1/3 1/3 · · ·

...
...

...
. . .


 .

This operator has the ℓp-norm ‖C‖ℓp
= p∗, where p∗ is the conjugate of p i.e. 1

p +
1
p∗ = 1.

Suppose that N ≥ 1 is a real number. The generalized Cesàro matrix, CN = (cN
j,k),

cN
j,k =

{
1

j+N 0 ≤ k ≤ j

0 otherwise,

has the ℓp-norm ‖CN‖ℓp
= p∗ ([6], Lemma 2.3), and the entries

CN =




1
N 0 0 · · ·
1

1+N
1

1+N 0 · · ·
1

2+N
1

2+N
1

2+N · · ·
...

...
...

. . .


 .

Note that, C1 is the well-known Cesàro matrix C. For more examples

C2 =




1/2 0 0 · · ·
1/3 1/3 0 · · ·
1/4 1/4 1/4 · · ·

...
...

...
. . .


 and C3 =




1/3 0 0 · · ·
1/4 1/4 0 · · ·
1/5 1/5 1/5 · · ·

...
...

...
. . .


 .

There are several research on the problem of finding the norm of operators on matrix domains while there are very limited papers about the

norm of difference operators. Roopaei has recently computed the norm of backward difference operator on some sequence spaces and the

present study is a complement for those results obtained in [1].

2. Norm of operators on matrix domains

The operator T is called bounded, if the inequality ‖T x‖ℓp
≤ K‖x‖ℓp

holds for all sequences x ∈ ℓp, while the constant K is not depending on

x. The constant K is called an upper bound for operator T and the smallest possible value of K is called the norm of T .

The domain XT of an infinite matrix T in a sequence space X is defined as

XT = {x ∈ ω : T x ∈ X}

which is also a sequence space. It is easy to see that for an invertible matrix T , the matrix domain Tp is a normed space with ‖x‖Tp
:= ‖T x‖ℓp

.

By using matrix domains of special triangular matrices in classical spaces, many authors have introduced and studied new Banach spaces.

For the relevant literature, we refer to the papers [7, 8, 9, 10, 11, 12, 13] and textbook [14]. Recently, Roopaei has computed the norm of

operators on several matrix domains in [2, 15, 16, 17, 18, 19, 20, 21].

Lemma 2.1 ([18], Lemma 3.1). Let U be a bounded operator on ℓp and Ap and Bp are two matrix domains such that Ap ≃ ℓp.

- If BT is a bounded operator on ℓp, then T is a bounded operator from ℓp into Bp and ‖T‖ℓp,Bp
= ‖BT‖ℓp

.

- If T has a factorization of the form T =UA, then T is a bounded operator from the matrix domain Ap into ℓp and ‖T‖Ap,ℓp
= ‖U‖ℓp

.

- If BT =UA, then T is a bounded operator from the matrix domain Ap into Bp and

‖T‖Ap,Bp
= ‖U‖ℓp

.

In particular, if AT =UA, then T is a bounded operator from the matrix domain Ap into Ap and ‖T‖Ap
= ‖U‖ℓp

. Also, if T and A commute

then ‖T‖Ap
= ‖T‖ℓp

.

2.1. Norm of difference operator on the Hilbert sequence space

Recall the definition of Hilbert matrix H = (h j,k), which is defined by

h j,k =
1

j+ k+1
( j,k = 0,1, . . .).

That is

H =




1 1/2 1/3 · · ·
1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·

...
...

...
. . .


 .
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We know that H is a bounded operator on ℓp with ‖H‖ℓp
= π csc(π/p) ([22], Theorem 323).

The sequence space associated with the Hilbert matrix, Hp, is defined by

Hp =

{
x = (xk) ∈ ω :

∞

∑
j=0

∣∣∣∣∣
∞

∑
k=0

xk

j+ k+1

∣∣∣∣∣

p

< ∞

}
,

and has the following norm

‖x‖Hp
=

(
∞

∑
j=0

∣∣∣∣∣
∞

∑
k=0

xk

j+ k+1

∣∣∣∣∣

p) 1
p

.

Theorem 2.2 ([22], Theorem 275). Let p > 1 and T = (t j,k) be a matrix operator with t j,k ≥ 0 for all j,k. Suppose that C, R are two strictly

positive numbers such that

∞

∑
j=0

t j,k ≤C f or all k,
∞

∑
k=0

t j,k ≤ R f or all j,

bounds for column and row sums respectively. Then

‖T‖ℓp
≤ R1/p∗C1/p.

The above theorem also known as Schur’s theorem.

Theorem 2.3. The ℓp norm of the backward difference operator on the Hilbert matrix domain Hp, is the ℓp-norm of forward difference

operator on Hp and

(a)‖∆B‖Hp,Hp
= ‖∆F‖ℓp

,

(b)‖∆B‖ℓp,Hp
≤ 1.

Proof. (a) Let A = H∆B. The matrix A = (a j,k) has the entries

ai,k = ∑
j=k,k+1

hi, jδ
B
j,k =

1

i+ k+1
−

1

i+ k+2
=

1

(i+ k+1)(i+ k+2)
.

Obviously, A is a symmetric matrix which implies that H∆B = ∆F H. Now,

‖∆B‖Hp,Hp
= sup

x∈Hp

‖H∆Bx‖ℓp

‖x‖Hp

= sup
x∈Hp

‖∆F Hx‖ℓp

‖Hx‖ℓp

= sup
y∈ℓp

‖∆F y‖ℓp

‖y‖ℓp

= ‖∆F‖ℓp
.

(b) Let A be the matrix defined in part (a). According to Lemma 2.1 part (i)

‖∆B‖ℓp,Hp
= ‖H∆B‖ℓp

= ‖A‖ℓp
.

By a simple calculation

uk =
∞

∑
j=0

a j,k =
1

k+1
,

where uk is the kth column sum of A. Since 1 = u0 > u1 > · · · and A is symmetric, hence R and C are both 1 in Schur’s theorem. Therefore

‖A‖ℓp
≤ 1.

2.2. Norm of difference operator on the Cesàro sequence space

In this part of study, we intend to compute the norm of backward difference operator on the Cesàro sequence space. To do this we need the

definition of the generalized Cesàro matrix domain.

The matrix domain associated with the generalized Cesàro matrix [15] is the set

CN
p =

{
x = (xk) ∈ ω :

∞

∑
j=0

∣∣∣∣∣
j

∑
k=0

xk

j+N

∣∣∣∣∣

p

< ∞

}
,

which has the following norm

‖x‖CN
p
=

(
∞

∑
j=0

∣∣∣∣∣
j

∑
k=0

xk

j+N

∣∣∣∣∣

p) 1
p

.

Note that, by letting N = 1 we obtain the well-known Cesàro sequence space.
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Remark 2.4. In [23], Ng and Lee introduced the Cesàro sequence spaces Xp and X∞ of non-absolute type as the domains of Cesàro matrix

C1 of order one in the spaces ℓp and ℓ∞, where 1 ≤ p < ∞. Recently, Şengönül and Başar [24] studied the Cesàro sequence spaces c̃0 and c̃

of non-absolute type as the domains of Cesàro matrix C1 of order one in the spaces c0 and c, also Roopaei et al [25] and Roopaei and Başar

[10] have investigated the Cesáro space Cn
p for p ≥ 1 and 0 < p < 1, respectively.

Theorem 2.5. The backward difference operator ∆B is a bounded operator from ℓp into the generalized Cesàro matrix domain CN
p and

‖∆B‖ℓp,CN
p
=

1

N
.

In particular, the backward difference operator is a bounded operator from ℓp into Cp and ‖∆B‖ℓp,Cp
= 1.

Proof. Let D =CN∆B. By a simple calculation, we deduce that the matrix D = (d j,k) is a diagonal matrix with entries

D =




1
N 0 0 · · ·

0 1
1+N 0 · · ·

0 0 1
2+N · · ·

...
...

...
. . .


 . (2.1)

Now, according to Lemma 2.1

‖∆B‖ℓp,CN
p
= ‖CN∆B‖ℓp

= ‖D‖ℓp
= sup

j

d j, j =
1

N
.

In particular, for N = 1, C1
p is the well-known Cesàro matrix domain Cp. Therefore we have the result.

Corollary 2.6. The generalized Copson operator is a bounded operator from ℓp into the forward difference matrix domain ℓp(∆
F ) and

‖CNt‖ℓp,ℓp(∆F ) =
1

N
.

In particular, Copson operator is a bounded operator from ℓp into ℓp(∆
F ) and ‖Ct‖ℓp,ℓp(∆F ) = 1.

Proof. According to Lemma 2.1 and previous theorem

‖CNt‖ℓp,ℓp(∆F ) = ‖∆FCNt‖ℓp
= ‖(CN∆B)t‖ℓp

= ‖Dt‖ℓp
= sup

j

d j, j =
1

N
,

where D is the diagonal matrix defined in the relation (2.1).

Theorem 2.7. The backward difference operator is a bounded operator from the generalized Copson space into the generalized Cesàro

matrix domain and

‖∆B‖CNt
p ,CN

p
= ‖∆F‖ℓp

.

In particular, the backward difference operator is a bounded operator from the Copson matrix domain into the Cesàro matrix domain and

‖∆B‖Ct
p,Cp

= ‖∆F‖ℓp
.

Proof. Through the proof of Theorem 2.5 we knew that CN∆B = ∆FCNt . Now, according to Lemma 2.1 we have

‖∆B‖CNt
p ,CN

p
= sup

x∈CNt
p

‖∆Bx‖CN
p

‖x‖CNt
p

= sup
x∈CNt

p

‖CN∆Bx‖ℓp

‖CNtx‖ℓp

= sup
x∈CNt

p

‖∆FCNtx‖ℓp

‖CNtx‖ℓp

= sup
y∈ℓp

‖∆F y‖ℓp

‖y‖ℓp

= ‖∆F‖ℓp
,

that completes the proof.

Corollary 2.8. The generalized Copson operator is a bounded operator from the backward difference matrix domain ℓp(∆
B) into the

forward difference space ℓp(∆
F ) and

‖CNt‖ℓp(∆B),ℓp(∆F ) = p∗.

In particular, Copson operator is a bounded operator from ℓp(∆
B) into ℓp(∆

F ) and ‖Ct‖ℓp(∆B),ℓp(∆F ) = p∗.

Proof. The proof is similar to the proof of Theorem 2.7.
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In sequel we intend to generalize the result of Theorem 2.7 for the backward difference operator of order n. At first we need some definitions.

Let us recall the backward difference matrix of order n, ∆n = (δ n
j,k), which is a lower triangular matrix with the entries

δ n
j,k =

{
(−1)( j−k)

(
n

j−k

)
k ≤ j ≤ n+ k,

0 otherwise.

This matrix has the inverse ∆−n = (δ−n
j,k ) with the following entries

δ−n
j,k =

{ (
n+ j−k−1

j−k

)
j ≥ k,

0 otherwise.
(2.2)

Note that, for n = 1, the backward difference of order 1 is ∆B that was defined by relation (1.1).

The Hausdorff matrix Hµ = (h j,k)
∞
j,k=0, is defined by:

h j,k =

{ ∫ 1
0

(
j
k

)
θ k(1−θ) j−kdµ(θ) 0 ≤ k ≤ j

0 k > j,

where µ is a probability measure on [0,1]. The Hausdorff matrix contains some famous classes of matrices. By letting dµ(θ) =
n(1−θ)n−1dθ in the definition of the Hausdorff matrix, the Cesàro matrix of order n, Cn = (cn

j,k), is defined as follows

cn
j,k =





(n+ j−k−1
j−k )
(n+ j

j )
0 ≤ k ≤ j,

0 otherwise.

Note that, C1 is the well-known Cesàro matrix C.

The sequence space Cn
p is defined as the set of all sequences whose Cn-transforms are in the space ℓp; that is

Cn
p =

{
x = (x j) ∈ ω :

∞

∑
j=0

∣∣∣∣∣
1(

n+ j
j

)
j

∑
k=0

(
n+ j− k−1

j− k

)
xk

∣∣∣∣∣

p

< ∞

}
,

which is a Banach space with the norm

‖x‖Cn
p
=

(
∞

∑
j=0

∣∣∣∣∣
1(

n+ j
j

)
j

∑
k=0

(
n+ j− k−1

j− k

)
xk

∣∣∣∣∣

p)1/p

.

The Copson matrix domain Cnt
p is defined similarly which is isomorphic to the ℓp space by Theorem 2.3 of [18]. Roopaei in [17], through the

proof of Corollary 3.6, has showed that Cn∆nB is a diagonal matrix. Hence Cn∆nB = ∆nF Cnt , where ∆nF is the forward difference operator of

order n.

Now, as a result of Lemma 2.1 part (iii), we have the following result.

Theorem 2.9. The backward difference operator of order n, ∆nB , is a bounded operator from the Copson matrix domain into the Cesàro

matrix domain and

‖∆nB‖Cnt
p ,C

n
p
= ‖∆nF ‖ℓp

.

In particular, the backward difference operator is a bounded operator from the Copson matrix domain into the Cesàro matrix domain and

‖∆B‖Ct
p,Cp

= ‖∆F‖ℓp
.

We have also the following corollary which has a proof similar to the above theorem.

Corollary 2.10 ([18], Theorem 4.3). The Copson matrix of order n, Cn, is a bounded operator from ℓp(∆
nB) into ℓp(∆

nF ) and

‖Cn‖ℓp(∆nB ),ℓp(∆nF ) =
Γ(n+1)Γ(1/p∗)

Γ(n+1/p∗)
.

In particular, the Copson matrix is a bounded operator from ℓp(∆
B) into ℓp(∆

F ) and

‖C‖ℓp(∆B),ℓp(∆F ) = p∗.

Theorem 2.11. Let n,s and m are non-negative integers that n = s+m. The backward difference operator of order n, ∆nB , is a bounded

operator from the matrix domain ℓp(∆
mB) into the Cesàro matrix domain Cs

p and

‖∆nB‖ℓp(∆mB ),Cs
p
= 1.
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Proof. From the relation (2.2), one can see that the Cesàro matrix of order n and its inverse can be rewritten based on the backward difference

operator and of order −n and its inverse. For j ≥ k, we have

cn
j,k =

(
n+ j−k−1

j−k

)
(

n+ j
j

) =
δ−n

j,k(
n+ j

j

) , and c−n
j,k = δ n

j,k

(
n+ k

k

)
.

Let us first compute the matrix Cs∆nB .

(Cs∆nB) j,k = ∑
i

∆
−sB

j,i ∆
nB

j,k(
s+ j

j

) =
1(

s+ j
j

)∆m
j,k.

Hence, Cs∆nB =U∆mB , where U = (u j,k) is the diagonal matrix defined as u j, j =
1

(s+ j
j )

. Now, according to the Lemma 2.1 we have

‖∆nB‖ℓp(∆mB ),Cs
p

= sup
x∈ℓp(∆mB )

‖∆nB x‖Cs
p

‖x‖ℓp(∆mB )
= sup

x∈ℓp(∆mB )

‖Cs∆nB x‖ℓp

‖∆mB x‖ℓp

= sup
x∈ℓp(∆mB )

‖U∆mB x‖ℓp

‖∆mB x‖ℓp

= sup
y∈ℓp

‖Uy‖ℓp

‖y‖ℓp

= ‖U‖ℓp
= sup

j

u j, j = 1.

Corollary 2.12. Let n,s and m are non-negative integers that n = s+m. The backward difference operator of order n, ∆nB , is a bounded

operator from the matrix domain ℓp(∆
mB) into the matrix domain ℓp(∆

sB) and

‖∆nB‖ℓp(∆mB ),ℓp(∆sB ) = 1.

Proof. The proof is similar to the proof of the above theorem.
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[14] F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, İstanbul, 2012.
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Abstract

In this paper, we study dynamics and bifurcation of the third order rational difference

equation

xn+1 =
α +βxn−2

A+Bxn +Cxn−2
, n = 0,1,2, . . .

with positive parameters α,β ,A,B,C and non-negative initial conditions

{x−k,x−k+1, . . . ,x0}. We study the dynamic behavior, the sufficient conditions for

the existence of the Neimark-Sacker bifurcation, and the direction of the Neimark-Sacker

bifurcation. Then, we give numerical examples with figures to support our results.

1. Introduction

The study of dynamical system is the focus of dynamical systems theory, which has application to a wide variety of fields such as mathematics,

physics, chemistry, biology, medicine, engineering and economics. Dynamical systems are a fundamental part of bifurcation theory which

studies the changes in the qualitative or topological structure of systems. A bifurcation occurs when a small change made to the bifurcation

parameter of a system causes a qualitative or topological change in its behavior.

In this paper, we will study the third order rational difference equation

xn+1 =
α +βxn−2

A+Bxn +Cxn−2
, n = 0,1,2, . . . . (1.1)

We focus on the dynamic behavior of the positive fixed points and the type of bifurcation exists where the change of stability occurs. Then,

numerical examples are treated to support our results.

Local and global stability, period two solutions, boundedness, invariant intervals and semicycles of

xn+1 =
α +βxn−k

A+Bxn +Cxn−k

, n = 0,1,2, . . . (1.2)

were studied by Guo-Mei Tang, Lin-Xia Hu, and Gang Ma in [1]. Also, it was shown that (1.2) has no nonnegative prime period-two

solutions for even integer k. Equation (1.1) was studied by Ladas in [2].

The aim of this paper is to study the bifurcation of the third order rational difference equation (1.1). The change of variables xn =
A
B yn convert

the rational difference equation (1.1) with five positive parameters into yn+1 =
p+qyn−2

1+yn+ryn−2
, n = 0,1,2, . . . with three positive parameters p,

q, and r, where p = B
A2 α , q = B

A and r = C
B . Recent studies on dynamics and bifurcation can be found in [3], [4], [5], [6], [7].

Email address and ORCID number: brdad@birzeit.edu, 0000-0002-2716-5740 (B. Raddad), msaleh@birzeit.edu, 0000-0002-4254-2540 (M.

Saleh)
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2. Dynamics of yn+1 =
p+qyn−2

1+yn+ryn−2

In this section we will study the dynamics of the third order rational difference equation

yn+1 =
p+qyn−2

1+ yn + ryn−2
(2.1)

with positive parameters p,q, and r, and non-negative initial conditions y−2,y−1 and y0. Note that equation (2.1) has the unique positive

fixed point ȳ =
q−1+

√
(q−1)2+4p(1+r)
2(1+r)

.

In order to convert equation (2.1) to a third dimensional system, let zn = yn,xn = yn−1 and tn = yn−2. We have the following system

zn+1 =
p+qtn

1+ zn + rtn

xn+1 = zn

tn+1 = xn (2.2)

which has the positive fixed point (ȳ, ȳ, ȳ). In order to shift this fixed point to the origin, let wn = zn − ȳ, vn = xn − ȳ and un = tn − ȳ. System

(2.2) corresponds

wn+1 =
p+q(un + ȳ)

1+(wn + ȳ)+ r(un + ȳ)
− ȳ

vn+1 = wn

un+1 = vn (2.3)

System (2.3) has (0,0,0) as a fixed point.

The Jacobian matrix of system (2.3) is

J(w,v,u) =







− p+q(wn+ȳ)
(1+wn+ȳ+r(un+ȳ))2 0

q(1+wn+ȳ)−rp

(1+wn+ȳ+r(un+ȳ))2

1 0 0

0 1 0







J(0,0,0) =





− p+qȳ

(1+ȳ+rȳ)2 0
q+qȳ−rp

(1+ȳ+rȳ)2

1 0 0

0 1 0



=





− ȳ
1+ȳ+rȳ 0

q−rȳ
1+ȳ+rȳ

1 0 0

0 1 0



 .

The characteristic polynomial of the Jacobian matrix J is

p(λ ) =−λ 3 − ȳ

1+ ȳ+ rȳ
λ 2 +

q− rȳ

1+ ȳ+ rȳ
. (2.4)

Let p1 =
ȳ

1+ȳ+rȳ , p2 = 0 and p3 =− q−rȳ
1+ȳ+rȳ .

We will use the following theorem to determine the stability of the zero solution.

Theorem 2.1. [8] For the third-order difference equation

x(n+3)+ p1x(n+2)+ p2x(n+1)+ p3x(n) = 0, (2.5)

the characteristic polynomial is

p(λ ) = λ 3 + p1λ 2 + p2λ + p3.

A necessary and sufficient condition for the zero solution to be asymptotically stable is

| p1 + p3 |< 1+ p2 and | p2 − p1 p3 |< 1− p2
3. (2.6)

Theorem (2.1) implies that the zero solution is asymptotically stable if condition (2.6) holds which is equivalent to

| ȳ

1+ ȳ+ rȳ
− q− rȳ

1+ ȳ+ rȳ
|< 1 (2.7)

and

| ȳ

1+ ȳ+ rȳ
× q− rȳ

1+ ȳ+ rȳ
|< 1− (

q− rȳ

1+ ȳ+ rȳ
)2
. (2.8)

Inequality (2.7) is equivalent to

1+
ȳ

1+ ȳ+ rȳ
− q− rȳ

1+ ȳ+ rȳ
> 0, (2.9)
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and

1− ȳ

1+ ȳ+ rȳ
+

q− rȳ

1+ ȳ+ rȳ
> 0, (2.10)

and inequality (2.8) is equivalent to

1+
ȳ

1+ ȳ+ rȳ
× q− rȳ

1+ ȳ+ rȳ
− (

q− rȳ

1+ ȳ+ rȳ
)2

> 0, (2.11)

and

1− ȳ

1+ ȳ+ rȳ
× q− rȳ

1+ ȳ+ rȳ
− (

q− rȳ

1+ ȳ+ rȳ
)2

> 0. (2.12)

Inequality (2.9) always holds since

1+
ȳ

1+ ȳ+ rȳ
− q− rȳ

1+ ȳ+ rȳ
=

1−q+2(1+ r)ȳ

1+(1+ r)ȳ
> 0.

Also, inequality (2.10) holds for all values of the parameters p,q and r since,

1− ȳ

1+ ȳ+ rȳ
+

q− rȳ

1+ ȳ+ rȳ
=

1+q

1+(1+ r)ȳ
> 0.

Inequality (2.11) is equivalent to

1+
q− rȳ

1+ ȳ+ rȳ
[

ȳ

1+ ȳ+ rȳ
− q− rȳ

1+ ȳ+ rȳ
]> 0. (2.13)

Note that we take
q−rȳ

1+ȳ+rȳ as a common factor. Now, add −1 to both sides of inequality (2.13), we have

q− rȳ

1+ ȳ+ rȳ
[
(1+ r)ȳ−q

1+ ȳ+ rȳ
]>−1 (2.14)

Multiply both sides of (2.14) by
1+ȳ+rȳ
(1+r)ȳ−q

, for (1+ r)ȳ−q < 0, we have

q− rȳ

1+ ȳ+ rȳ
<

1+ ȳ+ rȳ

q− (1+ r)ȳ
.

Inequality (2.12) is equivalent to
q− rȳ

1+ ȳ+ rȳ
[

−ȳ

1+ ȳ+ rȳ
− q− rȳ

1+ ȳ+ rȳ
]>−1

or,

q− rȳ

1+ ȳ+ rȳ
[
−ȳ−q+ rȳ

1+ ȳ+ rȳ
]>−1. (2.15)

Note that for (1+ r)ȳ−q < 0, rȳ− ȳ−q < 0. So, if we multiply both sides of (2.15) by
1+ȳ+rȳ
rȳ−ȳ−q , we have

q− rȳ

1+ ȳ+ rȳ
<

1+ ȳ+ rȳ

q− rȳ+ ȳ
.

Note that for rȳ− ȳ−q < rȳ+ ȳ−q < 0,

0 < q− rȳ− ȳ < q− rȳ+ ȳ,

and hence,
1+ ȳ+ rȳ

q− rȳ+ ȳ
<

1+ ȳ+ rȳ

q− rȳ− ȳ
.

So for q− (1+ r)ȳ > 0, if
q−rȳ

1+ȳ+rȳ <
1+ȳ+rȳ
q−rȳ+ȳ , then

q−rȳ
1+ȳ+rȳ <

1+ȳ+rȳ
q−rȳ−ȳ , and hence, for q− (1+ r)ȳ > 0 if inequality (2.12) holds, then inequality

(2.11) holds.

Note that if q− (1+ r)ȳ > 0, we have

q− (1+ r)(
q−1+

√

(q−1)2 +4p(1+ r)

2(1+ r)
> 0

or

q− q−1+
√

(q−1)2 +4p(1+ r)

2
> 0

q+1−
√

(q−1)2 +4p(1+ r)> 0

q+1 >

√

(q−1)2 +4p(1+ r)

take the square of both sides, we get

q2 +2q+1 > q2 −2q+1+4p(1+ r)

or,

4q > 4p(1+ r)
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p <
q

1+ r
.

So for p <
q

1+r , the zero solution is asymptotically stable if

q− rȳ

1+ ȳ+ rȳ
<

1+ ȳ+ rȳ

q− rȳ+ ȳ
. (2.16)

Note that if we fix q and r and choose p as a parameter where p <
q

1+r , then the stability exchanges at the value of p that satisfies equation
q−rȳ

1+ȳ+rȳ = 1+ȳ+rȳ
q−rȳ+ȳ . Name this value as p∗.

3. Existence of Neimark-Sacker bifurcation of yn+1 =
p+qyn−2

1+yn+ryn−2

In this section we study Neimark-Sacker bifurcation of (2.1) which occurs at p = p∗ as p is the bifurcation parameter. Note that equation

(2.1) has no positive distinct periodic solutions of prime period two. Hence, we focus our attention on Neimark-Sacker bifurcation.

Theorem 3.1. The characteristic polynomial (2.4) p(λ ) has two complex conjugate roots if one of the following cases holds

1. q− rȳ < 0

2.
q−rȳ

1+ȳ+rȳ >
4

27 (
ȳ

1+ȳ+rȳ )
3

Proof.

p(λ ) =−λ 3 − ȳ

1+ ȳ+ rȳ
λ 2 +

q− rȳ

1+ ȳ+ rȳ

ṕ(λ ) =−3λ 2 −2
ȳ

1+ ȳ+ rȳ
λ

ṕ(λ ) = 0 at λ ∗
1 =− 2

3 (
ȳ

1+ȳ+rȳ ) or λ ∗
2 = 0.

Since, ȳ > 0, λ ∗
1 < λ ∗

2 . p(λ ) has local minimum value at λ = λ ∗
1 and local maximum value at λ = λ ∗

2 . Note that limλ→−∞ p(λ ) = ∞ and

limλ→∞ p(λ ) =−∞.

So, p(λ ) has only one real root if one of the following cases holds

1. p(λ ∗
1 )> 0 and hence p(λ ∗

2 )> p(λ ∗
1 )> 0.

2. p(λ ∗
2 )< 0 and hence p(λ ∗

1 )< p(λ ∗
2 )< 0 .

So, p(λ ) has two conjugate complex roots if one of the following holds

1. p(λ ∗
1 ) =− 4

27 (
ȳ

1+ȳ+rȳ )
3 + q−rȳ

1+ȳ+rȳ > 0.

2. p(λ ∗
2 ) =

q−rȳ
1+ȳ+rȳ < 0.

Consider case one. Note that p(0) = q−rȳ
1+ȳ+rȳ > 0 and p(1) = −1 − ȳ

1+ȳ+rȳ + q−rȳ
1+ȳ+rȳ . Substitute the value of ȳ, we have p(1) =

−2

√
(q−1)2+4p(1+r)

q+1+
√

(q−1)2+4p(1+r)
< 0. So p(λ ) has a real root ξ such that ξ ∈ (0,1).

In the second case, by similar argument we can show that p(λ ) has a real root of modulus less than one. Note that p(0)< 0 and p(−1)> 0

in this case.

Consider the case where
q−rȳ

1+ȳ+rȳ >
4

27 (
ȳ

1+ȳ+rȳ )
3. We will find where the conditions of Neimark-Sacker conditions hold.

Theorem 3.2. For p <
q

1+r , the characteristic polynomial p(λ ) has two complex conjugate roots of modulus one and a real root of modulus

less than one at p = p∗ if q > 3.

Moreover, if p∗ >

(

2(1+r)

(

−(13r2+16r−7)+
√

(13r2+16r−7)2+4(6r−9)(9r3+16r2+7r)

2(9r3+16r2+7r)

)

−(q−1)

)2

−(q−1)2

4(1+r)
, then Neimark-Sacker conditions hold.

To prove this theorem we need Viète f ormula.

Theorem 3.3. [9](Viète f ormula) Given any polynomial of degree n, say

P(x) = anxn +an−1xn−1 + . . .+a1x+a0

with roots r1,r2, . . . ,rn. Viète f ormula say that

r1 + r2 + . . .+ rn =− an−1

an
,

(r1r2 + r1r3 + . . .+ r1rn)+(r2r3 + r2r4 + . . .+ r2rn)+ . . .+ rn−1rn =
an−2

an
,

(r1r2r3 + r1r2r4 + . . .+ r1r2rn)+(r1r3r4 + r1r3r5 + . . .+ r1r3rn)+ . . .+ rn−2rn−1rn =− an−3

an
,

...

r1r2r3 . . .rn = (−1)n a0

an
.
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Proof of theorem (3.2): Consider that q > 3 and p <
q

1+r . Note that for p <
q

1+r , we have q− (1+ r)ȳ > 0 and hence q− rȳ > ȳ.

Recall that 1 > ( ȳ
1+ȳ+rȳ )

2 so 1 >
4
27 (

ȳ
1+ȳ+rȳ )

2 and hence, ȳ > 4
27 (

ȳ
1+ȳ+rȳ )

2ȳ. So, q− rȳ > ȳ > 4
27 (

ȳ
1+ȳ+rȳ )

2ȳ. Multiply by 1
1+ȳ+rȳ , we get

q−rȳ
1+ȳ+rȳ >

4
27 (

ȳ
1+ȳ+rȳ )

3.

So, in this case the characteristic polynomial has two complex conjugate roots and another real root of modulus less than one as we have

shown in the proof of theorem (3.1).

Now we will show that the modulus of the conjugate roots equals one at p = p∗. Let λ1,λ2 and λ3 be the roots of p(λ ) where, λ1 and λ2 are

the conjugate roots and λ3 is the real root. Recall that λ3 = ξ has modulus less than one. By Viète theorem, we have

λ1 +λ2 +λ3 =− ȳ

1+ ȳ+ rȳ
(3.1)

λ1λ2λ3 =
q− rȳ

1+ ȳ+ rȳ
(3.2)

λ1λ2 +λ1λ3 +λ2λ3 = 0. (3.3)

If λ1 and λ2 has modulus equal one, then λ1λ2 = 1. From (3.2), we get λ3 =
q−rȳ

1+ȳ+rȳ .

Substitute λ3 in equation (3.1), we get λ1 +λ2 +
q−rȳ

1+ȳ+rȳ =− ȳ
1+ȳ+rȳ

λ1 +λ2 =−q− rȳ+ ȳ

1+ ȳ+ rȳ
. (3.4)

Also, substitute λ3 in equation (3.3), we get λ1 +λ2 =− 1
λ3

=− 1+ȳ+rȳ
q−rȳ .

That implies
q−rȳ

1+ȳ+rȳ = 1+ȳ+rȳ
q−rȳ+ȳ . This shows that at p = p∗ where p∗ satisfies

q−rȳ
1+ȳ+rȳ = 1+ȳ+rȳ

q−rȳ+ȳ , p(λ ) has two complex conjugate roots of

modulus one and a real root of modulus less than one for p <
q

1+r .

As p is the bifurcation parameter and q and r are fixed, the bifurcation point is p∗ which satisfies

q− rȳ

1+ ȳ+ rȳ
=

1+ ȳ+ rȳ

q− rȳ+ ȳ

(1+ ȳ+ rȳ)2 = (q− rȳ+ ȳ)(q− rȳ)

(1+ r)2ȳ2 +2(1+ r)ȳ+1 = q2 −qrȳ+qȳ−qrȳ+ r2ȳ2 − rȳ2

(1+3r)ȳ2 +(2(1+ r)+q(2r−1))ȳ− (q2 −1) = 0. (3.5)

Equation (3.5) is a quadratic equation with the following roots

ȳ =
−(2(1+ r)+q(2r−1))±

√

(2(1+ r)+q(2r−1))2 +4(q2 −1)(1+3r)

2(1+3r)
.

Since, ȳ > 0, for q2 > 1

ȳ =
−(2(1+ r)+q(2r−1))+

√

(2(1+ r)+q(2r−1))2 +4(q2 −1)(1+3r)

2(1+3r)
.

Substitute the value of ȳ, we have
q−1+

√
(q−1)2+4p∗(1+r)

2(1+r)
=

−(2(1+r)+q(2r−1))+
√

(2(1+r)+q(2r−1))2+4(q2−1)(1+3r)
2(1+3r)

√

(q−1)2 +4p∗(1+ r) = 1−q+2(1+ r)
(−(2(1+r)+q(2r−1))+

√
(2(1+r)+q(2r−1))2+4(q2−1)(1+3r)

2(1+3r)

)

p∗ =

(

1−q+2[1+ r][
−(2(1+r)+q(2r−1))+

√
(2(1+r)+q(2r−1))2+4(q2−1)(1+3r)

2(1+3r)
]
)2

− (q−1)2

4(1+ r)
.

To check if Neimark-Saker bifurcation exists at p∗, we must show that eikθ ∗ 6= 1 for k = 1,2,3,4 and ŕ(p∗) 6= 0 where λ1,2 = cosθ∗± isinθ∗.

To show that eiθ ∗ 6= 1, let λ = cosθ + isinθ and λ̄ = cosθ − isinθ be the complex roots of p(λ ) at p∗. Substitute λ in p(λ ), we have

−λ 3 − ȳ
1+ȳ+rȳ λ 2 + q−rȳ

1+ȳ+rȳ = 0 or

λ 3 +
ȳ

1+ ȳ+ rȳ
λ 2 − q− rȳ

1+ ȳ+ rȳ
= 0. (3.6)

Recall that at p∗,
q−rȳ

1+ȳ+rȳ = 1+ȳ+rȳ
q−rȳ+ȳ . So equation (3.6) becomes

λ 3 +
ȳ

1+ ȳ+ rȳ
λ 2 − 1+ ȳ+ rȳ

q− rȳ+ ȳ
= 0. (3.7)

By similar argument, substitute λ̄ in p(λ ) we get

λ̄ 3 +
ȳ

1+ ȳ+ rȳ
λ̄ 2 − 1+ ȳ+ rȳ

q− rȳ+ ȳ
= 0. (3.8)
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Multiply equation (3.7) by λ̄ 2, we have

λ +
ȳ

1+ ȳ+ rȳ
− 1+ ȳ+ rȳ

q− rȳ+ ȳ
λ̄ 2 = 0. (3.9)

Also, multiply equation (3.8) by λ 2, we have

λ̄ +
ȳ

1+ ȳ+ rȳ
− 1+ ȳ+ rȳ

q− rȳ+ ȳ
λ 2 = 0. (3.10)

Add (3.9) to (3.10), we get

λ + λ̄ +2(
ȳ

1+ ȳ+ rȳ
)− 1+ ȳ+ rȳ

q− rȳ+ ȳ
(λ 2 + λ̄ 2) = 0 (3.11)

Note that λ + λ̄ = 2cosθ and λ 2 + λ̄ 2 = 4cos2 θ −2.

Equation (3.11) becomes 2cosθ +2
ȳ

1+ȳ+rȳ −
1+ȳ+rȳ
q−rȳ+ȳ (4cos2 θ −2) = 0 or

−4(
1+ ȳ+ rȳ

q− rȳ+ ȳ
)cos2 θ +2cosθ +2(

ȳ

1+ ȳ+ rȳ
)+2(

1+ ȳ+ rȳ

q− rȳ+ ȳ
) = 0. (3.12)

From equation (3.4), we have λ + λ̄ =− q−rȳ+ȳ
1+ȳ+rȳ and hence, 2cosθ =− q−rȳ+ȳ

1+ȳ+rȳ . That implies cosθ =− 1
2 (

q−rȳ+ȳ
1+ȳ+rȳ ). Note that this is a root

of equation (3.12) since, −4( 1+ȳ+rȳ
q−rȳ+ȳ )(− 1

2 ×
q−rȳ+ȳ
1+ȳ+rȳ )

2 +2(− 1
2 ×

q−rȳ+ȳ
1+ȳ+rȳ )+2( ȳ

1+ȳ+rȳ )+2( 1+ȳ+rȳ
q−rȳ+ȳ ) = −2

q−rȳ+ȳ
1+ȳ+rȳ +2

ȳ
1+ȳ+rȳ +2

1+ȳ+rȳ
q−rȳ+ȳ =

2(− q−rȳ
1+ȳ+rȳ +

1+ȳ+rȳ
q−rȳ+ȳ ) = 2(0) = 0.

Note that
q−rȳ

1+ȳ+rȳ < 1 or q− rȳ < 1+ ȳ+ rȳ. To show this, note that 0 < 4p(1+ r), add (q− 1)2 to the both sides, we get (q− 1)2 <

(q− 1)2 + 4p(1+ r). Now, take the square root of the both sides, since we assume q > 3, we get q− 1 <
√

(q−1)2 +4p(1+ r) or,

q−1 <
q−1+

√
(q−1)2+4p(1+r)

2 . That is equivalent to q−1 < (1+ r)ȳ. So q− rȳ < 1+ ȳ+ rȳ and hence,
q−rȳ

1+ȳ+rȳ < 1.

Since,
1+ȳ+rȳ
q−rȳ+ȳ = q−rȳ

1+ȳ+rȳ < 1, cosθ <− 1
2 .

Also, note that 1
2 <

1+ȳ+rȳ
q−rȳ+ȳ . To show that we will use that for q > 3, we have 2− q < 0 and then

2−q
1+r < p, multiply both sides with

4, we have 8−4q < 4p(1+ r). Add (q−1)2 to the both sides, we get q2 −6q+9 < (q−1)2 +4p(1+ r) or (q−3)2 < (q−1)2 +4p(1+ r).
Take the square root of both sides. Since we take q > 3, we get q− 3 <

√

(q−1)2 +4p(1+ r). Add q− 1 to the both sides, we have

2q−4 < q−1+
√

(q−1)2 +4p(1+ r) or, q−2 < (1+ r)ȳ and hence, q−2 < (1+3r)ȳ or, q− rȳ+ ȳ < 2+2ȳ+2rȳ or 1
2 <

1+ȳ+rȳ
q−rȳ+ȳ .

Since, 1
2 <

1+ȳ+rȳ
q−rȳ+ȳ , cosθ >−1.

So, at p∗ where 1
2 <

1+ȳ+rȳ
q−rȳ+ȳ = q−rȳ

1+ȳ+rȳ < 1, there exists θ∗ ∈ ( π
2 ,π) such that −1 < cosθ∗ =− 1

2 (
q−rȳ+ȳ
1+ȳ+rȳ )<− 1

2 . Note that eikθ ∗ 6= 1 for

k = 1,2,3,4.

To check if ŕ(p∗) 6= 0, it is enough to show that
d|λ |2

d p |p=p∗ 6= 0.

p(λ ) =−λ 3 − ȳ

1+ ȳ+ rȳ
λ 2 +

q− rȳ

1+ ȳ+ rȳ
.

d|λ |2
d p |p=p∗=

d(λλ̄ )
d p |p=p∗= [λ dλ̄

d p + λ̄ dλ
d p ] |p=p∗= λ (

d p(λ̄ )
d p .

dλ̄
d p(λ̄ )

)+ λ̄ (
d p(λ )

d p .
dλ

d p(λ )
).

d | λ |2
d p

|p=p∗= λ̄
(

− 1

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
λ 2 − r

(1+ȳ+rȳ)
√

(q−1)2+4p(1+r)
− (1+r)(q−rȳ)

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)

−3λ 2 −2
ȳ

1+ȳ+rȳ λ

)

+λ
(

− 1

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
λ̄ 2 − r

(1+ȳ+rȳ)
√

(q−1)2+4p(1+r)
− (1+r)(q−rȳ)

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)

−3λ̄ 2 −2
ȳ

1+ȳ+rȳ λ̄

)

At p∗ λλ̄ = 1, so we have

d | λ |2
d p

|p=p∗=
(

− 1

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
λ 2 − r

(1+ȳ+rȳ)
√

(q−1)2+4p(1+r)
− (1+r)(q−rȳ)

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)

−3λ 3 −2
ȳ

1+ȳ+rȳ λ 2

)

+
(

− 1

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
λ̄ 2 − r

(1+ȳ+rȳ)
√

(q−1)2+4p(1+r)
− (1+r)(q−rȳ)

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)

−3λ̄ 3 −2
ȳ

1+ȳ+rȳ λ̄ 2

)

=
( (− 1

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
λ 2− r

(1+ȳ+rȳ)
√

(q−1)2+4p(1+r)
− (1+r)(q−rȳ)

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
)(−3λ̄ 3−2

ȳ

1+ȳ+rȳ
λ̄ 2)

(−3λ 3−2
ȳ

1+ȳ+rȳ
λ 2)(−3λ̄ 3−2

ȳ

1+ȳ+rȳ
λ̄ 2)

)

+
( (− 1

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
λ̄ 2− r

(1+ȳ+rȳ)
√

(q−1)2+4p(1+r)
− (1+r)(q−rȳ)

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
)(−3λ 3−2

ȳ

1+ȳ+rȳ
λ 2)

(−3λ 3−2
ȳ

1+ȳ+rȳ
λ 2)(−3λ̄ 3−2

ȳ

1+ȳ+rȳ
λ̄ 2)

)

.
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The denominator is non zero term since

(−3λ 3 −2
ȳ

1+ ȳ+ rȳ
λ 2)(−3λ̄ 3 −2

ȳ

1+ ȳ+ rȳ
λ̄ 2) = 9+6

ȳ

1+ ȳ+ rȳ
(λ + λ̄ )+4(

ȳ

1+ ȳ+ rȳ
)2
.

At p∗ λ + λ̄ =− q−rȳ+ȳ
1+ȳ+rȳ , so the denominator becomes

9−6
ȳ(q− rȳ+ ȳ)

(1+ ȳ+ rȳ)2
+4(

ȳ

1+ ȳ+ rȳ
)2 = 9−6

ȳ(q− rȳ)

(1+ ȳ+ rȳ)2
−2(

ȳ

1+ ȳ+ rȳ
)2
.

Note that
ȳ

1+ȳ+rȳ < 1 so −( ȳ
1+ȳ+rȳ )

2 >−1 and − ȳ(q−rȳ)
(1+ȳ+rȳ)2 >− q−rȳ

1+ȳ+rȳ .

So,

9−6
ȳ(q− rȳ)

(1+ ȳ+ rȳ)2
−2(

ȳ

1+ ȳ+ rȳ
)2

> 9−6
q− rȳ

1+ ȳ+ rȳ
−2

and since at p∗ q−rȳ
1+ȳ+rȳ < 1,

9−6
q− rȳ

1+ ȳ+ rȳ
−2 > 9−6−2 = 1 > 0.

It remains to show that the numerator is non zero term.

The numerator is
(

− 1

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
λ 2− r

(1+ȳ+rȳ)
√

(q−1)2+4p(1+r)
− (1+r)(q−rȳ)

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)

)(

−3λ̄ 3−2
ȳ

1+ȳ+rȳ λ̄ 2
)

+
(

− 1

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
λ̄ 2−

r

(1+ȳ+rȳ)
√

(q−1)2+4p(1+r)
− (1+r)(q−rȳ)

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)

)(

−3λ 3 −2
ȳ

1+ȳ+rȳ λ 2
)

= 3

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
(λ + λ̄ )+

(

3r

(1+ȳ+rȳ)
√

(q−1)2+4p(1+r)
+

3(1+r)(q−ry)

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)

)

(λ 3 + λ̄ 3)+
(

2rȳ

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
+

2(1+r)(q−ry)y

(1+ȳ+rȳ)3
√

(q−1)2+4p(1+r)

)

(λ 2 + λ̄ 2)+ 4ȳ

(1+ȳ+rȳ)3
√

(q−1)2+4p(1+r)
.

Recall that at p∗ q−rȳ
1+ȳ+rȳ = 1+ȳ+rȳ

q−rȳ+ȳ . Also, at p∗ λ + λ̄ = 2cosθ0, λ 2 + λ̄ 2 = 4cos2 θ0 − 2 and λ 3 + λ̄ 3 = 8cos3 θ0 − 6cosθ0 where

cosθ0 =− 1
2 (

q−rȳ+ȳ
1+ȳ+rȳ ).

The numerator at p∗ is

− 3(q−rȳ+ȳ)

(1+ȳ+rȳ)3
√

(q−1)2+4p(1+r)
− 3r(q−rȳ+ȳ)3

(1+ȳ+rȳ)4
√

(q−1)2+4p(1+r)
− 3(1+r)(q−rȳ+ȳ)2

(1+ȳ+rȳ)4
√

(q−1)2+4p(1+r)

+
9r(q−rȳ+ȳ)

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
+

9(1+r)

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
+

2rȳ(q−rȳ+ȳ)2

(1+ȳ+rȳ)4
√

(q−1)2+4p(1+r)

+
2(1+r)(q−rȳ+ȳ)ȳ

(1+ȳ+rȳ)4
√

(q−1)2+4p(1+r)
− 4rȳ

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
− 4(1+r)ȳ

(1+ȳ+rȳ)2(q−rȳ+ȳ)
√

(q−1)2+4p(1+r)
+ 4ȳ

(1+ȳ+rȳ)3
√

(q−1)2+4p(1+r)
.

Note that −1 < cosθ∗ <− 1
2 which implies that 1 <

q−rȳ+ȳ
1+ȳ+rȳ < 2 and − 1

q−rȳ+ȳ >− 1
1+ȳ+rȳ .

The numerator is greater than

− 6

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
− 12(1+r)

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
+ 9r

(1+ȳ+rȳ)
√

(q−1)2+4p(1+r)
+

9(1+r)

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
+ 2rȳ

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
+

2(1+r)ȳ

(1+ȳ+rȳ)3
√

(q−1)2+4p(1+r)
− 4rȳ

(1+ȳ+rȳ)2
√

(q−1)2+4p(1+r)
− 4(1+r)ȳ

(1+ȳ+rȳ)3
√

(q−1)2+4p(1+r)
+ 4ȳ

(1+ȳ+rȳ)3
√

(q−1)2+4p(1+r)

=
2(1− r)ȳ

(1+ ȳ+ rȳ)3
√

(q−1)2 +4p(1+ r)
− 6+3(1+ r)+2rȳ

(1+ ȳ+ rȳ)2
√

(q−1)2 +4p(1+ r)

+
9r

(1+ ȳ+ rȳ)
√

(q−1)2 +4p(1+ r)
. (3.13)

Term (3.13) is positive if 2(1− r)ȳ− (6+3(1+ r)+2rȳ)(1+ ȳ+ rȳ)+9r(1+ ȳ+ rȳ)2 > 0.

That is equivalent to (9r3 +16r2 +7r)ȳ2 +(13r2 +16r−7)ȳ+6r−9 > 0

or

ȳ >
−(13r2 +16r−7)+

√

(13r2 +16r−7)2 +4(6r−9)(9r3 +16r2 +7r)

2(9r3 +16r2 +7r)
.

Substitute the value of ȳ, we get

q−1+
√

(q−1)2+4p∗(1+r)
2(1+r)

>
−(13r2+16r−7)+

√
(13r2+16r−7)2+4(6r−9)(9r3+16r2+7r)

2(9r3+16r2+7r)

multiply both sides by 2(1+ r) and then add −(q−1) for both sides, we get

√

(q−1)2 +4p∗(1+ r)> 2(1+ r)
(−(13r2+16r−7)+

√
(13r2+16r−7)2+4(6r−9)(9r3+16r2+7r)

2(9r3+16r2+7r)

)

− (q−1)

take the square of both sides, we obtain

(q−1)2 +4p∗(1+ r)>
(

2(1+ r)(
−(13r2+16r−7)+

√
(13r2+16r−7)2+4(6r−9)(9r3+16r2+7r)

2(9r3+16r2+7r)
)− (q−1)

)2
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add −(q−1)2 for the both sides and then multiply by 1
4(1+r)

, we get

p∗ >

(

2(1+ r)
(−(13r2+16r−7)+

√
(13r2+16r−7)2+4(6r−9)(9r3+16r2+7r)

2(9r3+16r2+7r)

)

− (q−1)
)2

− (q−1)2

4(1+ r)

If term (3.13) is grater than zero, then
d|λ |2

d p |p=p∗> 0, and then Neimark-Sacker bifurcation conditions are satisfied.

4. Direction of Neimark-Sacker bifurcation

In this section we will use the normal form theory of discrete systems to determine the direction and the stability of the invariant closed curve

bifurcating from the positive fixed point ( see [9]). System (2.3) can be written as

Yn+1 = JYn +G(Yn) (4.1)

where, J =





− q−rȳ
1+ȳ+rȳ 0

ȳ
1+ȳ+rȳ

1 0 0

0 1 0



 and, Yn =





wn

vn

un





G(Y ) = 1
2 B(Y,Y )+ 1

6C(Y,Y,Y )+O(‖ Y ‖3)

B(Y,Y ) =





B1(Y,Y )
0

0



 and, C(Y,Y,Y ) =





C1(Y,Y,Y )
0

0





Bi(x,y) = ∑
n
j,k=1

∂ 2Xi(ξ )
∂ξ j∂ξk

|ξ=0 (x jyk) and Ci(x,y,z) = ∑
n
j,k,l=1

∂ 3Xi(ξ )
∂ξ j∂ξk

|ξ=0 (x jykzl)

B1(φ ,ψ) =
2(q−rȳ)

(1+ȳ+rȳ)2 φ1ψ1 − 2rȳ

(1+ȳ+rȳ)2 φ3ψ3 +
qr−(r2+1)ȳ
(1+ȳ+rȳ)2 [φ3ψ1 +φ1ψ3],

C1(φ ,ψ,η)=− 6(q−rȳ)
(1+ȳ+rȳ)3 φ1ψ1η1+

2ȳ−4r(q−rȳ)
(1+ȳ+rȳ)3

(

φ1ψ1η3+φ3ψ1η1+φ1+ψ3η1

)

+ 2r3 ȳ+4rȳ−2r2q

(1+ȳ+rȳ)3

(

φ1ψ3η3+φ3ψ1η3+φ3ψ3η1

)

+ 6r2 ȳ

(1+ȳ+rȳ)3 φ3ψ3η3,

Recall that θ0 = cos−1(− q−rȳ+ȳ
2(1+ȳ+rȳ)

). Let q and p∗ be the eigenvectors corresponding to the eigenvalues λ = cosθ0 + isinθ0 = eiθ0

and λ̄ = cosθ0 − isinθ0 = e−iθ0 , respectively, where q ∼





eiθ0

1

e−iθ0



 and p∗ ∼





1+ȳ+rȳ
ȳ e−iθ0

eiθ0

1



. Note that ∼ means that the vector can

differ from that given by a non-zero complex multiplier. To normalize q and p∗, we must find ζ such that < ζ p∗,q >= 1, where < ., . > is

the standard scalar product in C
3.

< ζ p∗,q >= ζ
3

∑
i=1

p̄∗i qi = ζ (
1+ ȳ+ rȳ

ȳ
e−iθ0 +2e−iθ0)

Set ζ = 1
1+ȳ+rȳ

ȳ
e2iθ0+2e−iθ0

. So take p = ζ ∗ p∗. We have < p,q >= 1.

The critical real eigenspace T c corresponding to λ1,2 is two-dimensional and is spanned by {Re(q), Im(q)}. The real eigenspace T s

corresponding to the real eigenvalues of J is one-dimensional. Any vector x ∈ R
3 can be decomposed as

x = zq+ z̄q̄+ y

where, z ∈ C
1, z̄q̄ ∈ T c and y ∈ T s. The complex variable z is a coordinate on T c. We have

z =< p,x >,

y = x−< p,x > q−< p̄,x > q̄.

In these coordinates, the map (4.1) takes the form

z̃ = eiθ0 z+< p,G(zq+ z̄q̄+ y)>,

ỹ = Jy+G(zq+ z̄q̄+ y)−< p,G(zq+ z̄q̄+ y)> q−< p̄,G(zq+ z̄q̄+ y)> q̄.

The previous system can be written as

z̃ = eiθ0 z+
1

2
G20z2 +G11zz̄+

1

2
G02z̄2 +

1

2
G21z2z̄+< G10,y > z+< G01,y > z̄,

ỹ = Jy+
1

2
H20z2 +H11zz̄+

1

2
H02z̄2 +

1

2
H21z2z̄

where,

G20 =< p,B(q,q)>,G11 =< p,B(q, q̄ >,G02 =< p,B(q̄, q̄)>,G21 =< p,C(q,q, q̄)>

and

H20 = B(q,q)−< p,B(q,q)> q−< p̄,B(q,q)> q̄,

H11 = B(q, q̄)−< p,B(q, q̄)> q−< p̄,B(q, q̄)> q̄
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and

< G10,y >=< p,B(q,y)>,< G01,y >=< p,B(q̄,y)>

where the scaler product is in C
3.

From the center manifold theorem, there exists a center manifold W c which can be approximated as

Y =V (z, z̄) =
1

2
w20z2 +w11zz̄+

1

2
w02z̄2

where < q,wi j >= 0. The vectors wi j ∈ C
3 can be found from the linear equations

(e2iθ0 I3 − J)w20 = H20,

(I3 − J)w11 = H11,

(e−2iθ0 I3 − J)w02 = H02.

These equations has unique solutions. Note that the matrices (I3 − J) and (e±2iθ0 I3 − J) are invertible in C
3 since 1 and e±2iθ0 are not

eigenvalues of J. Recall that eiθ0 6= 1. So, z can be written as

z̃ = eiθ0 z̄+ 1
2 G20z2 +G11zz̄+ 1

2 G02z̄2 + 1
2 [G21 +2 < p,B(q,(I − J)−1H11)>+< p,B(q̄,(e2iθ0 I − J)−1H20)>]z2z̄+ . . ..

Taking into account the identities

(I − J)−1q =
1

1− eiθ0
q, (e2iθ0 I − J)−1q =

e−iθ0

eiθ0 −1
q, (i− j)−1q̄ =

1

1− eiθ0
q̄

and

(e2iθ0 I − J)−1q̄ =
e−iθ0

eiθ0 −1
q̄.

Also, z can be written using the map

z̃ = eiθ0 z+ ∑
k,l≥2

1

k! j!
gk jz

k z̄ j (4.2)

where, g20 =< p,B(q,q)>, g11 =< p,B(q, q̄)>, g02 =< p,B(q̄, q̄)>

and g21 =< p,C(q,q, q̄)>+2< p,B(q,(I−J)−1B(q, q̄))>+< p,B(q̄,(e2iθ0 I−J)−1B(q,q))>+
e−iθ0 (1−2eiθ0 )

1−eiθ0
< p,B(q,q)>< p,B(q, q̄)>

− 2
1−e−iθ0

|< p,B(q, q̄)>|2 − eiθ0

e3iθ0−1
|< p,B(q̄, q̄)>|2.

The map (4.2) can be transformed into the form

z̃ = eiθ0 z(1+d(p∗)) | z2 |
where, p∗ is the value of the bifurcation parameter p where the Neimark-Sacker bifurcation exists and the real number a(p∗) = Re(d(p∗)),
that determines the direction of bifurcation of the closed invariant curve, can be computed by the following formula

a(p∗) = Re
( e−iθ0 g21

2

)

−Re
( (1−2eiθ0)e−2iθ0

2(1− eiθ0)
g20g11

)

− 1

2
| g11 |2 −

1

4
| g02 |2 .

Now, we compute a(p∗). Recall that g20 =< p,B(q,q)>

where, B(q,q) =









2

(

q−rȳ

)

e2iθ0−2rȳe−2iθ0+2qr−2

(

r2+1

)

ȳ

(1+ȳ+rȳ)2

0

0









.

g20 =
1

e3iθ0 +2
ȳ

1+ȳ+rȳ

(2qe2iθ0 +2qr−2(r2 +1)ȳ−4rȳcos2θ0

(1+ ȳ+ rȳ)2

)

.

g11 =< p,B(q, q̄)>, where B(q, q̄) =









2

(

q−rȳ

)

−2rȳ+2

(

qr−(r2+1)ȳ

)

cos2θ0

(1+ȳ+rȳ)2

0

0









so,

g11 =
1

e3iθ0 +2
ȳ

1+ȳ+rȳ

(2(q− rȳ)−2rȳ+2(qr− (r2 +1)ȳ)cos2θ0

(1+ ȳ+ rȳ)2

)

.

g02 =< p,B(q̄, q̄)> where B(q̄, q̄) =









2qe−2iθ0−4rȳcos2θ+2

(

qr−(r2+1)

)

(1+ȳ+rȳ)2

0

0









.

So,

g02 = ζ
1+ ȳ+ rȳ

ȳ
e−iθ0

(2qe−2iθ0 −4rȳcos2θ +2(qr− (r2 +1))

(1+ ȳ+ rȳ)2

)
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or

g02 =
1

e3iθ0 +2
ȳ

1+ȳ+rȳ

(2qe−2iθ0 −4rȳcos2θ +2(qr− (r2 +1))

(1+ ȳ+ rȳ)2

)

.

g21 =< p,C(q,q, q̄) > +2 < p,B(q,(I − J)−1B(q, q̄)) > + < p,B(q̄,(e2iθ0 I − J)−1B(q,q)) > +
e−iθ0 (1−2eiθ0 )

1−eiθ0
< p,B(q,q) >< p,B(q, q̄) >

− 2
1−e−iθ0

|< p,B(q, q̄)>|2 − eiθ0

e3iθ0−1
|< p,B(q̄, q̄)>|2.

C(q,q, q̄) =







(−6(q−rȳ)−4r2(q−rȳ)+8rȳ)eiθ0+(4ȳ−8r(q−rȳ)+6r2 ȳ)e−iθ0+(2ȳ−4r(q−rȳ))e3iθ0+(4rȳ−2r2(q−rȳ))e−iθ0

(1+ȳ+rȳ)3

0

0







< p,C(q,q, q̄)>=
1

e3iθ0 +2
ȳ

1+ȳ+rȳ

(

(

−6(q− rȳ)−4r2(q− rȳ)+8rȳ
)

eiθ0

(1+ ȳ+ rȳ)3

+

(

4ȳ−8r(q− rȳ)+6r2ȳ
)

e−iθ0 +
(

2ȳ−4r(q− rȳ)
)

e3iθ0 +
(

4rȳ−2r2(q− rȳ)
)

e−iθ0

(1+ ȳ+ rȳ)3

)

.

The second term in g21 is < p,B(q,(I − J)−1B(q, q̄))>

(I − J)−1 =





1+q+ȳ
1+ȳ+rȳ 0 − ȳ

1+ȳ+rȳ

−1 1 0

0 −1 1





−1

=







1+ȳ+rȳ
q+1

ȳ
q+1

ȳ
q+1

1+ȳ+rȳ
q+1

1+q+ȳ
q+1

ȳ
q+1

1+ȳ+rȳ
q+1

1+q+ȳ
q+1

1+q+ȳ
q+1







(I − J)−1B(q, q̄) =











1
q+1

(

2(q−rȳ)−2rȳ−2(qr−(r2+1)ȳ)cos2θ0

1+ȳ+rȳ

)

1
q+1

(

2(q−rȳ)−2rȳ−2(qr−(r2+1)ȳ)cos2θ0

1+ȳ+rȳ

)

1
q+1

(

2(q−rȳ)−2rȳ−2(qr−(r2+1)ȳ)cos2θ0

1+ȳ+rȳ

)











=





S

S

S





B(q,(I − J)−1B(q, q̄)) =









2

(

q−rȳ

)

Seiθ−2rȳSe−iθ+2

(

qr−(r2+1)ȳ

)

Scos2θ0

(1+ȳ+rȳ)2

0

0









< p,B(q,(I − J)−1B(q, q̄))>=
1

e3iθ0 +2
ȳ

1+ȳ+rȳ

(

2(q− rȳ)Seiθ −2rȳSe−iθ

(1+ ȳ+ rȳ)2

+
2
(

qr− (r2 +1)ȳ
)

Scos2θ0

(1+ ȳ+ rȳ)2

)

(e2iθ0 I − J)−1 =





e2iθ0 + q−rȳ
1+ȳ+rȳ 0 − ȳ

1+ȳ+rȳ

−1 e2iθ0 0

0 −1 e2iθ0





−1

=
1

D







e4iθ0 ȳ
1+ȳ+rȳ

ȳ
1+ȳ+rȳ e2iθ0

e2iθ0 e4iθ0 + q−rȳ
1+ȳ+rȳ e2iθ0 ȳ

1+ȳ+rȳ

1 e2iθ0 + q−rȳ
1+ȳ+rȳ e4iθ0 + q−rȳ

1+ȳ+rȳ e2iθ0







where D is the determinant of the matrix (e2iθ0 I − J) such that D = e4iθ0(e2iθ0 + q−rȳ
1+ȳ+rȳ )−

ȳ
1+ȳ+rȳ .

(e2iθ0 I − J)−1B(q,q) =





L
D e4iθ0

L
D e2iθ0

L
D





where, L =
2

(

q−rȳ

)

e2iθ0−2rȳe−2iθ0+2

(

qr−(r2+1)ȳ

)

(1+ȳ+rȳ)2 .

B(q̄,(e2iθ0 I − J)−1B(q,q) =







L
D

(

2(q−rȳ)e3iθ0−2rȳeiθ0+(qr−(r2+1)ȳ)(e5iθ0+e−iθ0 )
(1+ȳ+rȳ)2

)

0

0






.

< p,B(q̄,(e2iθ0 I − J)−1B(q,q))>= L
D

(

1

e3iθ0+2
ȳ

1+ȳ+rȳ

)(

2(q−rȳ)e3iθ0−2rȳeiθ0+(qr−(r2+1)ȳ)(e5iθ0+e−iθ0 )
(1+ȳ+rȳ)2

)

.

a(p∗) = Re( e−iθ0

2 < p,c(q,q, q̄)>)+Re(e−iθ0 < p,B(q,(I − J)−1B(q, q̄))>)+Re( e−iθ0

2 < p,B(q̄,(e2iθ0 I − J)−1B(q,q)))>).
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Theorem 4.1. If a(p∗) < 0 (respectively, > 0), then Neimark-Saker bifurcation of system (2.3) at p = p∗ is supercritical (respectively,

subcritical) and there exists a unique invariant closed curve bifurcates from the positive fixed point ȳ which is asymptotically stable

(respectively, unstable).

5. Numerical examples

In this section we give numerical examples which support our results in the previous sections.

Example 5.1. Take

yn+1 =
p+4yn−2

1+ yn +0.3yn−2
(5.1)

with the initial conditions y−2 = y−1 = y0 = 1.

ȳ =
3+

√
9+5.2p

2.6
.

Note that for p <
q

1+r = 3.0769, the bifurcation point p∗ is satisfy

1+ 3+
√

9+5.2p∗

2

4+ .7( 3+
√

9+5.2p∗

2.6 )
=

4− .3( 3+
√

9+5.2p∗

2.6 )

1+ 3+
√

9+5.2p∗

2

(.25+
.21

(2.6)2
)(3+

√

9+5.2p∗)2 +(1+
1.2

2.6
− 2.8

2.6
)(3+

√

9+5.2p∗)−15 = 0

3+
√

9+5.2p∗ =
−(1+ 1.2

2.6 − 2.8
2.6 )+

√

(1+ 1.2
2.6 − 2.8

2.6 )
2 +4×15× (0.25+ 0.21

(2.6)2 )

2(0.25+ 0.21
(2.6)2 )

p∗ =
([

−(1+ 1.2
2.6

− 2.8
2.6

)+
√

(1+ 1.2
2.6

− 2.8
2.6

)2+4×15×(0.25+ 0.21

(2.6)2
)

2(0.25+ 0.21

(2.6)2
)

]−3)2 −9

5.2

p∗ = 0.83564585

Now, we will check if Neimark-Sacker bifurcation conditions hold. By theorem (3.2), it is enough to check if

p∗ >

(

2(1+ r)
(−(13r2+16r−7)+

√
(13r2+16r−7)2+4(6r−9)(9r3+16r2+7r)

2(9r3+16r2+7r)

)

− (q−1)
)2

− (q−1)2

4(1+ r)
.

Note that at p = p∗, ȳ = 2.55889613 and

1+ ȳ+ rȳ

q− rȳ+ ȳ
=

1+ .3×2.55889613+2.55889613

4− .3×2.55889613+2.55889613
= .74708948,

and
(

2(1+ r)
(−(13r2+16r−7)+

√
(13r2+16r−7)2+4(6r−9)(9r3+16r2+7r)

2(9r3+16r2+7r)

)

− (q−1)
)2

− (q−1)2

4(1+ r)

=

(

2(1.3)(
−(−13(0.3)2+16×0.3−7)+

√
(13(0.3)216×0.3−7)2+4(6×0.3−9)(9(0.3)3+16(0.3)2+7×0.3)

2(9(0.3)3+16(0.3)2+7×0.3)
)−3

)2

−(3)2

4(1.3)

=−1.1334411 < 0.83564585 = p∗.

So the condition of Theorem 3.2 is satisfied. That implies equation (5.1) undergoes a Neimark-Sacker bifurcation at p = p∗ = 0.83564585.

The bifurcation diagram of equation (5.1) is shown in Figure 5.1. Figure 5.1 shows that the positive fixed point ȳ is asymptotically stable

for p > p∗ and change its stability at Neimark-Sacker bifurcation value p∗ and an invariant simple closed curve appears on the plane

(x(n),x(n− 2)) for p < p∗. Figure 5.2 and Figure 5.3 shows the phase portraits associated with Figure 5.2 for p = p∗ and p = 0.95,

respectively.
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Figure 5.1: Neimark-Sacker bifurcation of the map yn+1 =
p+4yn−2

1+yn+0.3yn−2
, p is a parameter.

Figure 5.2: Phase portraits of the map yn+1 =
p+4yn−2

1+yn+0.3yn−2
for p = p∗ .

Figure 5.3: Phase portraits of the map yn+1 =
p+4yn−2

1+yn+0.3yn−2
for p = 0.95 .
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Abstract

Since people existed, they have prioritized confidentiality in information sharing and

communication. Although there are independent studies on encryption and music in

literature, no study is seen on encryption methods that are created by using the properties of

mathematical number strings and can be expressed with musical instruments. The purpose

in this research is to develop ideas for an effective encryption method and to create a time

and location variable encryption method considering this deficiency in the literature by

getting advantage of the additive feature in Fibonacci and Lucas number sequences and

moving from here to develop new perspectives on encryption science. In the research letters

in alphabet, numbers and 10 of the most used symbols were selected and ASCII codes were

determined. The objects to be encrypted are divided into 6 main groups (uppercase vowel,

uppercase consonant, lowercase vowel, lowercase consonant letters, numbers, and symbols).

ASCII codes are written with the additive property of the Fibonacci and Lucas numbers

(Zeckendorf’s Theorem) and matched with the corresponding notes. In addition to the first

method in the study, the encryption system is encrypted by shifting depending on time. In

addition to this method, the encryption system was encrypted by shifting depending on the

location. In the last method, the text to be encrypted was encrypted by shifting depending

on both location and time. The software of the first stage of the encryption system has been

created. The encryption method we have created can be transmitted in both audio and text.

Since encryption can be applied with various instruments, it offers variety in terms of data

privacy. In the encryption system, people who have a musical ear can audibly decipher the

password regardless of the written source. In the research, the same text differs as time and

location change. This method allows multiple transformations of a character in a text. With

these features, it differs from the encryption methods made until now.

1. Introduction

People have given importance to confidentiality in their communication since the moment they existed and they have constantly developed

new methods in this field. Encoding and encrypting information is a method developed thousands of years ago by empires and states to

prevent the information they wanted to be kept secret from falling into the hands of the enemy [1]. These times, when much more primitive

encryption methods were used and we have come a long way with the introduction of mechanics and technology into our lives.

Encryption (cryptology), which is one of the sub-branches of mathematics is the science of coding (cryptography), as well as code analysis

(cryptanalysis). While code science refers to the creation part of the encryption, code analysis refers to the decryption of the generated code.

Its encryption is expressed in the TDK (Turkish Dictionary) as secret texts, encrypted documents science, or analysis. Encryption is the

process of making the content of plain text unreadable [1]. Cryptology is mathematics like number theory, that is, it is the application of

formulas and algorithms that form the basis of cryptography and encryption analysis [2]. The number of information added to the literature

is increasing day by day as a result of increasing discoveries and inventions. Protecting this information is getting more difficult. One of

the important methods of protecting information is encryption. The importance of cryptography has increased with the transfer of private,
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commercial, political, and military data of critical privacy in electronic environments [3]. Many different encryption methods have been used

from the past to the present. According to the information obtained, the first cryptologist (code scientist) is an Egyptian scribe who lived in

BC. 1900s. He created the inscriptions he wrote by encrypted hieroglyphs and used some hieroglyphs that were never used before [1]. One of

the first encryption methods that emerged in history was Caesar encryption. In Caesar encryption, instead of every letter seen in the Roman

alphabet, the text is encrypted by writing the letter after the corresponding letter in the alphabet. The Enigma machine invented by German

scientist Scherbius and Jefferson disks used by the US army can be shown as examples of encryption methods used throughout history.

Music has come to these days by continuously developing since its emergence. Music has a great place and importance in our lives, we are

continuously listening to music at home, at school, on trips, and when we go out for walking. The relationship between mathematics and

music dates back to the sixth century BC by the ancient Greek philosopher Pythagoras (570-495 BC) [4]. It is known that the mathematical

scientist Pythagoras was also very interested in music and found octave and even thin-thick sounds by dividing a wire in the middle. It is

seen that they progress in parallel with each other during their development [5]. Other people interested in music and mathematics are J.

S. Bach and W. A. Mozart can be shown as examples. It is known that both famous composers have high mathematical intelligence and

especially Bach’s biggest hobby is mathematics [5]. When the education programs in the middle ages are examined, it is seen that music,

mathematics, and astronomy are in the same group.

Art and aesthetics have always been an integral part of mathematics. Many musical instrument producers carry the sound graphics of

their instruments to graphics suitable for instruments. Electronic music records are also closely related to graphics. It is essential that

mathematicians and musicians collaborate when producing even a piece of music [6].

Studies on music, which can be taught from an early age, emphasize that rhythm studies are associated with mathematics, music experiences

are very important in spatial relations and shape comprehension, and that music is based on mathematical thinking and mathematical relations

[7]. The Fibonacci number sequence, is the number sequence that first appeared with the ”Rabbit Problem”, which was discussed in the book

”Liber Abaci” published in 1202 by Leonardo of Pisa, known as Fibonacci [8]. The number sequence continues as 1, 1, 2, 3, 5, 8, 13, 21, 34,

55, 89, 144, 233,. . . . Each number is the sum of the two numbers preceding it. A similar number sequence is the Lucas number sequence

created by French mathematician Edward Lucas. Unlike the Fibonacci number sequence, the Lucas number sequence was continued by

starting with the numbers 2 and 1. Lucas number sequence continues as 2, 1, 3, 4, 7, 11, 18, 29, 47, . . . [9]. Gül Karadeniz has proved in her

research [10] that positive and negative integers can be expressed by Fibonacci numbers and used the Zeckendorf Theorem in her proof.

Theorem 1.1 (The Zeckendorf Theorem[10]). Each N positive integer can be shown as the sum of different positive index Fibonacci

numbers. This representation is one way definite. It can be clearly expressed as:

ki+1 ≤ ki −2 (i = 1,2, . . . ,r−1)

ki ≥ 2

It is a theorem that states that each positive integer N can be written as

N = Fk1
+Fk2

+ · · ·+Fkr

Proof. The proof is clear if the integer N is itself a Fibonacci number. Assume that the theorem is true for all integers less than or equal to Fn

and Fn+1 > N > Fn:.

N = Fn +(N −Fn); N −Fn < Fn

Thus, it is proven that every positive integer can be represented as the sum of positive Fibonacci numbers [10]. It becomes and from our

assumption, it is seen that N −Fn can be defined as to comply with the terms of Table 1.

There are many studies in the literature on the science of encryption and music. It is possible to collect these studies under the following

titles:

• Cryptology techniques and usage areas,

• Concepts used and necessary information in cryptology,

• Encryption systems,

• Relationships between mathematics and encryption,

• The relationship between musical education and mathematical thinking,

• The effect of music on people and their development,

• The relationship between mathematics and music,

• Fibonacci and Lucas numbers.

Çağla Özyılmaz [1] has mentioned the history of cryptology, related basic concepts, and done symmetric encryption applications in her

master thesis. In the following parts of the thesis, she talked about Fibonacci numbers and mentioned the codes of various number strings.

Zainab Hashim Obaıd [3], on the other hand, gave information about the basic concepts and gave information about the structure of various

algorithms, and made an application and performance analysis on the text and images of different sizes and compared the results in his

research. Musa Aghayev [2] talked about basic encryption methods and made determinations about their weaknesses and strengths by

performing performance analyzes of encryption methods. Shahin Nasıbov [11] made suggestions to increase the security of the RSA

encryption system against the Fermat Factorization Method and presented many methods based on this method in his master thesis. Cihan

Orhan [6] spoke about the relationship between mathematics and music and their need for each other in his article. He stated that mathematics

and music are intertwined and their developments affect each other. Ayperi Dikici [7] investigated the effect of music education on

mathematics ability. In his book ‘A Geometry of Music: Harmony and Counterpoint’ in the Extended Common Practice [12] written by

Dmitri Tymoczko, he emphasized the relationship between geometry and music and explained many musical expressions. While Ayten Esi

[5] observed the link between mathematics and music in her research, she tried to explain with various examples that one is an integral part
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2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

1 1 29 1 1

2 1 30 1 1 1

3 1 31 1 1 1

4 1 1 32 1 1 1

5 1 33 1 1 1 1

6 1 1 34 1

7 1 1 35 1 1

8 1 36 1 1

9 1 1 37 1 1

10 1 1 38 1 1

11 1 1 39 1 1

12 1 1 1 40 1 1

13 1 41 1 1

14 1 1 42 1 1

15 1 1 43 1 1

16 1 1 44 1 1

17 1 1 1 45 1 1 1

18 1 1 46 1 1 1 1

19 1 1 1 47 1 1

20 1 1 1 48 1 1 1

21 1 49 1 1 1

22 1 1 50 1 1 1

23 1 1 51 1 1 1 1

24 1 1 52 1 1 1

25 1 1 1 53 1 1 1 1

26 1 1 54 1 1 1 1

27 1 1 1 55 1

28 1 1 1

Table 1: Zeckendorf Representation of Positive Integers with Fibonacci Numbers

of the other and emphasized that mathematics is intertwined with music. As a result, she emphasizes the interweaving of science and art, as

it was noticed in Ancient Greece, by taking the relationship of mathematics and music as an example. Uzay Bora [13] in his article on ”A

Basic Point Where Science and Art Cross: The Relationship Between Mathematics and Music”, examines the relationship between musical

elements and mathematics. The article includes mathematical explanations of various concepts such as pitch, timbre, intervals, Pythagorean

coma, equal regular system, and examples suitable for thematic transformations and harmonic distance calculations. Eric Riedel’s [14]

research is a study conducted to compare musical education and mathematics on 6th-grade students of a school in Atlanta. As a result of the

study, it was determined that students who received music education had higher mathematics application grades than students who did not.

Gülay Göğüş [15] investigated the effect of music education on mathematics lesson scores in her study and states that music education has

a positive effect on mathematics lessons. Kaya [16] mentioned the importance of scientific methods in his/her study and investigated the

interactions of arithmetic and music in ancient times. Selen Beytekin [17] explained the fundamentals of music and fracture geometry and

explained the interactions of jazz music and geometry to explain jazz and its theoretical foundations. Ufuk Bıçak [18] focused on explaining

the harmony theory based on the relationship between music and mathematics in his/her master’s thesis. Firstly, he/she examined Pythagoras’

works in the field of music, and then explained the New Harmony theory and the applications of the theory. İlhami Kaya [19] conducted

various studies on the instrument named monochord designed by Pythagoras, and also included the following expressions for the relationship

between music and mathematics in the past: “Before history, musical sounds were expressed in numbers and proportions rather than notes.”.

Gareth Roberts [20] mentioned the relationship between music and mathematics disciplines in his published book. Book; covers topics such

as simple proportions and the Pythagorean theory of musical scales and harmonic consonant and harmony series, musical symmetries, and

group theory. Sümeyye Bakım [4] first mentioned mathematics as the basis of music. She explained mathematical expressions corresponding

to some musical concepts, examined the relationship between mathematics and music. The studies conducted on the use of the Fibonacci

Sequence and the Golden Ratio in instrument making and whether some polyphonic music composers take this ratio into account during the

process of composing their works have been examined and their accuracy has been discussed. Cennet Bolat [9] used the Binet formula and

matrix algebra, which generalized some properties of k-Fibonacci and k-Lucas numbers and are a generalization of Fibonacci and Lucas

numbers. Gökhan Kuzuoğlu [8] stated the characteristics of Fibonacci and Lucas number sequences in his thesis. In the ‘Fabulous Fibonacci

Numbers’ written by Alfred S. Posamentier and Ingmar Lehmann [21], the history of the Fibonacci number sequence, where it is used, its

interactions with various disciplines, and the properties of the Fibonacci-Lucas number sequences are mentioned in detail. Gül Karadeniz

[10] prepared a thesis on Fibonacci and Pell numbers and Zeckendorf proof. In her thesis, she determined that all numbers (positive and

negative indexes) can be expressed with Fibonacci numbers and created an algorithm on this subject.

Although there are studies in the literature that have dealt with the science of encryption from various aspects with various methods, there is

no study on the time-variant encryption method using the additive property in Fibonacci and Lucas number sequences.
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1.1. Purpose of the research

Although there are independent researches on the science of encryption, there is no study in the literature on encryption methods that are

created using the properties of mathematical number strings that can be expressed with musical instruments. The purpose of this research is

to create a time and location variable encryption method by taking advantage of the additive feature of the Fibonacci and Lucas number

sequences, considering this deficiency in the literature, and to develop ideas for an effective encryption method by creating new perspectives

on the science of encryption.

Hypothesis: Fibonacci and Lucas number-based and mathematics related to music

1. Encryption algorithm,

2. Time data based on the encryption algorithm,

3. Encryption algorithm based on location information,

4. Can a double-layer encryption algorithm be created based on time and location information?

2. Method

In the research mainly, literature review, content analysis, and field scanning method were used. In the first stage of the research, 10 of the

most used letters, numbers, and symbols in the alphabet were selected and ASCII codes were determined. ASCII codes are written with the

additive property of the Fibonacci numbers in the largest and shortest form that can be written and matched with the corresponding notes. In

overlapping encodings, the last Fibonacci number is split once again.

1 2 3 4 5 6 7 8

C D E F G A B C

Table 2: Note Matches (C major tone sequence example)

1 2 3 4 5 6 7 8

G A B C D E F G

Table 3: Note Matches (G major tone sequence example)

1 2 3 4 5 6 7 8

D E F G A B C D

Table 4: Note Matches (D major tone sequence example)

1 2 3 4 5 6 7 8

B C D E F G A B

Table 5: Note Matches (B major tone sequence example)

The numbers in the expansions written with Fibonacci numbers are matched to the relevant note of the number remaining from the division

of 7 (mod7) as in Table 2.

Groups Number Sequences Used Music Tone Used

Uppercase Vowels Fibonacci Number Sequence C Major

Uppercase Consonants Fibonacci Number Sequence C Major

Lowercase Vowels Fibonacci Number Sequence G Major

Lowercase Consonants Fibonacci Number Sequence G Major

Numbers Lucas Number Sequence D Major

Symbols Fibonacci and Lucas Number Sequences B Major

Table 6: Number Sequences and Tones Used

We created our method by giving ASCII code for letters in the Turkish alphabet but not existing in the English alphabet. We matched the

codes in uppercase letters as İ-91, Ş-92, Ü-93, Ç-94, Ğ-95 and lower case letters as ı-123, ö-124, ü-125, ç-126, ğ-126, ş-128.

2.1. Encryption of letters

We divided the letters in our alphabet into 4 parts. These are:
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Code Letter Code Letter

065 A 066 B

067 C 068 D

069 E 070 F

071 G 072 H

073 I 074 J

075 K 076 L

078 N 077 M

080 P 079 O

082 R 081 Q

084 T 083 S

086 V 085 U

088 X 087 W

090 Z 089 Y

Table 7: ASCII Codes – Uppercase Letter (Gökhan, 2013)

Code Letter Code Letter

097 A 098 b

099 C 100 d

101 E 102 f

103 G 104 h

105 I 106 J

107 K 108 l

109 M 110 n

111 O 112 p

113 Q 114 r

115 S 116 t

117 U 118 v

119 W 120 x

121 Y 122 z

Table 8: ASCII Codes - Lowercase Letter [22]

A 55+8+2 A C D

E 55+13+1 A A C

I 55+13+5 A A G

İ (55+34+2) 55+21+13+2 A B A D

O 55+21+3 A B E

Ö 55+34+3 A A E

U 55+21+8+1 A B C C

Ü 55+34+3+1 A A E C

Table 9: Encryption of Uppercase Vowels

2.1.1. Uppercase letters

As seen in Table 9, the eight uppercase vowel letters in our alphabet are encoded with Fibonacci numbers and matched with notes given to

the numbers in the sequence. Only the number 34 was opened as 21 + 13 as a result of the overlapping in the letter İ.

For example, let’s encrypt the letter E. The ASCII code of the letter E is 69. It opens in Fibonacci numbers with a total of 69 and the number

is expressed as 55 + 13 + 1. These numbers are converted into notes by matching the remaining digits after dividing from the 7th parts

(mod7) with the strings of notes.

55 ≡ 6 (mod 7) 13 ≡ 6 (mod 7) 1 ≡ 1 (mod 7)

Since the sequence of C major is used in the encoding of the uppercase vowels, the rest are matched with the appropriate notes as in Table 2.

6 ≡ A 6 ≡ A 1 ≡C

2.1.2. Uppercase consonants

As seen in Table 13, 22 uppercase consonants are encrypted. Only because of the inner conflicts in the letters T, Y and Z, 8 for the letter T is

defined and the number 34 in the letters Y and Z were once again opened.

Let’s encrypt the letter S for example. ASCII code of the letter S is 83. The number 83 is expressed in its shortest form with Fibonacci

numbers. The expansion is 55+21+5+2. These numbers are converted into notes by matching with the remaining numbers from the

division of 7th parts (mod7) and so matched with the strings of notes.
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B 55+8+3 A C E

C 55+8+3+1 A C E C

Ç 55+34+5 A A G

D 55+13 A A

F 55+13+2 A A D

G 55+13+3 A A E

Ğ 55+34+5+1 A A G C

H 55+13+3+1 A A E C

J 55+13+5+1 A A G C

K 55+13+5+2 A A G D

L 55+21 A B

M 55+21+1 A B C

N 55+21+2 A B D

P 55+21+3+1 A B E C

Q 55+21+5 A B G

R 55+21+5+1 A B G C

S 55+21+5+2 A B G D

Ş 55+34+5+2 A G D

T (55+21+8) 55+21+5+3 A B G E

V 55+21+8+2 A B C D

W 55+21+8+3 A B C E

X 55+21+8+3+1 A B C E C

Y (55+34) 55+21+13 A B A

Z (55+34+1) 55+21+13+1 A B A C

Table 10: Encryption of Uppercase Consonants

55 ≡ 6 (mod 7) 21 ≡ 0 (mod 7) 5 ≡ 5 (mod 7) 2 ≡ 2 (mod 7)

Since the sequence of C major is used in the encoding of the uppercase vowels, the rest are matched with the appropriate notes as in Table 2.

6 ≡ A 0 ≡ B 5 ≡ G 2 ≡ D

2.1.3. Lowercase vowels

a 89+8 D G

e 89+8+3+1 D G B G

ı (89+34) 89+21+13 D F E

i 89+13+3 D E B

o 89+21+1 D F G

ö (89+34+1) 89+21+13+1 D F E G

u 89+21+5+2 D F D A

ü (89+34+2) 89+21+13+2 D F E A

Table 11: Encryption of Lowercase Vowels

As can be seen in Table 11, 8 lowercase consonants in the alphabet are encrypted. Due to the overlaps in the letters ı, ö, and ü, the number 34

has been opened as 21+13.

For example, let’s encrypt the letter i. The ASCII code of letter i is 105. The number 105 is expressed in shortest form with Fibonacci

numbers. The expansion will be as 89+13+3. These numbers are converted into notes by matching the remaining numbers from the 7th

parts (mod7) with the strings of notes.

89 ≡ 5 (mod 7) 13 ≡ 6 (mod 7) 3 ≡ 3 (mod 7)

Since G major is used in the encoding of small vowels, the rest are matched with the appropriate notes as in Table 3.

5 ≡ D 6 ≡ E 3 ≡ B

2.1.4. Lowercase consonants

As seen in Table 15, 22 small consonants are encrypted. The numbers 34 and 8 are opened once again due to the overlap in the letters ğ and y.

For example, let’s encrypt the letter k. The ASCII code of the letter k is 107. The number 107 is expressed as shortest in Fibonacci numbers.

Expansion will be 89+ 13+ 5 and every number is matched with the notes. These numbers are converted into notes by matching the

remaining numbers from the 7th parts (mod7) with the strings of notes.
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b 89+8+1 D G G

c 89+8+2 D G A

ç 89+34+3 D E B

d 89+8+3 D G B

f 89+13 D E

g 89+13+1 D E G

ğ (89+34+3+1) 89+21+13+3+1 D F E B G

h 89+13+2 D E A

j 89+13+3+1 D E B G

k 89+13+5 D E D

l 89+13+5+1 D E D G

m 89+13+5+2 D E D A

n 89+21 D FA

p 89+21+2 D F A

q 89+21+3 D F B

r 89+21+3+1 D F B G

s 89+21+5 D F D

ş 89+34+5 D E D

t 89+21+5+1 D F D G

v (89+21+8) 89+21+5+3 D F D B

w 89+21+8+1 D F G G

x 89+21+8+2 D F G A

y 89+21+8+3 D F G B

z 89+21+8+3+1 D F G B G

Table 12: Encryption of Lowercase Consonants

89 ≡ 5 (mod 7) 13 ≡ 6 (mod 7) 5 ≡ 5 (mod 7)

Since G major is used in the encoding of small consonants, the rest are matched with the appropriate notes as in Table 3.

5 ≡ D 6 ≡ E

2.2. Encryption of symbols and numbers

Simge1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Fibonacci 1 1 2 3 5 8 13 21 34 55

Lucas 2 1 3 4 7 11 18 29 47 76

Table 13: Encryption of Lowercase Consonants

As seen in Table 13, each symbol is expressed as the sum of the relevant Fibonacci and Lucas numbers, respectively.

(simge 1) . 1+2 B C

(simge 2) , 1+1 B B

(simge 3) ? 2+3 C D

(simge 4) ! 3+4 D E

(simge 5) - 5+7 F A

(simge 6) + 8+11 B E

(simge 7) : 13+8 G B

(simge 8) “ ” 21+29 A B A B

(simge 9) ( ) 34+47 G F

(simge 10) @ 55+76 G G

Table 14: Encryption of Symbols

In Table 14, the 10 most used symbols and their corresponding notes are determined. The symbol “ ” is inverted because it coincides with the

number 6. Fibonacci and Lucas numbers are used in the encryption of symbols.

The “ ” (quotation mark) symbol matches the same notes as the letter L, so encrypted as repeating the same notes.

For example, let’s encrypt the () symbol. The Fibonacci and Lucas numbers to which this symbol (S9) is paired are 34 and 47, respectively.

These numbers are divided into 7 with the method mentioned before and the rest are encrypted by matching the notes.

The difficulty is faced in using the Fibonacci sequence of numbers when encrypting numbers. Therefore, the Lucas number sequence is

used when encrypting the numbers. 10 digits are encrypted as seen in Table 14. The Lucas numbers to which the numbers are matched are



Journal of Mathematical Sciences and Modelling 45

0 1+1 D D

1 1 D

2 2+1 E D

3 3+1 F D

4 5+2 A E

5 8+3 D F

6 13+5 B A

7 21+8 C D

8 34+13 B B B B

9 55+21 B C

Table 15: Encryption of Numbers

expressed in the shortest form using the additive expressibility feature of the Fibonacci numbers, these additive expressions are converted to

notes over mode 7.

Since the number 8 and the symbol,(comma) correspond to the same notes as 8, B notes are repeated.

For example, let’s encrypt the number 9. This number matches Lucas number 10, which is 76. The additive expression of this number with

Fibonacci numbers is 55+21. This additive expression is converted into notes over mode 7 and encrypted.

2.3. Music terms used and transitions in encoding

• Stacatto: Intermittent playing or singing

• Silencio: Waiting without playing or singing

• Vibrato: Musical effect consisting of regular change of pitch

• Tone: It is a concept that is based on a series of majors and minors.

When we start the sentence, we added a different feature to each section to understand which group the original note that the sequence

belongs to.

• By doing staccato in numbers.

• Making vibrato on the violin in symbols,

• Playing normally in letters

We also used different wait times when switching between the two groups (e.g. symbols and numbers) to indicate which groups were

switched between.

Between the same groups → 1-beat of silence,

Letter – Number → 2 beats of silence,

Number – Symbol → 3 beats of silence,

Letter – Symbol → 4 beats of silence are used.

2.4. Time, location, and time-location variable encryption

The time structure that we will use in encryption is divided into 6 main sections in accordance with our main structure as can be seen in

Table 18.

Day Month Year Hour Minute Second

Table 16: Time Structure Used

1. 6 different elements of our alphabet are matched with the components of time.

2. Components of time are determined.

3. The numerical equivalents of the units of time are divided by the mode value and the remainder are determined.

4. Units are shifted according to the remaining values.

5. For encryption, the remainder is negatively shifted.

The location structure that we will use in encryption is firstly divided into 2 parts as parallel and meridian, as seen in Table 8. After that, both

are divided into their 3 components.

Parallel Meridian

Degree Minute Second Degree Minute Second

Table 17: Used Location Structure
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2.5. Application

1. For our research to be more understandable, let’s explain the simplest application with an example.

Example 2.1. Let’s turn the TüBitAK2020 word to notes.

T = A B G E (Table 10)

ü = D F E A (Table 11)

B = A C E (Table 10)

i = A B A D (Table 11)

t = D F D G (Table 12)

A = A C D E (Table 9)

K = A A G D (Table 10)

2 = E D (Table 15)

0 = D D (Table 15)

2 = E D (Table 15)

0 = D D (Table 15)

. = B C (Table 14)

2. Time-Based Application

(a) Time information is received.

(b) The number written with 6-digit (1, 2, 3, 4, 5, 6) elements is taken.

(c) The received number is matched with groups and time information.

Let’s match the 6 main elements of time with the 6 main structures that will create our text.

1st Group 2nd Group

1 UPP.VOWEL 1 DAY

2 UPP.CONSONANT 2 MONTH

3 LOW.VOWEL 3 YEAR

4 LOW.CONSONANT 4 HOUR

5 NUMBER 5 MINUTE

6 SYMBOL 6 SECOND

Example 2.2. Let’s take the number 356124. Let our time be 09.01.2020 / 17.48.53.

In this case:

Uppercase vowels ↔ Year

Uppercase consonants ↔ Minute

Lowercase vowels ↔ Second

Lowercase consonants ↔ Day

Number ↔ Month

Symbol ↔ Hour

As a result of this match, transactions are done and the remainder is calculated one by one, each group is shifted as much as the

remainder, our text is then encrypted.

Day ↔ (mod 24)
Month ↔ (mod 10)
Year ↔ ( mod8 )
Hour ↔ (mod 10)
Minute ↔ (mod 24)
Second ↔ (mod8)

Uppercase

Vowel

Uppercase

Consonant

Lowercase

Vowel

Lowercase

Consonant
Number Symbol

MODE 8 24 8 24 10 10

MATCH 3 5 6 1 2 4

TIME 2020 48 53 09 01 17

REMAINDER/SHIFT 4 0 5 9 1 7

Table 18: Time Based Application (Shift Determination)

The shift is calculated by dividing the time values according to the relevant mode and taking the remainder.

Uppercase vowels : 2020 ≡ 4(mod 8)
Uppercase consonants : 48 ≡ 0(mod 24)
Lowercase vowels : 53 ≡ 5(mod 8)
Lowercase consonants : 09 ≡ 9(mod 24)
Number : 01 ≡ 1(mod 10)
Symbol : 17 ≡ 7(mod 10)
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Example 2.3. For example : The letter ü is 24 as seen in Table 8. When it matches, its value is 09. When the number 09 is divided

into mod24, the remainder is 9. Therefore, the letter ü is shifted by 9 letters and becomes the letter o.

T → T → A B G E (Table 10)

ü → o → D F G (Table 11)

B → B → A C E (Table 10)

i → a → D G (Table 11)

t → t → D G B (Table 12)

A → O → A B E (Table 9)

K → K → A A G D (Table 10)

2 → 3 → F D (Table 15)

0 → 1 → D (Table 15)

2 → 3 → F D (Table 15)

0 → 1 → D (Table 15)

. → “” → A B A B (Table 14)

Encryption can be done by repeating the same transactions in reverse.

3. Location-Based Application

(a) Location information is received.

(b) The number written with 6-digit (1, 2, 3, 4, 5, 6) elements is taken.

(c) The received number is matched with groups and location information.

Let’s match the 6 main elements of the position with the 6 main structures that will form our text.

1st Group 2nd Group

1 UPP.VOWEL 1 Degree

2 UPP.CONSONANT 2 Minute

3 LOW.VOWEL 3 Second

4 LOW.CONSONANT 4 Degree

5 NUMBER 5 Minute

6 SYMBOL 6 Second

Example 2.4. Let’s take the number 654231 and let’s choose the location as 49◦3′49′′North 29◦0′36′′East.

Uppercase vowels ↔ Second (East)

Uppercase consonants ↔ Minute (East)

Lowercase vowels ↔ Degree (East)

Lowercase consonants ↔ Minute (North)

Number ↔ Second (North)

Symbol ↔ Degree (North)

As a result of this match, transactions are done and the remainder is calculated one by one, each group is shifted as much as the

remainder, our text is then encrypted.

Degree ↔ (mod10)

Minute ↔ (mod24)

Second ↔ (mod10)

Degree ↔ (mod8)

Minute ↔ (mod24)

Seconds ↔ (mod8)

Uppercase

Vowel

Uppercase

Consonant

Lowercase

Vowel

Lowercase

Consonant
Number

MODE 8 24 8 24 10

MATCH 6 5 4 2 3

TIME 36 0 29 3 49

REMAINDER/SHIFT 4 0 5 0 9
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T → T → A B G E (Table 10)

ü → o → D F G (Table 11)

B → B → A C E (Table 10)

i → a → D G (Table 11)

t → t → D F D G (Table 12)

A → O → A B E (Table 9)

K → K → A A G D (Table 10)

2 → 1 → D (Table 15)

0 → 9 → B C (Table 15)

2 → 1 → D (Table 15)

0 → 9 → B C (Table 15)

. → , → B B (Table 14)

4. Location and Time-Based Application In the location and time-based application, encryption is performed firstly by location. This

application will continue through the example depending on the location. The new text created as a result of the 3rd phase is

XoBatAK1919. Time-dependent re-encryption is done through this text. Application3 + Application 2 = Application 4.

(a) Time information is taken.

(b) The number written with 6-digit (1, 2, 3, 4, 5, 6) elements is taken..

(c) The number taken is matched with groups and time information.

Let’s match the 6 main elements of time with the 6 main structures that will create our text.

1st Group 2nd Group

1 UPP.VOWEL 1 DAY

2 UPP.CONSONANT 2 MONTH

3 LOW.VOWEL 3 YEAR

4 LOW.CONSONANT 4 HOUR

5 NUMBER 5 MINUTE

6 SYMBOL 6 SECOND

Example 2.5. Let’s take the number 312546. Let’s our time be 09.01.2020/19.44.01.

In this case:

Uppercase vowels ↔ Year

Uppercase consonants ↔ Day

Lowercase vowels ↔ Month

Lowercase consonants ↔ Minute

Number ↔ Hour

Symbol ↔ Secinds

As a result of this match, transactions are done and the remainder is calculated one by one, each group is shifted as much as the

remainder, our text then becomes encrypted.

Day ↔ (mod24)

Month ↔ (mod8)

Year ↔ (mod8)

Time ↔ (mod10)

Month ↔ (mod24)

Seconds ↔ (mod10)

Uppercase

Vowel

Uppercase

Consonant

Lowercase

Vowel

Lowercase

Consonant
Number Symbol

MODE 8 24 8 24 10 10

MATCH 3 1 2 5 4 6

TIME 2020 09 01 44 19 01

REMAINDER/SHIFT 4 9 1 20 9 1

X → C → A C E

o → o → D F E G

B → K → A A G D

a → e → D G B G

t → q → D F B

O → A → A C D

K → K → A B C D

1 → 0 → D D

9 → 8 → B B

1 → 0 → D D

9 → 8 → B B

, → ? → C D
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Our last encryption becomes: CöKeqAK0808?

3. Findings

Our encryption method can be expressed in 4 different ways:

1. Our first model is based on mathematics and music, expressing ASCII numbers with the additive property of Fibonacci and Lucas

numbers and converting them into notes.

2. In addition to our first model, a time variable encryption program is created.

3. In addition to our first model, a location variable encryption program is created.

4. In addition to our first model, a time and location variable encryption program is created.

An algorithm containing English characters is created with the software of the first encryption method.

4. Conclusion and discussion

As a result of the literature review, it was realized that there was no encryption method made using the properties of mathematical number

strings and musical instruments. In the study, 6 main titles are determined for letters, numbers, and symbols. Then ASCII codes of letters,

numbers, and symbols are assigned. Being expressed by Fibonacci and Lucas number sequences, these codes are encoded with 4 different

variables: time, location, and time-location. The codes were matched with the notes to be played with the violin. It is found that the

hypothesis that is the basis of the research is feasible.

• Most of the encryption methods are made with a certain logic over a single main text. Our main text components are divided into

6 main groups and encryption diversity is created and a program that is difficult to encrypt is done. It has been determined that

other encryption programs do not have lowercase-uppercase, vowel-consonant, number-symbol distinctions. In encryption, various

transition methods have been determined to avoid confusion between the 6 main groups.

• 4 different one on the basis, encryption moves from easy to difficult:

1. ASCII codes → Fibonacci and Lucas numbers → Note

2. ASCII codes → Fibonacci and Lucas numbers → Time variable → Note

3. ASCII codes → Fibonacci and Lucas numbers → Location variable → Note

4. ASCII codes → Fibonacci and Lucas numbers → Time and Location variable → Note

Encryption systems have been established. It is seen that it differs from other encryption programs as the richness of application.

• The encryption system we have created can be transmitted both in audio and text. At the same time, it offers diversity in terms of data

privacy as it can be applied with various instruments (piano-violin-viola-cello, etc.).

• The encryption method in the research is suitable for people who have musical knowledge. People having a good musical ear can

audibly encrypt the password regardless of any written source. Due to these features, it differs from the encryption methods made so

far. In addition, the data transfer can be transferred as solo and choral.

• The encryption method created is a difficult method to be encrypted because it contains many details between Fibonacci and Lucas

number sequences, ASCII codes, and notes.

• The most common encryption method is the solution of objects through the possibilities of using them in a text according to languages.

In this research, it is seen that the same object (2, 3, 4) applications create a richness of being transferred in different ways in different

locations / times / locations and times.

• In other encryption methods, it has been determined that encrypting an object is one step. But in this study, the same text differs as

time changes and location changes. This allows the same object to be encoded differently in a text.

• One of the disadvantages of our study is that communication between any two people who do not have sufficient musical knowledge is

not healthy. Environmental conditions (noise, etc.) can affect the efficiency of the audio transmission.

• Since it is applied manually in terms of application, time and personal errors are possible, even if small. This disadvantage has been

removed by transforming the method into a software program to create ease of application and speed.

• The encryption method being created is based on the Turkish alphabet.

• It can be done in accordance with other alphabets. The number of symbols used can be increased to increase the variety of applications.

• In the research, simple translation encryption is done based on the remaining. Application with the asymmetric encryption method can

make it a very difficult system to be encrypted.

• Fibonacci and Lucas number sequences were used in the research. Different encryption methods can be developed by changing the

number of strings used. If software that detects notes can be created, the program can also be used commercially (military-data

security-banking, etc.). Encryption can be implemented in a music piece with the help of a melody, which is more difficult, complex,

and secret to be decoded.
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[14] E. Riedel, The Relationship Between Music Instruction and Academic Achievement in Mathematics by Nechelle Nipper Sharpe, Walden University,

USA, 2013.
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