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LACUNARY INVARIANT STATISTICAL EQUIVALENCE FOR

DOUBLE SET SEQUENCES

Uǧur ULUSU1, Erdinç DÜNDAR2, and Nimet PANCAROǦLU AKIN2

1Sivas Cumhuriyet University, 58140 Sivas, TURKEY
2Afyon Kocatepe University, 03200 Afyonkarahisar, TURKEY

Abstract. In this paper, we introduce the notions of asymptotical strong

σ2-equivalence, asymptotical σ2-statistical equivalence, asymptotical lacunary

strong σ2-equivalence and asymptotical lacunary σ2-statistical equivalence in
the Wijsman sense for double set sequences. Also, we investigate some relations

between these new asymptotical equivalence notions.

1. Introduction

Long after the notion of convergence for double sequences was introduced by
Pringsheim [1], this notion was extended to the notion of statistical convergence by
Móricz [2] and Mursaleen and Edely [3] in the same year, to the notion of lacunary
statistical convergence by Patterson and Savaş [4] and to the notion of double σ-
convergent lacunary statistical sequence by Savaş and Patterson [5]. Moreover,
for double sequences, the notion of asymptotical equivalence was introduced by
Patterson [6].

Over the years, on the various convergence notions for set sequences have been
studied by many authors (see, [7–9]). One of them, discussed in this paper, is the
notion of convergence in the Wijsman sense [10]. Using the notions of statistical con-
vergence, double lacunary sequence and invariant mean, this notion was extended
to the notions of convergence for double set sequences by some authors [11–13].
Furthermore, for double set sequences, the notions of asymptotical equivalence in
the Wijsman sense were introduced by Nuray et al. [14] and then these notions
were studied by some authors [15–17]. In this paper, using the notion of invariant
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2 U. ULUSU, E. DÜNDAR, N. PANCAROĞLU AKIN

mean, we study on new asymptotical equivalence notions in the Wijsman sense for
double set sequences. More information on the notions of asymptotical equivalence
for set sequences can be found in [18,19].

2. Basic Definitions and Notations

In this section, let us remind the basic notions necessary for a better understand-
ing of our paper.

Definition 1. [1] A double sequence (xjk) is called convergent to L in Pringsheim’s
sense if for every ε > 0, there exists Nε ∈ N such that |xjk − L| < ε, whenever
j, k > Nε. It is denoted by P − lim

j,k→∞
xkj = L or lim

j,k→∞
xjk = L.

Definition 2. [3] A double sequence (xjk) is called statistically convergent to L if
for every ε > 0,

P − lim
m,n→∞

1

mn

∣∣∣{(j, k) : j ≤ m, k ≤ n, |xjk − L| ≥ ε
}∣∣∣ = 0.

For a metric space (Y, d), µ(y,B) denote the distance from y to B where

µ(y,B) = inf
b∈B

d(y, b)

for any y ∈ Y and any nonempty B ⊆ Y .
Throughout this study, (Y, d) will be considered as a metric space andB,Bjk, Djk

will be considered as any nonempty closed subsets of Y .

Definition 3. [13] A double set sequence {Bjk} is called convergent to the set B
in the Wijsman sense if for each y ∈ Y ,

P − lim
j,k→∞

µ(y,Bjk) = µ(y,B).

Let σ be a mapping such that σ : N → N (the set of positive integers). A
continuous linear functional ψ on ℓ∞, the space of real bounded sequences, is called
an invariant mean (or a σ-mean) if it satisfies the following conditions:

(1) ψ(xs) ≥ 0, when the sequence (xs) has xs ≥ 0 for all s,
(2) ψ(e) = 1, where e = (1, 1, 1, . . .) and
(3) ψ(xσ(s)) = ψ(xs) for all (xs) ∈ ℓ∞.

The mapping σ is assumed to be one-to-one and such that σj(s) ̸= s for all
j, s ∈ N, where σj(s) denotes the j th iterate of the mapping σ at s. Thus ψ
extends the limit functional on c, the space of convergent sequences, in the sense
that ψ(xs) = limxs for all (xs) ∈ c.

Definition 4. [12] A double set sequence {Bjk} is called invariant convergent to
the set B in the Wijsman sense if for each y ∈ Y ,

P − lim
n,m→∞

1

nm

n,m∑
j,k=1,1

µ(y,Bσj(s)σk(t)) = µ(y,B), uniformly in s, t.
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Definition 5. [12] A double set sequence {Bjk} is called strong invariant conver-
gent to the set B in the Wijsman sense if for each y ∈ Y ,

P − lim
n,m→∞

1

nm

n,m∑
j,k=1,1

∣∣µ(y,Bσj(s)σk(t))− µ(y,B)
∣∣ = 0, uniformly in s, t.

Definition 6. [12] A double set sequence {Bjk} is called invariant statistically
convergent to the set B in the Wijsman sense if for every ε > 0 and each y ∈ Y ,

P − lim
n,m→∞

1

nm

∣∣∣{(j, k) : j ≤ n, k ≤ m,
∣∣µ(y,Bσj(s)σk(t))− µ(y,B)

∣∣ ≥ ε
}∣∣∣ = 0,

uniformly in s, t.

A double sequence θ2 = {(jr, ku)} is called a double lacunary sequence if there
exist increasing sequences (jr) and (ku) of the integers such that

j0 = 0, hr = jr − jr−1 → ∞ and k0 = 0, h̄u = ku − ku−1 → ∞ as r, u→ ∞.

In general, the following notations is used for any double lacunary sequence:

hru = hrh̄u, Iru = {(j, k) : jr−1 < j ≤ jr and ku−1 < k ≤ ku},

qr =
jr
jr−1

and qu =
ku
ku−1

.

Throughout this study, θ2 = {(jr, ku)} will be considered as a double lacunary
sequence.

Definition 7. [12] A double set sequence {Bjk} is called lacunary invariant con-
vergent to the set B in the Wijsman sense if for each y ∈ Y ,

P − lim
r,u→∞

1

hru

∑
(j,k)∈Iru

µ(y,Bσj(s)σk(t)) = µ(y,B), uniformly in s, t.

Definition 8. [12] A double set sequence {Bjk} is called lacunary strong invariant
convergent to the set B in the Wijsman sense if for each y ∈ Y ,

P − lim
r,u→∞

1

hru

∑
(j,k)∈Iru

∣∣µ(y,Bσj(s)σk(t))− µ(y,B)
∣∣ = 0, uniformly in s, t.

Definition 9. [12] A double set sequence {Bjk} is called lacunary invariant sta-
tistically convergent to the set B in Wijsman sense if for every ε > 0 and each
y ∈ Y ,

P − lim
r,u→∞

1

hru

∣∣∣{(j, k) ∈ Iru :
∣∣µ(y,Bσj(s)σk(t))− µ(y,B)

∣∣ ≥ ε
}∣∣∣ = 0,

uniformly in s, t.
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The term µy

(
Bjk

Djk

)
is defined as follows:

µy

(
Bjk

Djk

)
=


µ(y,Bjk)

µ(y,Djk)
, y ̸∈ Bjk ∪Djk

λ , y ∈ Bjk ∪Djk.

Definition 10. [14] Two double set sequences {Bjk} and {Djk} are called asymp-
totically equivalent of multiplicity λ in the Wijsman sense if for each y ∈ Y ,

P − lim
j,k→∞

µy

(
Bjk

Djk

)
= λ.

It is denoted by Bjk
Wλ

2∼ Djk and simply called asymptotically equivalent in the
Wijsman sense if λ = 1.

As an example to asymptotically equivalent double set sequences, the following
sequences can be considered:

Bjk = {(a, b) ∈ R2 : a2 + b2 − 2jkb = 0}

and

Djk = {(a, b) ∈ R2 : a2 + b2 + 2jkb = 0}.
Since

P − lim
j,k→∞

µy

(
Bjk

Djk

)
= 1

for every y ∈ R2, the double set sequences {Bjk} and {Djk} are asymptotically

equivalent in the Wijsman sense, i.e., Bjk
W2∼ Djk.

3. Main results

In this section, for double set sequences, we introduce the notions of asymptoti-
cal σ2-equivalence, asymptotical strong σ2-equivalence, asymptotical σ2-statistical
equivalence, asymptotical lacunary σ2-equivalence, asymptotical strong lacunary
σ2-equivalence and asymptotical lacunary σ2-statistical equivalence in the Wijsman
sense. Also, we investigate some relations between some of these new asymptotical
equivalence notions.

Definition 11. Two double set sequences {Bjk} and {Djk} are said to be asymp-
totically σ2-equivalent of multiplicity λ in the Wijsman sense if for each y ∈ Y ,

P − lim
n,m→∞

1

nm

n,m∑
j,k=1,1

µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
= λ, uniformly in s, t.

This type of equivalence is denoted by Bjk

Wλ
σ2∼ Djk and simply called asymptotically

σ2-equivalent in the Wijsman sense if λ = 1.



LACUNARY INVARIANT STATISTICAL EQUIVALENCE FOR DOUBLE SET SEQ. 5

Definition 12. Two double set sequences {Bjk} and {Djk} are said to be asymp-
totically strong σ2-equivalent of multiplicity λ in the Wijsman sense if for each
y ∈ Y ,

P − lim
n,m→∞

1

nm

n,m∑
j,k=1,1

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ = 0, uniformly in s, t.

This type of equivalence is denoted by Bjk

[Wλ
σ2

]
∼ Djk and simply called asymptotically

strong σ2-equivalent in the Wijsman sense if λ = 1.

The set of all asymptotically strong σ2-equivalent double set sequences of mul-
tiplicity λ in the Wijsman sense is denoted by {[Wλ

σ2
]}.

Definition 13. Two double set sequences {Bjk} and {Djk} are said to be asymp-
totically σ2-statistical equivalent of multiplicity λ in the Wijsman sense if for every
ε > 0 and each y ∈ Y ,

P − lim
n,m→∞

1

nm

∣∣∣∣{(j, k) : j ≤ n, k ≤ m,

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ ≥ ε

}∣∣∣∣ = 0,

uniformly in s, t. This type of equivalence is denoted by Bjk

WSλ
σ2∼ Djk and simply

called asymptotically σ2-statistical equivalent in the Wijsman sense if λ = 1.

The set of all asymptotically σ2-statistical equivalent double set sequences of
multiplicity λ in the Wijsman sense is denoted by {WSλ

σ2
}.

Definition 14. Two double set sequences {Bjk} and {Djk} are said to be asymp-
totically lacunary σ2-equivalent of multiplicity λ in the Wijsman sense if for each
y ∈ Y ,

P − lim
r,u→∞

1

hru

∑
(j,k)∈Iru

µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
= λ, uniformly in s, t.

This type of equivalence is denoted by Bjk

Wλ
θσ2∼ Djk and simply called asymptotically

lacunary σ2-equivalent in the Wijsman sense if λ = 1.

Definition 15. Two double set sequences {Bjk} and {Djk} are said to be asymp-
totically lacunary strong σ2-equivalent of multiplicity λ in the Wijsman sense if for
each y ∈ Y ,

P − lim
r,u→∞

1

hru

∑
(j,k)∈Iru

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ = 0, uniformly in s, t.

This type of equivalence is denoted by Bjk

[Wλ
θσ2

]
∼ Djk and simply called asymptoti-

cally lacunary strong σ2-equivalent in the Wijsman sense if λ = 1.
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Example 1. Let Y = R2 and double set sequences {Bjk} and {Djk} be defined as
following:

Bjk :=


{
(a, b) ∈ R2 : a2 + (b+ 1)2 = 1

jk

}
; if (j, k) ∈ Iru, j and k are

square integers,

{(2, 0)} ; otherwise.

and

Djk :=


{
(a, b) ∈ R2 : a2 + (b− 1)2 = 1

jk

}
; if (j, k) ∈ Iru, j and k are

square integers,

{(2, 0)} ; otherwise.

In this case, the double set sequences {Bjk} and {Djk} are asymptotically lacunary
strong σ2-equivalent in the Wijsman sense.

The set of all asymptotically lacunary strong σ2-equivalent double set sequences
of multiplicity λ in the Wijsman sense is denoted by {[Wλ

θσ2
]}.

Definition 16. Two double set sequences {Bjk} and {Djk} are said to be asymp-
totically lacunary σ2-statistical equivalent of multiplicity λ in the Wijsman sense if
for every ε > 0 and each y ∈ Y ,

P − lim
r,u→∞

1

hru

∣∣∣∣{(j, k) ∈ Iru :

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ ≥ ε

}∣∣∣∣ = 0,

uniformly in s, t. This type of equivalence is denoted by Bjk

WSλ
θσ2∼ Djk and simply

called asymptotically lacunary σ2-statistical equivalent in the Wijsman sense if λ =
1.

Example 2. Let Y = R2 and double set sequences {Bjk} and {Djk} be defined as
following:

Bjk :=


{
(a, b) ∈ R2 : (a− j)2 + (b+ k)2 = 4

}
; if (j, k) ∈ Iru, j and k are

square integers,

{(−2, 1)} ; otherwise.

and

Djk :=


{
(a, b) ∈ R2 : (a+ j)2 + (b− k)2 = 4

}
; if (j, k) ∈ Iru, j and k are

square integers,

{(−2, 1)} ; otherwise.

In this case, the double set sequences {Bjk} and {Djk} are asymptotically lacunary
σ2-statistical equivalent in the Wijsman sense.

The set of all asymptotically lacunary σ2-statistical equivalent double set se-
quences of multiplicity λ in the Wijsman sense is denoted by {WSλ

θσ2
}.
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Theorem 1.

(i) If Bjk

[Wλ
θσ2

]
∼ Djk, then Bjk

WSλ
θσ2∼ Djk.

(ii) If for each y ∈ Y sup
j,k,s,t

∣∣∣µy

(
B

σj(s)σk(t)

D
σj(s)σk(t)

)∣∣∣ < ∞ and Bjk

WSλ
θσ2∼ Djk,

then Bjk

[Wλ
θσ2

]
∼ Djk.

Proof. (i) Let Bjk

[Wλ
θσ2

]
∼ Djk. For every ε > 0 and each y ∈ Y , we have∑

(j,k)∈Iru

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ ≥
∑

(j,k)∈Iru∣∣∣∣µy

(
B

σj(s)σk(t)
D

σj(s)σk(t)

)
−λ

∣∣∣∣≥ε

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣

≥ ε

∣∣∣∣∣
{
(j, k) ∈ Iru :

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ ≥ ε

}∣∣∣∣∣
for all s, t, which gives the result.

(ii) Let Bjk

WSλ
θσ2∼ Djk. Also, suppose that sup

j,k,s,t

∣∣∣µy

(
B

σj(s)σk(t)

D
σj(s)σk(t)

)∣∣∣ <∞ for each

y ∈ Y . Then, there exists an M > 0 such that for each y ∈ Y∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ ≤M

for all j, k and s, t. Thus, for every ε > 0 and each y ∈ Y we have

1

hru

∑
(j,k)∈Iru

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣
=

1

hru

∑
(j,k)∈Iru∣∣∣∣µy

(
B

σj(s)σk(t)
D

σj(s)σk(t)

)
−λ

∣∣∣∣≥ε

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣

+
1

hru

∑
(j,k)∈Iru∣∣∣∣µy

(
B

σj(s)σk(t)
D

σj(s)σk(t)

)
−λ

∣∣∣∣<ε

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣

≤ M

hru

∣∣∣∣∣
{
(j, k) ∈ Iru :

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ ≥ ε

}∣∣∣∣∣+ ε

for all s, t, which gives the result. □
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With a technique similar to that of Theorem 1, the following theorem can be
proved.

Theorem 2.

(i) If Bjk

[Wλ
σ2

]
∼ Djk, then Bjk

WSλ
σ2∼ Djk.

(ii) If for each y ∈ Y sup
j,k,s,t

∣∣∣µy

(
B

σj(s)σk(t)

D
σj(s)σk(t)

)∣∣∣ < ∞ and Bjk

WSλ
σ2∼ Djk,

then Bjk

[Wλ
σ2

]
∼ Djk.

Theorem 3. If lim infr qr > 1 and lim infu qu > 1 for any θ2 = {(jr, ku)}, then

Bjk

WSλ
σ2∼ Djk implies Bjk

WSλ
θσ2∼ Djk.

Proof. Let Bjk

WSλ
σ2∼ Djk. Also, suppose that lim infr qr > 1 and lim infu qu > 1.

Then, there exist η, ρ > 0 such that qr ≥ η + 1, qu ≥ ρ + 1 for all r, u > 1, which
implies that

hru
jrku

≥ ηρ

(η + 1)(ρ+ 1)
.

Thus, for every ε > 0 and each y ∈ Y we have

1

jrku

∣∣∣∣∣
{
(j, k) : j ≤ jr, k ≤ ku,

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ ≥ ε

}∣∣∣∣∣
≥ 1

jrku

∣∣∣∣∣
{
(j, k) ∈ Iru :

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ ≥ ε

}∣∣∣∣∣
=

hru
jrku

1

hru

∣∣∣∣∣
{
(j, k) ∈ Iru :

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ ≥ ε

}∣∣∣∣∣
≥ ηρ

(η + 1)(ρ+ 1)

1

hru

∣∣∣∣∣
{
(j, k) ∈ Iru :

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ ≥ ε

}∣∣∣∣∣
for all s, t, which gives the result. □

Theorem 4. If lim supr qr <∞ and lim supu qu <∞ for any θ2 = {(jr, ku)}, then

Bjk

WSλ
θσ2∼ Djk implies Bjk

WSλ
σ2∼ Djk.

Proof. Let lim supr qr < ∞ and lim supu qu < ∞. Then, there exist α, β > 0 such

that qr < α, qu < β for all r, u > 1. Also, suppose that Bjk

WSλ
θσ2∼ Djk and
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δ > 0. Then, there exist n0,m0 ∈ N such that for every ε > 0, each y ∈ Y and all
j ≥ n0, k ≥ m0

Sjk :=
1

hjk

∣∣∣∣∣
{
(j, k) ∈ Ijk :

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ ≥ ε

}∣∣∣∣∣ < δ

for all s, t. We can also find an M > 0 such that Sjk < M for all j, k = 1, 2, . . ..
Now, let n and m be any integers satisfying jr−1 < n ≤ jr, ku−1 < m ≤ ku

where r > n0, u > m0. Then, for every y ∈ Y we have

1

nm

∣∣∣∣∣
{
(j, k) : j ≤ n, k ≤ m,

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ ≥ ε

}∣∣∣∣∣
≤ 1

jr−1ku−1

∣∣∣∣∣
{
(j, k) : j ≤ jr, k ≤ ku,

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ ≥ ε

}∣∣∣∣∣
=

1

jr−1ku−1

∣∣∣∣∣
{
(j, k) ∈ I11 :

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ ≥ ε

}∣∣∣∣∣
+

1

jr−1ku−1

∣∣∣∣∣
{
(j, k) ∈ I12 :

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ ≥ ε

}∣∣∣∣∣
+

1

jr−1ku−1

∣∣∣∣∣
{
(j, k) ∈ I21 :

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ ≥ ε

}∣∣∣∣∣
+

1

jr−1ku−1

∣∣∣∣∣
{
(j, k) ∈ I22 :

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ ≥ ε

}∣∣∣∣∣
...

+
1

jr−1ku−1

∣∣∣∣∣
{
(j, k) ∈ Iru :

∣∣∣∣µy

(
Bσj(s)σk(t)

Dσj(s)σk(t)

)
− λ

∣∣∣∣ ≥ ε

}∣∣∣∣∣
=

j1k1
jr−1ku−1

S11 +
j1(k2 − k1)

jr−1ku−1
S12 +

(j2 − j1)k1
jr−1ku−1

S21 +
(j2 − j1)(k2 − k1)

jr−1ku−1
S22

...

+
(jn0

− jn0−1)(km0
− km0−1)

jr−1ku−1
Sn0m0

...
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+
(jr − jr−1)(ku − ku−1)

jr−1ku−1
Sru

≤

{
sup

1≤j, 1≤k
Sjk

}
jn0

km0

jr−1ku−1
+

{
sup

j≥n0, k≥m0

Sjk

}
(jr − jn0

)(ku − km0
)

jr−1ku−1

≤M
jn0km0

jr−1ku−1
+ δ α β

for all s, t, which gives the result. □

Theorem 5. If

1 < lim infr qr ≤ lim supr qr <∞ and 1 < lim infu qu ≤ lim supu qu <∞
for any θ2 = {(jr, ku)}, then

Bjk

WSλ
θσ2∼ Djk if and only if Bjk

WSλ
σ2∼ Djk.

Proof. The proof is obvious from Theorem 3 and Theorem 4. □

With techniques similar to that of Theorem 3, Theorem 4 and Theorem 5, the
following theorems can be respectively proved.

Theorem 6. If lim infr qr > 1 and lim infu qu > 1 for any θ2 = {(jr, ku)}, then

Bjk

[Wλ
σ2

]
∼ Djk implies Bjk

[Wλ
θσ2

]
∼ Djk.

Theorem 7. If lim supr qr <∞ and lim supu qu <∞ for any θ2 = {(jr, ku)}, then

Bjk

[Wλ
θσ2

]
∼ Djk implies Bjk

[Wλ
σ2

]
∼ Djk.

Theorem 8. If

1 < lim infr qr ≤ lim supr qr <∞ and 1 < lim infu qu ≤ lim supu qu <∞
for any θ2 = {(jr, ku)}, then

Bjk

[Wλ
θσ2

]
∼ Djk if and only if Bjk

[Wλ
σ2

]
∼ Djk.

4. Conclusion

When (σ(s), σ(t)) = (s + 1, t + 1), from Definitions 11-16 we get the defini-
tions of asymptotical almost equivalence, asymptotical strong almost equivalence,
asymptotical almost statistical equivalence, asymptotical lacunary almost equiva-
lence, asymptotical lacunary strong almost equivalence and asymptotical lacunary
almost statistical equivalence in the Wijsman sense for double set sequences. So,
the analogues of Theorem 1-8 can also be obtained between these definitions, which
have not been appeared anywhere by this time.
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AN INVESTIGATION ON THE TRIPLE IDEAL CONVERGENT

SEQUENCES IN FUZZY METRIC SPACES

Mehmet GÜRDAL1 and Ekrem SAVAŞ2
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Abstract. The notion of ideal convergence is a process of generalizing of

statistical convergence which is dependent on the idea of the ideal I of subsets
of the set positive integer numbers. In this study we also present the concept

of ideal convergence for triple sequences in fuzzy metric spaces (FMS) in the

manner of George and Veeramani and the terms of ideal Cauchy sequence and
I∗-Cauchy sequence in FMS and examine their some properties.

1. Introduction and Literature Review

Statistical convergence for real sequence was rst introduced by Fast [4] in 1951.
Since then statistical convergence was investigated by more and more researchers.
The concept of I-convergence, and interesting generalization of statistical conver-
gence [4], was first presented by Kostyrko et al. [20] with use of the ideal I of subsets
of the set of natural numbers N and further studies done in [27]. The study of ideal
convergence in triple sequence has been initiated by Şahiner and Tripathy [31].
More analysis in this field and more implications of these statistical convergence
and ideal convergence can be seen in [1, 11–13,15,22,24–26,28,32–36,39,40].

After Zadeh’s leading work in 1965, fuzzy set theory has been widely applied into
practical problems. Fuzzy set theory is a very effective set for modelling uncertainty
and vagueness in various problems that arise in some fields. Many authors have
defined several concepts of FMS in different ways [3, 5, 16–18, 21, 23]. In [5, 6],
George and Veeramani first investigated and presented the notion of fuzzy metric
space with the use of continuous t-norms. Lately, several convergences in fuzzy
metric spaces were studied by Gregori et al. [7–10].
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Generally, statistically convergent sequences fulfills most of the features of ordi-
nary convergent sequences in metric spaces. For example, a statistically convergent
sequence is statistically Cauchy ( [29]) in an arbitrary metric space. Concordantly,
we introduce studying I-Cauchy and I-convergence concepts of triple sequences on
FMS.

Here, as it can be recalled the following basic concepts from [2, 5, 18, 38] needed
in the course of the paper.

Definition 1. The 3-tuple (X,M,∗) is said to be a FMS if X is a nonempty set, ∗
is a continuous t-norm and M is a fuzzy set on X2×(0,∞) satisfying the following
cases for all x, y, z ∈ X and s, t > 0 :

Case 1. M(x, y, t) > 0;
Case 2. M(x, y, t) = 1 iff x = y;
Case 3. M(x, y, t) = M(y, x, t);
Case 4. M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s);
Case 5. M(x, y, .) : (0,∞) → [0, 1] is continuous.

Definition 2. Let (X,M, ∗) be a FMS. We define open ball BM (x, r, t) with centre
x ∈ X and radius r, 0 < r < 1, t > 0 as

BM (x, r, t) = {y ∈ X : M (x, y, t) > 1− r} .

Let (X,M, ∗) be a FMS. We have

τM = {A ⊂ X : x ∈ A iff there exists t > 0, r ∈ (0, 1) such that BM(x, r, t) ⊂ A} .

Hence τM is a topology on X. George and Veeramani [5] proved that {BM(x, r, t) :
x ∈ X, t > 0, r ∈ (0, 1)} forms a base of a topology τM in X.

Definition 3. Let (X,M, ∗) be a FMS. If for every r ∈ (0, 1) and t > 0, there
exists n0 ∈ N such that M(xn, x0, t) > 1 − r for all n > n0, then a sequence {xn}
converges to x0.

Definition 4. A sequence {xn} in a FMS (X,M, ∗) is called to be a Cauchy
sequence if for all ε, 0 < ε < 1 and t > 0, there exists n0 ∈ N such that
M(xn, xm, t) > 1− ε for every n,m ≥ n0.

Definition 5. When every Cauchy sequence is convergent, a FMS is called to be
complete.

Definition 6. ( [4]) Let A ⊂ N, put An = {k ∈ A : k ≤ n} , ∀n ∈ N. Then

δ (A) := lim sup
n→∞

|An|
n

and δ (A) := lim inf
n→∞

|An|
n

are called upper and lower asymptotic density of the set A, respectively. When
δ (A) = δ (A) ,

δ (A) := lim
n→∞

|An|
n
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is called to be an asymptotic density of A. All the three densities, if they exist, are
in [0, 1] .

Utilizing above information, we recall that a sequence (xk)k∈N is statistical con-
vergent to x, if for all ε > 0,

δ ({k ∈ N : |xk − x| ≥ ε}) = 0.

If (xk)k∈N is statistically convergent to x, we show st-limxk = x.
The terms of statistical convergence and statistical Cauchy for sequences in FMS

have been investigated by Li et al. [19].

Definition 7. Let (X,M, ∗) be a FMS. if for all r ∈ (0, 1) and t > 0

δ ({n ∈ N : M (xn, x0, t) > 1− r}) = 1,

then a sequence {xn} in X is called statistically convergent to x0 ∈ X

Definition 8. Let (X,M, ∗) be a FMS. If for every r ∈ (0, 1) and t > 0, there
exists N0 ∈ N such that

δ({k ∈ N : M(xk, xN0
, t) > 1− r}) = 1.

A sequence {xn} in X is called a statistically Cauchy sequence.

Also, Şahiner et al. [30] investigated the statistical convergence for triple se-
quence. A function x : N3= N × N × N → R is said to be a real triple sequence.
A triple sequence (xnkl) in R is called to be converge if there exists a point ℓ such
that for all ε > 0, there exists a positive integer n0 such that |xnkl − ℓ| < ε for all
n, k, l ≥ n0.

Definition 9. If

δ3(A) = lim
n,k,l→∞

|Ankl|
nkl

exists, then a subset A of N3 is called to have natural density δ3(A). From here, if
for every ε > 0

δ3
({

(n, k, l) ∈ N3 : |xnkl − ℓ| ≥ ε
})

= 0,

then a real triple sequence x = (xnkl) is called to be statistically convergent to ℓ

Then, we give the terms of lacunary statistical convergence and lacunary statis-
tical Cauchy for triple sequences in FMS as follows.

Definition 10. Let (X,M, ∗) be a FMS and θ3 = θr,s,t be a lacunary triple se-
quence. A triple sequence {xjkl} is called to be lacunary statistically convergent to
ℓ ∈ X, written as stsθ3-limxjkl = ℓ, if, for all r ∈ (0, 1) and t > 0,

lim
r,s,t

1

hr,s,t
|{(j, k, l) ∈ Ir,s,t : M (xjkl, ℓ, t) > 1− r}| = 1.
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Definition 11. Let (X,M, ∗) be a FMS and θ3 = θr,s,t be a lacunary triple se-
quence. A triple sequence {xjkl} in X is said to be lacunary statistically Cauchy
sequence, if, for all α ∈ (0, 1) and t > 0, there exists M,M′,M′′ ∈ N such that for
all j, p ≥ M′′, k, q ≥ M′, l, r ≥ M,

δθ3

({
(j, k, l) ∈ N3 : M (xjkl, xpqr, t) > 1− α

})
= 1.

We recall the following some notations used in [20,27].

Definition 12. A class I ⊂ 2R of subsets of a nonempty set R is called to be an
ideal in R if (i) ∅ ∈ I; (ii) M,N ∈ I imply M ∪N ∈ I; (iii) M ∈ I, N ⊂ M imply
N ∈ I. A non-trivial ideal I in R is called an admissible ideal if it is different from
P (N) and it contains all singletons, that is, {x} ∈ I for each x ∈ R.

Lemma 1. Let I be a proper ideal in R, so R /∈ I, R ̸= ∅. Then the class of sets

F (I) = {A ⊂ R : ∃M ∈ I : A = R\M}

is a filter in R. It is said to be the filter associated with the ideal I.

Definition 13. Let I ⊂ 2N be a proper ideal in N and (X, ρ) be a metric space.
The sequence x = (xn) in X is called to be I-convergence to ξ ∈ X if for each ε > 0
the set A (ε) = {n ∈ N : ρ (xn, ξ) ≥ ε} ∈ I.

Definition 14. A sequence x = {xn}n∈N in X is called to be I∗-convergent to
ξ ∈ X iff there exists a set

K ∈ F (I) , K = {k1 < k2 < ... < kp < ...} ⊂ N

such that lim
p→∞

ρ
(
xkp

, ξ
)
= 0.

Definition 15. ( [27]) Let (X, ρ) be a linear metric space. If for every ε > 0
there exists N = N (ε) such that A (ε) = {n ∈ N : ρ (xn, xN ) ≥ ε} ∈ I, a sequence
x = (xn) in X is called an I-Cauchy sequence in X

Definition 16. ( [27]) Let (X, ρ) be a linear metric space. If there exists a set
K = {k1 < k2 < ... < kp < ...} ⊂ N, K ∈ F (I) such that lim

p,r→∞
ρ
(
xkp

, xkr

)
= 0, a

sequence x = (xn) in X is called to be I∗-Cauchy sequence .

In 2008, the term of ideal convergence for triple sequences used first time by
Şahiner and Tripathy [31] in 2008.

Definition 17. A real triple sequence (xnkl) is called to be I-convergent to ℓ if for
every ε > 0, {

(n, k, l) ∈ N3 : |xnkl − ℓ| ≥ ε
}
∈ I3.

In this case, one writes I3-limxnkl = ℓ.

Throughout the paper we consider the ideals of 2N by I; the ideals of 2N
2

by I2
and the ideals of 2N

3

by I3.
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2. I3-convergence in FMS

The terms of ideal convergence of triple sequences with a FMS were presented
in this section.

Definition 18. Let I3 be a nontrivial ideal of N3 and (X,M, ∗) be a FMS. A triple
sequence x = {xjkl} of elements of X is said to be I3-convergent to ℓ ∈ X if, for
each r ∈ (0, 1) and each t > 0,{

(j, k, l) ∈ N3 : M (xjkl, ℓ, t) > 1− r
}
∈ F (I3) .

In this stution we prefer to write as IM
3 -limx = ℓ.

Theorem 1. Let (X,M, ∗) be a FMS. Then, for each r ∈ (0, 1) and each t > 0,
the following expression were equivalent:

(i)
{
(j, k, l) ∈ N3 : M (xjkl, ℓ, t) > 1− r

}
∈ F (I3) .

(ii)
{
(j, k, l) ∈ N3 : M (xjkl, ℓ, t) ≤ 1− r

}
∈ I3.

Theorem 2. Let x = {xjkl} be a triple sequence in a FMS (X,M, ∗). When
x = {xjkl} is I3-convergent to ℓ1 and ℓ2, ℓ1 = ℓ2.

Proof. Assume that IM
3 -limx = ℓ1 and IM

3 -limx = ℓ2. Let ℓ1 and ℓ2 be two
distinct points in X and t > 0. In that case 0 < M (ℓ1, ℓ2, t) < 1. Let 1 − ε ∈
(M (ℓ1, ℓ2, t) , 1) . For each 1− s ∈ (1− ε, 1) , there exists 1− s such that (1− s) ∗
(1− s) ≥ 1− ε. Let

Kℓ1 =

{
y ∈ X : M

(
ℓ1, y,

t

2

)
> 1− s

}
and

Kℓ2 =

{
y ∈ X : M

(
ℓ2, y,

t

2

)
> 1− s

}
.

We claim that Kℓ1 ∩Kℓ2 = ∅. Really, if there exists z ∈ Kℓ1 ∩Kℓ2 , then we get

M (ℓ1, ℓ2, t) ≥ M
(
ℓ1, z,

t

2

)
∗M

(
z, ℓ2,

t

2

)
≥ (1− s) ∗ (1− s) ≥ 1− ε

> M (ℓ1, ℓ2, t)

which is a contradiction. Since{
y ∈ X : M

(
ℓ2, y,

t

2

)
> 1− s

}
⊂

{
x ∈ X : M

(
x, ℓ1,

t

2

)
≤ 1− s

}
,

it follows that {
(j, k, l) ∈ N3 : M

(
xjkl, ℓ2,

t

2

)
> 1− s

}
⊆

{
(j, k, l) ∈ N3 : M

(
xjkl, ℓ1,

t

2

)
≤ 1− s

}
. (1)
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By (1) , we get {
(j, k, l) ∈ N3 : M

(
xjkl, ℓ2,

t

2

)
> 1− s

}
∈ F (I3)

⊆
{
(j, k, l) ∈ N3 : M

(
xjkl, ℓ1,

t

2

)
≤ 1− s

}
∈ I3.

which is a contradiction. Therefore, we conclude that IM
3 -lim must be unique. So

the desired result has been obtained. □

Theorem 3. Let (X,M, ∗) be a FMS and I3 be an admissible ideal. When triple
sequence x = {xjkl} in X is convergent to ℓ, x = {xjkl} ideal converges to ℓ.

Proof. Let lim{xjkl} = ℓ. Let r ∈ (0, 1) and t > 0. Then there exists a positive
integer n0 such that

M (xjkl, ℓ, t) > 1− r

for all j > n0, k > n0, l > n0. Since

KM =
{
(j, k, l) ∈ N3 : M (xjkl, ℓ, ε) ≤ 1− r

}
⊆ N3 − {(jn0+1, kn0+1, ln0+1) , (jn0+2, kn0+2, ln0+2) , ...}

and the ideal I3 is admissible, this implies that KM ∈ I3. Therefore{
(j, k, l) ∈ N3 : M (xjkl, ℓ, ε) > 1− r

}
∈ F (I3) ,

that is I3-limx = ℓ. We complete the proof. □

We gave the term of I∗
3 -convergence of triple sequences with a FMS.

Definition 19. Let (X,M, ∗) be a FMS. We say that a triple sequence x =
{xjkl} in X is said to be I∗

3 -convergence to ℓ ∈ X if there exists a subset K =
{(jm, km, lm) : j1 < j2 < ...; k1 < k2 < ...; l1 < l2 < ....} of N3 such that K ∈ F (I3)
(i.e. N3\K ∈ I3) and {xjmkmlm} converges to ℓ.

In this stution we prefer to write I∗-M
3 limx = ℓ.

Theorem 4. Let (X,M, ∗) be a FMS and I3 be an admissible ideal. If I∗-M
3 limx =

ℓ, then IM
3 limx = ℓ.

Proof. Let x = {xjkl} be an I∗
3 -convergence to ℓ ∈ X. Then by definition,

K = {(jm, km, lm) : j1 < j2 < ...; k1 < k2 < ...; l1 < l2 < ...}

of N3, K ∈ F (I3) such that {xjmkmlm} converges to ℓ, so there exists N ∈ N such
that all r ∈ (0, 1) and t > 0,

M(xjmkmlm , ℓ, t) > 1− r, ∀m > N.

Since I3 is an admissible and

{(jm, km, lm) ∈ K : M(xjmkmlm , ℓ, t) ≤ 1− r}
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is contained in {j1 < j2 < ... < jN−1; k1 < k2 < ... < kN−1; l1 < l2 < .... < lN−1},
we get

{(jm, km, lm) ∈ K : M(xjmkmlm , ℓ, t) ≤ 1− r} ∈ I3.
In this case, when we let H = N3\K it is obvious that H ∈ I3 and

{(j, k, l) ∈ N3 : M(xjkl, ℓ, t) ≤ 1− r} ⊂ H∪ (2)

{j1 < j2 < ... < jN−1; k1 < k2 < ... < kN−1; l1 < l2 < .... < lN−1}.

Hence

{j1 < j2 < ... < jN−1; k1 < k2 < ... < kN−1; l1 < l2 < .... < lN−1} ∈ I3.

This means that {
(j, k, l) ∈ N3 : M(xjkl, ℓ, t) > 1− r

}
∈ F (I3) ,

so, {xjkl} is I3-convergent to ℓ. Hence the proof is complete. □

In the example given below, the inverse of Theorem 4 is generally not provided.

Example 1. Let a ∗ b = ab and for all a, b ∈ [0, 1]. If for every x, y ∈ R and t > 0

M(x, y, t) =
t

t+ |x− y|
,

then (R,M, ∗) is a FMS with the usual metric |.|.
Let N3 = ∪i,j,l∆ijl be a decomposition of N3 such that, for any (m,n, o) ∈

N3, each ∆ijl contains infinitely many (i, j, l)’s where i ≥ m, j ≥ n, l ≥ o and
∆ijl ∩ ∆mno = ∅ for (i, j, l) ̸= (m,n, o) . Now we define a sequence xmno = 1

ijl if

(m,n, o) ∈ ∆ijl. It is immediate to see that {xmno} is not I∗
3 -convergence to 0, but

{xjkl} is I3-convergence to 0.

The following definition was needed to prove that an I3-convergence come across
with an I∗

3 -convergence for admissible ideals with property (AP3).

Definition 20. An admissible ideal I3 ⊂ 2N
3

is said to satisfy the condition (AP3)
if for every sequence (Aj)j∈N of pairwise disjoint sets from I3 there are sets Bj ⊂ N,
j ∈ N, such that the symmetric difference Aj∆Bj is a finite set for every j ∈ N
and ∪j∈NBj ∈ I3.

Theorem 5. Let (X,M, ∗) be a FMS and I3 satisfy the condition (AP3). Then
I3-convergence and I∗

3 -convergence coincide.

Proof. Let x = {xjkl} be an I∗
3 -convergence. Then, by Theorem 4, this sequence is

I3-convergence where I3 need not have the (AP3) condition. Then, it is sufficient
to prove that x = (xjkl) in X is a I∗

3 -convergence to ℓ ∈ X under assumption that
(xjkl) is an I3-convergence to ℓ ∈ X. Hence by definition, for all r ∈ (0, 1) and
t > 0, {

(j, k, l) ∈ N3 : M (xjkl, ℓ, t) > 1− r
}
∈ F (I3) .
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Let

Ks =

{
(j, k, l) ∈ N3 : 1− 1

s+ 1
> M (xjkl, ℓ, t) > 1− 1

s

}
.

Then, for t > 0 and each s = 1, 2, ..., we have that {K1,K2, ...} is countable and
Ks ∈ I3, and Ki ∩ Kj = ∅ for i ̸= j. By the property (AP3), there is countable
class of sets {B1, B2, ...} ∈ I3 such that Ki∆Bi is a finite set for every i ∈ N and
B = ∪i∈NBi ∈ I3. From the definition of the associate filter F (I3) there is a set
A ∈ F (I3) such that A = N3\B. To prove the theorem we should aim that the
subsequence {xjkl}(j,k,l)∈A converges to ℓ. Let µ ∈ (0, 1) and each t > 0. Put

q = 1, 2, ... such that 1
q < µ. So{
(j, k, l) ∈ N3 : M (xjkl, ℓ, t) ≤ 1− µ

}
⊂

{
(j, k, l) ∈ N3 : M (xjkl, ℓ, t) ≤ 1− 1

q

}
⊂ ∪q+1

i=1Ki.

Since Ki∆Bi, i = 1, 2, ..., q + 1 are finite, there exists (j0, k0, l0) ∈ N3 such that

∪q+1
i=1 Bi ∩ {(j0, k0, l0) : j ≥ j0, k ≥ k0 and l ≥ l0} (3)

= ∪q+1
i=1Ki ∩ {(j0, k0, l0) : j ≥ j0, k ≥ k0 and l ≥ l0} .

If j ≥ j0, k ≥ k0, l ≥ l0 and (j, k, l) ∈ A then (j, k, l) /∈ ∪q+1
i=1Bi. Therefore, by

(3) , we have (j, k, l) /∈ ∪q+1
i=1Ki. Thus, j ≥ j0, k ≥ k0, l ≥ l0 and (j, k, l) ∈ A, we

have

M(xjkl, ℓ, t) > 1− µ.

Since µ ∈ (0, 1) is arbitrary, this shows that I∗
3 -limxjkl = ℓ. □

3. I3- and I∗
3 -Cauchy sequences on FMS

Now, the terms of I3-Cauchy sequence and I∗
3 -Cauchy sequence was presented

in FMS.

Definition 21. Let (X,M, ∗) be a FMS. A triple sequence {xjkl} in X is called
I3-Cauchy sequence if for every α ∈ (0, 1) and t > 0, there exists N1, N2 and N3

such that for all j, p ≥ N1, k, q ≥ N2, l, r ≥ N3,{
(j, k, l) ∈ N3 : M (xjkl, xpqr, t) > 1− α

}
∈ F (I3) .

In this case, it is stated that {xjkl} is ∈ IM
3 -Cauchy.

Proceeding similarly, we get the following consequence.

Corollary 1. When a triple sequence in a FMS is Cauchy, it is IM
3 -Cauchy.

Definition 22. Let (X,M, ∗) be a FMS. A triple sequence x = {xjkl} in X is
called to be I∗

3 -Cauchy sequence in X if there exists a subset K = {(jm, km, lm) :
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j1 < j2 < ...; k1 < k2 < ...; l1 < l2 < ....} of N3 such that K ∈ F (I3) and {xjmkmlm}
is a Cauchy sequence in X, i.e., there exists N ∈ N such that

M(xjkl, xpqr, t) > 1− α

whenever j ≥ p ≥ N, k ≥ q ≥ N, l ≥ r ≥ N.

Here we can say that {xjkl} is ∈ I∗-M
3 -Cauchy.

Since the next theorems are respectively analogues to Theorems 4 and 5, it can
be proved on same methods.

Theorem 6. Let (X,M, ∗) be a FMS and I3 be an admissible ideal. When a triple
sequence {xjkl} is I∗-M

3 -Cauchy, it is IM
3 -Cauchy.

Theorem 7. Let (X,M, ∗) be a FMS and I3 satisfy the condition (AP3). When
a triple sequence {xjkl} is IM

3 -Cauchy, it is also I∗-M
3 -Cauchy.

Therefore, we now present the following theorem.

Theorem 8. Let {xjkl} be a triple sequence in a FMS (X,M, ∗) and I3 be an
arbitrary admissible ideal with property (AP3). Then IM

3 -limx = ℓ implies that
{xjkl} is an IM

3 -Cauchy sequence.

Proof. Let IM
3 -limx = ℓ. Then for every r ∈ (0, 1) and t > 0,{

(j, k, l) ∈ N3 : M (xjkl, ℓ, t) > 1− r
}
∈ F (I3) .

Let α ∈ (0, 1) and t > 0. Then there exists α1 ∈ (0, α) such that (1 − α1) ∗ (1 −
α1) > 1 − α. According to Theorem 5 and Definition 20, there exists a subset
A = {(jm, km, lm) : j1 < j2 < ...; k1 < k2 < ...; l1 < l2 < ....} of N3 such that
A ∈ F (I3) and {xjmkmlm} converges to ℓ. Thus there exists N ∈ N such that

M(xjmkmlm , ℓ,
t

2
) > 1− α1 for every m > N.

Let (p, q, r) ∈
{
(j, k, l) ∈ N3 : M

(
xjkl, ℓ,

t
2

)
> 1− α1

}
. Then

M(xpqr, xjmkmlm , t) ≥ M(xpqr, ℓ, t/2) ∗M(xjmkmlm , ℓ, t/2)

≥ (1− α1) ∗ (1− α1) > 1− α.

Hence (p, q, r) ∈
{
(j, k, l) ∈ N3 : M

(
xjkl, xjmkmlm , t

2

)
> 1− α1

}
. It follows that{

(j, k, l) ∈ N3 : M
(
xjkl, ℓ,

t

2

)
> 1− α1

}
(4)

⊆
{
(j, k, l) ∈ N3 : M (xjkl, xjmkmlm , t) > 1− α1

}
.

Since
{
(j, k, l) ∈ N3 : M

(
xjkl, ℓ,

t
2

)
> 1− α1

}
∈ F (I3) and (4), we get that{

(j, k, l) ∈ N3 : M (xjkl, xjmkmlm , t) > 1− α1

}
∈ F (I3) .

This indicate that the triple sequence {xjkl} in X is an IM
3 -Cauchy sequence. □
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Remark 1. But the converse of the above theorem is not necessarily true, i.e.
IM
3 -Cauchy sequence does not imply IM

3 -limx = ℓ. This can be illustrated by the
example given below.

Example 2. Let IM
3 (δ) =

{
A ⊂ N3 : δ3 (A) = 0

}
and X = {xjkl : (j, k, l) ∈ N3},

where xjkl = 1− 1
(j+1)(k+1)(l+1) (j, k, l ∈ N) and a∗b = min{a, b} for all a, b ∈ [0, 1],

and let M be a fuzzy set on X2×(0,∞) define as follows M(x, y, t) to be 1 for x = y
and min {x, y} otherwise, for all x, y ∈ X and t > 0. Hence (X,M, ∗) is a FMS
and triple sequence {xjkl} in (X,M, ∗) is IM

3 -Cauchy, but it is not IM
3 -convergent.

Let α ∈ (0, 1) and t > 0. Therefore there exists p, q, r ∈ N such that
1

(p+1)(q+1)(r+1) < α. Hence

M(xjkl, xpqr, t) = xpqr = 1− 1

(p+ 1) (q + 1) (r + 1)
> 1− α

for all j > p, k > q, l > r. Thus{
(j, k, l) ∈ N3 : M(xjkl, xpqr, t) > 1− α

}
∈ F (I3 (δ)) .

which means that {xjkl} is IM
3 -Cauchy sequence. Let ℓ ∈ X. Then there ex-

ists p, q, r ∈ N such that ℓ = xpqr = 1 − 1
(p+1)(q+1)(r+1) . Now, fix t0 = α0 =

1
3(p+1)(q+1)(r+1) . Then

M(xjkl, ℓ, t0) = M(xjkl, xpqr, t0) = xpqr = 1− 1

(p+ 1) (q + 1) (r + 1)
≤ 1− α0

for all j > p, k > q, l > r. Hence{
(j, k, l) ∈ N3 : M(xjkl, ℓ, t0) ≤ 1− α0

}
∈ F (I3 (δ)) ,

which implies that{
(j, k, l) ∈ N3 : M(xjkl, ℓ, t0) > 1− α0

}
∈ I3 (δ) .

So {xjkl} is not IM
3 -convergent.

As a note, all these findings imply the similar theorems for ideal and statistically
convergence and Cauchy sequences which are investigated in [19] and [26].
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Abstract. In the present paper, we introduce and explore certain new classes
of meromorphic functions related to closed-to-convexity and q-calculus. Such

results as coefficient estimates, grow the property and partial sums are derived.

It is important to mention that our results are generalization of number of
existing results in literature.

1. Introduction

Let
∑

1 denote the class of meromorphic functions of the form:

f (ω) =
1

ω
+

∞∑
t=1

atω
t, (1)

which are analytic in the punctured open unit disc U∗ = {ω : ω ∈ C and
0 < {ω} < 1} = U\{0}, where U = U∗ ∪ {0}.

In Geometric Function Theory, several subclasses of the meromorphic functions
have already been examined and investigated through many perceptions, see( [9,10,
12,18,21,22]). Ismail et al. [8] were the first to use the q-derivative operator ∆q in
order to study a certain q-analogue of the class T ∗ of starlike functions in U . Certain
basic properties of the q-close-to-convex functions were studied by Raghavendar
and Swaminathan [28], Aral et al. [2] successfully studied the applications of the
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q-calculus in operator theory. In fact, they found significant application of the
q-calculus mainly in the Geometric Function Theory. Moreover, the generalized
q-hypergeometric function was first introduced by Srivastava [26], see also( [1, 3, 5,
6, 14,16,20]).

A function f ∈
∑

1 is said to be meromorphic starlike of order α defined as:

f ∈
MS∑

(α) ⇔ Re

(
ωf

′
(ω)

f (ω)

)
< −α (0 ≤ α < 1; ω ∈ U∗). (2)

A related class of meromorphic convex function
∑MC

(α) is defined as:

f ∈
MC∑

(α) ⇔ Re

(
1 +

ωf
′′

(ω)

f ′ (ω)

)
< −α ( ω ∈ U∗). (3)

By
∑MK

(α), we mean f ∈
∑

1 and the class of all close-to-convex functions
which satisfies the condition

Re

(
ωf

′

(ω)

g (ω)

)
< −α, where g ∈

MS∑
(α). (4)

The study of operators plays main role in the theory of geometric functions.
Many differential and integral operators can be written in terms of convolution of
certain holomorphic functions.

For g (ω) = 1
ω +

∞∑
t=0

btω
t ∈

∑
1 and f given in (1). The Convolution (Hadamard

product) is denoted by f ∗ g and defined as:

(f ∗ g) (ω) = 1

ω
+

∞∑
t=0

atbtω
t = (g ∗ f) (ω) . (5)

A function h analytic in U and of the form

h (ω) = 1 +

∞∑
t=1

rtω
t,

A given function Ψ with Ψ(0) = 1 is said to belong to the class S∗[A,B] if and
only if

Ψ (ω) ≺ 1 +Aω

1 +Bω
(−1 ≤ B < A ≤ 1) .

This class was presented and studied by Janowski [11]. By taking A = 1 and
B = −1, we obtain the class P of functions with a positive real part. It is important
to mention that Ψ (ω) ∈ S∗[A,B] if and only if there exists r ∈ P such that

Ψ (ω) =
(A+ 1)R (ω)− (A− 1)

(B + 1)R (ω)− (B − 1)
(−1 ≤ B < A ≤ 1) .
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Motivated by the works of Srivastava et al. see( [7, 17, 19, 23, 25, 27])also see(
[4,13,15,24,29]). In this paper, we shall consider new subfamilies of q meromorphic
close-to-convex functions with respect to Janowski functions.

Throughout in this paper, we assume

0 ≤ η < 1,−1 ≤ B < A ≤ 1, 0 ≤ q < 1, ω ∈ U∗, f, g ∈
∑
1

,

Λ(t, η, A, q) = [|bt| |(2[t]qη + 2(1− η) + η(A+ 1))− (A+ 1)(1− η)|] ,
Λ(t, B, q) = [t]q(2 +B + 1),

and

γ(η,A,B, q) = |(B + 1) + (A+ 1)η − (A+ 1)(1− η)q|+ 2(1− η)(1− q),

unless otherwise mentioned.

Definition 1. (see [9] and [10] ) The q-derivative (q-difference) ∆q of a function
f is defined in a given subset of C by

(∆qf) (ω) =

{
f(ω)−f(qω)

(1−q)ω ( ω ̸= 0) ,

f
′
(0) ( ω = 0) ,

where 0 < q < 1. This implies the following.

lim
q→1−

(∆qf) (ω) = lim
q→1−

f (ω)− f(qω)

(1− q)ω
= f

′
(ω) ,

provided that f
′
(0) exists.

The function ∆qf has Maclaurin’s series representation

(∆qf)(ω) =

∞∑
t=0

[t]qatω
t−1,

where q ∈ (0, 1) and define the q-number [γ]q by

[γ]q =

{
1−qγ

1−q ( γ ∈ C) ,∑t−1
k=0 q

γ = 1 + q2 + q3 + ...+ qt−1 (t ∈ N) .

For more details about q-derivatives, we refer the reader to (see [6]).

Definition 2. For f ∈
∑

1, let the q-derivative operator (q-difference operator) be
defined by

(∆qf)(ω) =
f(qω)− f (ω)

(q − 1)ω
= − 1

qω2
+

∞∑
t=0

[t]qatω
t−1 (ω ∈ U∗) . (6)

Similarly

(∆qg)(ω) =
g(qω)− g (ω)

(q − 1)ω
= − 1

qω2
+

∞∑
t=0

[t]qbtω
t−1 (ω ∈ U∗) . (7)
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Definition 3. A function f ∈
∑

1 is said to belong to the class f ∈ T ∗
(q,η)[A,B] if

and only if ∣∣∣∣∣∣
(B − 1)

(
−ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω)

)
− (A− 1)

(B + 1)
(

−ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω)

)
− (A+ 1)

− 1

1− q

∣∣∣∣∣∣ < 1

1− q
.

Where g ∈
∑MS

(α), It is easily observed that

lim
q→1−

T ∗
(q,0)[A,B] = SMK

q [A,B],

secondly we have
lim

q→1−
T ∗
(q,0)[1,−1] = SMK

q ,

where SMK
q [A,B] is the well-known function of meromorphic close-to-convex

function.

2. Main Results

2.1. Coefficient estimates.

Theorem 1. A function f ∈
∑

1 of the form given by (1) is in the class T ∗
(q,η)[A,B]

if it satisfies the following condition.
∞∑
t=1

(Λ(t, B, q) |at| q + (t, η, A, q) |bt| q) ≤ γ(η,A,B, q), (8)

where
Λ(t, B, q) = [t]q(2 +B + 1), (9)

Λ(t, η, A, q) = [|bt| |(2[t]qη + 2(1− η) + η(A+ 1))− (A+ 1)(1− η)|] (10)

and

γ(η,A,B, q) = |(B + 1) + (A+ 1)η − (A+ 1)(1− η)q|+ 2(1− η)(1− q). (11)

Proof. Assuming that (8) holds, it suffices to show that∣∣∣∣∣∣
(B − 1)

(
−ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω)

)
− (A− 1)

(B + 1)
(

−ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω)

)
− (A+ 1)

− 1

1− q

∣∣∣∣∣∣ < 1

1− q
.

Consider we have∣∣∣∣∣∣
(B − 1)

(
−ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω)

)
− (A− 1)

(B + 1)
(

−ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω)

)
− (A+ 1)

− 1

1− q

∣∣∣∣∣∣
which implies

=

∣∣∣∣−(B − 1)ω∆qf (ω)− (A− 1) [(1− η)g (ω) + ηω∆qg (ω)]

−(B + 1)ω∆qf (ω)− (A+ 1) [(1− η)g (ω) + ηω∆qg (ω)]
− 1

∣∣∣∣+ q

1− q
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Thus

2

∣∣∣∣ ω∆qf (ω) + (1− η)g (ω) + ηω∆qg (ω)

−(B + 1)ω∆qf (ω)− (A+ 1) [(1− η)g (ω) + ηω∆qg (ω)]

∣∣∣∣+ q

1− q

Using (1), (6) and (7) in above equation.∣∣∣∣∣∣∣∣
2(1− η)(q − 1)

+2
∑∞

t=1 [[t]q(at + ηbt) + (1− η)bt] qω
t+1

(B + 1) + (A+ 1)η − (A+ 1)(1− η)q
−
∑∞

t=1 [[t]q((B + 1)at + η(A+ 1)bt)− (A+ 1)(1− η)bt] qω
t+1

∣∣∣∣∣∣∣∣ ≤ 1,

we get
∞∑
t=1

[t]q |at| (2 +B + 1)q +

∞∑
t=1

[|bt| |(2[t]qη + 2(1− η) + η(A+ 1))− (A+ 1)(1− η)|] q

≤ |(B + 1) + (A+ 1)η − (A+ 1)(1− η)q|+ 2(1− η)(1− q). (12)

The last expression become
∞∑
t=1

Λ(t, B, q) |at| q +
∞∑
t=1

Λ(t, η, A, q) |bt| q ≤ γ(η,A,B, q).

This complete the proof of Theorem 2.1.
□

Corollary 1. If a function f ∈
∑

1 of the form given by (1) is in the class
T ∗
(q,η)[A,B], then

|at| ≤
γ(η,A,B, q)

Λ(t, B, q)
− Λ(t, η, A, q)

Λ(t, B, q)
|bt| (t ∈ N), (13)

with equality for each t, we define the function of the form

ft (ω) =
1

ω
+

(
γ(η,A,B, q)

Λ(t, B, q)
− Λ(t, η, A, q)

Λ(t, B, q)
|bt|
)
ωt,

where Λ(t, B, q), Λ(t, η, A, q) and γ(η,A,B, q) are given by (9), (10) and (11) re-
spectively.

2.2. Distortion inequalities.

Theorem 2. If f ∈ T ∗
(q,η)[A,B], then

1

r
−
(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(t, η, A, q)

Λ(1, B, q)
|bt|
)
r ≤ |f (ω)|

≤ 1

r
+

(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(t, η, A, q)

Λ(1, B, q)
|bt|
)
r (|ω| = r) ,

where equality holds for the function

f (ω) =
1

ω
+

(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(1, η, A, q)

Λ(1, B, q)
|bt|
)
ω.
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Proof. Let f ∈ T ∗
(q,η)[A,B]. Then in view of Theorem (2.1), we have

Λ(1, B, q)

∞∑
t=1

|at| ≤
∞∑
t=1

Λ(t, B, q) |at| ≤ γ(η,A,B, q)−
∞∑
t=1

Λ(1, η, A, q) |bt| ,

which yields

|f (ω)| ≤ 1

r
+

∞∑
t=1

|at| rt ≤
1

r
+ r

∞∑
t=1

|at| ≤
1

r
+

(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(1, η, A, q)

Λ(1, B, q)
|bt|
)
r.

(14)
Similarly, we have

|f (ω)| ≥ 1

r
−

∞∑
t=1

|at| rt ≥
1

r
− r

∞∑
t=1

|at| ≥
1

r
−
(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(1, η, A, q)

Λ(1, B, q)
|bt|
)
r

(15)
which is required. □

Theorem 3. If f ∈ T ∗
(q,η)[A,B], then

1

r2
− 2

(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(t, η, A, q)

Λ(1, B, q)
|bt|
)

≤ |f (ω)| ≤ 1

r2
+ 2

(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(t, η, A, q)

Λ(1, B, q)
|bt|
)

(|ω| = r) ,

where equality holds for the function

f (ω) =
1

ω
+

(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(1, η, A, q)

Λ(1, B, q)
|bt|
)
ω.

Proof. Let f ∈ T ∗
(q,η)[A,B]. Then in view of theorem (2.1), we have

Λ(1, B, q)

∞∑
t=1

|at| ≤
∞∑
t=1

Λ(t, B, q) |at| ≤ γ(η,A,B, q)−
∞∑
t=1

Λ(1, η, A, q) |bt| .

Differentiate (14) and (15), we get∣∣∣f ′
(ω)
∣∣∣ ≤ − 1

r2
+

∞∑
t |at| rt−1 ≤ − 1

r2
+

∞∑
t=1

|at| ≤ − 1

r2
+

(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(1, η, A, q)

Λ(1, B, q)
|bt|
)
.

(16)
Similarly, we have∣∣∣f ′

(ω)
∣∣∣ ≥ − 1

r2
−

∞∑
t |at| rt−1 ≥ − 1

r2
−

∞∑
t=1

|at| ≥ − 1

r2
−
(
γ(η,A,B, q)

Λ(1, B, q)
− Λ(1, η, A, q)

Λ(1, B, q)
|bt|
)
.

(17)
Comparing (16) and (17).
We have thus completed the proof of Theorem 2.4. □
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2.3. Partial sums.
In this section, we examine the ratio of a function of the form (1) to its sequence
of partial sums

ft (ω) =
1

ω
+

k∑
t=1

atω
t,

when the coefficients of f are sufficiently small to satisfy condition (8). We will
determine sharp lower bounds for

Re

(
f (ω)

fν (ω)

)
, Re

(
f
ν
(ω)

f (ω)

)
, Re

(
(∆qf) (ω)

(∆qfν ) (ω)

)
and Re

(
(∆qfν

) (ω)

(∆qf) (ω)

)
.

Theorem 4. If f of the form (1) satisfies condition (8), then

Re

(
f (ω)

f
ν
(ω)

)
≥ 1− 1

κν+1
(ω ∈ U∗), (18)

and

Re

(
f
ν
(ω)

f (ω)

)
≥ κν+1

1 + κν+1
(ω ∈ U∗), (19)

where

κν =
γ(η,A,B, q)

Λ(t, B, q)
− Λ(t, η, A, q)

Λ(t, B, q)
|bt| . (20)

Proof. In order to prove inequality (18), we set

κν+1

[
f (ω)

fν (ω)
−
(
1− 1

κν+1

)]
=

1 +
ν∑

t=1
atω

t−1 + κν+1

∞∑
t=ν+1

atω
t+1

1 +
ν∑

t=1
atωt+1

=
1 + h1 (ω)

1 + h2 (ω)
.

Let
1 + h1 (ω)

1 + h2 (ω)
=

1 + g (ω)

1− g (ω)
.

Finally, to prove the inequality in (18), we get

ν∑
t=1

(
1− κ

ν+1

)
|at|+

∞∑
t=ν+1

(
κ

ν+1
− κt

)
|at| ≥ 0.

The proof of inequality in (18) is now completed.
Similarly, we set

1 + κ
ν

[
f
ν
(ω)

f (ω)
−
(

κν+1

1 + κν+1

)]
=

1 +
ν∑

t=1
atω

t−1 − κν+1

∞∑
t=ν+1

atω
t−1

1 +
ν∑

t=1
atωt−1
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=
1 + g (ω)

1− g (ω)
.

We have completed the proof of (19), which complete the proof of Theorem
2.5. □

Theorem 5. If f of the form (1) satisfies condition (8), then

Re

(
(∆qf) (ω)

(∆qfν) (ω)

)
≥ 1−

[ν + 1]q
κν+1

(ω ∈ U∗), (21)

and

Re

(
(∆qfν) (ω)

(∆qf) (ω)

)
≥ κν+1

κν+1 + [ν + 1]q
(ω ∈ U∗), (22)

where κν is given by (20).
The proof of Theorem 2.6, is similar to that of Theorem 2.5.

2.4. Radius of starlikeness.
In the next theorem we find the radius of q-starlikeness for the class T ∗

(q,η)[A,B].

Theorem 6. Let the function f given by (1) be in the class T ∗
(q,η)[A,B]. Then f

is meromorphic starlike of order α in |ω| ≤ r, where

r = inft≥1

[
(1− α)Λ(t, B, q)

(n+ 2− α) [γ(η,A,B, q)− Λ(t, η, A, q) |bt|]

] 1
t+1

,

Proof. In order to prove above result, we must show that∣∣∣∣∣f
′
(ω)

f (ω)
+ 1

∣∣∣∣∣ ≤ 1− α (0 ≤ α < 1) and |ω| ≤ r1,

we have ∣∣∣∣∣f
′
(ω)

f (ω)
+ 1

∣∣∣∣∣ =
∑∞

t=1(t+ 1)atω
t

1
ω +

∑∞
t=1 atω

t
.

≤
∑∞

t=1(t+ 1) |at| |ω|t+1

1−
∑∞

t=1 |at| |ω|
t+1 . (23)

Since the appropriate condition for a function f to be in the class
∑MS

(α) is
given by

∞∑
t=1

(t+ α) |at| < 1− α (0 ≤ α < 1; ω ∈ U∗). (24)

Hence (23) holds true if

∞∑
t=1

(t+ 1) |at| |ω|t+1 ≤ (1− α)

(
1−

∞∑
t=1

|at| |ω|t+1

)
. (25)
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The inequality in (25) can be written as:
∞∑
t=1

(
t+ 2− α

1− α

)
|at| |ω|t+1 ≤ 1. (26)

With the aid of (8), inequality (26) is true if(
t+ 2− α

1− α

)
|ω|t+1 ≤ Λ(t, B, q)

γ(η,A,B, q)− Λ(t, η, A, q) |bt|
. (27)

Solving (27) for |ω|, we have

|ω| =
[

(1− α)Λ(t, B, q)

(n+ 2− α) [γ(η,A,B, q)− Λ(t, η, A, q) |bt|]

] 1
t+1

. (28)

In view of (28) the proof of our theorem is now completed. □

Definition 4. A function f ∈
∑

1 is said to belong to the class f ∈ T ∗
(q,η,1)[A,B]

if and only if

Re

 (B − 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)

 ≥ 0.

We call T ∗
(q,η,1)[A,B] the class of q close-to-convex function of Type 1 related with

the Janowski functions.

Definition 5. A function f ∈
∑

1 is said to belong to the class f ∈ T ∗
(q,η,2)[A,B]

if and only if∣∣∣∣∣∣
(B − 1)

ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)
− 1

1− q

∣∣∣∣∣∣ < 1

1− q
.

We call T ∗
(q,η,2)[A,B] the class of q close-to-convex function of Type 2 related

with the Janowski functions.

Definition 6. A function f ∈
∑

1 is said to belong to the class f ∈ T ∗
(q,η,3)[A,B]

if and only if ∣∣∣∣∣∣
(B − 1)

ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)
− 1

∣∣∣∣∣∣ < 1.

We call T ∗
(q,η,3)[A,B] the class of q close-to-convex function of Type 3 related with

the Janowski functions.

For Special Cases.
(1) For η = 0 and g (ω) = f (ω) then T ∗

(q,0,)[A,B], T ∗
(q,0,1)[A,B], T ∗

(q,0,2)[A,B] and

T ∗
(q,0,3)[A,B] classes reduced to S∗

q [A,B], S∗
(q,1)[A,B], S∗

(q,2)[A,B] and S∗
(q,3)[A,B]

studied by Srivastava et al [17,27].
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(2) For η = 0, g (ω) = f (ω) , A = 1 − 2α and B = −1 in T ∗
(q,0,)[A,B],

T ∗
(q,0,1)[A,B], T ∗

(q,0,2)[A,B] and T ∗
(q,0,3)[A,B] we get the classes S∗

q , S
∗
(q,1)(α), S

∗
(q,2)(α)

and S∗
(q,3)(α), which was introduced and studied by Wongsaijai and Sukantamala

(see [30]).

2.5. Main Results and Their Demonstration.
We first derive the presence results for the succeeding generalized q-starlike func-
tions:

T ∗
(q,η,1)[A,B], T ∗

(q,η,2)[A,B] and T ∗
(q,η,3)[A,B],

which are associated with the Janowski functions.

Theorem 7. If −1 ≤ B < A < 1, then

T ∗
(q.η,3)[A,B] ⊂ T ∗

(q.η,2)[A,B] ⊂ T ∗
(q,η,1)[A,B].

Proof. First of all, we suppose that f ∈ T ∗
(q.η,3)[A,B]. Then, by Definition 2.10, we

have ∣∣∣∣∣∣
(B − 1)

ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)
− 1

∣∣∣∣∣∣ < 1,

so that∣∣∣∣∣∣
(B − 1)

ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ωDqf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)
− 1

∣∣∣∣∣∣+ q

1− q
< 1 +

q

1− q
. (29)

By using the triangle inequality and equation (29), we find that∣∣∣∣∣∣
(B − 1)

ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)
− 1

1− q

∣∣∣∣∣∣ < 1

1− q
. (30)

The last expression in (30) now implies that f ∈ T ∗
(q.η,2)[A,B], that is, that

T ∗
(q,3)[A,B] ⊂ T ∗

(q,2)[A,B].

Next, we let f ∈ T ∗
(q,η,2)[A,B], so that

f ∈ T ∗
(q,η,2)[A,B] ⇐⇒

∣∣∣∣∣∣
(B − 1)

ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)
− 1

1− q

∣∣∣∣∣∣ < 1

1− q
.

As we know

1

1− q
>

∣∣∣∣∣∣
(B − 1)

ω∆qf(ω)
(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)
− 1

1− q

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

1− q
−

(B − 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ωDqf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)

∣∣∣∣∣∣ ,
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we have

Re

 (B − 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηωDqg(ω) − (A+ 1)

 > 0 (ω ∈ U∗). (31)

This last equation now shows that f ∈ T ∗
(q,η,1)[A,B], that is, that

T ∗
(q.η,2)[A,B] ⊂ T ∗

(q.η,1)[A,B].

We have thus completed the proof of Theorem 2.11. □

Theorem 8. Let f ∈
∑

1, then f ∈ T ∗
(q,η,2)[A,B] if and only if∣∣∣∣ f (qω)

(1− η)g (ω) + ηg (qω)
− κ

(B − 1) q +B + 3

∣∣∣∣ ≦ (A+ 1) (1− q)

(B − 1) q +B + 3
,

where
κ = (A− 1) q2 + (B −A+ 2) q +B + 1.

Proof. Let

ω∆qf (ω)

(1− η)g (ω) + ηω∆qg (ω)
=

(
1

1− q

)(
1− f (qω)

(1− η)g (ω) + ηg (qω)

)
.

Using Definition 2.9 of the class T ∗
(q,η,2)[A,B] associated with the Janowski func-

tions. ∣∣∣∣∣∣
(B − 1)

(
1

1−q

)(
1− f(qω)

(1−η)g(ω)+ηg(qω)

)
− (A− 1)

(B + 1)
(

1
1−q

)(
1− f(qω)

(1−η)g(ω)+ηg(qω)

)
− (A+ 1)

− 1

1− q

∣∣∣∣∣∣ < 1

1− q
.

We have thus completed the proof of Theorem 2.12. □

Corollary 2. It is worth mentioning that the classes

T ∗
(q,η,1)[A,B], T ∗

(q,η,2)[A,B] and T ∗
(q,η,3)[A,B].

of the generalized q closed-to-convex functions of Type1, Type 2, and Type3, respec-
tively, satisfy the following properties:

∩q∈(0,1)T
∗
(q,η,1)[A,B] = ∩q∈(0,1)T

∗
(q,η,2)[A,B] = T ∗[A,B].

and
∩q∈(0,1)T

∗
(q,η,1)[A,B] = ∩q∈(0,1)T

∗
(q,η,3)[A,B] ⊂ T ∗[A,B].

Let L be a subset of
∑

1 consisting of functions with a negative coefficient, that
is,

f (ω) =
1

ω
−

∞∑
t=1

|at|ωt (at ≥ 0) .

We also let
LT ∗

(q,η,t)[A,B] = T ∗
(q,η,t)[A,B] ∩ L (t = 1, 2, 3).
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Theorem 9. For −1 ≤ B < A < 1, then

LT ∗
(q,η,1)[A,B] = LT ∗

(q,η,2)[A,B] = LT ∗
(q,η,3)[A,B].

Proof. In view of Theorem 2.11, it is sufficient here to show that

LT ∗
(q,η,1)[A,B] ⊂ LT ∗

(q.η,3)[A,B].

Indeed, if we assume that , f ∈ LT ∗
(q.η,1)[A,B], then we have

Re

 (B − 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)

 ≥ 0,

so that

Re

 (B − 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A− 1)

(B + 1)
ω∆qf(ω)

(1−η)g(ω)+ηω∆qg(ω) − (A+ 1)
− 1

 ≥ −1.

After a simple calculation, we thus find that

2

∣∣∣∣ −ω∆qf (ω) + (1− η)g (ω) + ηω∆qg (ω)

(B + 1)ω∆qf (ω)− (A+ 1) [(1− η)g (ω) + ηω∆qg (ω)]

∣∣∣∣ ≥ −1

Using (1), (6) and (7) in above equation.∣∣∣∣∣∣∣∣
2(2η − 1)− 2(1− η)q+

2
∑∞

t=1 [[t]q(at − ηbt)− (1− η)bt] qω
t+1

−(B + 1) + (A+ 1)η − (A+ 1)(1− η)q
+
∑∞

t=1 [[t]q((B + 1)at − η(A+ 1)bt)− (A+ 1)(1− η)bt] qω
t+1

∣∣∣∣∣∣∣∣ < 1

This implies we get
∞∑
t=1

|at| [t]q(2− (B + 1))q +

∞∑
t=1

[
−2[t]qη + (A+ 1)η

+(A+ 1)(1− η)− 2(1− η)

]
|bt| q

≤ |(B + 1)− (A+ 1)η − (A+ 1)(1− η)q|+ 2(1− η)q − 2(2η − 1),

which satisfies T ∗
(q,η,3)[A,B]. By Definition 2.10, the proof of Theorem 2.14 is

completed. □

3. Conclusion

In our current investigation, we have presented and studied thoroughly some
new subclasses of q meromorphic close-to-convex functions, which is connected
with the Janowski functions. Then we discussed some interesting properties and
characteristics of these new subclasses, including distortion theorem, radius problem
and partial sum. Some special cases have been discussed as applications of our main
results. The technique and ideas of this paper may stimulate further research in
this dynamic field.
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MOTIONS ON CURVES AND SURFACES USING GEOMETRIC

ALGEBRA

Selahattin ASLAN and Yusuf YAYLI
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Abstract. Geometric algebra is a useful tool to overcome some problems in
kinematics. Thus, the geometric algebra has attracted the attention of many

researchers. In this paper, quaternion operators on curves and surfaces in

Euclidean 3-space are defined by using geometric algebra. These operators
generate the curves or the surfaces from the points, curves or surfaces. Using

quaternion operators, we obtain motions that have orbits along the gener-

ated curve or surface. Also, these motions are expressed as 1-parameter or
2-parameter homothetic motions.

1. Introduction

Kinematics is a research field of geometry to describe the motion of points,
lines and other geometric objects. Thus, kinematics is used in many fields such
as physics, mechanics, robotics and neuroscience. Homothetic motion is one of
the most commonly researched topic in kinematics. 1-parameter and 2-parameter
homothetic motions were researched in Euclidean 3-space E3 [1, 2]. Yaylı gave
homothetic motions in Euclidean 4-space with Hamilton operators [3].

Sir William Rowan Hamilton [4] interpreted the quaternions as an extension to
the complex numbers in 1843. K. Shoemake defined the system of rotation in E3 by
using quaternions [5]. Quaternions are more useful than Euler angles and matrices
in representing of rotations of vectors. Therefore, quaternions have been used in
many fields such as computer graphics, robotics and control theory.

Some problems and difficulties have been encountered in modeling of the math-
ematics of 3-dimensional (3D) kinematics. These difficulties have been tried to
overcome by using quaternions. Bayro-Corrochano [6] used geometric algebra for
the mathematical model of 3D kinematics of eye movements. Then, Leclercq at
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al. modeled some movements in 3D kinematics such as rotations, translations and
screw movements [7]. In [8], an isomorphism was given between the algebra of split
semi-quaternions and the Clifford algebra Cl1,0,1. Moreover, semi-Euclidean planar
motion was defined by using the algebra of split semi-quaternions.

Some surfaces were obtained by quaternions or homothetic motions in [9-15].
Some results have been achieved about these surfaces using quaternions. Also,
using quaternions in the shape operator expressed by Darboux frame, we defined
the quaternionic shape operator [16]. Moreover, we used the quaternionic shape
operator in researching of the differential properties of surfaces.

In this study, we define quaternion operators using curves and surfaces in E3.
These operators have allowed us to obtain a quaternionic or a homothetic motion
on each curve and surface in E3. These motions have orbits along curves or surfaces.
Quaternion operator with curve orbit converts a point to a curve or a curve to a
curve. This operator is expressed as 1-parameter homothetic motion. Similarly,
quaternion operator with surface orbit converts a point to a surface, a curve to a
surface, or a surface to a surface. Moreover, quaternion operator with surface orbit
is expressed as 2-parameter homothetic motion. Finally, we give some applications
of the quaternion operators.

2. Preliminaries

In this section, definitions and some algebraic properties of the concepts real
quaternions, homothetic motions and geometric algebra will be given to provide a
background.

The set H = {q = a0 + a1i + a2j + a3k : a0, a1, a2, a3 ∈ R} of real quaternions
is equal to the 4-dimensional vector space R4. Quaternions have a basis {1, i, j, k}
shortly given with some properties as

i2 = j2 = k2 = ijk = −1.

The set of real quaternion is associative and not commutative algebra. 1 is identity
element of H. Scalar and vector component of q are S(q) = a0 ∈ R and V (q) =
a1i+ a2j + a3k ∈ E3, respectively. We can write quaternion q as q = S(q) + V (q).
If S(q) = 0, q is called pure quaternion. Quaternion product ∗ of q = S(q) + V (q)
and p = S(p) + V (p) is defined as

q ∗ p = S(q)S(p)− V (q) · V (p) + S(q)V (p) + S(p)V (q) + V (q)× V (p). (1)

Conjugate, norm, modulus and inverse of q is

q̄ = a0 − a1i− a2j − a3k,

Nq = q̄ ∗ q = a20 + a21 + a22 + a23,

|q| =
√

Nq,

q−1 =
q̄

Nq
, Nq ̸= 0,
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respectively. If Nq = 1, q is called unit quaternion. A unit quaternions can be
written in the trigonometric form as q = cos θ+ sin θv, where v ∈ E3 and ∥v∥ = 1.
Let v1 and v2 be unit vectors in E3 (i.e., pure quaternions), and θ = arccos (v1 · v2),
Thus, the unit quaternion q can be given as

q = v2 ∗ v−1
1 = cos θ + sin θv, (2)

where v =
v1 × v2

∥v1 × v2∥
. ∥ ∥ is the modulus in E3. Unit quaternion q = cos θ+sin θv

rotates the vector v1 to the vector v2 around the axis vector v, see Figure 1. For
further information about real quaternions, see [3-5, 17].

Figure 1. Rotation with unit quaternion

Let p = a0 + a1i + a2j + a3k be a unit quaternion and w be a pure quaternion
(i.e., vector in E3). Linear mapping ϕ can be defined as

ϕ : E3 → E3, ϕ(w) = p ∗w ∗ p−1. (3)

Matrix corresponding to the linear mapping ϕ can be given as

R =

 a20 + a21 − a22 − a23 −2a0a3 + 2a1a2 2a0a2 + 2a1a3
2a0a3 + 2a1a2 a20 + a22 − a21 − a23 2a2a3 − 2a0a1
2a1a3 − 2a0a2 2a0a1 + 2a2a3 a20 + a23 − a22 − a21

 ,

where R is orthogonal since RRT = I and detR = 1. Thus, ϕ represents a rotation
in E3. If unit quaternion p is in the form

p = cos θ + sin θv, (4)

then ϕ(w) rotates the vector w by 2θ [5].
1-parameter homothetic motion in E3 can be given as

y(t) = h(t)A(t)x(t) + c(t), (5)

where y and x are the position vectors of the same point in the fixed space Rı and
the moving space R, respectively. h, A and c are homothetic scalar, orthogonal
matrix and translation vector, respectively. And “t” is homothetic parameter [1,
2].
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Similarly, 2-parameter homothetic motion in E3 can be given as

y(t, s) = h(t, s)A(t, s)x(t, s) + c(t, s), (6)

where y and x are the position vectors of the same point in the fixed space Rı and
the moving space R, respectively. h, A and c are homothetic scalar, orthogonal ma-
trix and translation vector, respectively. And “t and s” are homothetic parameters
[1, 2].

The geometric product of two unit vectors a and b is written as a ∗ b and can
be expressed as a sum of its symmetric and antisymmetric parts

a ∗ b = a · b+ a× b, (7)

where the inner product a · b and the outer product a× b are defined by

a · b =
1

2
(a ∗ b+ b ∗ a), (8)

a× b =
1

2
(a ∗ b− b ∗ a). (9)

The inner product of two vectors is the standard scalar or dot product which results
in a scalar. The outer or wedge product of two vectors is a new quantity we call a
bivector. We think of a bivector as a directed area in the plane containing a and
b, formed by sweeping a along b [6].

3. Quaternion Operators

In this part, we have defined quaternion operators by geometric algebra. By
using this operator, we have obtained some results on the curves and surfaces.

Definition 1. Let a and b be vectors in E3. By using the inner product a · b and
the vectorial product a× b, quaternion operator can be defined as

Q =
1

∥a∥2
(a · b+ a× b) . (10)

The quaternion operator Q converts the vector a to the vector b around the axis
vector a× b in the plane formed by a and b as

Q ∗ a =
1

∥a∥2
(a · b+ a× b) ∗ a (11)

=
1

∥a∥2
(− (a× b) · a+ (a · b)a+ (a× b)× a)

=
1

∥a∥2
((a · b)a+ (a · a) b− (b · a)a)

=
1

∥a∥2
∥a∥2b



MOTIONS ON CURVES AND SURFACES USING GEOMETRIC ALGEBRA 43

= b,

where a and b are pure quaternion. Using a · b = ∥a∥∥b∥ cos θ and ∥a × b∥ =
∥a∥∥b∥ sin θ in Eq. (10), we get

Q =
1

∥a∥2
(a · b+ a× b)

=
1

∥a∥2

(
∥a∥∥b∥ cos θ + ∥a∥∥b∥ sin θ a× b

∥a× b∥

)
=

∥b∥
∥a∥

(cos θ + sin θv)

= hq.

where q = cos θ + sin θv, h =
∥b∥
∥a∥

and v =
a× b

∥a× b∥
. Thus, quaternion operator Q

can be given as Q = hq.
Hence Eq. (11) can be expressed as

Q ∗ a = hq ∗ a.

Q ∗ a = hq ∗ a can be given in Figure 2.

Figure 2. Quaternion operator

3.1. Quaternion Operator with Curve Orbit.

Theorem 1. Let α(t) and P be a curve and a point in E3, respectively. Quaternion
operator can be given as

Q(t) =
1

∥P∥2
(P · α(t) + P × α(t)) . (12)

Q(t) generates the curve α(t) from the point P as

Q(t) ∗ P = α(t), (13)

where α(t) is the orbit of Q(t) ∗ P and P , α(t) are pure quaternions.



44 S. ASLAN, Y. YAYLI

Proof. The quaternion product of quaternion operatorQ(t) and the pure quaternion
P can be given as

Q(t) ∗ P =
1

∥P∥2
(P · α(t) + P × α(t)) ∗ P (14)

=
1

∥P∥2
((P · α(t))P + (P × α(t))× P )

=
1

∥P∥2
(P · P )α(t)

=
1

∥P∥2
∥P∥2α(t)

= α(t).

Quaternion operator Q(t) generates the curve α(t) from the point P . □

Remark 1. Using P ·α(t) = ∥P∥∥α(t)∥ cos θ(t) and ∥P×α(t)∥ = ∥P∥∥α(t)∥ sin θ(t),
the quaternion operator Q(t) can be given by unit quaternion q(t) = cos θ(t) +

sin θ(t)v(t), where v(t) =
P × α(t)

∥P × α(t)∥
is rotation axis, as

Q(t) =
1

∥P∥2
(P · α(t) + P × α(t))

=
1

∥P∥2
(P · α(t) + ∥P × α(t)∥ P × α(t)

∥P × α(t)∥
)

=
∥α(t)∥
∥P∥

(cos θ(t) + sin θ(t)v(t))

=
∥α(t)∥
∥P∥

q(t). (15)

Thus, Eq. (14) can be given as

Q(t) ∗ P =
∥α(t)∥
∥P∥

q(t) ∗ P. (16)

Theorem 2. Q(t)∗P given in Eq. (13) can be expressed by 1-parameter homothetic
motion in E3 as

Q(t) ∗ P = h(t)R(t)P

where R(t) is the orthogonal matrix satisfying R(t)P = q(t) ∗ P , q(t) =
Q(t)

|Q(t)|
,

h(t) =
∥α(t)∥
∥P∥

is a homothetic scalar and t is homothetic parameter.

Proof. If we take the unit quaternion p = cos θ + sin θv in Eq. (3) as q1(t) =

cos θ(t)
2 + sin θ(t)

2 v(t), we get the orthogonal matrix corresponding to the mapping
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ϕ as

R =

 (cos2 θ
2 + sin2 θ

2 (2v
2
1 − 1) −2 sin θ

2 (cos
θ
2v3 − sin θ

2v1v2) 2 sin θ
2 (cos

θ
2v2 + sin θ

2v1v3)
2 sin θ

2 (cos
θ
2v3 + sin θ

2v1v2) cos2 θ
2 + sin2 θ

2 (2v
2
2 − 1) 2 sin θ

2 (sin
θ
2v2v3 − cos θ

2v1)
2 sin θ

2 (sin
θ
2v1v3 − cos θ

2v2) 2 sin θ
2 (cos

θ
2v1 + sin θ

2v2v3) cos2 θ
2 + sin2 θ

2 (2v
2
3 − 1)

 ,

where v(t) = (v1(t), v2(t), v3(t)). In this case, matrix R(t) performs a rotation by

angle 2
θ(t)

2
= θ(t) of the vector P around the axis v(t). Thus, we can give the

equalities
q(t) ∗ P = ϕ(P ) = R(t)P. (17)

Using these equations and h(t) =
∥α(t)∥
∥P∥

, we get

Q(t) ∗ P = h(t)q(t) ∗ P
= h(t)R(t)P. (18)

It means that Q(t) ∗ P can be expressed as 1-parameter homothetic motion Q(t) ∗
P = h(t)R(t)P in E3.

If we take the point P on the curve α(t) as P = α(t0), then Q(t) ∗ α(t0) =
h(t)R(t)α(t0) can be given in Figure 3.

Figure 3. Quaternion operator with curve orbit

□

Corollary 1. If we take the curve α(t) on a surface M(t, s) , then orbit of motions
obtained in Theorem 1 and Theorem 2 can be confined on M(t, s). Thus, these
operators can allow us to obtain a 1-parameter motion on every surface in E3.

Proposition 1. Let α(t) and β(t) be curves in E3. Quaternion operator Q(t) can
be given as

Q(t) =
1

∥α(t)∥2
(α(t) · β(t) + α(t)× β(t)), (19)

where α(t) and β(t) are position vectors in E3. This quaternion operator converts
the curve α(t) to the curve β(t) as
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Q(t) ∗ α(t) = β(t), (20)

where the curve β(t) is the orbit of Q(t) ∗ α(t). Moreover, Q(t) ∗ α(t) can be given
by 1-parameter homothetic motion as

Q(t) ∗ α(t) = h(t)R(t)α(t), (21)

where R(t) is the orthogonal matrix satisfying R(t)α(t) = q(t) ∗α(t), q(t) = Q(t)

|Q(t)|
,

h(t) =
∥β(t)∥
∥α(t)∥

is a homothetic scalar and t is homothetic parameter.

3.2. Quaternion Operator with Surface Orbit.

Theorem 3. Let M(t, s) and P be a surface and a point in E3, respectively. Quater-
nion operator Q(t, s) can be defined as

Q(t, s) =
1

∥P∥2
(P ·M(t, s) + P ×M(t, s)), (22)

where M(t, s) and P are position vectors in E3. The operator Q(t, s) generates the
surface M(t, s) from the point P as

Q(t, s) ∗ P = M(t, s), (23)

where M(t, s) is the orbit of the Q(t, s) ∗ P and P , M(t, s) are pure quaternions.

Proof. The proof of this theorem is similar to the proof of Theorem 1. □

Remark 2. By using P ·M(t, s) = ∥P∥∥M(t, s)∥ cos θ(t, s) and ∥P ×M(t, s)∥ =
∥P∥∥M(t, s)∥ sin θ(t, s), the quaternion operator Q(t, s) with unit quaternion q(t, s) =
cos θ(t, s) + sin θ(t, s)v(t, s) can be given as

Q(t, s) =
∥M(t, s)∥

∥P∥
(cos θ(t, s) + sin θ(t, s)v(t, s)) (24)

where v(t, s) =
P ×M(t, s)

∥P ×M(t, s)∥
. Eq. (23) can be expressed as

Q(t, s) ∗ P =
∥M(t, s)∥

∥P∥
q(t, s) ∗ P. (25)

Theorem 4. Q(t, s) ∗P given in Eq. (25) can be given by 2-parameter homothetic
motion in E3 as

Q(t, s) ∗ P = h(t, s)R(t, s)P, (26)

where R(t, s) is the orthogonal matrix satisfying R(t, s)P = q(t, s) ∗ P , q(t, s) =
Q(t, s)

|Q(t, s)|
, h(t, s) =

∥M(t, s)∥
∥P∥

is a homothetic scalar, and t, s are homothetic pa-

rameters.

Proof. The proof of this theorem is similar to the proof of Theorem 2. □
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If we take the point P on the surface M(t, s) as P = M(t0, s0), then Q(t, s) ∗
M(t0, s0) = h(t, s)R(t, s)M(t0, s0) can be given in Figure 4.

Figure 4. Quaternion operator with surface orbit

Proposition 2. Let M(t, s) and α(t) be a surface and a curve in E3, respectively.
Quaternion operator Q(t, s) can be defined as

Q(t, s) =
1

∥α(t)∥2
(α(t) ·M(t, s) + α(t)×M(t, s)) (27)

where M(t, s) and α(t) are pure quaternions. The operator Q(t, s) generates the
surface M(t, s) from the curve α(t) as

Q(t, s) ∗ α(t) = M(t, s) (28)

where Q(t, s) ∗ α(t) has the surface orbit M(t, s).

Corollary 2. Q(t, s) ∗ α(t) given in Eq. (28) can be given by 2-parameter homo-
thetic motion in E3 as

Q(t, s) ∗ α(t) = h(t, s)R(t, s)α(t), (29)

where R(t, s) is the orthogonal matrix satisfying R(t, s)α(t) = q(t, s)∗α(t), q(t, s) =
Q(t, s)

|Q(t, s)|
, h(t, s) =

∥M(t, s)∥
∥α(t)∥

is a homothetic scalar, and t, s are homothetic pa-

rameters.

Proposition 3. Let M(t, s) and N(t, s) be surfaces in E3. Quaternion operator
can be defined as

Q(t, s) =
1

∥M(t, s)∥2
(M(t, s) ·N(t, s) +M(t, s)×N(t, s)), (30)

where M(t, s) and N(t, s) are pure quaternions. The operator Q(t, s) generates the
surface N(t, s) from the surface M(t, s) as

Q(t, s) ∗M(t, s) = N(t, s), (31)

where Q(t, s) ∗M(t, s) has the surface orbit N(t, s).
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Corollary 3. Q(t, s) ∗ M(t, s) given in Eq. (31) can be given by 2-parameter
homothetic motion in E3 as

Q(t, s) ∗M(t, s) = h(t, s)R(t, s)M(t, s), (32)

where R(t, s) is the orthogonal matrix satisfying R(t, s)M(t, s) = q(t, s) ∗ M(t, s),

q(t, s) =
Q(t, s)

|Q(t, s)|
, h(t, s) =

∥N(t, s)∥
∥M(t, s)∥

is a homothetic scalar, and t, s are homo-

thetic parameters.

3.3. Applications of Quaternion Operators.

Example 1. Let α(t) = (cos t, sin t, 0) and β(t) = (cos t, sin t, t) be curves in E3.
The quaternion operator Q(t) can be given as

Q(t) =
1

∥α(t)∥2
(α(t) · β(t) + α(t)× β(t))

= 1 + t(sin t,− cos t, 0). (33)

The operator Q(t) converts α(t) to β(t) as

Q(t) ∗ α(t) = (1 + t(sin t,− cos t, 0)) ∗ (cos t, sin t, 0) (34)

= (cos t, sin t, 0) + (0, 0, t)

= (cos t, sin t, t)

= β(t).

By using ∥α(t)∥ = 1, ∥β(t)∥ =
√
1 + t2 and v(t) = (sin t,− cos t, 0), the quaternion

operator can be given by unit quaternion q(t) = cos θ(t) + sin θ(t)v(t) as

Q(t) =
∥β(t)∥
∥α(t)∥

q(t)

=
√

1 + t2(cos θ(t) + sin θ(t)(sin t,− cos t, 0)) (35)

where θ(t) = arccos

(
1√

1 + t2

)
. For p(t) = cos θ(t)

2 +sin θ(t)
2 v(t), the corresponding

matrix R(t) to the linear mapping ϕ can be obtained as

R(t) =

 cos2 θ
2 − sin2 θ

2 (cos 2t) − sin2 θ
2 sin 2t − sin θ cos t

− sin2 θ
2 sin 2t cos2 θ

2 + sin2 θ
2 cos 2t − sin θ sin t)

sin θ cos t sin θ sin t cos θ

 . (36)

Thus, Eq. (34) can be given by the 1-parameter homothetic motion as

Q(t) ∗ α(t) =
√
1 + t2R(t)α(t). (37)
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Example 2. Let α(t) be center curve of the tube surface Tube(t, θ). The tube sur-
face Tube(t, θ) can be given by the surface S(t, θ) = cos θN(t) + sin θB(t) as

Tube(t, θ) = α(t) + r(t)(cos θN(t) + sin θB(t))

= α(t) + r(t)S(t, θ).

In the study of canal surfaces with quaternions [9] Corollary 1, the unit quaternion
q(t, θ) = cos θ+sin θT (t) generates the surface S(t, θ) from the normal vector N(t),
where {T (t), N(t), B(t)} is the Frenet frame of α(t). Using definition of quaternion
operator, unit quaternion operator q(t, θ) can be obtained as

Q(t, θ) =
1

∥N(t)∥2
(N(t) · S(t, θ) +N(t)× S(t, θ))

= (N(t) · (cos θN(t) + sin θB(t)) +N(t)× (cos θN(t) + sin θB(t)))

= (cos θN(t) ·N(t) + sin θN(t)×B(t))

= (cos θ∥N(t)∥2 + sin θT (t))

= cos θ + sin θT (t)

= q(t, θ).

where ∥N(t)∥ = 1. Thus, quaternion operator q(t, θ) generates the surface S(t, θ)
from the normal vector N(t) as

q(t, θ) ∗N(t) = (cos θ + sin θT (t)) ∗N(t)

= cos θN(t) + sin θT (t)×N(t)

= cos θN(t) + sin θB(t)

= S(t, θ),

where S(t, θ) is the surface orbit of q(t, θ) ∗N(t). Thus, tube surface can be given
by quaternion product

Tube(t, θ) = α(t) + r(t)q(t, θ) ∗N(t).

4. Conclusions

In this paper, we define quaternion operators using geometric algebra and classify
these operators according to their orbits (i.e., curves or surfaces). Quaternion
operator with curve orbit generates a curve from a point or a curve. This operator
is given as 1-parameter homothetic motion. Similarly, quaternion operator with
surface orbit generates a surface from a point, a curve or a surface. Quaternion
operator with surface orbit is also expressed as 2-parameter homothetic motion.
Thus, quaternion operators can form a homothetic and a quaternionic motion on
every surface and curve in E3. Finally, we give some examples of the quaternion
operators.
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Abstract. We construct a finite difference scheme for a first-order linear sin-

gularly perturbed Volterra integro-differential equation (SPVIDE) on Bakhva-
lov-Shishkin mesh. For the discretization of the problem, we use the inte-

gral identities and deal with the emerging integrals terms with interpolating

quadrature rules which also yields remaining terms. The stability bound and
the error estimates of the approximate solution are established. Further, we

demonstrate that the scheme on Bakhvalov-Shishkin mesh is O(N−1) uni-

formly convergent, where N is the mesh parameter. The numerical results are
also provided for a couple of examples.

1. Introduction

In this present work, we are specifically consider the following class of the sin-
gularly perturbed linear Volterra integro-differential equations (SPVIDEs)

Lu := εu′ + a(x)u+ λ

∫ x

0

K(x, t)u(t)dt = f(x), x ∈ I = [0, ℓ], (1)

subject to

u(0) = A, (2)

where 0 < ε ≪ 1 is a small perturbation parameter. We assume a(x) ≥ α > 0,
f(x)(x ∈ I) and K(x, t)((x, t) ∈ I × I) are sufficiently smooth functions such
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that the initial layer for the solution u(x) occurs at x = 0 for small values of ε.
Volterra integro-differential equations (VIDEs) are an important class of equations
which are extensively used to model many sciencitific problems such as population
dynamics [13], filament streching [5] and epidemics [37]. Many techniques have
been introduced to solve VIDEs analytically. The variational iteration method,
the Adomian decomposition method and the homotopy perturba-tion method are
some well-known analytical methods to solve VIDEs( [40], [9], [17]). Recently, a
new approach on the variational analytical method has been introduced to solve
Volterra-Fredholm Integral equations which does not require construction of the
variational principle [18]. Further, a finite difference scheme is utilized to examine
the numerical solutions of a non-linear VIDE in [11].

Singularly perturbed differential equations, which have the highest order de-
rivative term multi- plied with a small positive number ε, possess solutions with
interior or boundary layers. Boundary layers are regions where rapid changes oc-
cur which makes solving such problems more challenging. Since standard schemes
fail to give the accurate results for problems with boundary layer for small ε
values, numerical solutions of such problems have been of interest to many re-
searchers( [12], [15], [16], [22], [28], [29], [31], [34], [38], [35]). Singularly perturbed
Volterra integro-differential equations (SPVIDEs) have been widely used to model
problems in many science fields such as epidemic dynamics, synchronous control
systems, filament stretching and heat transfer ( [6], [7], [14], [20], [21], [32], [33]).
A review on the literature of the SPVIDEs was given in [25]. Further, asymp-
totic expansions derivation of the solutions to SPVIDEs are studied in [6], [7], [25].
In [32] a problem of nonlinear SPVIDE modelling the elongation ratio of filament is
studied and the qualitative properties of the solution is discussed under some phys-
ically interesting assumptions. In [5], a specific integro-differential equation with
a boundary layer which describes filament stretching process is considered and the
leading order behavior of the problem is examined by an asymptotic method. Sin-
gularly perturbed integro differential equations have been also an interest to many
researchers. In [23] and [24], the numerical solutions of singularly perturbed integro-
differential and integro-differential-algebraic equations are analyzed by the implicit
Runge-Kutta methods. An exponential finite difference method is applied for the
inner and outer layers and a type of implicit Runge-Kutta method is performed to
obtain the outer layer solutions of SPVIDEs in [36]. A finite Legendre expansion
is constructed to solve different kinds of integral equations and integro-differential
equations [26]. In [19], tension spline collocation methods are utilized to numerically
discretize singularly perturbed Volterra integral and integro-differential equations.
In [39], the authors present different types of exponential schemes to solve SPVIDEs
and the stability analysis of the schemes is examined. Fitted difference schemes are
also proven to provide accurate results in the solution process of different types of
singularly perturbed problems. In [2], an exponentially fitted difference method
is designed on a uniform mesh to solve linear SPVIDEs. First-order convergent
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finite difference schemes are developed to solve linear first order SPVIDEs with
delay in [4], [27]. In [3], using a fitted difference operator a second-order difference
scheme is constructed on a piecewise uniform mesh to solve linear SPVIDEs.

In this present work, we mainly construct a uniform convergent difference scheme
on a Bakhvalov-Shishkin mesh for the problem (1)-(2). Bakhvalov-Shishkin mesh is
a mixed version of the Shishkin mesh and Bakhvalov mesh which are known to yield
accurate results for singularly perturbed problems with boundary layers. In [30],
the author demonstrated that the results from an upwind difference scheme on
Bakhvalov-Shishkin mesh applied to a linear convection-diffusion equation are more
accurate than the results from the upwind scheme on a Shishkin mesh. Further,
a finite difference scheme on Bakhvalov-Shishkin mesh is utilized to deal with a
singularly perturbed boundary value problem in [10].

The rest of the paper is organized in the following order. In Section 2, the
asymptotic estimates on the exact solution to (1)-(2) are established. In Section
3, we define the Bakhvalov-Shishkin mesh points according to the boundary layer
conditions of the problem (1)-(2) and derive a finite difference scheme utilizing the
integral identities with exponential basis functions and then applying interpolating
quadrature rules provided in [1] to the integral terms. In Section 4, we establish the
stability bounds and the error estimates of the numerical solution and as a result
we show that the scheme demonstrates O(N−1) uniform convergence with respect
to the perturbation parameter. We also provide the numerical results in Section 5.

2. Asymptotic Behavior of the Solution

In the following lemma, we establish a priori estimates for the asymptotic be-
havior of the solution to the problem (1)-(2).

Lemma 1. Let a, f ∈ C(I) and K ∈ C(I × I). The solution u to the problem
(1)-(2) holds

∥u∥∞ ≤ C, (3)

where

C = (A+ α−1∥f∥∞)eλK̄α−1ℓ,

and K̄ = max
I×I

|K(x, t)|. In addition, if a, f ∈ C1(I) and K ∈ C1(I × I) with∣∣∣ ∂
∂x

K(x, t)
∣∣∣ ≤ K̄1 < ∞, (4)

then the solution u(x) satisfies

|u′(x)| ≤ C
(
1 +

1

ε
e−

αx
ε

)
, x ∈ I. (5)

Proof. To establish the first estimate given in (3) we start by rewriting (1) as

εu′ + a(x)u = F (x), (6)
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where

F (x) = f(x)− λ

∫ x

0

K(x, t)u(t)dt. (7)

Solving the equation (6) with u(0) = A yields

u(x) = Ae
−
1

ε

∫ x

0

a(s)ds
+

1

ε

∫ x

0

F (ξ)e
−
1

ε

∫ x

ξ

a(s)ds
dξ,

and further we calculate

|u(x)| ≤ |A|e
−
1

ε

∫ x

0

a(s)ds
+

1

ε

∫ x

0

|F (ξ)|e
−
1

ε

∫ x

ξ

a(s)ds
dξ.

Since we have a(x) ≥ α > 0, it follows

|u(x)| ≤ |A|e
−
1

ε

∫ x

0

αds
+

1

ε

∫ x

0

|F (ξ)|e
−
1

ε

∫ x

ξ

αds
dξ

= |A|e
−
αx

ε +
1

ε

∫ x

0

|F (ξ)|e
−
α(x− ξ)

ε dξ.

(8)

Here, by the definition of F (x) in (7), we get

|F (x)| ≤ ∥f∥∞ + λK̄

∫ x

0

|u(t)|dt. (9)

Substituting (9) into (8) yields

|u(x)| ≤ |A|e
−
αx

ε +
1

ε

∫ x

0

(
∥f∥∞ + λK̄

∫ ξ

0

|u(t)|dt
)
e
−
α(x− ξ)

ε dξ

= |A|e
−
αx

ε +
1

ε
∥f∥∞

∫ x

0

e
−
α(x− ξ)

ε dξ +
λK̄

ε

∫ x

0

∫ ξ

0

|u(t)|dte
−
α(x− ξ)

ε dξ

We integrate by parts the last term with double integral here

|u(x)| ≤ |A|e
−
αx

ε + α−1∥f∥∞
(
1− e

−
αx

ε
)
+ α−1λK̄

(
1− e

−
αx

ε
)∫ x

0

|u(t)|dt

≤ |A|+ α−1∥f∥∞ + α−1λK̄

∫ x

0

|u(t)|dt.

(10)
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An application of the Gronwall’s inequality to (10) provides

|u(x)| ≤
(
|A|+ α−1∥f∥∞

)
eα

−1λK̄x

≤
(
|A|+ α−1∥f∥∞

)
eα

−1λK̄ℓ,

which leads to the desired result in (3).
For the next estimate provided in (5), we first differentiate the equation (1) and

have

εu′′ + a′(x)u+ a(x)u′ + λK(x, x)u+ λ

∫ x

0

∂

∂x
K(x, t)u(t)dt = f ′(x).

Then, letting

v(x) = u′(x),

and

g(x) = f ′(x)− a′(x)u− λK(x, x)u− λ

∫ x

0

∂

∂x
K(x, t)u(t)dt, (11)

we have

εv′ + a(x)v = g(x). (12)

In a similar manner to the previous work above, we solve (12)

v(x) = v(0)e
−
1

ε

∫ x

0

a(s)ds
+

1

ε

∫ x

0

g(ξ)e
−
1

ε

∫ x

ξ

a(s)ds
dξ.

Then, we have

|v(x)| ≤ |v(0)|e
−
1

ε

∫ x

0

a(s)ds
+

1

ε

∫ x

0

|g(ξ)|e
−
1

ε

∫ x

ξ

a(s)ds
dξ

≤ |v(0)|e
−
1

ε

∫ x

0

αds
+

1

ε

∫ x

0

|g(ξ)|e
−
1

ε

∫ x

ξ

αds
dξ

≤ |v(0)|e
−
αx

ε +
1

ε

∫ x

0

|g(ξ)|e
−
α(x− ξ)

ε dξ.

(13)
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Here, by the formula of g(x) given in (11), from (3) and knowing that a, f ∈ C1(I),
K ∈ C1(I × I) and from (4) we obtain

|g(x)| ≤ ||f ′||∞ + ||a′||∞|u|+ λK̄|u|+ λK̄1

∫ x

0

|u(t)|dt

≤ ||f ′||∞ + C
(
||a′||∞ + λK̄1 + ℓ

)
,

(14)

which implies ||g||∞ ≤ C∗ for a C∗ ∈ R. Hence, utilizing this estimate on g(x) in
(13) provides

|v(x)| ≤ |v(0)|e
−
αx

ε +
1

ε
∥g∥∞

∫ x

0

e
−
α(x− ξ)

ε dξ

≤ |v(0)|e
−
αx

ε + α−1C∗(1− e
−
αx

ε ).

(15)

On the other hand, inserting x = 0 in (1) and since a, f ∈ C1(I) it follows that

|v(0)| = |u′(0)| = 1

ε
|f(0)−Aa(0)| ≤ c

ε
.

Substituting this into (15) yields

|v(x)| ≤ c

ε
e
−
αx

ε + α−1C∗(1− e
−
αx

ε ),

which provides the desired result. □

3. Difference Scheme

3.1. Notation. Before we proceed to the definition of the mesh points and dis-
cretization of the problem we provide the notation we use throughout the paper.
Let ω̄h = {0 = x0 < x1 < x2 < · · · < xN−1 < xN = ℓ} denote a non-uniform mesh
on [0, ℓ]. For each i = 0, · · · , N , let hi = xi − xi−1 denote the step size. For any
continuous mesh function vi defined on ωh we use the notation

vx̄,i =
vi − vi−1

hi

for backward difference.

3.2. Discretization. In this section, we construct our difference scheme based on
Bakhvalov-Shishkin mesh. According to this mesh construction, we divide the do-
main into two subintervals [0, σ] and [σ, ℓ], where σ is the transition parameter. For
a positive even discretization parameter N , we determine the transition parameter
σ as

σ = min
{ ℓ

2
, εα−1 lnN

}
. (16)
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We assume ε ≪ N−1 as it is used in practice. We define a set of mesh points as
the following

xi =

{
−α−1ε ln[1− 2(1−N−1) i

N ], xi ∈ [0, σ], i = 0, 1, · · · , N
2 ,

σ +
(
i− N

2

)
h, h = 2(ℓ−σ)

N , xi ∈ [σ, ℓ], i = N
2 + 1, · · · , N.

(17)

To derive the difference approximation, we use the following integral identity

χ−1
i h−1

i

∫ xi

xi−1

Lu(x)φi(x)dx = χ−1
i h−1

i

∫ xi

xi−1

f(x)φi(x)dx, (18)

with the exponential basis function

φi(x) = e−
ai
ε (xi−x), i = 1, · · · , N,

where

χi = hi
−1

∫ xi

xi−1

φi(x)dx =
1− e−aiρi

aiρi
, ρi =

hi

ε
.

We remark that φi solves the equation

− εφi(x) + aiφi(x) = 0, xi−1 ≤ x ≤ xi (19)

φi(xi) = 1.

To obtain the difference scheme from (18), we proceed by evaluating the integrals
term by term applying the interpolating quadrature rules with weight functions
and obtain the remainder terms as provided in [1]. In the following, we handle the
differential term on the left-hand side of (18),

χ−1
i h−1

i

∫ xi

xi−1

[
εu′(x) + a(x)u(x)

]
φi(x)dx = χ−1

i h−1
i

∫ xi

xi−1

[εu′(x) + aiu(x)]φi(x)dx

+ χ−1
i h−1

i

∫ xi

xi−1

[a(x)− ai]u(x)φi(x)dx

= εθiux̄,i + aiui +R
(1)
i ,

(20)
where

θi =
aiρie

−aiρi

1− e−aiρi
, (21)

and

R
(1)
i = χ−1

i h−1
i

∫ xi

xi−1

[a(x)− ai]u(x)φi(x)dx. (22)

Further, applying the first quadrature rules provided in [1] to the integral term in
(18) twice we obtain

χ−1
i h−1

i λ

∫ xi

xi−1

φi(x)

∫ x

0

K(x, t)u(t)dtdx = λ

∫ xi

0

K(xi, t)u(t)dt+R
(2)
i , (23)
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where

R
(2)
i = λ

∫ xi

xi−1

∂

∂ξ

(∫ ξ

0

K(ξ, t)u(t)dt
)[

T0(x− ξ)− h−1
i (x− xi−1)

]
dξ, (24)

and T0(λ) = 1 for λ ≥ 0 and T0(λ) = 0 for λ < 0. Here, we apply the composite
right-side rectangle rule to the integral term in the right-hand side of (27) and get

λ

∫ xi

0

K(xi, t)u(t)dt = λ

i∑
j=1

hjK(xi, xj)uj +R
(3)
i , (25)

where

R
(3)
i = −λ

i∑
j=1

∫ xj

xj−1

(ξ − xj−1)
∂

∂ξ

(
K(xi, ξ)u(ξ)

)
dξ. (26)

Then, inserting (25) in (23) provides

χ−1
i h−1

i λ

∫ xi

xi−1

φi(x)

∫ x

0

K(x, t)u(t)dtdx = λ

i∑
j=1

hjK(xi, xj)uj +R
(2)
i +R

(3)
i .

(27)
On the other hand, the right-hand side of (18) gets the in the form

χ−1
i h−1

i

∫ xi

xi−1

f(x)φi(x)dx = fi +R
(4)
i , (28)

where

R
(4)
i = χ−1

i h−1
i

∫ xi

xi−1

[f(x)− f(xi)]φi(x)dx. (29)

Inserting the relations (20), (27) and (28) in (18), we obtain the difference problem
for the problem (1)-(2) as

εθiux̄,i + aiui + λ

i∑
j=1

hjK(xi, xj)uj = fi −Ri, i = 1, 2, · · · , N,

u0 = A,

(30)

where

Ri = R
(1)
i +R

(2)
i +R

(3)
i −R

(4)
i . (31)

As a result, neglecting the error term Ri in (30) provides the following difference
scheme

LNyi := εθiyx̄,i + aiyi + λ

i∑
j=1

hjK(xi, xj)yj = fi, i = 1, 2, · · · , N, (32)

y0 = A, (33)

where θi defined by (21).
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4. Stability, Error Estimates and Convergence Results

Here, we establish the stability bound and the error estimates of the approximate
solution y. Further, the convergence of the difference scheme provided in (32)-(33)
is analyzed.

Lemma 2. Assume that |Fi| ≤ Fi and Fi be a non-decreasing function. The
solution to the problem

ℓNvi := εθivx̄,i + aivi = Fi, 1 ≤ i ≤ N,

v0 = A.

|vi| ≤ |A|+ α−1Fi, 1 ≤ i ≤ N.

Proof. The proof follows from the maximum principle for difference operators. De-
tails can be found in [27]. □

Lemma 3. Let yi be the solution of the problem (32)-(33). Then, yi satisfies

∥y∥∞ ≤ C0

(
|A|+ ∥f∥∞

)
. (34)

Proof. The difference scheme equation given in (32) can be rewritten in the form

θiεyx̄,i + aiyi = Fi, (35)

where

Fi = fi − λ

i∑
j=1

hjK(xi, xj)yj .

For Fi, we have the estimate

|Fi| ≤ |fi|+ λ
∣∣∣ i∑
j=1

hjK(xi, xj)yj

∣∣∣
≤ |fi|+ λK̄

i∑
j=1

hj |yj |

≤ ∥f∥∞ + λK̄

i∑
j=1

hj |yj |.

Then, applying Lemma 2 to (35) and utilizing this estimate provide

|yi| ≤ |A|+ α−1∥f∥∞ + α−1λK̄

i∑
j=1

hj |yj |. (36)

Further, applying the difference analogue of the Gronwall’s inequality to (36) we
have

|yi| ≤
(
|A|+ α−1∥f∥∞

)
eα

−1λK̄ℓ,

which yields the result in (34). □



60 H. GUCKIR CAKIR, F. CAKIR, M. CAKIR

The error of the difference problem is given by the solution to the problem

LNzi = Ri, 1 ≤ i ≤ N, (37)

z0 = 0. (38)

Lemma 4. Suppose that zi be the solution of (37)-(38). Then, zi holds the estimate

∥z∥∞ ≤ C∥R∥∞. (39)

Proof. The result follows from Lemma 3 taking A = 0 and f = R. □

Lemma 5. Let a, f ∈ C1(I) and K ∈ C1(I × I) with

K̄ = max
I×I

|K(x, t)|, (40)∣∣∣ ∂
∂x

K(x, t)
∣∣∣ ≤ K̄1 < ∞, (41)

and ∣∣∣ ∂
∂t

K(x, t)
∣∣∣ ≤ K̄2 < ∞. (42)

Then, the truncation error Ri satisfies the estimate

∥R∥∞ ≤ CN−1. (43)

Proof. To establish the estimate given in (43), we proceed by bounding each term

in Ri provided in (31). For R
(1)
i , we have

|R(1)
i | ≤ χ−1

i h−1
i

∫ xi

xi−1

|(a′(s)(x− xi))u(x)|φi(x)dx,

where s ∈ [x, xi] comes from the Mean Value Theorem. Then, since a ∈ C1(I) and
from (3) we get

|R(1)
i | ≤ C1hi. (44)

Further, for R
(2)
i we take into account of (40), (41) and |T0(λ)| ≤ 1, so

|R(2)
i | ≤ λ

∫ xi

xi−1

∣∣∣(1 + h−1
i (x− xi)

) ∂
∂ξ

(∫ ξ

0

K(ξ, t)u(t)dt
)∣∣∣dξ

≤ 2λ

∫ xi

xi−1

∣∣∣ ∂
∂ξ

(∫ ξ

0

K(ξ, t)u(t)dt
)∣∣∣dξ. (45)

Then, applying the Leibnitz formula to (45) yields

|R(2)
i | ≤ 2λ

(∫ xi

xi−1

∣∣∣K(ξ, ξ)
∣∣∣∣∣∣u(ξ)∣∣∣)+ ∫ xi

xi−1

∫ ξ

0

∣∣∣ ∂
∂ξ

K(ξ, t)u(t)
∣∣∣dtdξ)

≤ 2λ(CK̄ + CK̄1)hi

≤ C2hi.

(46)
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On the other hand, by the Leibnitz formula and from (40), (42) and (5) we have

|R(3)
i | ≤ λ

i∑
j=1

∫ xj

xj−1

(∣∣∣ ∂
∂ξ

K(xi, ξ)u(ξ)
∣∣∣+ ∣∣∣K(xi, ξ)u

′(ξ)
∣∣∣)dξ

≤ λ

i∑
j=1

(
CK̄2 + K̄

∫ xj

xj−1

(
1 +

1

ε
e−

αξ
ε

))
dξ

= λ

i∑
j=1

(
CK̄2hj + K̄hj + α−1K̄

(
e−

αxj−1
ε − e−

αxj
ε

))
.

(47)

Then, by the Mean Value Theorem applied to the exponential term in (47) with
s ∈ [xj−1, xj ] it follows that

|R(3)
i | ≤ λ

i∑
j=1

(
CK̄2hj + K̄hj + α−1K̄hje

−αs
ε

)
≤ C∗

3 i|h∗|,

(48)

where h∗ = max
1≤j≤i

hj . Lastly, for R
(4)
i , similarly to the work above and since f ∈

C1(I) we have

|R(4)
i | ≤ χ−1

i h−1
i

∫ xi

xi−1

|f ′(s)(x− xi)|φi(x)dx

≤ C4hi,

(49)

where s ∈ [xi−1, xi] by the Mean Value Theorem.
Further in the proof, we need to evaluate each estimate above on the sub-intervals

[0, σ] and [σ, ℓ]. For this, we first establish the bounds on the step-size hi on each
interval. In the first sub-interval [0, σ] with σ ≤ ℓ

2 ,

xi = −α−1ε ln[1− 2(1−N−1)
i

N
], i = 1, · · · , N/2

and hence,

hi = −α−1ε ln[1− 2(1−N−1)
i

N
] + α−1ε ln[1− 2(1−N−1)

i− 1

N
].

Then, we apply the Mean Value Theorem to hi with i∗ ∈ [i− 1, i] and get

hi ≤ α−1ε
2(1−N−1)N−1

1− 2i∗(1−N−1)N−1
≤ CN−1. (50)

In the second sub-interval [σ, ℓ], we have

xi = σ +
(
i− N

2

)
h, i = N/2 + 1, · · · , N,
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where σ ≤ ℓ
2 and

hi =
2(ℓ− σ)

N
≤ CN−1. (51)

Inserting the bounds (50) and (51) in (44), (46), (48) and (49), we have

|R(k)
i | ≤ CN−1, k = 1, 2, 3, 4.

which implies the desired result (43). □

Theorem 1. Let u be the exact solution of (1)-(2) and y be the solution of (32)-
(33). If the assumptions on the functions a, f and K from Lemma 5 hold, then

∥y − u∥∞ ≤ CN−1.

Proof. The proof follows from Lemma 4 and Lemma 5. □

5. Algorithm and Numerical Results

In this section, we present the numerical results on an example with an exact
solution and an example with an unknown solution. The results include graphs
of the approximate solutions, error estimates and the convergence values of the
approximate solution to the exact solution. In our algorithm, we consider the
following elimination method

y
(n)
i =

1

εθi + hiai

[
εθiy

(n
i−1 + hi

(
fi − λ

i∑
j=1

hjK(xi, xj)y
(n−1)
j

)]
, (52)

y
(n)
0 = A, (53)

y
(0)
i = A. (54)

where y
(0)
i is the initial process.

Example 1. We study the following initial value problem

εu′(x) + u(x) +

∫ x

0

xu(t)dt = 2ε(x− 1) + (x− 1)2 − εxe−
x
ε +

x(x− 1)3

3

+ (ε− 1 + x)e−x + (ε− 2

3
)x, 0 ≤ x ≤ 2,

u(0) = 1.

The exact solution of this problem is

u(x) = e−
x
ε + (x− 1)2 − e−x.

The exact error is calculated by the formula

eNε = ∥yN − u∥∞,
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Figure 1. The figure depicts the graphs for the exact solution and
the approximate solution for N = 32.

where yN is the numerical approximation of u for different N and ε values. We
compute the convergence rate by

rN =
ln
(
eN/e2N

)
ln 2

.

In Table 1, we provide the errors eN , e2N and the convergence rates of the approx-
imate solution for various N and ε = 2−i values.

Example 2. Consider the following test problem

εu′ + (x+ 1)u+

∫ x

0

xt(x− t)2u(t)dt = x− e2x, 0 ≤ x ≤ 2,

u(0) = 1.

The exact solution to this problem is not known. To compute the approximate solu-
tion and estimate the errors, we utilize the double mesh principle, that is calculating
the error of the approximate solution on mesh size N with the approximate solution
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Table 1. Errors eN , e2N , and rate of convergence r for Example 1.

ε N = 32 N = 64 N = 128 N = 256 N = 512

eN 0.065 181 2 0.036 774 9 0.018 718 3 0.009 187 0 0.004 326 4

2−12 e2N 0.029 862 0 0.016 962 6 0.008 791 5 0.004 253 9 0.001 871 4
r 1.126 145 3 1.116 368 7 1.090 268 5 1.110 475 2

eN 0.065 374 3 0.036 984 5 0.018 926 7 0.009 393 2 0.004 531 1

2−18 e2N 0.030 078 8 0.017 176 5 0.009 001 5 0.004 462 0 0.002 076 7
r 1.119 980 1.106 485 5 1.072 189 3 1.073 941 7

eN 0.065 377 7 0.036 987 8 0.018 929 9 0.009 396 4 0.004 534 3

2−24 e2N 0.030 082 1 0.017 179 8 0.009 004 8 0.004 465 2 0.002 080 0
r 1.119 883 7 1.106 332 4 1.071 911 6 1.073 390 5

computed on double mesh 2N , namely

eNε = ∥yN − y2N∥∞,

where yN is the approximate solution on mesh N and y2N is the approximate solu-
tion on mesh 2N . The convergence rate is calculated as it is in Example 1.

In Table 2, the errors and the convergence rates of the approximate solution for
various N and ε = 2−i values are presented.

Table 2. Errors eN , e2N , and rate of convergence r for Example 2.

ε N = 32 N = 64 N = 128 N = 256 N = 512

eN 0.031 218 4 0.015 601 2 0.007 796 0 0.003 895 5 0.001 946 6

2−12 e2N 0.015 601 2 0.007 796 0 0.003 895 5 0.001 946 6 0.000 972 9
r 1.000 741 7 1.000 858 3 1.000 922 3 1.000 865 3

eN 0.031 249 5 0.015 624 6 0.007 812 2 0.003 906 1 0.001 953 0

2−18 e2N 0.015 624 6 0.007 812 2 0.003 906 1 0.001 953 0 0.000 488 2
r 1.000 012 1 1.000 014 6 1.000 017 2 1.000 019 8

eN 0.031 250 0 0.015 625 0 0.007 812 5 0.003 906 3 0.001 953 1

2−24 e2N 0.015 625 0 0.007 812 5 0.003 906 3 0.001 953 1 0.000 976 6
r 1.000 000 2 1.000 000 2 1.000 000 3 1.000 000 3

6. Conclusion

To sum up, we constructed a finite difference scheme on a Bakhvalov-Shishkin
mesh to obtain the numerical solution of an initial value problem for a linear first-
order singularly perturbed Volterra integro-differential equation with a boundary
layer. We proved that the method is first-order uniformly convergent with respect
to the perturbation parameter. As we can see in Table 1, Table 2 and Figure 1, the
numerical results of the test problems are also consistent with the analysis on the
error estimates and convergence order and hence, it is confirmed that the conver-
gence order of the scheme O(N−1). For future work, we suggest that this difference
scheme method on Bakhvalov-Shishkin mesh can be applied to the singularly per-
turbed linear or non-linear problems with delay to obtain accurate numerical solu-
tions. Further, our proposed scheme can be modified to handle integro-differential
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equations with fractal derivatives which are studied in [8].
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Abstract. In this paper we investigate the existence, the boundedness and
the asymptotic behavior of the positive solutions of the fuzzy difference equa-

tion

zn+1 =
Azn−1

1 + zpn−2

, n ∈ N0

where (zn) is a sequence of positive fuzzy numbers, A and the initial conditions
z−j (j = 0, 1, 2) are positive fuzzy numbers and p is a positive integer.

1. Introduction

Over the last two decades, a lot of study has been published on difference equa-
tions and systems. One reason for this is that such equations and systems have
high applicability both in mathematics and other sciences such as population biol-
ogy, economics, probability theory, genetics, psychology etc., (see, e.g., [2, 6, 14,15]
and the references therein). In this way, many real life problems are modeled by
means of difference equations and systems. In some cases, however, measurements
or data on a problem may reveal uncertainty or the problem considered may require
subjective interpretations. In such cases, a fuzzy difference equation model can be
established using notion of fuzzy set. In this way, the uncertainty is modeled.

Fuzzy set theory has recently become a popular subject due to the increasing
number of applications in technology, mathematics and other sciences. The part
that we are interested in is, of course, that the notion of fuzzy set can be easily
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applied to difference equations. With this application, a powerful method for de-
termining the behavior of solutions of difference equations emerges. Some studies
using the method will be summarized below.

In [3], Deeba et al. studied the fuzzy analog of a difference equation which
arises in population genetics. More precisely they studied the first order difference
equation

xn+1 = wxn + q, n ∈ N0 (1)

where (xn) is a sequence of fuzzy numbers and w, q, x0 are fuzzy numbers. Also,
they discussed the fuzzy nonlinear difference equation

xn+1 = f(xn, w, q), n ∈ N0 (2)

where (xn) is a sequence of fuzzy numbers, w, q, x0 are fuzzy numbers and f :
R+

a × R+
a × R+

a → R+
a , R+

a is the set of all real numbers greater or equal to a, is a
continuous and nondecreasing function in its arguments.

In [4], Deeba and Korvin studied the second order difference equation

xn+1 = xn − abxn−1 + c, n ∈ N0 (3)

where (xn) is a sequence of fuzzy numbers and a, b, c, x0, x−1 are fuzzy numbers.
This equation is a linearized model of a nonlinear model which determines the
carbondioxide (CO2) level in the blood.

In [12], Papaschinopoulos and Papadopoulos studied the existence, the bound-
edness and the asymptotic behavior of the positive solutions of the fuzzy difference
equation

xn+1 = A+
xn

xn−m
, n ∈ N0 (4)

where (xn) is a sequence of fuzzy numbers and A and the initial conditions x−j

(j = 0, 1, . . . ,m) are fuzzy numbers for m ∈ N1.
For more works on fuzzy difference equations, see the references [9, 11, 13] and

the references cited therein.
In [5], El-Owaidy et al. investigated the global behavior of the difference equation

xn+1 =
αxn−1

β + γxp
n−2

, n ∈ N0 (5)

where the nonnegative parameters and nonnegative initial conditions.
Moreover, in [7], Gümüş and Soykan investigated the behavior of solutions of

the system of difference equations

un+1 =
αun−1

β + γvpn−2

, vn+1 =
α1vn−1

β1 + γ1u
p
n−2

, n ∈ N0 (6)

where the positive parameters α, β, γ, α1, β1, γ1, p and the initial conditions u−i, v−i

for i = 0, 1, 2 are positive real numbers. Note that system (6) can be reduced to
the following system of difference equations
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xn+1 =
rxn−1

1 + ypn−2

, yn+1 =
syn−1

1 + xp
n−2

, n ∈ N0 (7)

by the change of variables un = (β1/γ1)
1/pxn and vn = (β/γ)1/pyn with r = α/β

and s = α1/β1. So, in order to study system (6), they investigated system (7).
In this paper we investigate the existence, the boundedness and the asymptotic

behavior of the positive solutions of the fuzzy difference equation

zn+1 =
Azn−1

1 + zpn−2

, n ∈ N0 (8)

where (zn) is a sequence of positive fuzzy numbers, A and the initial conditions z−j

(j = 0, 1, 2) are positive fuzzy numbers and p is a positive integer.

2. Preliminaries

In this section, we give some definitions which will be used in this paper. For
more details see [1, 8, 10,16].

Definition 1. Consider a fuzzy subset of the real line A : R →[0, 1]. Then we say
A is a fuzzy number if it is satisfies the following properties

(a) A is normal, i.e., ∃ x0 ∈ R with A(x0) = 1,
(b) A is fuzzy convex, i.e., A(tx1+(1− t)x2) ≥ min {A(x1), A(x2)} , ∀t ∈ [0, 1]

and x1, x2 ∈ R,
(c) A is upper semicontinuous on R,
(d) A is compactly supported, i.e., {x ∈ R : A(x) > 0} is compact.

Let us denote by RF the space of all fuzzy numbers. For 0 < α ≤ 1 and
A ∈ RF , we denote α-cuts of fuzzy number A by [A]α = {x ∈ R, A(x) ≥ α} and

[A]0 = {x ∈ R, A(x) ≥ 0}. We call [A]0, the support of fuzzy number A and denote
it by supp (A).

The fuzzy number A is called positive if supp(A) ⊂ (0,∞). We denote by R+
F ,

the space of all positive fuzzy numbers.

Definition 2. (a) Let A, B be any fuzzy numbers with [A]α = [Al,α, Ar,α] and
[B]α = [Bl,α, Br,α] for α ∈ (0, 1]. We define ||A|| on the fuzzy numbers space as
follow;

||A|| = supmax {|Al,α| , |Ar,α|} ,
where sup is taken for all α ∈ (0, 1]. Then from the above we take the following
metric

D(A,B) = sup {max {|Al,α −Bl,α| , |Ar,α −Br,α|}} ,
where sup is taken for all α ∈ (0, 1].

(b) Let (xn) be a sequence of positive fuzzy numbers and x is a fuzzy number.
Then we say that

lim
n→∞

xn = x iff lim
n→∞

D(xn, x) = 0.
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The following lemma and definition are given in [8]:

Lemma 1. Let X,Y be fuzzy numbers and [X]α = [Xl,α, Xr,α], [Y ]α = [Yl,α, Yr,α]
for α ∈ (0, 1] be the α-cuts of X,Y , respectively. Let Z be a fuzzy number such that
[Z]α = [Zl,α, Zr,α] for α ∈ (0, 1]. Then, MIN {X,Y } = Z (resp. MAX {X,Y } =
Z) if and only if min {Xl,α, Yl,α} = Zl,α and min {Xr,α, Yr,α} = Zr,α (resp.
max {Xl,α, Yl,α} = Zl,α and max {Xr,α, Yr,α} = Zr,α).

Definition 3. (a) We say that a sequence of positive fuzzy numbers (xn) is bounded
and persistent if there exist n0 ∈ N and positive fuzzy numbers C, D such that
MIN {xn, C} = C and MIN {xn, D} = D for n ≥ n0.

(b) We say that (xn) for n ∈ N0 is an unbounded sequence if the ||xn|| for n ∈ N0

is an unbounded sequence.

We need the following lemma which has been proved in [12].

Lemma 2. Let f : R+ × R+ × R+ → R+ be a continuous function and A,B,C be
fuzzy numbers. Then, [f (A,B,C)]α = f ([A]α, [B]α, [C]α) for α ∈ (0, 1].

3. Main Results

In this section, we prove our main results. Firstly, we will study the existence of
the positive solutions of equation (8). We say (zn) is a positive solution of equation
(8) if (zn) is a sequence of positive fuzzy numbers which satisfies equation (8).

Theorem 1. Consider equation (8) where A is a positive fuzzy number. Then for
any positive fuzzy numbers z−j (j = 0, 1, 2) there exists a unique positive solution
(zn) of (8) with the initial conditions z−j (j = 0, 1, 2) .

Proof. Suppose that there exists a sequence of fuzzy numbers (zn) satisfying (8)
with the initial conditions z−j (j = 0, 1, 2) . Consider the α-cuts

[zn]α = [Ln,α, Rn,α],
[A]α = [Al,α, Ar,α],

(9)

for n = −2,−1, 0, ... and α ∈ (0, 1]. Then from (8)-(9) and Lemma 2 it follows that

[zn+1]α = [Ln+1,α, Rn+1,α]

=

[
Azn−1

1 + zpn−2

]
α

=
[A]α [zn−1]α[
1 + zpn−2

]
α

=
[Al,αLn−1,α, Ar,αRn−1,α]

[1 + Lp
n−2,α, 1 +Rp

n−2,α]
=

[
Al,αLn−1,α

1 +Rp
n−2,α

,
Ar,αRn−1,α

1 + Lp
n−2,α

]
,

from which we get

Ln+1,α =
Al,αLn−1,α

1 +Rp
n−2,α

, Rn+1,α =
Ar,αRn−1,α

1 + Lp
n−2,α

, α ∈ (0, 1]. (10)
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for n ∈ N0. Then it is clear that for any (Lj,α, Rj,α), j = −2,−1, 0 there exists a
unique solution (Ln,α, Rn,α) with the initial conditions (Lj,α, Rj,α), j = −2,−1, 0
for α ∈ (0, 1].

Now, we prove that [Ln,α, Rn,α] for α ∈ (0, 1] where (Ln,α, Rn,α) is the solution
of the system (10) with the initial conditions (Lj,α, Rj,α), j = −2,−1, 0 determines
the solution (zn) of (8) with the initial conditions z−j (j = 0, 1, 2) such that

[zn]α = [Ln,α, Rn,α], α ∈ (0, 1], n = −2,−1, 0, .... (11)

Since A and z−j (j = 0, 1, 2) are positive fuzzy numbers for any α1, α2 ∈ (0, 1],
α1 ≤ α2 we get,

0 < Al,α1
≤ Al,α2

≤ Ar,α2
≤ Ar,α1

,
0 < L−2,α1 ≤ L−2,α2 ≤ R−2,α2 ≤ R−2,α1 ,
0 < L−1,α1 ≤ L−1,α2 ≤ R−1,α2 ≤ R−1,α1 ,

0 < L0,α1
≤ L0,α2

≤ R0,α2
≤ R0,α1

.

(12)

We prove by the induction that

Ln,α1
≤ Ln,α2

≤ Rn,α2
≤ Rn,α1

, n ∈ N. (13)

From (12) we have that (13) hold for n = −2,−1, 0. Suppose that (13) is valid
for n ≤ k, k ∈ {1, 2, ...} . Then from (10), (12) and (13) for n ≤ k it follows that

Lk+1,α1
=

Al,α1
Lk−1,α1

1 +Rp
k−2,α1

≤ Al,α2
Lk−1,α2

1 +Rp
k−2,α2

= Lk+1,α2
,

Lk+1,α2 =
Al,α2

Lk−1,α2

1 +Rp
k−2,α2

≤ Ar,α2
Rk−1,α2

1 + Lp
k−2,α2

= Rk+1,α2

and

Rk+1,α2
=

Ar,α2Rk−1,α2

1 + Lp
k−2,α2

≤ Ar,α1Rk−1,α1

1 + Lp
k−2,α1

= Rk+1,α1
.

Therefore (13) is satisfied. Moreover from (10) we get

L1,α =
Al,αL−1,α

1 +Rp
−2,α

, R1,α =
Ar,αR−1,α

1 + Lp
−2,α

, α ∈ (0, 1]. (14)

Then since A and z−j (j = 0, 1, 2) are positive fuzzy numbers, we have that Al,α,
Ar,α, L−1,α, R−1,α, L−2,α and R−2,α are left continuous. So, from (14) we see that
L1,α and R1,α are also left continuous. Working inductively we can easily prove
that Ln,α and Rn,α are left continuous for n ∈ N.

Now, we prove that ∪α∈(0,1][Ln,α, Rn,α] is compact. It is sufficient to prove that
∪α∈(0,1][Ln,α, Rn,α] is bounded. Let n = 1, since A and z−j (j = 0, 1, 2) are posi-
tive fuzzy numbers there exist constants MA, NA,M−2, N−2,M−1, N−1,M0, N0 > 0



ON A NONLINEAR FUZZY DIFFERENCE EQUATION 73

such that
[Al,α, Ar,α] ⊂ [MA, NA],

[L−2,α, R−2,α] ⊂ [M−2, N−2],
[L−1,α, R−1,α] ⊂ [M−1, N−1],

[L0,α, R0,α] ⊂ [M0, N0].

(15)

Therefore, from (14)-(15) we can easily prove that

[L1,α, R1,α] ⊂
[
MAM−1

1 +Np
−2

,
NAN−1

1 +Mp
−2

]
,

for α ∈ (0, 1] from which it is clear that

∪α∈(0,1] [L1,α, R1,α] ⊂
[
MAM−1

1 +Np
−2

,
NAN−1

1 +Mp
−2

]
, (16)

for α ∈ (0, 1]. Also, (16) implies that ∪α∈(0,1][L1,α, R1,α] is compact and

∪α∈(0,1][L1,α, R1,α] ⊂ (0,∞).

Working inductively we can easily see that

∪α∈(0,1][Ln,α, Rn,α] is compact, ∪α∈(0,1][Ln,α, Rn,α] ⊂ (0,∞) for n ∈ N1. (17)

Therefore, using (13), (17) and since Ln,α, Rn,α are left continuous we see that
[Ln,α, Rn,α] determines a sequence of positive fuzzy numbers (zn) such that (11)
holds.

We prove now that (zn) is the solution of equation (8) with the initial conditions
z−j (j = 0, 1, 2) . Since

[zn+1]α = [Ln+1,α, Rn+1,α] =

[
Al,αLn−1,α

1 +Rp
n−2,α

,
Ar,αRn−1,α

1 + Lp
n−2,α

]
=

[
Azn−1

1 + zpn−2

]
α

,

for all α ∈ (0, 1], we have that (zn) is the solution of equation (8) with the initial
conditions z−j (j = 0, 1, 2) .

Suppose that there exists another solution (z̃n) of equation (8) with the initial
conditions z−j (j = 0, 1, 2) . Then arguing as above we can easily show that

[z̃n]α = [Ln,α, Rn,α] for α ∈ (0, 1] and n ∈ N0. (18)

Then from (11) and (18) we have that [zn]α = [z̃n]α for α ∈ (0, 1] and n =
−2,−1, 0, ... from which it holds zn = z̃n for n = −2,−1, 0, .... Thus, the proof
is completed. □

To study the boundedness of the positive solutions of equation (8), we need the
following theorem which has been proved in [7]:

Theorem 2. Assume that r, s ∈ (1,∞), then there exist unbounded solutions of
system (7).

In the following lemma, we will study the boundedness and persistence of the
positive solutions of system (7):
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Lemma 3. Assume that r, s ∈ (0, 1), then every positive solution of system (7) is
bounded and persists.

Proof. Assume that r, s ∈ (0, 1). From system (7), we have that

0 < xn+1 =
rxn−1

1 + ypn−2

< rxn−1 < xn−1, (19)

and

0 < yn+1 =
syn−1

1 + xp
n−2

< syn−1 < yn−1, (20)

for n ∈ N0. From (19) and (20), we have by induction

0 < x2n−i < x−i and 0 < y2n−i < y−i, (21)

for n ∈ N1 where x−i, y−i (i = 0, 1) are the initial conditions. This completes the
proof. □

Theorem 3. Consider equation (8). Then the following statements are true:
(i) If Ar,α < 1 for all α ∈ (0, 1], then every positive solution of equation (8) is

bounded and persists.
(ii) If there exists an α ∈ (0, 1] such that Al,α > 1, then the equation (8) has

unbounded solutions.

Proof. (i) Let (zn) be a positive solution of equation (8) such that (11) holds. From
(10) and Lemma 3, we get

[Ln,α, Rn,α] ⊂ [0, Tα], (22)

for n ∈ N1 where Tα = max {R−1,α, R0,α} . Since (zn) are positive fuzzy numbers,
there exists a constant T > 0 such that Tα ≤ T for all α ∈ (0, 1]. Therefore,
[Ln,α, Rn,α] ⊂ [0, T ] for n ∈ N1 from which we get ∪α∈(0,1][Ln,α, Rn,α] ⊂ [0, T ] for

n ∈ N1 so ∪α∈(0,1][Ln,α, Rn,α] ⊆ [0, T ]. This completes the proof of (i).
(ii) Suppose that there exists an α ∈ (0, 1] such that Al,α > 1. If Al,α = r,

Ar,α = s, Ln,α = xn and Rn,α = yn for n = −2,−1, ..., then we can apply Theorem
2 to system (10). If there exists an α ∈ (0, 1] such that r = Al,α > 1, then there
exist solutions (xn, yn) of system (10) where α = α with initial conditions (x−j , y−j)
for j = 0, 1, 2 such that

lim
n→∞

xn = 0 and lim
n→∞

yn = ∞. (23)

Moreover, if x−j < y−j ( j = 0, 1, 2), we can find positive fuzzy numbers z−j

(j = 0, 1, 2) such that

[zj ]α = [Lj,α, Rj,α], (24)

for α ∈ (0, 1] and

[zj ]α = [Lj,α, Rj,α] = [xj , yj ], (25)
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for j = −2,−1, 0. Let (zn) be a positive solution of equation (8) with the initial
conditions z−j (j = 0, 1, 2) and [zn]α = [Ln,α, Rn,α] for α ∈ (0, 1]. Since (24) and
(25) hold and (Ln,α, Rn,α) satisfies system (10) we have

[zn]α = [Ln,α, Rn,α] = [xn, yn]. (26)

Thefore, from (23), (26) and since

||zn|| = supmax {|Ln,α| , |Rn,α|} ≥ max {|Ln,α| , |Rn,α|} = Rn,α,

where sup is taken for all α ∈ (0, 1], it is clear that solution (zn) is unbounded.
This completes the proof of (ii). □

In the last theorem, we will study the convergence of the positive solutions
of equation (8). We need the following theorem which has been obtained from
Theorem 10 in [7]:

Theorem 4. If r, s ∈ (0, 1), then every positive solution (xn, yn) of system (7)
converges to (0, 0) as n → ∞.

Theorem 5. If Ar,α < 1 for all α ∈ (0, 1], then every positive solution (zn) of
equation (8) converges to 0 as n → ∞.

Proof. Let (zn) be a positive solution of equation (8) such that (9) holds with
Ar,α < 1 for all α ∈ (0, 1]. Then, we can apply Theorem 4 to system (10). So, we
get

lim
n→∞

Ln,α = lim
n→∞

Rn,α = 0. (27)

Therefore, from (27) we get

lim
n→∞

D(zn, 0) = lim
n→∞

sup {max {|Ln,α − 0| , |Rn,α − 0|}} = 0.

□

4. Numerical Examples

In this section, we give two numerical examples for the solutions of equation
(8) regard to the different values of A for p = 1 with the inital conditions z−j

(j = 0, 1, 2) are satisfied

z−2(x) =

{
20x− 8, 0.40 ≤ x ≤ 0.45,
10− 20x, 0.45 ≤ x ≤ 0.50,

z−1(x) =

{
5x−0.50

2 , 0.10 ≤ x ≤ 0.50,
4.50−5x

2 , 0.50 ≤ x ≤ 0.90,

z0(x) =

{
20x− 6, 0.30 ≤ x ≤ 0.35,
8− 20x, 0.35 ≤ x ≤ 0.40.

(28)
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From (28), we get [z−2]α =
[
α+8
20 , 10−α

20

]
, [z−1]α =

[
2α+0.50

5 , 4.50−2α
5

]
, [z0]α =[

α+6
20 , 8−α

20

]
for all α ∈ (0, 1].

Example 1. Consider equation (8) for p = 1 where zn is a sequence of positive
fuzzy numbers, the initial conditions z−j (j = 0, 1, 2) are satisfied (28) and A is
satisfied

A =

{
4x− 1, 1

4 ≤ x ≤ 1
2 ,

3− 4x, 1
2 ≤ x ≤ 3

4 .
(29)

From (29), we get [A]α =
[
α+1
4 , 3−α

4

]
for all α ∈ (0, 1]. There exists a unique

solution of equation (8) by Theorem 1. Since Ar,α < 1 for all α ∈ [0, 1], then by
Theorem 5, the positive solution (zn) of equation (8) converges to 0 as n → ∞,
see Figures 1-3.

Figure
1. α = 0.1

Figure
2. α = 0.5

Figure
3. α = 0.9

Example 2. Consider equation (8) for p = 1 where zn is a sequence of positive
fuzzy numbers, the initial conditions z−j (j = 0, 1, 2) are satisfied (28) and A is
satisfied

A =

{
x− 2, 2 ≤ x ≤ 3,
4− x, 3 ≤ x ≤ 4.

(30)

From (30), we get [A]α = [α+ 2, 4− α] for all α ∈ (0, 1]. There exists a unique
positive solution of equation (8) by Theorem 1. It is easy to see that for all α ∈ (0, 1],
we have Al,α > 1. So, by case (ii) in Theorem 3, equation (8) has unbounded
solutions, see Figures 4-6.
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Figure
4. α = 0.1

Figure
5. α = 0.5

Figure
6. α = 0.9

5. Conclusion

In this study, we investigated behavior of the fuzzy difference equation zn+1 =
Azn−1/(1 + zpn−2), where (zn) is a sequence of positive fuzzy numbers, A and the
initial conditions z−j (j = 0, 1, 2) are positive fuzzy numbers and p is a positive in-
teger. We have shown that, under certain conditions, the positive solutions of this
equation converge to zero. Also, we have considered the case where the solutions
are unbounded. Finally, we have supported our theoretical results.
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SIMILAR AND SELF-SIMILAR NULL CARTAN CURVES IN

MINKOWSKI-LORENTZIAN SPACES

Hakan ŞIMŞEK
Department of Industrial Engineering, Antalya Bilim University, Antalya, TURKEY

Abstract. In this paper, differential invariants of null Cartan curves are stud-
ied in (n+2) dimensional Lorentzian similarity geometry. The fundamental

theorem for a null Cartan curve in similarity geometry is investigated and

the characterization of all self-similar null Cartan curves parameterized by de
Sitter parameter in Minkowski space-time is given.

1. Introduction

A similarity transformation of Euclidean space, which consists of a rotation, a
translation and an isotropic scaling, is an automorphism preserving the angles and
ratios between lengths. The structure consisting of unchanging geometric proper-
ties under the similarity transformation is called similarity geometry. The whole
Euclidean geometry can be considered as a class of similarity geometry. The similar-
ity transformations are studied in most areas of the pure and applied mathematics.
For example, S. Li [23] presented a system for matching and pose estimation of 3D
space curves under the similarity transformation. Brook et al. [5] discussed various
problems of image processing and analysis by using the similarity transformation.
Sahbi [26] investigated a method for shape description based on kernel principal
component analysis (KPCA) in the similarity invariance of KPCA. On the other
hand, the self-similar objects, whose images under the similarity map are them-
selves, have had a wide range of applications in areas such as fractal geometry,
dynamical systems, computer networks, statistical physics and so on. The Cantor
set, the von Koch snowflake curve and the Sierpinski gasket are some of most fa-
mous examples of such objects (see [14, 21]). Recently, the self-similarity started
playing a role in algebra as well, first of all in group theory [17].
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Bonnor [4] introduced the Cartan frame to study the behaviors of a null curve and
proved the fundamental existence and congruence theorems in Minkowski space-
time. Bejancu [2] represented a method for the general study of the geometry of
null curves in Lorentz manifolds and, more generally, in semi-Riemannian manifolds
(see also the book [11]). Ferrandez, Gimenez and Lucas [15] gave a reference along
a null curve in an n-dimensional Lorentzian space. They showed the fundamental
existence and uniqueness theorems and described the null helices in higher dimen-
sions. Cöken and Ciftci [10] studied null curves in the Minkowski space-time and
characterized pseudo-spherical null curves and Bertrand null curves.

The study of the geometry of null curves has a growing importance in the math-
ematical physics. The null curves are useful to find the solution of some equations
in the classical relativistic string theory (see [6,19,20]) Moreover, there exists a geo-
metric particle model associated with the geometry of null curves in the Minkowski
space-time (see [16,24]).

Berger [3] represented the broad content of similarity transformations of Eu-
clidean space. Encheva and Georgiev [12, 13] studied the differential geometric
invariants of curves according to a similarity in the Euclidean n-space. Chou and
Qu [9] showed that the motions of curves in two, three and n-dimensional (n > 3)
similarity geometries correspond to the Burgers hierarchy, Burgers-mKdV hierarchy
and a multi-component generalization of these hierarchies. Şimşek and Özdemir [27]
introduced the geometry of non-lightlike curves in the n-dimensional Lorentzian
similarity geometry. Ateş et.al. [1] studied the similarity invariants of Frenet curves
by considering the parametrization of any spherical indicatrix curve in Eucliedan
space En. Kamishima [22] examined the properties of compact Lorentzian simi-
larity manifolds using developing maps and holonomy representations. The main
idea of this paper is to study the differential geometry of a null curve under the
similarity mapping.

The scope of paper is as follows. First, we give basic information about null
Cartan curves. Then, we introduce a new parameter, which is called de Sitter
parameter that is invariant under the similarity transformation. We represent the
differential geometric invariants of a null Cartan curve, which are called shape
Cartan curvatures, in (n+2)-dimensional Lorentzian similarity geometry. We prove
the uniqueness theorem which states that two null Cartan curves are equivalent
according to a similarity mapping. Furthermore, we show the existence theorem
that is a process for constructing a null Cartan curve by the shape Cartan curvatures
under some initial conditions. Lastly, we obtain the equations of all self-similar null
Cartan curves parameterized by the de Sitter parameter in Minkowski spacetime.

2. Preliminaries

Let u = (u1, u2, . . . , un+2) , v = (v1, v2, . . . , vn+2) be two arbitrary vectors in
Minkowski-Lorentzian space Mn+2. The Lorentzian inner product of u and v can
be stated as u · v = uI∗vT where I∗ = diag(−1, 1, . . . , 1). We say that a vector
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u in Mn+2 is called spacelike, null (lightlike) or timelike if u · u > 0, u · u = 0 or

u · u < 0, respectively. The norm of the vector u is defined by ∥u∥ =
√

|u · u|. The
pseudohyperbolic space (or anti-de Sitter space) is defined by

Hn+1
0 (r) =

{
u ∈ Mn+2 : u · u = −r2

}
and pseudo-sphere (or de Sitter space) is defined by

Sn+1
1 (r) =

{
u ∈ Mn+2 : u · u = r2

}
, ( [25]) .

A basis B = {L,N,W1, . . . ,Wn} is said pseudo-orthonormal if it satisfies the
following conditions:

L · L = N ·N = 0, L ·N = 1

L ·Wi = N ·Wi = Wi ·Wj = 0, i ̸= j

Wi ·Wi = 1

where i, j ∈ {1, . . . , n} ( [11]) .
Now, we consider the mapping A :

(
L̄, N̄,W̄1, · · · ,W̄n

)
→ (L,N,W1, · · · ,Wn)

of one pseudo-orthonormal basis onto another at any point P in Mn+2, which is
given as either



L
N
W1

W2

...
Wn−1

Wn


=



λ 0 0 0 0 0 · · · 0 0

− 1
2λ
(
ε21 + ε22 + . . .+ ε2n

)
λ−1 −ϵ1 ϵ2 −ϵ3 ϵ4 · · · −ϵn−1 ϵn

λε1 cos θ + λε2 sin θ 0 cos θ − sin θ 0 0 · · · 0 0
λε1 sin θ − λε2 cos θ 0 sin θ cos θ 0 0 · · · 0 0

...
...

...
...

...
...

. . .
...

...
λεn−1 cos θ + λεn sin θ 0 0 0 0 · · · 0 cos θ − sin θ
λεn−1 sin θ − λεn cos θ 0 0 0 0 · · · 0 sin θ cos θ





L̄
N̄
W̄1

W̄2

...
W̄n−1

W̄n


(1)

when n is even, or the same matrix with the additional row (column) 0 0 · · · 1
when n is odd, where λ, εi (1 ≤ i ≤ n) and θ are real constants and λ ̸= 0. The
image of pseudo-orthonormal basis under the mapping A is a pseudo-orthonormal
basis. Moreover, we have ATJ∗A = J∗, detA = 1 where

J∗ =



0 1 0 0 · · · 0
1 0 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1


and the orientation is preserved by (1). Bonnor [4] defined the mapping A as a null
rotation. A null rotation at P is equivalent to a Lorentzian transformation between
two sets of natural coordinate functions whose values coincide at P .

A curve locally parameterized by γ : J ⊂ R → Mn+2 is called a null curve
if d

dtγ(t) ̸= 0 is a null vector for all t. We know that a null curve γ(t) satisfies
d2

dt2 γ(t) ·
d2

dt2 γ(t) ≥ 0 (see [11]). If the acceleration vector of the null curve is a unit
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vector, that is, d2

dt2 γ(t) ·
d2

dt2 γ(t) = 1, then, null curve γ(t) in Mn+2 is said to be
parameterized by pseudo-arc. If the acceleration vector of the null curve is not a
unit vector, then the pseudo-arc parametrization becomes as the following

s =

∫ t

t0

(
d2

du2
γ(u) · d2

du2
γ(u)

)1/4

du ( [4, 10]). (2)

A null curve γ(t) in Mn+2 with d2

dt2 γ(t) ·
d2

dt2 γ(t) ̸= 0 is a Cartan curve if{
d
dtγ(t),

d2

dt2 γ(t),
d3

dt3 γ(t), · · · ,
dn+1

dtn+1 γ(t)
}

is linearly independent for any t.
There exists a unique Cartan frame Cγ := {L,N,W1, · · · ,Wn} of the Cartan

curve parameterized by a pseudo arc-parameter s such that the following equations
are satisfied

γ′(s) = L(s),

L′(s) = W1(s),

N′(s) = κ(s)W1(s) + τ(s)W2(s), (3)

W′
1(s) = −κ(s)L(s)−N(s),

W′
2(s) = −τ(s)L(s) + κ3W3(s),

W′
i(s) = −κi(s)Wi−1(s) + κi+1Wi+1(s) i ∈ {3, . . . , n− 1} ,

W′
n(s) = −κn(s)Wn−1(s)

where N is a null vector called null transversal vector field, and Cγ is pseudo-

orthonormal,
{
γ′, γ′′, . . . , γ(i+2)

}
and {L,N,W1, . . . ,Wi} have the same orienta-

tion for 2 ≤ i ≤ n− 1, Cγ is positively oriented and the differentiation with respect
to s is denoted by prime ”′” . The functions κ, τ , κj (3 ≤ j ≤ n) are called the
Cartan curvatures of γ (s) and are given as

κ (s) =
1

2

(
γ(3)(s) · γ(3)(s)

)
τ2 (s) = γ(4)(s) · γ(4)(s)−

(
γ(3)(s) · γ(3)(s)

)2
(4)

κ2
j (s) =

Dj (s)Dj+2 (s)

D2
j+1 (s)

for the pseudo-arc parameter s, whereDj denotes the j-th order main determinant of

the matrix of the metric with respect to
{
γ′, γ′′, . . . , γ(n+2)

}
. We know that τ < 0,

κi > 0 (3 ≤ i ≤ n− 1) , and κn > 0 or κn < 0 according to
{
γ′, γ′′, . . . , γ(n+2)

}
is

positively or negatively oriented, respectively. More information about the geome-
try of null curves can be found in the papers [2], [4], [11] and [15].
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3. Geometric Invariants of Null Curves Under a Similarity Map

In this section, we introduce the similarity geometry of null curves in Mn+2. A
null-similarity (n-similarity) f : Mn+2 → Mn+2 is determined by

f (x) = µA (x) +C, (5)

where µ > 0 is a real constant, A is a null rotation and C is a translation vector.
The n-similarity transformations form a group under the composition of maps and
denoted by Simn

(
Mn+2

)
. The n-similarity transformations in Mn+2 preserve the

orientation.
Let γ (t) : J ⊂ R → Mn+2 be a null curve. The image of γ under f ∈

Simn
(
Mn+2

)
is denoted by β. Then, the null curve β can be stated as

β (t) = µA (γ (t)) + b, t ∈ J. (6)

The pseudo-arc length function β starting at t0 ∈ J is

s∗ (t) =

t∫
t0

(
d2

du2
β(u) · d2

du2
β(u)

)1/4

du =
√
µs (t) (7)

where s ∈ I ⊂ R is pseudo-arc parameter of γ : I → Mn+2. We can compute the
Cartan curvatures κβ

(√
µs
)
and τβ

(√
µs
)
of β by using (4) as

κβ =
1

µ
κγ , τβ =

1

µ
τγ , and κiβ =

1
√
µ
κiα, 3 ≤ i ≤ n. (8)

We define W1-indicatrix γW1
of the null curve γ parameterized by γW1

(s) =
W1 (s). The W1-indicatrix is a pseudo-spherical non-null curve lies on the de Sitter
(n+1)-space Sn+1

1 (1). If we state the arc-length parameter of γW1
as σγ , we can find

dσγ =
√

2 |κγ |ds. The arc-length element dσγ is invariant under the n-similarity
transformation since the equality dσβ = dσγ can be easily found, where σβ is the
de Sitter parameter of β. The parameter σγ is called de Sitter parameter of γ.
Therefore, we reparametrize a null curve by the de Sitter parameter so that we can
study the differential geometry of a null curve under the n-similarity transformation.

The derivative formulas of γ and Cγ with respect to σγ are given by

dγ

dσγ
=

1√
2 |κγ |

L,
d2γ

dσ2
γ

=
−d |κγ |

2 |κγ | dσγ

dγ

dσγ
+

1

2 |κγ |
W1 (9)

and

dL

dσγ
=

1√
2 |κγ |

W1

dN

dσγ
=

κγ√
2 |κγ |

W1 +
τγ√
2 |κγ |

W2
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dW1

dσγ
= − κγ√

2 |κγ |
L− 1√

2 |κγ |
N

dW2

dσγ
= − τγ√

2 |κγ |
L+

κ3γ√
2 |κγ |

W3 (10)

dW3

dσγ
= − κ3γ√

2 |κγ |
W2+

κ4γ√
2 |κγ |

W3

...

dWn

dσγ
= − κn√

2 |κγ |
Wn−1

Similarly, we can find the same formulas (9) and (10) for the null curve β.
Now, we construct a new frame corresponding to n-similarity transformation for

a null curve. Let’s define the functions

κ̃γ :=
−d |κγ |

2 |κγ | dσγ
, τ̃γ :=

τγ
2 |κγ |

and κ̃iγ =
κiγ√
2 |κγ |

, 3 ≤ i ≤ n,

which are invariant under the n-similarity since we get the equalities

κ̃β = κ̃γ , τ̃β = τ̃γ and κ̃iβ = κ̃iγ .

If we set Lsim =
√

2 |κγ |L, then we get a unit spacelike vector

Wsim
1 =

dLsim

dσγ
=

d |κγ |√
2 |κγ |dσγ

L+W1

such that Lsim ·Wsim
1 = 0. From [2], we know that there exists a null vector Nsim

satisfying

Lsim ·Nsim = 1, Nsim ·Wsim
1 = 0,

in the space spanned by {γ′, γ′′, γ′′′} such that Nsim can be given in the form

Nsim =
1

Lsim ·V

(
V − V ·V

2Lsim ·V
Lsim

)
where V ∈ span {γ′, γ′′, γ′′′} . Choosing V =

1√
2 |κγ |

N+ κ̃γW1 bring about

Nsim =
1√
2 |κγ |

N+ κ̃γW1 −
κ̃2
γ

√
2 |κγ |
2

L,

which satisfies the relations Nsim ·Nsim = 0, Lsim ·Nsim = 1 and Nsim ·Wsim
1 = 0.

Moreover, If we choose Wsim
i = Wi, 2 ≤ i ≤ n, then

Csim
γ :=

{
Lsim,Nsim,Wsim

1 ,Wsim
2 , . . . ,Wsim

n

}
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becomes a pseudo-orthonormal frame of γ under the n-similarity map. Then, the
derivative formulas of Csim

γ are computed as

d

dσγ

(
Csim

γ

)T
= P

(
Csim

γ

)T
(11)

where

P =



0 0 1 0 0 0 . . . 0

0 0 ξ̃γ τ̃γ 0 0 . . . 0

−ξ̃γ −1 0 0 0 0 . . . 0
−τ̃γ 0 0 0 κ̃3γ 0 . . . 0
0 0 0 −κ̃3γ 0 κ̃4γ . . . 0
0 0 0 0 −κ̃4γ 0 . . . 0
...

...
...

... · · ·
. . .

...
...

0 0 0 0 0 · · · −κ̃nγ 0


(12)

where ξ̃γ = ±1

2
−

κ̃2
γ

2
+

dκ̃γ

dσγ
.

Let’s consider the pseudo-orthogonal frame CH
γ :=

{
Hγ

1 ,H
γ
2 ,H

γ
3 , ...,H

γ
n+2

}
of γ

where

Hγ
1 = 1√

2|κγ |
Lsim, Hγ

2 = 1√
2|κγ |

Nsim, Hγ
3 = 1√

2|κγ |
Wsim

1 ,. . . , Hγ
n+2 = 1√

2|κγ |
Wsim

n .

Since, from (5) , we can obtain f(Hγ
i ) = Hβ

i , i = 1, · · ·n + 2, the pseudo-
orthogonal frame CH

γ is invariant according to n-similarity map. Then, using (9)

and (11) , we get the derivative formulas of CH
γ as the following

d

dσ

(
CH

γ

)T
= P̃

(
CH

γ

)T
(13)

where

P̃ =



κ̃γ 0 1 0 0 0 . . . 0

0 κ̃γ ξ̃γ τ̃γ 0 0 . . . 0

−ξ̃γ −1 κ̃γ 0 0 0 . . . 0
−τ̃γ 0 0 κ̃γ κ̃3γ 0 . . . 0
0 0 0 −κ̃3γ κ̃γ κ̃4γ . . . 0
0 0 0 0 −κ̃4γ κ̃γ . . . 0
...

...
...

... · · ·
. . .

...
...

0 0 0 0 0 · · · −κ̃nγ κ̃γ


.

We can consider the equation (13) as the Frenet-Serret equation of a null Cartan
curve γ according to the pseudo-orthogonal moving frame CH

γ under the group

Simn
(
Mn+2

)
. As a result, the following theorem is obtained.
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Theorem 1. Let γ : I → Mn+2 be a null Cartan curve with pseudo-de Sitter pa-
rameter σγ and {κγ , τγ , κ̃iγ (3 ≤ i ≤ n)} be Cartan curvatures of γ with the Cartan
frame Cγ . Then, the functions

κ̃γ :=
−d |κγ |

2 |κγ | dσγ
, τ̃γ :=

τγ
2 |κγ |

and κ̃iγ =
κiγ√
2 |κγ |

, 3 ≤ i ≤ n, (14)

and the pseudo-orthogonal frame CH
γ are invariant under the n-similarity transfor-

mation in Mn+2 and the derivative formulas of CH
γ with respect to σγ are given by

the equation (13) .

Definition 1. The functions ξ̃γ τ̃γ and κ̃iγ (3 ≤ i ≤ n) are called shape Cartan

curvatures of a null Cartan curve γ and the pseudo-orthonormal frame Csim
γ are

called shape Cartan frame of γ.

4. The Fundamental Theorem for a Null Curve

The existence and uniqueness theorems were shown by [2], [15] and [4] for a
null Cartan curve under the Lorentz transformations. This notion can be extended
with respect to Simn

(
Mn+2

)
for the null Cartan curves parameterized by de Sitter

parameter.

Theorem 2. Let γ, β : I → Mn+2 be two null Cartan curves parameterized by
the same de Sitter parameter σ, where I ⊂ R is an open interval. Suppose that
γ and β have the same shape Cartan curvatures; namely, κ̃γ = κ̃β , τ̃γ = τ̃β and
κ̃iγ = κ̃iβ (3 ≤ i ≤ n) for all σ ∈ I. Then, there exists a f ∈Simn

(
Mn+2

)
such

that β = f ◦ γ.

Proof. Let κγ , τγ , κiγ and κβ , τβ , κiβ (3 ≤ i ≤ n) be the Cartan curvatures and
also s and s∗ be the pseudo-arc length parameters of γ and β, respectively. Using
the equality κ̃γ = κ̃β , we get |κγ | = µ |κβ | for some real constant µ > 0. Then,

the equality τ̃γ = τ̃β imply τγ = µτβ . Therefore, we find ds =
1
√
µ
ds∗ from the

definition of de Sitter parameter σ.
There exists a Lorentzian motion φ = A ◦ T of Mn+2 satisfying the equality

φ (γ (σ0)) = β (σ0) for any fixed σ0 ∈ I, where A is a null rotation and T is a
translation map, such that φ maps the pseudo-orthonormal frame Csim

γ to pseudo-

orthonormal frame Csim
β . Therefore, the map g = µφ : Mn+2 → Mn+2 is a n-

similarity transformation of Mn+2. Let’s define a function Φ : I → R as the
following

Φ (σ) =

∥∥∥∥ d

dσ
g (γ (σ))− d

dσ
β (σ)

∥∥∥∥2 for ∀σ ∈ I.

Taking derivative of this function with respect to σ, we conclude that

dΦ

dσ
= 2g

(
d2γ

dσ2

)
· g
(
dγ

dσ

)
− 2

[
g

(
d2γ

dσ2

)
· dβ
dσ

]
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− 2
d2β

dσ2
· g
(
dγ

dσ

)
+ 2

[
d2β

dσ2
· dβ
dσ

]
.

Then, we obtain the following equation

dΦ

dσ
= 0

since we have

dγ

dσ
=

1

2 |κγ |
Lsim
γ ,

d2γ

dσ2
=

κ̃γ

2 |κγ |
Lsim
γ +

1

2 |κγ |
Wsim

1γ

from (9). Also, we can find

d

dσ
g (γ (σ0)) = g

(
1

2 |κγ |
Lsim
γ (σ0)

)
=

1

2 |κβ |
Lsim
β (σ0) =

d

dσ
β (σ0) ,

which implies Φ (σ0) = 0. This means that

d

dσ
g (γ (σ)) =

d

dσ
β (σ)

or equivalently β (σ) = g (γ (σ)) + b for all σ where b is a constant vector. Thus,
the image of γ under the n-similarity f = E ◦ g is the null Cartan curve β, where
E : Mn+2 → Mn+2 is a translation determined by b. □

The following theorem shows that every two functions determine a null Cartan
curve according to a n-similarity under some initial conditions.

Theorem 3. Let zi : I → R, i = 1, 2, . . . n be smooth functions and L0sim, N0sim,
W0sim

1 , W0sim
2 , . . . ,W0sim

n be a pseudo-orthonormal frame at a point x0 in the
Minkowski space Mn+2. According to a n-similarity, there exists a unique null
Cartan curve γ : I → Mn+2 parameterized by the de Sitter parameter σ such that
γ satisfies the following conditions:

(i) There exists σ0 ∈ I such that γ (σ0) = x0 and the shape Cartan frame of γ
at x0 is L0sim, N0sim, W0sim

1 , W0sim
2 , . . . ,W0sim

n .
(ii) κ̃γ (σ) = z1 (σ), τ̃γ (σ) = z2 (σ) and κ̃iγ (σ) = zi (σ) (3 ≤ i ≤ n) for all

σ ∈ I.

Proof. Let us consider the following system of differential equations with respect

to a matrix-valued function K (σ) =
(
Lsim,Nsim,Wsim

1 ,Wsim
2 , . . . ,Wsim

n

)T
dK

dσ
(σ) = M (σ)K (σ) (15)
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with a given matrix

M (σ) =



0 0 1 0 0 0 . . . 0
0 0 z z2 0 0 . . . 0
−z −1 0 0 0 0 . . . 0
−z2 0 0 0 z3 0 . . . 0
0 0 0 −z3 0 z4 . . . 0
0 0 0 0 −z4 0 . . . 0
...

...
...

... · · ·
. . .

...
...

0 0 0 0 0 · · · −zn 0


,

where z (σ) = ±1

2
− z21

2
+

dz1
dσ

. The system (15) has a unique solution K (σ) which

satisfies the initial conditions

K (σ0) =
(
L0sim,N0sim,W0sim

1 ,W0sim
2 , . . . ,W0sim

n

)T
Then, we can write

d

dσ

(
J∗KTJ∗K

)
= J∗ d

dσ
KTJ∗K+ J∗KTJ∗ d

dσ
K

= J∗KT
(
MTJ∗ + J∗M

)
K = 0

since we have the equation MTJ∗ + J∗M =
[
0
]
(n+2)×(n+2)

. Also, we have

J∗KT (σ0)J
∗K (σ0) = I

where I is the unit matrix since L0sim, N0sim, W0sim
1 , W0sim

2 , . . . ,W0sim
n is the

pseudo-orthonormal (n+2)-frame. As a result, we find J∗XT (σ)J∗X (σ) = I for
all σ ∈ I. This means that the vector fields Lsim, Nsim, Wsim

1 , Wsim
2 , . . . ,Wsim

n

form a pseudo-orthonormal frame field in Mn+2.
Let γ : I → Mn+2 be a null curve given by

γ (σ) = x0 +
1

2

∫ σ

σ0

e2
∫
z1(σ)dσLsim (σ) dσ, σ ∈ I. (16)

By the equality (15), we get that γ (σ) is a similar null Cartan curve with the cur-
vatures κ̃γ (σ) = z1 (σ), τ̃γ (σ) = z2 (σ) and κ̃iγ (σ) = zi (σ) (3 ≤ i ≤ n) in Mn+2.

Also, we find
√

1
2e

2
∫
z1(σ)dσdσ = ds by using (2) and (15) , where s is a pseudo-arc

parameter; thus, σ is the de Sitter parameter of the null Cartan curve γ. Be-
sides, the pseudo-orthonormal (n+2)-frame Lsim, Nsim, Wsim

1 , Wsim
2 , . . . ,Wsim

n

is a shape Cartan frame of the null Cartan curve γ under the n-similarity transfor-
mation. □

Remark 1. In case of κ̃γ (σ) = 0, the Cartan curvature |κγ | = d is a positive real
constant. Then, the parametrization of a null curve γ : I → Mn+2 with κ̃γ (σ) = 0
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with respect to de Sitter parameter σ is given by

γ (σ) = x0 +
1

2d

∫ σ

σ0

Lsim (σ) dσ, σ ∈ I (17)

from the equation (9) and (16).

Example 1. Let’s choose κ̃γ = − tanh
(
σ
2

)
and τ̃γ = 4 for the shape Cartan

curvatures of a null curve γ : I → M4 with the initial conditions

L0sim =

(
1√
2
, 0,

1√
2
, 0

)
, N0sim =

(
−1√
2
, 0,

1√
2
, 0

)
, (18)

W0sim
1 =

(
0,

1√
2
, 0,

1√
2

)
, W0sim

2 =

(
0,

−1√
2
, 0,

1√
2

)
.

Then, we get ξ̃γ = 0 and the system (15) determines a null vector Lsim given by

Lsim (σ) =
1√
2
(cosh(2σ), 0, cosh(2σ), 0) (19)

with Lsim (0) = L0sim, in M4. The parametrization of null Cartan curve γ is found
as

γ (σ) =
2
√
2

3

(
3σ +

12e2σ + 21eσ + 11

(1 + eσ)
3 , 0, 3σ +

12e2σ + 21eσ + 11

(1 + eσ)
3 , 0

)
for any σ ∈ I by solving the equation (16).

5. Self-similar Null Cartan Curves

In this section, the concept of self-similarity is applied to null Cartan curves.
Self-similar spacelike and timelike curves were studied by [27] and were defined as
curves with constant p-shape curvatures. This idea can be extended to a null Cartan
curve γ : I → Mn+2; that is, γ is called self-similar if shape Cartan curvatures of
γ are constant.

A null curve is called a null helix if it has the constant Cartan curvatures which
are not all zero in Mn+2. A null helix is automotically a self-similar null Cartan
curve in Mn+2. Thus, null helices can be considered as a subclass of self-similar null
Cartan curves.

5.1. Self-similar null Cartan curves in M4. Now, we determine the parametriza-
tions of all self-similar null Cartan curves by means of the constant shape Cartan
curvatures in the Minkowski space-time. They can be examined by separating into
four different cases as follows. For each case, we choose the initial conditions (18)
in the example 1.

• Case 1: Let’s take κ̃γ1
= 0 and τ̃γ1

= 0, which means ξ̃γ1
= ± 1

2 .

• Case 2: Let’s take κ̃γ1
= 0 and τ̃γ1

= a ̸= 0, which means ξ̃γ1
= ± 1

2 .
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• Case 3: Let’s take κ̃γ1
= b ̸= 0 and τ̃γ1

= 0, which means ξ̃γ1
is also a

constant different from 0 and ± 1
2 .

• Case 4: Let’s take κ̃γ1
= b ̸= 0 and τ̃γ1

= a ̸= 0, which means ξ̃γ1
is also

a constant different from 0 and ± 1
2 .

All the cases above correspond to the following two general cases:

• GCase 1: Let’s take ξ̃γ1
= c ̸= 0 and τ̃γ1

= 0, such that it corresponds to
the Case 1 and Case 3.

• GCase 2: Let’s take ξ̃γ1
= c ̸= 0 and τ̃γ1

= a ̸= 0, such that it corresponds
to the Case 2 and Case 4.

GCase 1: Using the equation (15) , we obtain the following differential equation(
Lsim

)′′′
+ 2c

(
Lsim

)′
= 0

and by solving this equation, we conclude that if c > 0

Lsim (σ) =
1√
2

(
1, 0, cos

(√
2cσ
)
, sin

(√
2cσ
))

and if c < 0

Lsim (σ) =
1√
2

(
cosh

(√
−2cσ

)
, sinh

(√
−2cσ

)
, 1, 0

)
.

If the Case 1 is valid, we use the equation (17) so that we get the following
parametrization of the self-similar null Cartan curve

γ1 (σ) =
1

2
√
2d

(
σ, 0,

sin
(√

2cσ
)

√
2c

,−
cos
(√

2cσ
)

√
2c

)
when c > 0 and

γ2 (σ) =
1

2
√
2d

(
sinh

(√
−2cσ

)
√
−2c

,
cosh

(√
−2cσ

)
√
−2c

, σ, 0

)
when c < 0.

Since ξ̃γ1
= c = ± 1

2 for the Case 1, we obtain

γ1 (σ) =
1

2
√
2d

(σ, 0, sin (σ) ,− cos (σ))

for c = 1/2 and

γ2 (σ) =
1

2
√
2d

(sinh (σ) , cosh (σ) , σ, 0)

for c = −1/2.



SIMILAR AND SELF-SIMILAR NULL CARTAN CURVES 91

If the Case 3 is valid, we use the equation (16) so that we get the following
parametrization of the self-similar null Cartan curve

γ3 (σ) =

1

2
√
2
(
e2bσ

2b
, 0,

e2bσ

4b2 + 2c

(
2b cos

(√
2cσ
)
+

√
2c sin

(√
2cσ
))

,

e2bσ

4b2 + 2c

(
2b sin

(√
2cσ
)
−

√
2c cos

(√
2cσ
))
)

when c > 0 and

γ4 (σ) =

1

4
√
2
(
cosh (m1σ) + sinh (m1σ)

m1
− cosh (m2σ) + sinh (m2σ)

m2
,

cosh (m1σ) + sinh (m1σ)

m1
+

cosh (m2σ) + sinh (m2σ)

m2
,
e2bσ

b
, 0)

when c < 0, where m1 = 2b+
√
−2c, m2 = 2b−

√
−2c ̸= 0 and c = ±1

2
− b2

2
.

GCase 2: Using the equation (15) , we obtain the following differential equation(
Lsim

)ıv
+ 2c

(
Lsim

)′′ − a2Lsim = 0

and by solving this equation, we conclude that

Lsim (σ) =
1√
2
(cosh (q1σ) , sinh (q1σ) , cos (q2σ) , sin (q2σ))

where q1 =
√

−c+
√
c2 + a2, q2 =

√
c+

√
c2 + a2. and c = ±1

2
− b2

2
.

If the Case 2 is valid, we use the equation (17) so that we get the following
parametrization of the self-similar null Cartan curve

γ5 (σ) =
1

2d
√
2

(
sinh (q1σ)

q1
,
cosh (q1σ)

q1
,
sin (q2σ)

q2
,−cos (q2σ)

q2

)
.

If the Case 4 is valid, we use the equation (16) so that we get the following
parametrization of the self-similar null Cartan curve

γ6 (σ) =
1

4
√
2
(
cosh (n1σ) + sinh (n1σ)

n1
+

cosh (n2σ) + sinh (n2σ)

n2
,

cosh (n1σ) + sinh (n1σ)

n1
− cosh (n2σ) + sinh (n2σ)

n2
,

4be2bσ cos (q2σ) + 2q2e
2bσ sin (q2σ)

4b2 + q22
,
−2q2e

2bσ cos (q2σ) + 4be2bσ sin (q2σ)

4b2 + q22
)

where n1 = 2b+ q1 ̸= 0, n2 = 2b− q1 ̸= 0.
From the above calculations, we obtain the following result.

Theorem 4. Let γ be a null Cartan curve in M4. Then γ is a self-similar null
Cartan curve if and only if it is congruent to one of the curves γ1, γ2 γ3, γ4, γ5and
γ6.
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In [4], null helices were defined and found their parametrizations in M4. When
we compare the parametrizations of null helices with self-similar null curves, we
conclude that null helices are a special class of self-similar null Cartan curves in
M4. For example, a null helix satisfying τ ̸= 0 are expressed by

α (s) =

√
1

v2 + r2

(
1

v
sinh vs,

1

v
cosh vs,

1

r
sin rs,−1

r
cos rs

)
(20)

where v =
√√

κ2 + τ2 − κ and r =
√√

κ2 + τ2 + κ and this curve is a kind of
self-similar null Cartan curve γ5 (see also [10] for null helices).

In [10], Theorem 3.2 says that a null Cartan curve γ lies on S31 (r) iff τγ ̸= 0
is a constant in M4. Then, we conclude that the self-similar null Cartan curve lying
on S31 (r) is similar to γ5 because of the definitions κ̃γ and τ̃γ . On the other hand,
in [7], Theorem 3.10 states that there are no null curves lying on H3

0 (r) in M4,
which means that there is no a self-similar (similar) null Cartan curve lying on
H3

0 (r) .

6. Concluding Remarks

In the current paper, the similarity geometry of a null Cartan curve in Minkowski-
Lorentzian spaces was investigated and self-similar null Cartan curves were studied
in Minkowski space-time. Next study will be about self-similar null Cartan curves
in Lorentzian space forms like null helices studied in [15].

The motions of curves in E2, E3 and En (n > 3) yield the mKdV hierarchy,
Schrödinger hierarchy and a multi- component generalization of mKdV-Schrödinger
hierarchies, respectively. KS. Chou and C. Qu [9] showed that the motions of curves
in two-, three- and n-dimensional (n > 3) similarity geometries correspond to the
Burgers hierarchy, Burgers-mKdV hierarchy and a multi-component generalization
of these hierarchies by using the similarity invariants of curves in comparison with
its invariants under the Euclidean motion. Also, they [8] found that many 1+1-
dimensional integrable equations like KdV, Burgers, Sawada-Kotera, Harry-Dym
hierarchies and Camassa-Holm equations arise from motions of plane curves in
centro-affine, similarity, affine and fully affine geometries. The motion of curves
on two-dimensional surfaces in E3

1 was considered by Gürses [18]. Therefore, the
motion of Lorentzian similar (null and nonnull) curves in Lorentzian-Minkowski
similarity geometries will be investigated as well.

Declaration of Competing Interests The author declares that he has no com-
peting interest.
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[18] Gürses, M., Motion of curves on two-dimensional surfaces and soliton equations, Physics

Letters A, 241(6) (1998), 329-334. https://doi.org/10.1016/S0375-9601(98)00151-0
[19] Hughston, L.P., Shaw, W.T., Real classical strings, Proc. Roy. Soc. London Ser. A, 414

(1987), 415-422.

[20] Hughston, L.P., Shaw, W.T., Classical strings in ten dimensions, Proc. Roy. Soc. London
Ser. A, 414 (1987), 423-431.

[21] Hutchinson, J.E., Fractals and self-similarity, Indiana University Mathematics Journal, 30(5)

(1981).
[22] Kamishima, Y., Lorentzian similarity manifolds, Cent. Eur. J. Math., 10(5) (2012), 1771-

1788. Doi: 10.2478/s11533-012-0076-9

[23] Li, S.Z., Invariant Representation, Matching and Pose Estimation of 3D Space
Curves Under Similarity Transformation, Pattern Recognition, 30(3) (1997), 447-458.

https://doi.org/10.1016/S0031-3203(96)00089-1



94 H. ŞIMŞEK
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EXPONENTIAL STABILITY OF A TIMOSHENKO TYPE

THERMOELASTIC SYSTEM WITH GURTIN-PIPKIN

THERMAL LAW AND FRICTIONAL DAMPING

Abdelfeteh FAREH

Laboratory of Operator Theory and PDE’s, University of El Oued, ALGERIA

Abstract. In this paper we consider a linear thermoelastic system of Timo-

shenko type where the heat conduction is given by the linearized law of Gurtin-

Pipkin. An existence and uniqueness result is proved by the use of a semigroup
approach. We establish an exponential stability result without any assumption

on the wave speeds once here we have a fully damped system.

1. Introduction

In the present paper we investigate the well-posedness and the asymptotic be-
havior of the following Timoshenko type system ρ1utt = κ (ux + φ)x in (0, π)× R+,

ρ2φtt = bφxx − κ (ux + φ) + δθ − τφt in (0, π)× R+,
cθt = −qx − δφt in (0, π)× R+,

(1)

where u is the transverse displacement of a beam of length π, φ is the rotation angle
of filament, θ is the temperature variation from an equilibrium reference value and
q is the heat flux. The coefficients ρ1, ρ2, c, κ, τ are positive and present the mass
density, the polar moment of inertia of a cross section, the specific heat constant,
the shear modulus and the intensity of the frictional damping respectively, b = EI
is the product of Young’s modulus of elasticity and the moment of inertia of a cross
section, β and δ are coupling constants that are different from zero but their signs
does not matter in the analysis.

To render the system (1) determined an additional equation relating q and θ is
needed. In the classical theory of thermoelasticity the constitutive equation for the
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heat flux is expressed through Fourier’s law of heat conduction

q = −kθx, (2)

where k > 0 represents the coefficient of the thermal conductivity of the material.
In 1921, Timoshenko [32] introduced a shear deformation and a rotational iner-

tia into the derivation of the vibrating beam theory. He modelled the transverse
vibrations of a beam by the conservative system{

ρutt = (K(ux − φ))x, in (0, L)× (0,∞)
Iρφtt = (EIφx)x +K(ux − φ), in (0, L)× (0,∞).

(3)

In the last three decades, the system (3) has been intensively studied for possible
damping mechanisms. Muñoz Rivera and Racke [25] introduced a thermal damping
by coupling system (3) with the classical heat equation. They proved that the
system  ρ1φtt = k (φx + ψ)x ,

ρ2ψtt = bψxx − k (φx + ψ) + γθx,
cθt = κθxx − γψtx.

(4)

(of course with some boundary and initial conditions), is exponentially stable if and
only if

ρ1
k

=
ρ2
b
. (5)

If (5) does not hold Guesmia et al. [17] established a polynomial decay result pro-
vided that the initial data are regular enough.

Almeida Junior et al. [1] considered the thermal coupling of the system (3) in
shear force  ρ1φtt − κ (φx + ψ)x + σθx = 0 in (0, L)× R+,

ρ2ψtt − bψxx + κ (φx + ψ)− σθ = 0 in (0, L)× R+,
ρ3θt − γθxx + σ (φx + ψ)t = 0 in (0, L)× R+,

(6)

subjected to either the boundary conditions

φ(t, 0) = φ(t, L) = ψ(t, 0) = ψ(t, L) = θ(t, 0) = θ(t, L) = 0, (7)

or

φ(t, 0) = φ(t, L) = ψx(t, 0) = ψx(t, L) = θx(t, 0) = θx(t, L) = 0, (8)

and proved that the solution is exponentially stable if and only if

χ =
κ

ρ1
− b

ρ2
= 0. (9)

Otherwise, when (9) does not hold, the authors showed that the system is poly-
nomially stable with a rate of decay t−1/4 for the boundary conditions (7) and an
optimal rate of decay t−1/2 for the boundary conditions (8). Recently [18] reached
the rate t−1/2 for the boundary conditions (7) and

φx(t, 0) = φx(t, L) = ψ(t, 0) = ψ(t, L) = θx(t, 0) = θx(t, L) = 0.
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Alves et al. [2] improve the results of [1] for the case of different wave speeds and
obtained the same rate of decay t−1/2 independently of the boundary conditions.
Later, Alves et al. [3] extended the results of [1] to the non-homogeneous case with
the boundary conditions (7). Precisely, they established an exponential stability
provided that the non-homogeneous wave speeds satisfy the condition

κ (x)

ρ1 (x)
=

b (x)

ρ2 (x)
, x ∈ I ⊂ (0, L) , (10)

in an open subinterval I of (0, L). When (10) does not hold they obtained a
polynomial stability result with a rate of decay depending on the regularity of the
initial data.

Recently, Jorge-Silva and Racke [19] considered (6) with Cattaneo’s law and
proved that there is non exponential stability no matter if (9) holds which confirms
the result of [10].

We recall that the model using Fourier’s law (2) leads to a parabolic equation.
Consequently, the heat propagates with an infinite speed, that is, any thermal dis-
turbance produced at some point in the body has an instantaneous effect elsewhere
in the body. To overcome this physical paradox, many theories were developed.
Green and Naghdi [12–14] expanded three new theories based on an entropy equal-
ity rather than the entropy inequality. They called them thermoelasticity of type
I, type II and type III respectively. In each of these theories the equation for the
heat flux is given by a different constitutive assumption. The constitutive equation
for the heat flux in the type III theory is given by

q = −f1αx − f2θx,

where

α = α0 (x) +

∫ t

0

θ (x, τ) dτ

is the thermal displacement and f1, f2 are two positive constants.
In the framework of the thermoelasticity of type III, Messaoudi and Said-Houari

[24] considered the following Timoshenko type system ρ1φtt −K (φx + ψ)x = 0 in (0, 1)× (0,+∞) ,
ρ2ψtt − bψxx +K (φx + ψ) + βθx = 0 in (0, 1)× (0,+∞) ,
ρ3θtt − δθxx + βψttx + κθtxx = 0 in (0, 1)× (0,+∞) ,

and showed that the solution (φ,ψ, θ) decays exponentially provided that K
ρ1

= b
ρ2
.

The case of non equal speeds was examined by Messaoudi and Fareh [23]. They
established a polynomial rate of decay. Fatori et al. [9] show that the optimal rate
in this case is t−1/2.
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Santos and Almeida Júnior [30] extended the results of [23,24] to the Timoshenko
system with thermoelastic effect acting on a shear force ρ1φtt −K (φx + ψ)x + σθtx = 0 in (0, L)× (0,+∞) ,

ρ2ψtt − bψxx +K (φx + ψ)− σθt = 0 in (0, L)× (0,+∞) ,
ρ3θtt − δθxx + σ (φx + ψ)t − γθtxx = 0 in (0, L)× (0,+∞) .

The second theory proposed to overcome the paradox of infinite speed was de-
veloped by Lord and Shulman [21]. They suggested to replace Fourier’s law (2) by
Cattaneo’s one

τ0qt + q + kθx = 0,

where the positive constant τ0 represents the time lag in the response of the heat
flux to the temperature gradient and is referred to as the thermal relaxation time.
According to this theory, the system becomes fully hyperbolic, as a result the heat
propagates with a finite speed and is viewed as a wave-like propagation rather than
a diffusion phenomenon. A wave-like thermal disturbance is referred to as a second
sound (where the first sound being the usual sound) and a nonclassical theory
predicting the occurrence of such disturbances are known as thermoelasticity with
finite wave speeds or second sound thermoelasticity.

Fernández Sare and Racke [10] considered the following Timoshenko type system
with second sound thermoelasticity

ρ1φtt − k (φx + ψ)x = 0,
ρ2ψtt − bψxx + k (φx + ψ) + δθx = 0,
ρ3θt + γqx + δψtx = 0,
τ0qt + q + κθx = 0,

(11)

and proved that the solution of (11) is no longer exponentially stable even if ρ1k = ρ2
b .

However, the incorporation of the frictional damping µφt into the first equation of
(11) produces an exponential stability independently of the wave speeds [22].

Santos et al. [31] introduced the stability number

χ0 =

(
τ − ρ1

ρ3κ

)(
ρ2 −

bρ1
κ

)
− τρ1δ

2

κρ3
,

and proved that the solution of (11) is exponentially stable provided that χ0 = 0.
It is worth noting that the type III thermoelasticity and the second sound ther-

moelasticity are unable to describe the memory effect which reigns in some materi-
als, particularly at a low temperature. This fact leads to the look for a more general
constitutive assumption relating the heat flux to the thermal memory. Gurtin and
Pipkin [16] assumed that the heat flux depends on the integrated history of the
temperature gradient, and established a general nonlinear theory for which ther-
mal disturbances propagate with a finite speed. In accordance with this theory, the
linearized constitutive equation for q is given by

q = −
∫ t

−∞
k (t− s) θx (x, s) ds, (12)
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where k(s) is the heat conductivity relaxation kernel. The presence of the convolu-
tion term (12) renders the Timoshenko system coupled with the heat equation into
a fully hyperbolic system, which allows the heat to propagate with a finite speed
and admits to describe the memory effect of the heat conduction.

In the context of Gurtin-Pipkin theory Pata and Vuk [26] studied the linear
thermoelastic system {

utt(x, t) = uxx(x, t)− θx(x, t),
θt (x, t) = −utx (x, t)− qx (x, t) ,

where the heat flux q is given by (12). They proved, under some assumptions on
µ (s) = −k′ (s), that the solution of the system decays exponentially. Fatori and
Muñoz Rivera [8] considered the system{

utt − auxx + αθx = 0 in (0, L)× R+

θt − k ∗ θxx + αuxt = 0 in (0, L)× R+,

where

(k ∗ θxx) (t) =
∫ t

0

k (t− τ) θxx (τ) dτ,

and established an exponential decay result provided that the kernel k is positive
definite and decays exponentially.

Concerning Timoshenko systems coupled with the heat equation in the frame-
work of Gurtin-Pipkin’s theory, Dell’Oro an Pata [7] analyzed the following system

ρ1φtt − κ (φx + ψ)x = 0,
ρ2ψtt − bψxx + κ (φx + ψ) + δθx = 0,

ρ3θt −
1

β

∫ ∞

0

g (s) θxx (t− s) ds+ δψtx = 0,
(13)

and proved that the semigroup associated with the solution of the system (13) is
exponentially stable if and only if

χg =

[
ρ1
ρ3κ

− β

g (0)

] [ρ1
κ

− ρ2
b

]
− β

g (0)

ρ1δ
2

ρ3κb
= 0.

Closely related to Timoshenko’s beam theory, Raposo [29] investigated the lami-
nated Timoshenko system ρ1utt − κ (ux − ψ)x + αut = 0 in (0, L)× R+,

ρ2(s− ψ)tt − b(s− ψ)xx + κ (ψ − ux) + β(s− ψ)t = 0 in (0, L)× R+,
ρ2stt − bsxx + 3κ(ψ − ux) + 4δs+ 4γst = 0 in (0, L)× R+,

(14)
and obtained an exponential stability result. Regarding the damping by the heat
conduction, Liu and Zhao [20] showed that the laminated beam coupled with the
heat equation modelled via Fourier’s law of the heat conduction is exponentially
stable provided that the wave speeds are equal. Apalara [4] obtained the same result
by coupling the laminated beam with the heat equation moddeled via Cattaneo’s
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law, provided that the equal wave speeds is replaced by a relation between the
coefficients of the system. Choucha et al. [5] added a distributed delay and proved
the exponential and the polynomial stability for the equal and the non-equal wave
speeds respectively. They also kept the same results in the presence of a viscoelastic
damping and a distributed delay [6].

In view of the aforementioned studies we can summarized the stability results
for Timoshenko systems coupled with thermal effects as follows:

i) A fully damped Timoshenko system with parabolic thermal effects is expo-
nentially stable regardless any restriction on the wave speeds.

ii) A Timoshenko system damped only by thermal effects is exponentially sta-
ble if and only if the coefficients of the system satisfy a stability condition
(equal wave speeds, in the case of the classical parabolic heat equation).

To the best of my knowledge there is no results concerning the fully damped
Timoshenko system with hyperbolic thermal dissipation. One can expected that
this leads to an exponential stability. In the present paper we give a positive answer
to this concern.

It should be noted here, that replacing the parabolic heat conduction by a hyper-
bolic type one is not obviously profitable, first, because the system becomes fully
hyperbolic and therefore it loses the exponential decay reached with one dissipa-
tion when (5) holds, (see [10, 28]), secondly, because the dissipative effects due to
the hyperbolic type heat conduction are generally weaker than those induced by
Fourier’s law.

In the present paper we consider the fully damped case of (13) and prove the
exponential stability of the solution without any condition. The importance of our
result manifested from the fact that the case of equal speeds is purely mathematical,
since it is physically never satisfied [15]. Therefore, the stability result obtained
without any restriction on the coefficients is more realistic than that obtained with
a stability condition.

Note that the presence of the convolution term in the constitutive equation for
q renders the family operators mapping the initial value (u0, u1, φ0, φ1, θ0) into the
solution (u, φ, θ) not match the semigroup properties. This is due to the fact that
the solution value of θ at time t depends on the whole function up to time t.

In order to overcome this difficulty we introduce the new variables

θt(x, s) = θ(x, t− s), s ≥ 0,

and

η(x, s) = ηt(x, s) =

∫ s

0

θt(x, τ)dτ, s ≥ 0,

which denote the past history and the summed past history of θ up to t, respectively.
Clearly ηt (x, s) satisfies the boundary conditions

η(0, s) = η(π, s) = 0.
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Moreover, we assume that k (∞) = 0 and η(x, 0) = lim
s−→0+

ηt(x, s) = 0, then

q = −
∫ t

−∞
k (t− s) θx (x, s) ds =

∫ ∞

0

k′ (s) ηtx (x, s) ds.

Further, we have

ηt(x, s) = θ − ηs(x, s). (15)

Setting µ (s) = −k′ (s) , the system (1) and equations (12), (15) become
ρ1utt = κ (uxx + φx)− βθx in (0, π)× R+,
ρ2φtt = bφxx − κ (ux + φ) + δθ − τφt in (0, π)× R+,

cθt =

∫ ∞

0

µ (s) ηtxx (s) ds− βuxt − δφt in (0, π)× R+,

ηtt (s) = θ − ηts (s) in (0, π)× R+ × R+.

(16)

The system (16) is complemented with the boundary conditions

u(0, t) = u(π, t) = φx(0, t) = φx(π, t) = θ(0, t) = θ(π, t) = 0,
η(0, s) = η(π, s) = 0,∀t ∈ R+, η(x, 0) = 0, ∀x ∈ (0, π),

(17)

and the initial data

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , φ (x, 0) = φ0 (x) ,
φt (x, 0) = φ1 (x) , θ (x, 0) = θ0 (x) , η

0 (x, s) = η0 (x, s) .
(18)

Regarding the memory kernel µ, we assume the following set of hypotheses:
(h1) µ ∈ C (R+) ∩ L1 (R+) ,
(h2) µ (s) ≥ 0, µ′ (s) ≤ 0 ∀s ≥ 0,
(h3)

∫∞
0
µ (s) ds = k0 > 0,

(h4) there exists ξ > 0, such that µ′ (s) ≤ −ξµ (s) , ∀s ≥ 0.
The rest of the paper is organized as follows: in Section 2, we introduce some

functional preliminaries. Section 3 is devoted to the proof of an existence and
uniqueness result. In Section 4, we state and prove our stability result.

2. Functional Setting

Let A = −D2 be the operator defined over L2 (0, π) . It is well known that the
operator A with the Dirichlet boundary conditions is a self-adjoint and positive
operator with domain D (A) = H2 ∩H1

0 . Thus, it is possible to define the powers
Aα of A for α ∈ R, and the Hilbert space Vα = D

(
Aα/2

)
endowed with the inner

product

⟨u, v⟩α =
〈
Aα/2u,Aα/2v

〉
and the associated norm denoted by ∥u∥α . In particular, V0 = L2, V−1 = H−1,
V1 = H1

0 and 〈
A1/2u,A1/2v

〉
= ⟨Du,Dv⟩ , ∀u, v ∈ H1

0 .

For α1 > α2 the injection Vα1
↪→ Vα2

is continuous.
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Furthermore, we introduce the weighted Hilbert space

M1=L
2
µ

(
(0,+∞) ;H1

0 (0, π)
)

with the inner product

⟨η, ζ⟩M1
=

∫ ∞

0

µ (s) ⟨η (s) , ζ (s)⟩1 ds

and the norm

∥η∥2M1
=

∫ ∞

0

µ (s) ∥Dη (s)∥2 ds.

We shall also need to define the spaces

M0=L
2
µ

(
(0,+∞) ;L2 (0, π)

)
and

K=H1
µ

(
(0,+∞) ;H1

0 (0, π)
)

= {η/η, ηs ∈ M1} .

The following lemma will be useful in the proof of our main result.

Lemma 1. Let v ∈ L2 (0, π) be given and

v =
1

π

∫ π

0

v (x) dx

the mean value of v. Then,

∥Dv∥−1 = ∥v − v∥ . (19)

Proof. We have

∥Dv∥−1 = sup
∥Dψ∥=1

|⟨Dv,ψ⟩| = sup
∥Dψ∥=1

|⟨v,Dψ⟩| ≤ ∥v∥ .

Let ψ (x) = 1
∥v∥

∫ x
0
v (y) dy, then ∥Dψ∥ = 1 and

|⟨Dv,ψ⟩| = ∥v∥ ≤ ∥Dv∥−1 .

Therefore,

∥Dv∥−1 = ∥v∥ .
Suppose that v = 0, then

∥Dv∥−1 = ∥v − v∥ .
If v ̸= 0, then

∥Dv∥−1 = ∥D (v − v)∥−1 = ∥v − v∥ .
□
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3. Well Posedness

In this section we prove that the problem determined by (16)-(18) has a unique
solution. The main tools of the proof are the Lumer-Phillips and the Lax-Milgram
theorems. First we need to rewrite the problem in the semigroups setting.

Let H be the Hilbert space

H =H1
0 × L2 ×H1

∗ × L2
∗ × L2 ×M1

endowed with the inner product

⟨U,U∗⟩ = κ

∫ π

0

(ux + φ) (u∗x + φ∗) dx+ ρ1

∫ π

0

vv∗dx+ b

∫ π

0

φxφ
∗
xdx

+ρ2

∫ π

0

ϕϕ∗dx+ c

∫ π

0

θθ∗dx+

∫ ∞

0

∫ π

0

µ (s) ηx (s) η
∗
x (s) dxds

and the associated norm

∥U∥2H = κ ∥ux + φ∥2 + ρ1 ∥v∥
2
+ b ∥φx∥

2
+ ρ2 ∥ϕ∥

2
+ c ∥θ∥2 + ∥η∥2M1

.

We note that by virtue of the inequalities

u2x ≤ 2 (ux + φ)
2
+ 2φ2,

(ux + φ)
2 ≤ 2u2x + 2φ2,

the above norm in H is equivalent to the usual norm. Therefore, we use either of
the norms indifferently.

To rewrite the system (16) in the semigroup setting we introduce the new vari-
ables v = ut and ϕ = φt, then the system (16) becomes

ut = v

vt =
κ
ρ1

(uxx (x, t) + φx (x, t))−
β
ρ1
θx (x, t)

φt = ϕ
ϕt =

b
ρ2
φxx (x, t)− κ

ρ2
(ux (x, t) + φ (x, t)) + δ

ρ2
θ (x, t)− τ

ρ2
ϕ (x, t)

θt (x, t) =
1
c

∫∞
0
µ (s) ηtxx (x, s) ds−

β
c vx (x, t)−

δ
cϕ (x, t)

ηtt (x, s) = θ (x, t)− ηtt (x, s)

and the problem (16)–(18) rewritten{
d

dt
U = AU, t > 0,

U (0) = U0,
(20)
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where, A is the operator defined by

AU =



v
κ

ρ1
uxx +

κ

ρ1
φx −

β

ρ1
θx

ϕ
b

ρ2
φxx −

κ

ρ2
ux −

κ

ρ2
φ+

δ

ρ2
θ − τ

ρ2
ϕ

1

c

∫ ∞

0

µ (s) ηxx (s) ds−
β

c
vx −

δ

c
ϕ

θ − ηs


with domain

D (A) :=

 U ∈ H;u, φ ∈ H2, v, θ ∈ H1
0 , ϕ ∈ H1

∗ , η ∈ H1
µ

(
(0,+∞) ;H1

0

)
,∫ ∞

0

µ (s) ηxx (s) ds ∈ L2, η (0) = 0

 .

Before stating the main result of this section let us recall the following theorems.

Theorem 1. (Lumer-Phillips) [27,33] Let A : D(A) ⊂ H −→H be a densely defined
operator. Then A generates a C0-semigroup of contractions on H if and only if

i) A is dissipative;
ii) there exists a constant λ > 0 such that λI −A is onto.

Theorem 2. [33] Let A : D(A) ⊂ H −→H be the infinitesimal generator of a
C0-semigroup {S(t); t ≥ 0}. Then, for each ξ ∈ D (A) and each t ≥ 0, we have
S(t)ξ ∈ D(A) and the mapping

S : [0,+∞[ −→ H
t −→ S(t)ξ

is of class C1 on [0,+∞[ and satisfies

d

dt
(S (t) ξ) = AS (t) ξ = S (t)Aξ.

Our main result reads as follows:

Theorem 3. Suppose that µ satisfies the hypotheses (h1)-(h4), then for any U0 =

(u0, u1, φ0, φ1, θ0, η0)
T ∈ H the problem (20) has a unique solution U ∈ C ((0,+∞) ;H).

Moreover, if U0 = (u0, u1, φ0, φ1, θ0, η0)
T ∈ D (A) then the solution U satisfies

U ∈ C ((0,+∞) ;D (A)) ∩ C1 ((0,+∞) ;H) .

Proof. First, we prove that A is dissipative. Indeed, for every U ∈ D (A) we have

⟨AU,U⟩ = κ

∫ π

0

(vx + ϕ) (ux + φ) dx+

∫ π

0

(κuxx + κφx − βθx) vdx+ b

∫ π

0

ϕxφxdx

+

∫ π

0

(bφxx − κux − κφ+ δθ − τϕ)ϕdx
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+

∫ π

0

(∫ ∞

0

µ (s) ηtxx (s) ds− βvx − δϕ

)
θdx

+

∫ π

0

∫ ∞

0

µ (s)
(
θx − ηtxs

)
ηx (s) dsdx,

= −τ
∫ π

0

ϕ2dx− 1

2

∫ ∞

0

µ (s)
d

ds
∥ηx (s)∥

2
ds.

For the second term in the right-hand side, we have∫ ∞

0

µ(s)
d

ds
∥ηx(s)∥2ds = µ(s)∥ηx(s)∥2

∣∣∞
0

−
∫ ∞

0

µ′(s)∥ηx(s)∥2ds.

Since µ (s) ∥ηx (s) ∥2 and µ (s) ∥ηxs (s) ∥2 belong to L1 (R+) and ηx(0) = 0, hence

lim
s→0

µ(s)∥ηx(s)∥2 = lim
s→0

µ(s)

∥∥∥∥∫ s

0

ηxs(τ)dτ

∥∥∥∥2 ,
≤ lim sup

s→0

(∫ s

0

µ(s)1/2 ∥ηxs(τ)∥ dτ
)2

.

The Cauchy-Schwarz inequality, leads to

lim
s→0

µ(s)∥ηx(s)∥2 ≤ lim sup
s→0

s

∫ s

0

µ(τ) ∥ηxs(τ)∥
2
dτ = 0.

Therefore,∫ ∞

0

µ(s)
d

ds
∥ηx(s)∥2ds = lim

s→∞
µ(s)∥ηx(s)∥2 −

∫ ∞

0

µ′(s)∥ηx(s)∥2ds.

The left-hand side of the last equation is bounded, and from (h2) both terms on
the right-hand side are positive. Then, the limit in the right hand side exists and
is finite, and therefore equals zero. Thus,

⟨AU,U⟩ = −τ
∫ π

0

ϕ2dx+
1

2

∫ ∞

0

µ′(s)∥ηx(s)∥2ds ≤ 0,

which proves the dissipativeness of A. Next, we show that A is maximal. Let

U∗ = (u∗, v∗, φ∗, ϕ∗, θ∗, η∗)
T ∈ H, and find U = (u, v, φ, ϕ, θ, η)

T ∈ D (A) such
that

(I −A)U = U∗, (21)

which reads in components
u− v = u∗, (22)

ρv − κuxx − κφx + βθx = ρ1v
∗, (23)

φ− ϕ = φ∗, (24)

(ρ2 + τ)ϕ− bφxx + κux + κφ− δθ = ρ2ϕ
∗, (25)

cθ −
∫ ∞

0

µ (s) ηtxx (s) ds+ βvx + δϕ = cθ∗, (26)

η − θ + ηs = η∗. (27)
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Solving equation (27) gives

η (s) =
(
1− e−s

)
θ +

∫ s

0

ey−sη∗ (y) dy. (28)

Substituting (22), (24) and (28) into (23), (25) and (26) we get
κuxx + κφx − βθx − ρ1u = −ρ1 (u∗ + v∗) ,

bφxx − κux − (κ+ ρ2 + τ)φ+ δθ = − (ρ2 + τ)φ∗ − ρ2ϕ
∗,

cµθxx − cθ − βux − δφ = − (cθ∗ + βu∗ + δφ∗)−
∫ ∞

0

µ (s)

(∫ s

0

ey−sη∗xx (y) dy

)
ds

(29)
where,

cµ =

∫ ∞

0

µ (s)
(
1− e−s

)
ds

is a positive constant. The last term in the right-hand side of the third equation of
(29) belongs to H−1. Indeed, let ψ ∈ H1

0 such that ∥ψx∥ ≤ 1, then∣∣∣∣〈∫ ∞

0

µ (s)

(∫ s

0

ey−sη∗xx (y) dy

)
ds, ψ

〉∣∣∣∣ = ∣∣∣∣〈∫ ∞

0

µ (s)

(∫ s

0

ey−sη∗x (y) dy

)
ds, ψx

〉∣∣∣∣
≤

∫ ∞

0

µ (s) e−s
(∫ s

0

ey ∥η∗x (y)∥ dy
)
ds

=

∫ ∞

0

ey ∥η∗x (y)∥
∫ ∞

y

µ (s) e−sdsdy

≤
∫ ∞

0

µ (y) ey ∥η∗x (y)∥
∫ ∞

y

e−sdsdy

=

∫ ∞

0

µ (y) ∥η∗x (y)∥ dy <∞.

At this point we multiply the equations (29)1,(29)2 and (29)3 by ũ, φ̃ and θ̃ respec-
tively, integrating over (0, π) and summing up, we obtain

B
(
U, Ũ

)
= L

(
Ũ
)
, (30)

where

B
(
U, Ũ

)
:= κ

∫ π

0

uxũxdx− κ

∫ π

0

φxũdx+ β

∫ π

0

θxũdx+ ρ1

∫ π

0

uũdx

+ b

∫ π

0

φxφ̃xdx+ κ

∫ π

0

uxφ̃dx+ (κ+ ρ2 + τ)

∫ π

0

φφ̃dx

− δ

∫ π

0

θφ̃dx+ cµ

∫ π

0

θxθ̃xdx+ c

∫ π

0

θθ̃dx+ β

∫ π

0

uxθ̃dx+ δ

∫ π

0

φθ̃dx,
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and

L
(
Ũ
)
:= ρ1

∫ π

0

(u∗ + v∗) ũdx+ (ρ2 + τ)

∫ π

0

φ∗φ̃dx− ρ2

∫ π

0

ϕ∗φ̃dx

+

∫ π

0

(cθ∗ + βu∗ + δφ∗) θ̃dx+

∫ π

0

θ̃

∫ ∞

0

µ (s)

(∫ s

0

ey−sη∗xx (y) dy

)
dsdx.

Clearly, B (·, ·) is a bounded bilinear form over W = H1
0 × H1

∗ × H1
0 and L is a

bounded linear form. Furthermore, we have

B (U,U) = κ

∫ π

0

u2xdx− κ

∫ π

0

φxudx+ β

∫ π

0

θxudx+ ρ1

∫ π

0

u2dx+ b

∫ π

0

φ2
xdx

+κ

∫ π

0

uxφdx+ (κ+ ρ2 + τ)

∫ π

0

φ2dx− δ

∫ π

0

θφdx+ cµ

∫ π

0

θ2xdx

+c

∫ π

0

θ2dx+ β

∫ π

0

uxθdx+ δ

∫ π

0

φθdx,

B(U,U) = κ

∫ π

0

(ux + φ)
2
dx+ ρ1

∫ π

0

u2dx+ b

∫ π

0

φ2
xdx

+ (ρ2 + τ)

∫ π

0

φ2dx+ cµ

∫ π

0

θ2xdx+ c

∫ π

0

θ2dx.

Therefore, there exists a positive constant α such that

B (U,U) ≥ α ∥U∥2 .

Thus, B (·, ·) is coercive and by means of the Lax-Milgram theorem, the problem
(30) has a unique solution

(u, φ, θ) ∈ W.

Moreover, taking
(
ũ, φ̃, θ̃

)
= (ũ, 0, 0) in (30) we get

κ

∫ π

0

uxũxdx =

∫ π

0

(κφx − βθx − ρ1u+ ρ1 (u
∗ + v∗)) ũdx, ∀ũ ∈ H1

0 . (31)

Using standard arguments of elliptic equations we infer that

u ∈ H2(0, π) ∩H1
0 (0, π),

with

κuxx = −κφx + βθx + ρ1u− ρ1 (u
∗ + v∗) ,

which solves (29)1. Similarly, by choosing
(
ũ, φ̃, θ̃

)
= (0, φ̃, 0) , we obtain

b

∫ π

0

φxφ̃xdx = −
∫ π

0

(κ (ux + φ) + (ρ2 + τ) (φ− φ∗)− δθ − ρ2ϕ
∗) φ̃dx, ∀φ̃ ∈ H1

∗ .
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Let Ψ ∈ H1
0 (0, π) and set

Ψ̃ (x, t) = Ψ (x, t)−
∫ π

0

Ψ(x, t) dx.

Clearly Ψ̃ ∈ H1
∗ (0, π) . Plugging Ψ̃ in (31) and recalling that

κ (ux + φ) + (ρ2 + τ) (φ− φ∗)− δθ − ρ2ϕ
∗ ∈ L2

∗ (0, π) ,

we arrive at

b

∫ π

0

φxΨxdx =

∫ π

0

(κ (ux + φ) + (ρ2 + τ) (φ− φ∗)− δθ − ρ2ϕ
∗)Ψdx, ∀Ψ ∈ H1

0 (0, π).

Thus, by virtue of the theory of elliptic equations, φ ∈ H2 (0, π) ∩H1
∗ (0, π) with

φxx =
−1

b
(κ (ux + φ) + (ρ2 + τ) (φ− φ∗)− δθ − ρ2ϕ

∗) .

Then, φ solves (29)2.
Substituting u, φ, θ just obtained in (22), (24) and (28), we infer that

v ∈ H1
0 (0, π), ϕ ∈ H1

∗ (0, π) and η ∈ H1
µ

(
(0,+∞) ;H1

0 (0, π)
)
.

Moreover, (26) implies that∫ ∞

0

µ (s) ηtxx (s) ds ∈ L2 (0, π) .

Finally we have

ηs (s) = e−sθ + η∗ (s)−
∫ s

0

ey−sη∗ (y) dy ∈ M0

and η (0) = 0, which proves that the solution U of (21) belongs to D (A) . Hence,
Lumer-Phillips theorem ensures that the problem (20) has a unique solution U (x, t) =
eAtU0 (x) . This completes the proof of Theorem 3. □

4. Asymptotic Behavior

In this section we establish an exponential rate of decay for the solution of the sys-
tem (16)-(18). The following Lemma gives a sufficient condition for a C0−semigroup
in order to be exponentially stable.

Lemma 2. [11] Let S(t) be a contraction semigroup on H, and let A be its infini-
tesimal generator. If the operator iβI −A is bounded below as β ∈ R, that is there
exists λ > 0 such that

inf
β∈R

∥(iβI −A)U∥ ≥ λ ∥U∥ , ∀U ∈ D (A) ,

then S (t) is exponentially stable.

The main result of this paper reads as follows:
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Theorem 4. Assume that the memory kernel µ satisfies the hypotheses (h1)–(h5).
Then the semigroup S(t) = eAt associated to the problem (16)-(18) is exponentially
stable.

Proof. The proof will be done by a contradiction argument. Suppose that the
assertion is false. Then there exist a sequence (λn) ⊂ R and a sequence (Un) ⊂
D (A) , of unit norm

κ ∥Dun + φn∥
2
+ ρ1 ∥vn∥

2
+ b ∥Dφn∥

2
+ ρ2 ∥ϕn∥

2
+ c ∥θn∥2

+

∫ ∞

0

µ (s) ∥Dηn (s)∥
2
ds = 1,

such that
lim

n−→∞
∥(iλnI −A)Un∥ = 0,

which reads in components as

iλnun − vn −→ 0 in H1
0 , (32)

iρ1λnvn − κD2un − κDφn + βDθn −→ 0 in L2, (33)

iλnφn − ϕn −→ 0 in H1
∗ , (34)

iρ2λnϕn − bD2φn + κDun + κφn + τϕn − δθn −→ 0 in L2
∗, (35)

icλnθn −
∫ ∞

0

µ (s)D2ηn (s) ds+ βDvn + δϕn −→ 0 in L2, (36)

iλnηn − θn +Dsηn −→ 0 in M1. (37)

Note that since the norm in H is equivalent to the usual norm, then there exists
γ > 0 such that for any U ∈ D (A) of unit norm, we have

∥Dun∥2+∥vn∥2+∥φn∥
2
+∥Dφn∥

2
+∥ϕn∥

2
+∥θn∥2+

∫ ∞

0

µ (s) ∥Dηn (s)∥
2
ds = γ.

(38)
First we have

Re ⟨(iλnI −A)Un, Un⟩ = τ

∫ π

0

ϕ2ndx− 1

2

∫ ∞

0

µ′(s)∥Dηn(s)∥2ds −→ 0.

Thus,
∥ϕn∥ −→ 0 (39)

and

∥ηn∥
2
M1

≤ −1

ξ

∫ ∞

0

µ′(s)∥Dηn(s)∥2ds −→ 0. (40)

Moreover, from (34) we have

φn ∼ 1

λn
ϕn −→ 0 in L2. (41)

The injection L2 ↪→ H−1 is continuous, hence (33) holds in H−1 instead of L2 and

iρ1λnvn ∼ κD2un + κDφn − βDθn in H−1.
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On the other hand we have∥∥κ (D2un +Dφn
)
− βDθn

∥∥
−1

= sup
∥Dψ∥≤1

∣∣〈κ (D2un +Dφn
)
− βDθn, ψ

〉∣∣ ,
≤ ∥κ (Dun + φn)− βθn∥ . sup

∥Dψ∥≤1

∥Dψ∥,

≤ κ ∥Dun + φn∥+ |β| ∥θn∥ ≤
√
2.

Therefore,

|λn| ∥vn∥−1 ≤ C1, (42)

for a positive constant C1 independent of n ∈ N.
Similarly, we get∥∥∥∥∫ ∞

0

µ (s)D2ηn (s) ds

∥∥∥∥
−1

≤
∫ ∞

0

µ (s) ∥Dηn (s)∥ ds,

≤

√∫ ∞

0

µ (s) ds

(∫ ∞

0

µ (s)

∫ π

0

|Dηn|
2
(s) dxds

)1/2

,

then ∥∥∥∥∫ ∞

0

µ (s)D2ηn (s) ds

∥∥∥∥
−1

≤

√∫ ∞

0

µ (s) ds ∥ηn∥M1
−→ 0.

Note that (36) holds with H−1 instead of L2, hence

∥icλnθn + βDvn∥−1 −→ 0 . (43)

Since

∥Dvn∥−1 = sup
∥Dψ∥≤1

|⟨Dvn, ψ⟩| ≤ ∥vn∥ <∞,

Dvn is bounded in H−1, then

∥cλnθn∥−1 ≤ C2,

for a positive constant C2 independent of n ∈ N.
Next, we need to show that ∥θn∥ −→ 0. Exploiting the continuous embedding of
M1 into M0, (37) holds in M0 instead of M1. Let (ξn) be the sequence ξn = sθn.
Clearly ξn ∈ M0. Indeed, from (h2), µ(s) goes to zero exponentially fast, then∫ ∞

0

s2µ (s)

∫ π

0

|θn|2 dxds = ∥θn∥2
∫ ∞

0

s2µ (s) ds = C3 <∞.

Multiplying (37) by ξn in M0 we get

⟨iλnηn, ξn⟩0 − ⟨θn, ξn⟩0 + ⟨Dsηn, ξn⟩0 −→ 0. (44)

For the first term we have

|⟨iλnηn, ξn⟩0| = |λn|
∫ ∞

0

sµ (s)

∫ π

0

ηnθndxds.
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Then, using Hölder inequality we get

|⟨iλnηn, ξn⟩0| ≤ |λn| ∥θn∥−1

∫ ∞

0

sµ (s) ∥Dηn (s)∥ ds,

≤ |λn| ∥θn∥−1

√∫ ∞

0

s2µ (s) ds

∫ ∞

0

µ (s) ∥Dηn (s)∥
2
ds,

≤ C2

√
C3 ∥ηn∥1 −→ 0.

From (h4) we infer that lim
s→+∞

s2µ(s) = 0, then, again (h4) and integration by parts

yield

−
∫ ∞

0

s2µ′ (s) ds = 2

∫ ∞

0

sµ (s) ds = C4 <∞.

For the third term of (44) we have,

|⟨Dsηn, ξn⟩0| =
∣∣∣∣∫ ∞

0

sµ (s)
d

ds

∫ π

0

ηnθndxds

∣∣∣∣ ,
=

∣∣∣∣∫ ∞

0

µ (s)

∫ π

0

ηnθndxds+

∫ ∞

0

sµ′ (s)

∫ π

0

ηnθndxds

∣∣∣∣ ,
then,

|⟨Dsηn, ξn⟩0| ≤ ∥θn∥
[∫ ∞

0

µ (s) ∥ηn∥ ds−
∫ ∞

0

sµ′ (s) ∥ηn∥ ds
]
,

≤
∫ ∞

0

µ (s) ∥ηn∥ ds−
∫ ∞

0

sµ′ (s) ∥ηn∥ ds.

Using the Cauchy-Schwarz and Poincaré’s inequalities we conclude that∫ ∞

0

µ (s) ∥ηn∥ ds ≤

√∫ ∞

0

µ (s) ds

√∫ ∞

0

µ (s) ∥ηn∥ ds,

≤

√∫ ∞

0

µ (s) ds ∥ηn∥0 ,

≤ CP

√∫ ∞

0

µ (s) ds ∥ηn∥1 −→ 0

and

−
∫ ∞

0

sµ′ (s) ∥ηn∥ ds =
∫ ∞

0

s
√
−µ′ (s)

√
−µ′ (s) ∥ηn∥ ds

≤
(
−
∫ ∞

0

s2µ′ (s) ds

)1/2 (
−
∫ ∞

0

µ′ (s) ∥ηn∥
2
ds

)1/2

≤
(
−C4CP

∫ ∞

0

µ′ (s) ∥Dηn∥
2
ds

)1/2

−→ 0.
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Thus, (44) is reduced to

∥θn∥2
∫ ∞

0

sµ (s) ds = ⟨θn, ξn⟩0 −→ 0,

that is,

∥θn∥2 =
2 ⟨θn, ξn⟩0

C4
−→ 0. (45)

Removing the terms that tend to 0 from (35), then multiplying by φn we obtain

iρ2λn ⟨ϕn, φn⟩+ b ∥Dφn∥
2
+ κ ⟨Dun, φn⟩ −→ 0 . (46)

We point out that

⟨Dun, φn⟩ ≤ ∥Dun∥ ∥φn∥ −→ 0

and

iλn ⟨ϕn, φn⟩ ∼ ∥φn∥
2 −→ 0.

Therefore,

∥Dφn∥ −→ 0. (47)

Multiplying (32) by ρ1vn and (33) by un we get

iρ1λn ⟨un, vn⟩ − ρ1 ∥vn∥
2 −→ 0, (48)

and

iρ1λn ⟨vn, un⟩+ κ ∥Dun∥2 −→ 0. (49)

Adding (48) to the complex conjugate of (49), we get

κ ∥Dun∥2 − ρ1 ∥vn∥
2 −→ 0. (50)

Combining (38), (39), (40), (41), (45),(47), and (50) we obtain(
1 +

ρ1
κ

)
∥vn∥2 → γ. (51)

We complete the proof by showing that (51) leads to a contradiction.
Since A−1Dvn is bounded in H1

0 (recall that A = −D2), from (43) we have〈
icλnθn + βDvn, A

−1Dvn
〉
=

〈
icλnθn, A

−1Dvn
〉
+ β ∥Dvn∥2−1 −→ 0. (52)

On the other hand, from (45) we have∣∣〈icλnθn, A−1Dvn
〉∣∣ = ∣∣∣〈icλnθn, A−1/2vn

〉∣∣∣
≤ c |λn|

∥∥∥A−1/2vn

∥∥∥ ∥θn∥ = c |λn| ∥vn∥−1 ∥θn∥

≤ cC1 ∥θn∥ −→ 0.

Thus, (52) leads to

∥Dvn∥−1 −→ 0.

From (19) we infer that

∥vn − vn∥ = ∥Dvn∥−1 −→ 0.
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Therefore,

∥vn − vn∥2 = ∥vn∥2 − π |vn|2 −→ 0. (53)

The comparison of (51) and (53) leads to

|vn| −→
√

κγ

π (κ+ ρ1)
.

Thus, there exists a subsequence (vn) that converges to v, such that

|v| =
√

κγ

π (κ+ ρ1)
. (54)

Using (53) again we conclude that there exists a subsequence of (vn) which converges
to v in L2(0, π). Exploiting the continuous embedding of L2(0, π) into H−1(0, π),
one can deduce that

vn −→ v, in H−1(0, π). (55)

At this point we distinguish two cases. Suppose that (λn) is unbounded, then we
can choose a subsequence (λn) such that |λn| −→ ∞ and from (42) we have

vn −→ 0 in H−1(0, π).

From the uniqueness of the limit we conclude that v = 0, which is incompatible
with (54).
Conversely, assume that (λn) is bounded, again, there exists a subsequence (λn)

that converges to some λ ∈ R. In this case we have

lim
n−→∞

∥(iλI −A)Un∥ = 0,

and (32)-(37) hold with λ instead of λn. In particular

iλun − vn −→ 0 in H1
0 (0, π).

Since (un) is bounded in H1
0 (0, π), we conclude that there exists v∗ ∈ H1

0 (0, π) and
a subsequence (vn) that converges weakly to v∗ in H1

0 (0, π). From the uniqueness
of the limit we infer that v∗ = v, which is in contradiction with v∗ ∈ H1

0 (0, π),
since v is a non-zero constant function, and therefore cannot be in H1

0 (0, π). This
completes the proof of Theorem 4. □
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Abstract. In this paper, we explore the travelling wave solutions for some
nonlinear partial differential equations by using the recently established ra-

tional (G′/G)-expansion method. We apply this method to the combined

KdV-mKdV equation, the reaction-diffusion equation and the coupled Hirota-
Satsuma KdV equations. The travelling wave solutions are expressed by hy-

perbolic functions, trigonometric functions and rational functions. When the

parameters are taken as special values, the solitary waves are also derived from
the travelling waves. We have also given some figures for the solutions.

1. Introduction

In the past decades, the travelling wave solutions of nonlinear partial differen-
tial equations (NLPDEs) play an effective role in physics, engineering and applied
mathematics. The mathematical models of these subjects give important informa-
tion about the behaviour of the physical event. Therefore, it is very important to
obtain the traveling wave solutions of NLPDEs [32]. The NLPDEs have interesting
structures that deals with many phenomena in physics, chemistry and engineering,
for example; in fluid flow, plasma waves, mechanics, solid state physics, oceanic
phenomena, atmospheric phenomena and so on. Many researchers have been pro-
posed various different methods to find solutions for nonlinear partial differential
equations and nonlinear fractional differential equations [36–40]. Such as the in-
verse scattering transform method [1], the Hirota’s bilinear method [2], truncated
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Painlevé expansion method [3], the tanh-function expansion method [4], the Jacobi
elliptic function expansion method [5], the homogeneous balance method [6–8], the
trial function method [9], the exp-function method [10, 34], differential transform
method [33], the Bäcklund transform method [11], the generalized Riccati equa-
tion method [12–15], the sub-ODE method [17–20], the original (G′/G)-expansion
method [16,29], the double (G′/G,1/G)-expansion method [35] etc.. Since there is
not a common method that can be used to solve all types of nonlinear evolution
equations.

Some researchers established several powerful and direct methods. Wang et
al. [16] first introduced the (G′/G)-expansion method to find travelling wave solu-
tions of nonlinear evolution equations. Later Islam et al. [21] proposed the rational
(G′/G)-expansion method which aims to derive closed form travelling wave solu-
tions. In this paper we use the rational (G′/G)- expansion method and apply for the
combined KdV-mKdV equation, the reaction-diffusion equation, and the coupled
Hirota-Satsuma KdV equations. We derived abundant solutions for each equation
that is different from the solutions in the literature.

2. Description of the Method

Suppose that u = u(x, t) is an unknown function depends on the x and t variables
and we define the polynomial P in u(x, t) and its various order partial derivatives
and nonlinear terms as

P (u, ux, ut, uxx, utt, uxt, ...) = 0. (1)

We use the following steps, to solve Eq.(1) by means of the rational (G′/G)-
expansion method.

Step 1: We assign a new variable U(ξ) in terms of x and t variables and a new
transformation:

u(x, t) = U(ξ) , ξ = x− st+ ξ0 (2)

where is ξ0 a constant and s is the velocity of the wave. The transformation in Eq.(2)
transforms Eq.(1) into an ordinary differential equation (ODE) for u = U(ξ).

Q(U,U ′,−sU ′, U ′′, s2U ′′,−sU ′′, ...) = 0 (3)

where U and its derivatives with respect to ξ are the elements of the Q polynomial
of U(ξ).

Step 2: Next we integrate Eq.(3) one or twice as possible. Suppose that the
solution of Eq.(3) can be written in the following form

u(ξ) =

n∑
j=0

aj(G′/G)j

n∑
j=0

bj(G′/G)j
(4)
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where aj and bj (j = 0, 1, 2, ..., n) , (an ̸= 0, bn ̸= 0) are arbitrary coefficient to be
found later. Next we write, the G = G(ξ) function, which satisfies the following
second order ODE;

G′′(ξ) + λG′(ξ) + µG(ξ) = 0 (5)

where λ and µ are real constants. We convert Eq.(5) into (G′/G) form,

d

dξ
(G′/G) = − (G′/G)

2 − λ (G′/G)− µ. (6)

From Eq.(5) or Eq.(6) the solution for (G′/G) as follows

(G′/G) =



−λ
2+

√
λ2−4µ

2

 c1 cosh

(
(

√
λ2−4µ

2 )ξ

)
+c2 sinh

(
(

√
λ2−4µ

2 )ξ

)
c1 sinh

(
(

√
λ2−4µ

2 )ξ

)
+c2 cosh

(
(

√
λ2−4µ

2 )ξ

)
 ; λ2−4µ > 0 ,

−λ
2+

√
4µ−λ2

2

−c1 cos

(
(

√
4µ−λ2

2 )ξ

)
+c2 sin

(
(

√
4µ−λ2

2 )ξ

)
c1 sin

(
(

√
4µ−λ2

2 )ξ

)
+c2 cos

(
(

√
4µ−λ2

2 )ξ

)
 ; λ2−4µ < 0 ,

−λ
2+

c2
c1+c2ξ

; λ2−4µ = 0 ,

(7)
where c1 and c2 are constants.

Step 3: To determine the value of n, which is the degree of U(ξ), in Step 2,
we apply the homogeneous balance method, that is balancing between the highest
order nonlinear terms and the highest order derivatives in Eq.(3). The degree of
other terms in Eq.(3) can be written as in the following form [21]

deg

[
dmu(ξ)

dξm

]
= n+m , deg

[
um

(
dlu(ξ)

dξl

)p]
= mn+ p (n+ l)

where deg[U(ξ)] is the degree of U(ξ).

Step 4: After determining the value of n, we substitute Eq.(4) along with Eq.(5)
into Eq.(3). Equating the coefficients of (G′/G) to zero, gives a system of alge-
braic equations. In order to solve these equations we use the computer software
programme such as Maple or Matematica. If there is a possible solution, we obtain
values for ai, bi, λ, µ and s (i = 0, 1, 2, ..., n).

Step 5: Finally we substitute the values of ai, bi (i = 0, 1, 2, ..., n), λ, µ, s and the
solutions given in Eq.(7), into Eq.(4), hence the solutions of the nonlinear Eq.(1)
are derived.

3. Application of the Method

Example 1. The combined KdV-mKdV equation
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The KdV and mKdV equations are widely studied popular soliton equations.
The nonlinear terms appearing in the KdV and mKdV equations often exist in
applied science and engineering, such as in plasma physics, ocean dynamics and
quantum field theory [22–24]. If we combine the quadratic nonlinear term of the
KdV equation and the qubic nonlinear term of the mKdV equation, then we get
the combined KdV-mKdV equation or the Gardner equation [25]

ut + αu ux + βu2ux + uxxx = 0 (8)

where α and β are nonzero parameters. This equation describes the wave propaga-
tion of bounded particle,sound wave and thermal pulse [26–28].

The travelling wave transformation u(x, t) = U(ξ) , ξ = x− st+ ξ0 , transforms
Eq.(8) into to the following ODE

− sU ′ + αU U ′ + βU2U ′ + U ′′′ = 0 (9)

where s is the velocity of the wave and the superscript of U shows the derivative of
U with respect to ξ. Next, we integrate Eq.(9) and deduce the following equation

C − sU +
1

2
αU2 +

1

3
βU3 + U

′′
= 0 (10)

where C is an integration constant to be found later. We use homogeneous balance
method, such as balancing the terms U ′′ and U3 in Eq.(10) we get n = 1, so we
can write Eq.(4) as

U(ξ) =
a0 + a1(G

′
/G)

b0 + b1(G
′/G)

(11)

Next we substitute Eq.(11) into Eq.(10) and organize the equation in terms of the
powers of (G′/G). Hence equating the coefficients of (G′/G) and its powers to zero
in the resulting equation, gives a system of algebraic equations for a0, b0, a1, b1, s
and C. Solving the set of equations by using the computer programme Maple, we
get the following set of solutions.

Set 1

a0 = ∓1

2

b0(±
√
− 6

βα+ 6λ)

β
√
− 6

β

, a1 = ±
√
− 6

β
b0 , b1 = 0 (12)

s = −2βλ2 + α2 − 8βµ

4β
, C =

α
(
6βλ2 + α2 − 24βµ

)
24β2

where b0, λ, α, β and µ are all arbitrary constants. Substituting Eq.(12) into Eq.(11)
we get the following solution

U(ξ) = ±
√

− 6

β
(G

′
/G)− α

2β
∓ 3λ

β

√
−β

6
(13)
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where

ξ = x+

(
α2

4β
+

λ2 − 4µ

2

)
t+ ξ0 (14)

and (G′/G) is given in Eq.(7). Substituting Eq.(7) into Eq.(13), we deduce the
following travelling wave solutions.

Case 1: If λ2 − 4µ > 0, then we have

U(ξ) = ±1

2

√
−6 (λ2 − 4µ)

β

(
c1 cosh(

1
2

√
λ2 − 4µξ) + c2 sinh(

1
2

√
λ2 − 4µξ)

c1 sinh(
1
2

√
λ2 − 4µξ) + c2 cosh(

1
2

√
λ2 − 4µξ)

)

∓λ

2

√
− 6

β
− α

2β
∓ 3λ

β

√
−β

6
. (15)

If we choose c1 = sinh(ξ0) and c2 = cosh(ξ0), we get the following hyperbolic
solution for the Eq.(10)

U(ξ) = ±1

2

√
−6 (λ2 − 4µ)

β
tanh

(
ξ

2

√
λ2 − 4µ+ ξ0

)
)∓ λ

2

√
− 6

β
− α

2β
∓ 3λ

β

√
−β

6

The plot of the solution for the values (λ = 5, µ = 4, α = 3, β = −4, ξ0 = 2 ) is
given in Fig 1.

Figure 1. Hyperbolic solution for Eq.(8)
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Case 2: If λ2 − 4µ < 0, then we have

U(ξ) = ±1

2

√
−6 (4µ− λ2)

β

(
−c1 cos(

ξ
2

√
4µ− λ2) + c2 sin(

ξ
2

√
4µ− λ2)

c1 sin(
ξ
2

√
4µ− λ2) + c2 cos(

ξ
2

√
4µ− λ2)

)

∓λ

2

√
− 6

β
− α

2β
∓ 3λ

β

√
−β

6

If we choose c1 = sin(ξ0) and c2 = cos(ξ0), we get the following trigonometric
solution for the Eq.(10)

U(ξ) = ±1

2

√
−6 (4µ− λ2)

β
tan

(
ξ

2

√
4µ− λ2 + ξ0

)
)∓ λ

2

√
− 6

β
− α

2β
∓ 3λ

β

√
−β

6

The plot of the solution for the values (λ = 4, µ = 5, α = 3, β = −6, ξ0 = 2 ) is
given in Fig 2.

Figure 2. Trigonometric solution for Eq.(8)

Case 3: If λ2 − 4µ = 0, then we have

U(ξ) = ±
√
− 6

β

(
c2

c1 + c2ξ

)
∓ λ

2

√
− 6

β
− α

2β
∓ 3λ

β

√
−β

6

The plot of the solution for the values (λ = 4, µ = 4, α = 3, β = −6, ξ0 = 2 ) is
given in Fig 3. In particular, if c1 = 0 and c2 ̸= 0 and λ > 0 and µ = 0, then
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Figure 3. Rational solution for Eq.(8)

Eq.(15) becomes

U(ξ) = ±λ

2

√
− 6

β
tanh

(
λ

2
ξ

)
∓ λ

2

√
− 6

β
− α

2β
∓ 3λ

β

√
−β

6
(16)

or if c1 ̸= 0 and c2 = 0 and λ > 0 and µ = 0, then Eq.(15) becomes

U(ξ) = ±λ

2

√
− 6

β
coth

(
λ

2
ξ

)
∓ λ

2

√
− 6

β
− α

2β
∓ 3λ

β

√
−β

6
(17)

where

ξ = x+

(
α2

4β
+

λ2

2

)
t+ ξ0.

Note that Eq.(16) and Eq.(17) represents the solitary wave solutions of the com-
bined KdV–mKdV equation Eq.(8)

Set 2

a0 =
(−λα∓

√
−96βµ2−6λ4β+48µλ2β)b1

4β , a1 = −αb1
2β , b0 = b1λ

2

s = −2λ2β+8µβ−α2

4β , C =
α(6λ2β−24µβ+α2)

24β2

(18)
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where b1, λ and µ are arbitrary constants. Substituting Eq.(18) into Eq.(11) we get
the following solution

U(ξ) =
−2α(G

′
/G) + (−λα∓

√
−96βµ2 − 6λ4β + 48µλ2β)

4β(G′/G) + 2λβ
(19)

where

ξ = x+

(
2µ− 2λ2β + α2

4β

)
t+ ξ0 (20)

and (G′/G) is given in Eq.(7).

Set 3

a0 =
−6b20λ+ 12b1µb0 + 3b0b1λ

2 − 6λµb21

∓
√
−6b21λ

2β + 24b1βb0λ− 24b20β
+

αb0
2β

a1 =
−αb1 ±

√
−6b21λ

2β + 24b1βb0λ− 24b20β

2β
(21)

s =
−2λ2β + 8µβ − α2

4β
, C =

α
(
6λ2β − 24µβ + α2

)
24β2

where b0, b1, λ, α, β and µ are arbitrary constants. Substituting the values of con-
stants from Eq.(21) into Eq.(11) gives

U(ξ) =

(
−αb1±

√
−6b21λ

2β+24b1βb0λ−24b20β

2β

)
(G′/G) + (

−6b20λ+12b1µb0+3b0b1λ
2−6λµb21

∓
√

−6b21λ
2β+24b1βb0λ−24b20β

+ αb0
2β )

b1(G
′/G) + b0

where ξ = x+ ( 2βλ
2+α2−8βµ

4β )t+ ξ0.

Example 2. The reaction-diffusion equation

We have the reaction-diffusion equation [30]

utt + αuxx + βu+ γu3 = 0 (22)

where α , β and γ are nonzero constants. The traveling wave variable Eq.(2) reduces
the Eq.(22) into an ODE (

α+ s2
)
U ′′ + βU + U3 = 0, (23)

where s is the velocity of the wave. Next we express the solution of the Eq.(23) in
terms of (G′/G) as it is written in Eq.(4), where G = G(ξ) satisfies the second order
linear ODE in Eq.(23). We use homogeneous balance method, such as balancing
the terms U ′′ and U3 in Eq.(23) we get n = 1, hence from Eq.(4), we have

U(ξ) =
a0 + a1(G

′/G)

b0 + b1(G′/G)
. (24)
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Substituting Eq.(23) into Eq.(22) and write the left hand side in terms of (G′/G).
Hence equating the coefficients of the resulting equation to zero, gives a system of
algebraic equations for a0, b0, a1, b1 and s. Solving the set of equations by using the
computer programme, we get the following set of solutions:

Set 1

a0 = ± 1
2

√
−β(λ2−4µ)

γ b1 , b0 = 1
2λb1 ,

a1 = 0 , s = ±
√

2β
λ2−4µ − α

(25)

where b1, λ and µ are all arbitrary constants. Substituting Eq.(25) into Eq.(24) we
get the following solution

U(ξ) =
± 1

2

√
−β(λ2−4µ)

γ

(G′/G) + λ/2
(26)

where

ξ = x±

(√
2β

λ2 − 4µ
− α

)
t+ ξ0 (27)

and (G′/G) is given in Eq. (7). Substituting Eq.(7) into Eq.(26), we deduce the
following travelling wave solutions.

Case 1: If λ2 − 4µ > 0, then we have

U(ξ) = ±

√
−β

γ

(
c1 sinh(

ξ
2

√
λ2 − 4µ) + c2 cosh(

ξ
2

√
λ2 − 4µ)

c1 cosh(
ξ
2

√
λ2 − 4µ) + c2 sinh(

ξ
2

√
λ2 − 4µ)

)
.

If we choose c1 = cosh(ξ0) and c2 = sinh(ξ0), we get the following hyperbolic
solution for the Eq.(22)

U(ξ) = ±

√
−β

γ
tanh

(
ξ

2

√
λ2 − 4µ+ ξ0

)
.

Case 2: If λ2 − 4µ < 0, then we have

U(ξ) = ±

√
−β

γ

(
c1 sin(

ξ
2

√
4µ− λ2) + c2 cos(

ξ
2

√
4µ− λ2)

−c1 cos(
ξ
2

√
4µ− λ2) + c2 sin(

ξ
2

√
4µ− λ2)

)
.

If we choose c1 = cos(ξ0) and c2 = sin(ξ0), we get the following trigonometric
solution for the Eq.(22)

U(ξ) = ∓

√
−β

γ
tan

(
ξ

2

√
4µ− λ2 + ξ0

)
.
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Case 3: If λ2 − 4µ = 0, then we have trivial solution for the Eq.(22)

U(ξ) = 0.

Set 2

a0 = ± λb0
√
β√

γ(4µ−λ2)
, a1 = ±2

√
β

γ(4µ−λ2)b0 ,

b1 = 0 , s = ±
√

2β
λ2−4µ − α

(28)

where b0, λ, β and µ are arbitrary constants. Substituting Eq.(28) into Eq.(24) we
get the following solution

U(ξ) = ± 2
√
β√

γ (4µ− λ2)

(
(G′/G) +

λ

2

)
, (29)

where

ξ = x±

(√
2β

λ2 − 4µ
− α

)
t+ ξ0 (30)

and (G′/G) is given in Eq.(7).

Set 3

a0 = ±
√

β
γ(4µ−λ2) (λb0 − 2µb1) ,

a1 = ±
√

β
γ(4µ−λ2) (λb1 − 2b0) , s = ±

√
2β

λ2−4µ − α
(31)

where b0, b1, λ and µ are arbitrary constants. Substituting Eq.(31) into Eq.(24) we
get the following solution

U(ξ) = ±

√
β

γ(4µ−λ2) (λb1 − 2b0) (G
′
/G) +

√
β

γ(4µ−λ2) (λb0 − 2µb1)

b1(G
′/G) + b0

where

ξ = x±

(√
2β

λ2 − 4µ
− α

)
t+ ξ0

and (G′/G) is given in Eq.(7).

Set 4

a0 = ±
√

β
γ(4µ−λ2)

((
λ
2 ± 1

6

√
3λ2 − 12µ

)
− 2µ

)
b1 , a1 = ±

√
−β
3γ b1 ,

b0 =
(

λ
2 ± 1

6

√
3λ2 − 12µ

)
b1 , s = ±

√
2β

λ2−4µ − α
(32)
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where b1, λ and µ are arbitrary constants. Substituting Eq.(32) into Eq.(24) we get
the following solution

U(ξ) = ±

√
−β
3γ (G

′/G) +
√

β
γ(4µ−λ2)

((
λ
2 ± 1

6

√
3λ2 − 12µ

)
− 2µ

)
(G′/G) + λ

2 ± 1
6

√
3λ2 − 12µ

where

ξ = x±

(√
2β

λ2 − 4µ
− α

)
t+ ξ0

and (G′/G) is given in Eq.(7).

Example 3. The coupled Hirota-Satsuma KdV equations

The coupled Hirota-Satsuma KdV equations (CHSK) describes an interaction of
two long waves with different dispersion relations [31]. We will consider the CHSK
equations in the following form

ut =
1
4uxxx + 3uux − 6vvx ,

vt = − 1
2vxxx − 3uvx .

(33)

Making the transformations u(x, t) = U(ξ) , v(x, t) = V (ξ) , ξ = x − st + ξ0,
where s is the velocity of the wave to be determined later. We get the CHSK
equations in the following form

−sU ′ =
1

4
U ′′′ + 3UU ′ − 6V V ′, (34)

−sV ′ = −1

2
V ′′′ − 3UV

′
.

By balancing the highest order derivatives and nonlinear terms in Eq.(34), we get
n = 2 and from Eq.(4) we write the solutions of Eq.(33) as

U(ξ) = a0+a1(G
′/G)+a2(G

′/G)2

b0+b1(G′/G)+b2(G′/G)2
,

V (ξ) = e0+e1(G
′/G)+e2((G

′/G)2

d0+d1(G′/G)+d2(G′/G)2

(35)

Substituting Eq.(35) into Eq.(34), and we convert Eq.(34) into a polynomial in
(G′/G). Equating the coefficients of the same power of (G′/G) to zero, yields a set
of simultaneous algebraic equations. Solving the set of equations for ai, bi, ei, di(i =
0, 1, 2) and s by using the computer programme, we get the following set of solutions

Set 1
a2 = −2b0 , a1 = −2λb0 , b1 = b2 = 0 , d1 = d2 = 0

e0 = − e2(λ2b0+8µb0+8a0)
4b0

, e1 = λe2 , d0 = e2

s = λ2b0+8µb0+6a0

2b0

(36)
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where a0, b0, e2, λ and µ are constants. Substituting Eq.(36) into Eq.(35), hence we
reach the following solutions

U(ξ) = −2
[
(G′/G)2 + λ(G′/G)

]
+

a0
b0

(37)

V (ξ) = (G′/G)2 + λ(G′/G)− λ2 + 8µ

4b0
− 2

a0
b0

where

ξ = x−
(
λ2 + 8µ

2b0
+ 3

a0
b0

)
t+ ξ0

and (G′/G) is given in Eq.(7). Substituting Eq.(7) into Eq.(37), we deduce the
following travelling wave solutions.

Case 1: If λ2−4µ > 0 and if we choose c1 = cosh(ξ0), c2 = sinh(ξ0), then we have
the hyperbolic solutions for the Eq.(34)

U(ξ) = a0

b0
+ λ2

2 − λ2−4µ
2 coth2

(
ξ
2

√
λ2 − 4µ+ ξ0

)
,

V (ξ) = −2a0

b0
− λ2

4 − λ2+8µ
4b0

+ λ2−4µ
4 coth2

(
ξ
2

√
λ2 − 4µ+ ξ0

)
.

Case 2: If λ2 − 4µ < 0 and if we choose c1 = cos(ξ0), c2 = sin(ξ0), then we have
the trigonometric solutions for the Eq.(34)

U(ξ) = a0

b0
+ λ2

2 − λ2−4µ
2 cot2

(
ξ
2

√
4µ− λ2 + ξ0

)
,

V (ξ) = −2a0

b0
− λ2

4 − λ2+8µ
4b0

+ λ2−4µ
4 cot2

(
ξ
2

√
4µ− λ2 + ξ0

)
.

Case 3: If λ2 − 4µ = 0, , then we have rational solutions for the Eq.(34)

U(ξ) = a0

b0
+ λ2

2 − 2c22
(c1+c2ξ)2

,

V (ξ) = −2a0

b0
− λ2

4 − λ2+8µ
4b0

+ ( c2
c1+c2ξ

)2.

Set 2

a2 = −b0 , a1 = −λb0 , b1 = b2 = 0 , d2 = 0 , e0 = λd0e2
2d1

a0 = − b0(λ2d2
1+8µd2

1+4e22)
8d2

1
, e1 = e2(λd1+2d0)

2d1

s =
λ2d2

1−4µd2
1−12e22

8d2
1

(38)

where b0, d0, d1, e2, λ and µ are constants. Substituting Eq.(38) into Eq.(35), hence
we reach the following solutions

U(ξ) = −
[
(G

′
/G)2 + λ(G

′
/G)

]
−
(
λ2 + 8µ

8

)
−
(

e22
2d21

)

V (ξ) = e2
(G′/G)2 + (λd1+2d0

2d1
)(G′/G) + λd0

2d1

d1(G′/G) + d0
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where

ξ = x−
(
λ2 − 4µ

8
+

4

3

e22
d21

)
t+ ξ0

and (G′/G) is given in Eq.(7).

Set 3

a2 = −b0 , a1 = −λb0 , b1 = b2 = 0

e0 = e2d0

d2
, e1 = e2d1

d2

s = −λ2b0+8µb0+12a0

4b0

(39)

where a0, b0, d0, d1, d2, e2, λ and µ are constants. Substituting Eq.(39) into Eq.(35) ,
hence we reach the following solutions

U(ξ) = −
[
(G

′
/G)2 + λ(G

′
/G)

]
+

a0
b0

V (ξ) = e2
(G′/G)2 + d1

d2
(G′/G) + d0

d2

d2(G′/G)2 + d1(G
′/G) + d0

where

ξ = x+

(
λ2 + 8µ

4
+ 3

a0
b0

)
t+ ξ0

and (G′/G) is given in Eq.(7).

Set 4

a0 = λ4b0−8λ2µb0+16µ2a2+16µ2b0
4λ2

a1 = λ4b0−8λ2µb0+16µ2a2+16µ2b0
4µλ , d2 = 0

b1 = λb0
µ , b2 = λ2b0

4µ2 , e0 = e1 = e2 = 0

s = −λ4b0−16λ2b0µ+48µ2a2+48µ2b0
4b0λ2

(40)

where a2, b0, λ and µ are constants. Substituting Eq.(40) into Eq.(35), hence we
reach the following solutions

U(ξ) =
a2(G

′/G)2 +
(

λ4b0−8λ2µb0+16µ2a2+16µ2b0
4µλ

)
(G′/G) +

(
λ4b0−8λ2µb0+16µ2a2+16µ2b0

4λ2

)
λ2b0
4µ2 (G′/G)2 + λb0

µ (G′/G) + b0

V (ξ) = 0

where

ξ = x+

(
λ2 − 16µ

4
+

12µ2a2 + 12µ2b0
b0λ2

)
t+ ξ0

and (G′/G) is given in Eq.(7).
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Set 5

a0 = λ4b0−8λ2b0µ+16µ2a2+16µ2b0
4λ2 , e1 = e2 = 0

a1 = λ4b0−8λ2b0µ+16µ2a2+16µ2b0
4λµ , d1 = d2 = 0

b1 = λb0
µ , b2 = λ2b0

4µ2 , s = −λ4b0−16λ2b0µ+48µ2a2+48µ2b0
4b0λ2

(41)

where a2, b0, λ and µ are constants. Substituting Eq.(41) into Eq.(35) , hence we
reach the following solutions

U(ξ) =
a2(G

′/G)2 +
(

λ4b0−8λ2b0µ+16µ2a2+16µ2b0
4λµ

)
(G′/G) +

(
λ4b0−8λ2b0µ+16µ2a2+16µ2b0

4λ

)
λ2b0
4µ2 (G′/G)2 + λb0

µ (G′/G) + b0

V (ξ) =
e0
d0

where e0, d0 are constants and

ξ = x+

(
λ2 − 16µ

4
+

12µ2a2 + 12µ2b0
b0λ2

)
t+ ξ0

and (G′/G) is given in Eq.(7).

4. Conclusion

In this paper, we have obtained various types of travelling wave solutions for
the combined KdV-mKdV equation, the reaction-diffusion equation, and the cou-
pled Hirota-Satsuma KdV equations that are solved by using the rational (G′/G)-
expansion method. The main idea of this method is to reduce the partial differential
equation to an ODE by using the travelling wave transformation (Eq.(2)), after in-
tegrating the ODE in Eq.(3), once or twice, then express the ODE in a compact
form. This ODE can be written by a n-th degree polynomial in terms of (G′/G),
where G = G(ξ) is the general solution of the second order LODE in Eq.(5). In
order to find the positive integer, we use the homogeneous balance method, that is
balancing between the highest order derivative term and nonlinear term. The coef-
ficients of the polynomials can be obtained by solving a set of algebraic equations.
Generally, the resulted algebraic equations can be solved by using Maple software
program. It is mostly possible to find a solution of the algebraic equations, but it
is generally unable to guarantee the existence of a solution. Despite of this, the
rational (G′/G)-expansion method is still powerful method for finding travelling
wave solutions of nonlinear evolution equations. The rational (G′/G)-expansion
method is also direct, concise, elementary that the general solution of the second
order ODE Eq.(5) is well known and effective that it can be used for many other
nonlinear evolution equations, such as the generalized shallow water wave equation,
the compound KdV-Burgers equations, the Klein-Gordon equation, the generalized
KPP equation, the approximate long water wave equations, the coupled nonlinear
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Klein-Gordon-Zakharov equations, and so on. Therefore, various explicit solutions
of these nonlinear evolution equations can be obtained by this method.
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2
))-expansion method for traveling

wave solutions of AKNS and Burgers-like equations, Optik, 138 (2017), 15-20.

https://doi.org/10.1016/j.ijleo.2017.02.087
[33] Ekici, M., Ayaz, F., Solution of model equation of completely passive natural convection by

improved differential transform method, Research on Engineering Structures and Materials,
3(1) (2017), 1-10. http://dx.doi.org/10.17515/resm2015.10me0818



132 M. EKİCİ, M. ÜNAL
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1Department of Mathematics, Başkent University, Ankara, TURKEY
2Department of Mathematics, Ordu University, Ordu, TURKEY

Abstract. Using the matrix representation form, the first, second, third,
fourth, and fifth derivatives of 5th order Bézier curves are examined based

on the control points in E3. In addition to this, each derivative of 5th order

Bézier curves is given by their control points. Further, a simple way has been
given to find the control points of a Bézier curves and its derivatives by using

matrix notations. An example has also been provided and the corresponding
figures which are drawn by Geogebra v5 have been presented in the end.

1. Introduction

French engineer Pierre Bézier, who used Bézier curves to design automobile bod-
ies studied with them in 1962. But the study of these curves was first developed in
1959 by mathematician Paul de Casteljau using deCasteljau’s algorithm, a numer-
ically stable method to evaluate Bézier curves. A Bézier curve is frequently used
in computer graphics and related fields, in vector graphics, and in animations as
a tool to control motion. To guarantee smoothness, the control points at which
two curves meet must be on the line between two control points on either side. In
animation applications, such as Adobe Flash and Synfig, Bézier curves are used to
outline, for example, movement. Users outline the wanted path in Bézier curves,
and the application creates the needed frames for the object to move along the
path. For 3D animation Bézier curves are often used to define 3D paths as well as
2D curves for key frame interpolation. We have been motivated by the following
studies. First Bézier-curves with curvature and torsion continuity has been exam-
ined in [6]. Also in [4], [7] and [10], Bézier curves and surfaces has been given.
In [1] and [5], Bézier curves are designed for Computer-Aided Geometric Designs.
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Recently equivalence conditions of control points and application to planar Bézier
curves have been examined in [8] and [9].The Serret-Frenet frame and curvatures of
Bézier curves are examined those in E4 in [3]. Frenet apparatus of the cubic Bézier
curves and involute of the cubic Bezier curve by using matrix representation have
been examined in E3, in [11] and [12], respectively.

2. Preliminaries

A Bézier curve is defined by a set of control points P0 through Pn, where n is
called its order. If n = 1 for linear, if n = 2 for quadratic, if n = 3 for cubic Bézier
curve, etc. The first and last control points are always the end points of the curve;
however, the intermediate control points (if any) generally do not lie on the curve.
Generally, Béziers curve can be defined by n + 1 control points P0, P1, ..., Pn and
has the following form:

B(t) =

n∑
I=0

(
n

I

)
tI (1− t)

n−I
(t) [PI ] , t ∈ [0, 1] ,

where
(
n
I

)
= n!

I!(n−I)! are the binomial coefficients [2]. The points PI are called

control points for the Bézier curve. The polygon formed by connecting the Bézier
points with lines, starting with P0 and finishing with Pn, is called the Bézier polygon
(or control polygon). The convex hull of the Bézier polygon contains the Bézier
curve.
The derivatives of the any Bézier curve B(t) is

B′(t) =

n−1∑
i=0

(
n− 1

i

)
ti (1− t)

n−i−1
Qi

where Q0 = n (P1 − P0) , Q1 = n (P2 − P1) , Q2 = n (P3 − P2) , ... [2].
Given points P0 and P1, a linear Bézier curve is simply a straight line between

those two points. Linear Bézier curve is given by

α(t) = (1− t)P0 + tP1

and also it has the matrix form with control points P0 and P1

α(t) =
[
t 1

] [ −1 1
1 0

] [
P0

P1

]
.

A quadratic Bézier curve is the path traced by the function α(t), given points
P0, P1 and P2, which can be interpreted as the linear interpolant of corresponding
points on the linear Bézier curves from P0 to P1 and from P1 to P2, respectively.
A quadratic Bézier curve has also the matrix form with control points P0 , P1 and
P2

α(t) =
[
t2 t 1

]  1 −2 1
−2 2 0
1 0 0

 P0

P1

P2

 .
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Four points P0, P1, P2, P3, and P4 in the plane or in higher-dimensional space
define a cubic Bézier curve with the following equation

α(t) = (1− t)
3
P0 + 3t (1− t)

2
P1 + 3t2 (1− t)P2 + t3P3.

We have already examined the cubic Bézier curves and involutes in [11] and [12], re-
spectively. The matrix form of the cubic Bézier curve with control points P0, P1, P2,
and P3 is

α(t) =
[
t3 t2 t 1

] 
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0




P0

P1

P2

P3

 .

The matrix form of the first derivative of a cubic Bézier curve based on the
control points P0, P1, P2, and P3 is

α′(t) =
[
t2 t 1

]  −3 9 −9 3
6 −12 6 0
−3 3 0 0




P0

P1

P2

P3

 .

The first derivative of a cubic Bézier curve is a quadratic Bézier curve with control
points Q0 = 3 (P1 − P0) , Q1 = 3 (P2 − P1) , and Q2 = 3 (P3 − P2) ,

α′(t) =
[
t2 t 1

]  1 −2 1
−2 2 0
1 0 0

 3 (P1 − P0)
3 (P2 − P1)
3 (P3 − P2)

 .

The matrix form of the second derivative of a cubic Bézier curve based on the
control points P0, P1, P2, and P3 is

α
′′
(t) =

[
t 1

] [ −6 18 −18 6
6 −12 6 0

]
P0

P1

P2

P3

 .

The second derivative of a cubic Bézier curve is a linear Bézier curve with control
points 6 (P2 − 2P1 + P0) , and 6 (P3 − 2P2 + P1) ,

α′′(t) =
[
t 1

] [ −1 1
1 0

] [
6 (P2 − 2P1 + P0)
6 (P3 − 2P2 + P1)

]
.

Five points P0, P1, P2, P3, and P4 in the plane or in higher-dimensional space define
a 4th order Bézier curve with the following equation

α(t) =

4∑
I=0

(
4

I

)
tI (1− t)

4−I
(t) [PI ] , t ∈ [0, 1] .
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The matrix form of the 4th order Bézier curve based on the control points is

α(t) =
[
t4 t3 t2 t 1

]


1 −4 6 −4 1
−4 12 −12 4 0
6 −12 6 0 0
−4 4 0 0 0
1 0 0 0 0




P0

P1

P2

P3

P4

 .

3. 5th Order Bézier Curve and Its Derivatives

Definition 1. In the plane or in higher-dimensional space define a 5th order Bézier
curve with six points P0, P1, P2, P3, P4, and P5 and it has the following equation

α(t) =

5∑
I=0

(
5

I

)
tI (1− t)

5−I
(t) [PI ] , t ∈ [0, 1] .

Theorem 1. The matrix representation of 5th order Bézier curve with control
points P0, P1, P2, P3, P4, and P5 is

α(t) =
[
t5 t4 t3 t2 t 1

]


−1 5 −10 10 −5 1
5 −20 30 −20 5 0

−10 30 −30 10 0 0
10 −20 10 0 0 0
−5 5 0 0 0 0
1 0 0 0 0 0




P0

P1

P2

P3

P4

P5

 .

Proof. We have already found that

α(t) =
[
t5 t4 t3 t2 t 1

]
[5Bc]


P0

P1

P2

P3

P4

P5

 ,

where [5Bc]6×6 is the coefficient matrix of 5th order of Bézier curve. ”[5Bc]6×6 ”

is obtained by the initial letters of ”5th order Bézier curve” , and the coefficient
matrix of 5thdegree Bézier curve is

−
(
5
0

)(
5
5

) (
5
1

)(
4
4

)
−
(
5
2

)(
3
3

) (
5
3

)(
2
2

)
−
(
5
4

)(
1
1

) (
5
5

)(
0
0

)(
5
0

)(
5
4

)
−
(
5
1

)(
4
3

) (
5
2

)(
3
2

)
−
(
5
3

)(
2
1

) (
5
4

)(
1
0

)
0

−
(
5
0

)(
5
3

) (
5
1

)(
4
2

)
−
(
5
2

)(
3
1

) (
5
3

)(
2
0

)
0 0(

5
0

)(
5
2

)
−
(
5
1

)(
4
1

) (
5
2

)(
3
0

)
0 0 0

−
(
5
0

)(
5
1

) (
5
1

)(
4
0

)
0 0 0 0(

5
0

)(
5
0

)
0 0 0 0 0

 .
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Inverse matrix [5Bc] , of 5th order of Bézier curve is

[5Bc]
−1

=


0 0 0 0 0 1
0 0 0 0 1

5 1
0 0 0 1

10
2
5 1

0 0 1
10

3
10

3
5 1

0 1
5

2
5

3
5

4
5 1

1 1 1 1 1 1


6×6

.

□

Theorem 2. The matrix representation of the first derivative of 5th order of a
Bézier curve with control points P0, P1, P2, ..., and P5 is

α′(t) =


t4

t3

t2

t
1


T 

−5 25 −50 50 −25 5
20 −80 120 −80 20 0
−30 90 −90 30 0 0
20 −40 20 0 0 0
−5 5 0 0 0 0




P0

P1

P2

P3

P4

P5

 ,

=


t4

t3

t2

t
1


T 

1 −4 6 −4 1
−4 12 −12 4 0
6 −12 6 0 0
−4 4 0 0 0
1 0 0 0 0




−5 5 0 0 0 0
0 −5 5 0 0 0
0 0 −5 5 0 0
0 0 0 −5 5 0
0 0 0 0 −5 5




P0

P1

P2

P3

P4

P5

 .

Also as a 4th order Bézier curve, the matrix representation of the first derivative
of 5th order of a Bézier curve with control points Q0, Q1, ..., Q4 is

α′(t) =
[
t4 t3 t2 t 1

]


1 −4 6 −4 1
−4 12 −12 4 0
6 −12 6 0 0
−4 4 0 0 0
1 0 0 0 0




Q0

Q1

Q2

Q3

Q4

 ,

where the control points, (5P1 − 5P0) , (5P2 − 5P1) , (5P3 − 5P2) , (5P4 − 5P3) ,
and (5P5 − 5P4) , respectively.

Proof. We have already found that

α′(t) =
[
t4 t3 t2 t 1

]
[5Bc]

′


P0

P1

P2

P3

P4

P5

 ,
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where [5Bc]
′
is the coefficient matrix of the first derivative of 5th order of a Bézier

curve defined by following

[5Bc]
′
=



−5
(
5
0

)(
5
5

)
5
(
5
1

)(
4
4

)
−5

(
5
2

)(
3
3

)
5
(
5
3

)(
2
2

)
−5

(
5
4

)(
1
1

)
5
(
5
5

)(
0
0

)
4
(
5
0

)(
5
4

)
−4

(
5
1

)(
4
3

)
4
(
5
2

)(
3
2

)
−4

(
5
3

)(
2
1

)
4
(
5
4

)(
1
0

)
0

−3
(
5
0

)(
5
3

)
3
(
5
1

)(
4
2

)
−3

(
5
2

)(
3
1

)
3
(
5
3

)(
2
0

)
0 0

2
(
5
0

)(
5
2

)
−2

(
5
1

)(
4
1

)
2
(
5
2

)(
3
0

)
0 0 0

−
(
5
0

)(
5
1

) (
5
1

)(
4
0

)
0 0 0 0


,

=


−5 25 −50 50 −25 5
20 −80 120 −80 20 0
−30 90 −90 30 0 0
20 −40 20 0 0 0
−5 5 0 0 0 0

 ,

and thus,

α′(t) =
[
t4 t3 t2 t 1

]


−5 25 −50 50 −25 5
20 −80 120 −80 20 0
−30 90 −90 30 0 0
20 −40 20 0 0 0
−5 5 0 0 0 0




P0

P1

P2

P3

P4

P5

 . (1)

Also the first derivative of 5th order of a Bézier curve is a 4th order Bézier curve.
Hence, the matrix representation of 4th order Bézier curve with control points
Q0, Q1, ..., Q4 is

α′(t) =
[
t4 t3 t2 t 1

]


1 −4 6 −4 1
−4 12 −12 4 0
6 −12 6 0 0
−4 4 0 0 0
1 0 0 0 0




Q0

Q1

Q2

Q3

Q4

 , (2)

where Q0 = 5P1 − 5P0, Q1 = 5P2 − 5P1, Q2 = 5P3 − 5P2, Q3 = 5P4 − 5P3 and
Q4 = 5P5 − 5P4 are the control points. From (1) and (2), we write

1 −4 6 −4 1
−4 12 −12 4 0
6 −12 6 0 0
−4 4 0 0 0
1 0 0 0 0




Q0

Q1

Q2

Q3

Q4

 =


−5 25 −50 50 −25 5
20 −80 120 −80 20 0
−30 90 −90 30 0 0
20 −40 20 0 0 0
−5 5 0 0 0 0




P0

P1

P2

P3

P4

P5

 .
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Since, 
1 −4 6 −4 1
−4 12 −12 4 0
6 −12 6 0 0
−4 4 0 0 0
1 0 0 0 0


−1

=


0 0 0 0 1
0 0 0 1

4 1
0 0 1

6
1
2 1

0 1
4

1
2

3
4 1

1 1 1 1 1

 ,

we have
Q0

Q1

Q2

Q3

Q4

 =


0 0 0 0 1
0 0 0 1

4 1
0 0 1

6
1
2 1

0 1
4

1
2

3
4 1

1 1 1 1 1




−5 25 −50 50 −25 5
20 −80 120 −80 20 0
−30 90 −90 30 0 0
20 −40 20 0 0 0
−5 5 0 0 0 0




P0

P1

P2

P3

P4

P5

 ,

=


−5 5 0 0 0 0
0 −5 5 0 0 0
0 0 −5 5 0 0
0 0 0 −5 5 0
0 0 0 0 −5 5




P0

P1

P2

P3

P4

P5

 ,

=


5P1 − 5P0

5P2 − 5P1

5P3 − 5P2

5P4 − 5P3

5P5 − 5P4

 ,

or equivalently we may write

α′(t) =


t4

t3

t2

t
1


T 

1 −4 6 −4 1
−4 12 −12 4 0
6 −12 6 0 0
−4 4 0 0 0
1 0 0 0 0




−5 5 0 0 0 0
0 −5 5 0 0 0
0 0 −5 5 0 0
0 0 0 −5 5 0
0 0 0 0 −5 5




P0

P1

P2

P3

P4

P5

 .

□

Theorem 3. The matrix representation of the second derivative of 5th order of a
Bézier curve with control points P0, P1, P2, ..., P5 is

α
′′
(t) =


t3

t2

t
1


T 

−20 100 −200 200 −100 20
60 −240 360 −240 60 0
−60 180 −180 60 0 0
20 −40 20 0 0 0




P0

P1

P2

P3

P4

P5

 ,
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=


t3

t2

t
1


T 

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0




20 −40 20 0 0 0
0 20 −40 20 0 0
0 0 20 −40 20 0
0 0 0 20 −40 20




P0

P1

P2

P3

P4

P5

 .

Also as a cubic Bézier curve, it has the following form

α
′′
(t) =

[
t3 t2 t 1

] 
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0




R0

R1

R2

R3

 ,

where the control points R0, R1,, ..., R3 are given by
R0

R1

R2

R3

 =


20P0 − 40P1 + 20P2

20P1 − 40P2 + 20P3

20P2 − 40P3 + 20P4

20P3 − 40P4 + 20P5

 .

Proof. We have already found α
′′
(t), therefore the coefficient matrix of the second

derivative of 5thorder of a Bézier curve is

[5Bc]
′′
=



−5.4
(
5
0

)(
5
5

)
5.4

(
5
1

)(
4
4

)
−5.4

(
5
2

)(
3
3

)
5.4

(
5
3

)(
2
2

)
−5.4

(
5
4

)(
1
1

)
5.4

(
5
5

)(
0
0

)
4.3

(
5
0

)(
5
4

)
−4.3

(
5
1

)(
4
3

)
4.3

(
5
2

)(
3
2

)
−4.3

(
5
3

)(
2
1

)
4.3

(
5
4

)(
1
0

)
0

−3.2
(
5
0

)(
5
3

)
3.2

(
5
1

)(
4
2

)
−3.2

(
5
2

)(
3
1

)
3.2

(
5
3

)(
2
0

)
0 0

2
(
5
0

)(
5
2

)
−2

(
5
1

)(
4
1

)
2
(
5
2

)(
3
0

)
0 0 0


,

=


−20 100 −200 200 −100 20
60 −240 360 −240 60 0
−60 180 −180 60 0 0
20 −40 20 0 0 0

 .

By the definition of a cubic Bézier curve that

α
′′
(t) =

[
t3 t2 t 1

] 
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0




R0

R1

R2

R3

 ,
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and by using the equality of these, we get


−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0




R0

R1

R2

R3

 =


−20 100 −200 200 −100 20
60 −240 360 −240 60 0
−60 180 −180 60 0 0
20 −40 20 0 0 0




P0

P1

P2

P3

P4

P5

 .

Since inverse is 
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0


−1

=


0 0 0 1
0 0 1

3 1
0 1

3
2
3 1

1 1 1 1

 ,

we have


R0

R1

R2

R3

 =


0 0 0 1
0 0 1

3 1
0 1

3
2
3 1

1 1 1 1




−20 100 −200 200 −100 20
60 −240 360 −240 60 0
−60 180 −180 60 0 0
20 −40 20 0 0 0




P0

P1

P2

P3

P4

P5

 ,

=


20 −40 20 0 0 0
0 20 −40 20 0 0
0 0 20 −40 20 0
0 0 0 20 −40 20




P0

P1

P2

P3

P4

P5

 .

Here,

R0 = 20P0 − 40P1 + 20P2, R1 = 20P1 − 40P2 + 20P3,

R2 = 20P2 − 40P3 + 20P4, R3 = 20P3 − 40P4 + 20P5

are the control points. By combining the calculations above, we finally write

α
′′
(t) =


t3

t2

t
1


T 

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0




20 −40 20 0 0 0
0 20 −40 20 0 0
0 0 20 −40 20 0
0 0 0 20 −40 20




P0

P1

P2

P3

P4

P5

 ,

which completes the proof. □
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Theorem 4. The matrix representation of the third derivative of a 5th order Bézier
curve with control points P0, P1, P2, ..., P5 is

α′′′(t) =
[
t2 t 1

]  −60 300 −600 600 −300 60
120 −480 720 −480 120 0
−120 360 −360 120 0 0




P0

P1

P2

P3

P4

P5

 ,

=

 t2

t
1

T  1 −2 1
−2 2 0
1 0 0

 −120 360 −360 120 0 0
−60 120 0 −120 60 0
−60 180 −240 240 −180 60




P0

P1

P2

P3

P4

P5

 .

Also, since the third derivative of 5th order of a Bézier curve is a quadratic Bézier
curve, with control points S0, S1, and S2 , α′′′(t) has the following representation

α
′′′
(t) =

[
t2 t 1

]  1 −2 1
−2 2 0
1 0 0

 S0

S1

S2

 ,

where

S0 = −60P0 + 180P1 − 180P2 + 60P3,

S1 = −60P1 + 180P2 − 180P3 + 60P4,

S2 = −60P2 + 180P3 − 180P4 + 60P5.

Proof. We have already found that

α′′′(t) =
[
t2 t 1

]
[5Bc]

′′′


P0

P1

P2

P3

P4

P5

 ,

where the coefficient matrix of the third derivative of 5thorder of a Bézier curve is

[5Bc]
′′′

=


−5.4.3

(
5
0

)(
5
5

)
5.4.3

(
5
1

)(
4
4

)
−5.4.3

(
5
2

)(
3
3

)
5.4.3

(
5
3

)(
2
2

)
−5.4.3

(
5
4

)(
1
1

)
5.4.3

(
5
5

)(
0
0

)
4.3.2

(
5
0

)(
5
4

)
−4.3.2

(
5
1

)(
4
3

)
4.3.2

(
5
2

)(
3
2

)
−4.3.2

(
5
3

)(
2
1

)
4.3.2

(
5
4

)(
1
0

)
0

−3.2
(
5
0

)(
5
3

)
3.2

(
5
1

)(
4
2

)
−3.2

(
5
2

)(
3
1

)
3.2

(
5
3

)(
2
0

)
0 0

 ,

=

 −60 300 −600 600 −300 60
120 −480 720 −480 120 0
−60 180 −180 60 0 0

 .
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Hence

α′′′(t) =
[
t2 t 1

]  −60 300 −600 600 −300 60
120 −480 720 −480 120 0
−60 180 −180 60 0 0




P0

P1

P2

P3

P4

P5

 .

Also Bézier curve is a quadratic curve with control points S0, S1 and S2, it has the
following form

α
′′′
(t) =

[
t2 t 1

]  1 −2 1
−2 2 0
1 0 0

 S0

S1

S2

 .

By using the equality of these, we get

 1 −2 1
−2 2 0
1 0 0

 S0

S1

S2

 =

 −60 300 −600 600 −300 60
120 −480 720 −480 120 0
−60 180 −180 60 0 0




P0

P1

P2

P3

P4

P5

 .

Since again the inverse is 1 −2 1
−2 2 0
1 0 0

−1

=

 0 0 1
0 1

2 1
1 1 1

 ,

we have

 S0

S1

S2

 =

 0 0 1
0 1

2 1
1 1 1

 −60 300 −600 600 −300 60
120 −480 720 −480 120 0
−60 180 −180 60 0 0




P0

P1

P2

P3

P4

P5

 ,

=

 −60 180 −180 60 0 0
0 −60 180 −180 60 0
0 0 −60 180 −180 60




P0

P1

P2

P3

P4

P5

 .
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or correspondingly,

α
′′′
(t) =

 t2

t
1

T  1 −2 1
−2 2 0
1 0 0

 −60 180 −180 60 0 0
0 −60 180 −180 60 0
0 0 −60 180 −180 60




P0

P1

P2

P3

P4

P5

 .

□

Theorem 5. The matrix representation of the fourth derivative of a 5th order
Bézier curve with control points P0, P1, P2, ..., and P5 is

α(4)(t) =
[
t 1

] [ −120 600 −1200 1200 −600 120
120 −480 720 −480 120 0

]


P0

P1

P2

P3

P4

P5

 ,

=
[
t 1

] [ −1 1
1 0

] [
120P0 − 480P1 + 720P2 − 480P3 + 120P4

120P1 − 480P2 + 720P3 − 480P4 + 120P5

]
.

Also the fourth derivative of a 5th order Bézier curve is a linear Bézier curve, with
control points T0, and T1, and it has the following equation

α(4)(t) =
[
t 1

] [ −1 1
1 0

] [
T0

T1

]
,

where

T0 = 120P0 − 480P1 + 720P2 − 480P3 + 120P4,

T1 = 120P1 − 480P2 + 720P3 − 480P4 + 120P5

are the control points of the fourth derivative of a 5thorder Bézier curve based on
the points P0, P1, P2, ..., and P5.

Proof. We have already found that

α(4)(t) =
[
t 1

]
[5Bc]

(4)


P0

P1

P2

P3

P4

P5

 ,
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where the coefficient matrix of the fourth derivative of 5thorder of a Bézier curve
is

[5Bc]
(4)

=

[
−5.4.3.2

(
5
0

)(
5
5

)
5.4.3.2

(
5
1

)(
4
4

)
−5.4.3.2

(
5
2

)(
3
3

)
5.4.3.2

(
5
3

)(
2
2

)
−5.4.3.2

(
5
4

)(
1
1

)
5.4.3.2

(
5
5

)(
0
0

)
4.3.2

(
5
0

)(
5
4

)
−4.3.2

(
5
1

)(
4
3

)
4.3.2

(
3
2

)
−4.3.2

(
5
3

)(
2
1

)
4.3.2

(
5
4

)(
1
0

)
0

]
,

=

[
−120 600 −1200 1200 −600 120
120 −480 720 −480 120 0

]
.

Hence

α(4)(t) =
[
t 1

] [ −120 600 −1200 1200 −600 120
120 −480 720 −480 120 0

]


P0

P1

P2

P3

P4

P5

 .

And also as a linear Bézier curve it has the matrix form with control points T0 and
T1

α(4)(t) =
[
t 1

] [ −1 1
1 0

] [
T0

T1

]
.

By using the equality of these, we get

[
−120 600 −1200 1200 −600 120
120 −480 720 −480 120 0

]


P0

P1

P2

P3

P4

P5

 =

[
−1 1
1 0

] [
T0

T1

]
,

Since the inverse matrix is [
−1 1
1 0

]−1

=

[
0 1
1 1

]
,

we get

[
T0

T1

]
=

[
0 1
1 1

] [
−120 600 −1200 1200 −600 120
120 −480 720 −480 120 0

]


P0

P1

P2

P3

P4

P5

 .

Therefore, the control points of the fourth derivative of a 5thorder Bézier curve
based on the points P0, P1, P2, ..., and P5 are given by

T0 = 120P0 − 480P1 + 720P2 − 480P3 + 120P4,
T1 = 120P1 − 480P2 + 720P3 − 480P4 + 120P5,
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and accordingly the matrix represented form of the curve is

α(4)(t) =
[
t 1

] [ −1 1
1 0

] [
120P0 − 480P1 + 720P2 − 480P3 + 120P4

120P1 − 480P2 + 720P3 − 480P4 + 120P5

]
.

□

Theorem 6. The matrix representation of the fifth derivative of a 5th order Bézier
curve with control points P0, P1, P2, ..., and P5 is

α(5)(t) = 600P1 − 120P0 − 1200P2 + 1200P3 − 600P4 + 120P5.

Proof. It is clear that

α(5)(t) = [5Bc]
(5)


P0

P1

P2

P3

P4

P5

 ,

where [5Bc]
(5)

=
[
−120 600 −1200 1200 −600 120

]
. □

Now, we may consider an example of a curve given by its parametric form. Our
first attempt is to find its control points with the help of matrix representation.
Second we examine its derivatives and their control points. Finally, we represent
each control point of every derivatives by the control points of initial curve, and
draw their correspondence figures by using a free-ware program Geogebra v5.

Example 1. Let us consider the 5th order Bézier curve parameterized as

α(t) =
(
74t5 − 210t4 + 180t3 − 50t2 + 5t+ 1,

− 79t5 + 185t4 − 130t3 + 10t2 + 10t+ 1,

− 63t5 + 95t4 − 30t3 − 5t+ 2
)
.

To find the control points, we first write it as in the matrix product form by follow-
ing:

α(t) =
[
t5 t4 t3 t2 t 1

]


74 −79 −63
−210 185 95
180 −130 −30
−50 10 0
5 10 −5
1 1 2

 .
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Hence
74 −79 −63

−210 185 95
180 −130 −30
−50 10 0
5 10 −5
1 1 2

 =


−1 5 −10 10 −5 1
5 −20 30 −20 5 0

−10 30 −30 10 0 0
10 −20 10 0 0 0
−5 5 0 0 0 0
1 0 0 0 0 0




P0

P1

P2

P3

P4

P5

 ,


0 0 0 0 0 1
0 0 0 0 1

5 1
0 0 0 1

10
2
5 1

0 0 1
10

3
10

3
5 1

0 1
5

2
5

3
5

4
5 1

1 1 1 1 1 1




74 −79 −63

−210 185 95
180 −130 −30
−50 10 0
5 10 −5
1 1 2

 = I


P0

P1

P2

P3

P4

P5

 ,

⇒


P0

P1

P2

P3

P4

P5

 =


1 1 2
2 3 1
−2 6 0
7 −3 −4
5 0 5
0 −3 −1

 ,

where I is a six by six identity matrix.

Inversely, we find the parametric form of a 5th order Bézier curve, α(t) with
control points P0 = (1, 1, 2) , P1 = (2, 3, 1) , P2 = (−2, 6, 0) , P3 = (7,−3,−4) ,
P4 = (5, 0, 5) , P5 = (0,−3,−1) as follows:

α(t) =


t5

t4

t3

t2

t
1



T 
−1 5 −10 10 −5 1
5 −20 30 −20 5 0

−10 30 −30 10 0 0
10 −20 10 0 0 0
−5 5 0 0 0 0
1 0 0 0 0 0




1 1 2
2 3 1
−2 6 0
7 −3 −4
5 0 5
0 −3 −1

 ,

=
(
74t5 − 210t4 + 180t3 − 50t2 + 5t+ 1,−79t5 + 185t4 − 130t3 + 10t2 + 10t+ 1,

− 63t5 + 95t4 − 30t3 − 5t+ 2
)
.

Let us find the control points of the first derivative α′(t)

α′(t) =
(
370t4 − 840t3 + 540t2 − 100t+ 5,−395t4 + 740t3 − 390t2 + 20t+ 10,

− 315t4 + 380t3 − 90t2 − 5
)
.
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Figure 1. 5th order Bézier curve with control points Pj (j =
0, ..., 5)

First we need to write its matrix product form as:

α′(t) =
[
t4 t3 t2 t 1

]


370 −395 −315
−840 740 380
540 −390 −90
−100 20 0
5 10 −5

 .

Next, by equating the terms we have


t4

t3

t2

t
1


T 

370 −395 −315
−840 740 380
540 −390 −90
−100 20 0
5 10 −5

 =


t4

t3

t2

t
1


T 

1 −4 6 −4 1
−4 12 −12 4 0
6 −12 6 0 0
−4 4 0 0 0
1 0 0 0 0




Q0

Q1

Q2

Q3

Q4

 ,


370 −395 −315
−840 740 380
540 −390 −90
−100 20 0
5 10 −5

 =


1 −4 6 −4 1
−4 12 −12 4 0
6 −12 6 0 0
−4 4 0 0 0
1 0 0 0 0




Q0

Q1

Q2

Q3

Q4

 ,
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=⇒


Q0

Q1

Q2

Q3

Q4

 =


5 10 −5

−20 15 −5
45 −45 −20
−10 15 45
−25 −15 −30

 ,


Q0

Q1

Q2

Q3

Q4

 =


−5 5 0 0 0 0
0 −5 5 0 0 0
0 0 −5 5 0 0
0 0 0 −5 5 0
0 0 0 0 −5 5




P0

P1

P2

P3

P4

P5

 ,


5 10 −5

−20 15 −5
45 −45 −20
−10 15 45
−25 −15 −30

 =


−5 5 0 0 0 0
0 −5 5 0 0 0
0 0 −5 5 0 0
0 0 0 −5 5 0
0 0 0 0 −5 5




P0

P1

P2

P3

P4

P5

 ,


5 10 −5

−20 15 −5
45 −45 −20
−10 15 45
−25 −15 −30

 =


5P1 − 5P0

5P2 − 5P1

5P3 − 5P2

5P4 − 5P3

5P5 − 5P4

 .

Figure 2. 1st derivative of a 5th order Bézier curve with control
points Qj (j = 0, ..., 4)

By following same steps given above, we may find the control points of the second
and third derivative of the curve α(t) and draw them as in Fig. 3 and Fig. 4.

α′′(t) =
(
1080t− 2520t2 + 1480t3 − 100,−780t+ 2220t2 − 1580t3 + 20
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−180t+ 1140t2 − 1260t3
)
,

α′′′(t) =
(
−5040t+ 4440t2 + 1080, 4440t− 4740t2 − 780, 2280t− 3780t2 − 180

)
.

Figure 3. 2nd derivative of a 5th order Bézier curve with control
points Rj (j = 0, ..., 3)

Figure 4. 3th derivative of a 5th order Bézier curve with control
points Sj (j = 0, ..., 2)

The fourth derivative of the curve, α(t) is simply draws a line while the fifth
derivative is a single point:

α(4)(t) = (8880t− 5040,−9480t+ 4440,−7560t+ 2280) ,

α(5)(t) = (8880,−9480,−7560) .



ON THE MATRIX REPRESENTATION OF 5th ORDER BÉZIER CURVE 151

4. Conclusion

We can write the parametric form of 5th order Bézier curve using a simple matrix
product. Further, we can find the control points using a simple matrix product,
inversely. Also the second derivative of a 5th order Bézier curve with the con-
trol points Pi, (i = 0, ..., 4) can be considered another 4th order Bézier curve having
(5 + 1)−2 = 4 control points as Rj = n(n−1) (Pj − 2Pj+1 + Pj+2), j = 0, ..., 3.The
third derivative of a 5th order Bézier curve with the control points Pi, (i = 0, ..., 5)
can be considered another cubic Bézier curve having (5 + 1)− 3 = 3 control points
as Sj = n(n− 1)(n− 2)(−Pj +3Pj+1 − 3Pj+2 +Pj+3), j = 0, ..., 2.The third deriv-
ative of an 5th order Bézier curve with the control points Pi, (i = 0, ..., 5), can be
considered a quadratic Bézier curve having (5 + 1) − 3 = 5 − 2 = 3 control points
as Nj = n(n− 1)(n− 2) (−Pj + 3Pj+1 − 3Pj+2 + Pj+3), j = 0, ..., 2.
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SPLIT COMPLEX BI-PERIODIC FIBONACCI AND

LUCAS NUMBERS
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Abstract. The initial idea of this paper is to investigate the split complex

bi-periodic Fibonacci and Lucas numbers by using SCFLN now on. We try

to show some properties of SCFLN by taking into account the properties of
the split complex numbers. Then, we present interesting relationships between

SCFLN.

1. Introduction

The literature contains many articles that related to the special number se-
quences such as Fibonacci, Lucas, Pell ( [2, 3, 6, 8, 14, 15, 17, 18]). One of these
articles goes through to the bi-periodic Fibonacci (or, equivalently, generalized Fi-
bonacci) and the bi-periodic Lucas (or, equivalently, generalized Lucas). In [3, 6],
the authors introduced and studied bi-periodic Fibonacci {qn}∞n=0 and bi-periodic
Lucas {ln}∞n=0 sequences that depend on two real parameters used in a non-linear
(piecewise linear) recurrence relation as defined below.

qn = a1−ξ(n)bξ(n)qn−1 + qn−2, n ≥ 2 , (1)

ln = aξ(n)b1−ξ(n)ln−1 + ln−2, n ≥ 2 , (2)

where a and b are any two nonzero real numbers, q0 = 0, q1 = 1, l0 = 2, l1 = a and
the condition ξ (n) = n− 2

⌊
n
2

⌋
can be read as

ξ (n) =

{
0, n is even
1, n is odd

. (3)

Furthermore, the authors in the references [3], [6] and [18] gave so many proper-
ties on the bi-periodic Fibonacci and bi-periodic Lucas sequences as in the following:

2020 Mathematics Subject Classification. 11B39, 17A45.
Keywords. Bi-periodic Fibonacci number, bi-periodic Lucas number, generalized Fibonacci

number, split complex number.

yilmaznzmy@gmail.com

0000-0002-7302-2281.

©2022 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

153



154 N. YILMAZ

• The Binet formulas are given by

qn =
a1−ξ(n)

(ab)⌊
n
2 ⌋

(
αn − βn

α− β

)
(4)

and

ln =
aξ(n)

(ab)⌊
n+1
2 ⌋ (αn + βn) , (5)

where the condition ξ (n) is depend to definition in equation (3) and α, β
are roots of the characteristic equation of λ2 − abλ− ab = 0.

• The generating functions for the bi-periodic Fibonacci and the bi-periodic
Lucas sequences with odd and even subscripted are

∞∑
m=0

q2m+1x
2m+1 =

x− x3

1− (ab+ 2)x2 + x4
,

∞∑
m=0

q2mx2m =
ax2

1− (ab+ 2)x2 + x4
,

(6)
and

∞∑
m=0

l2m+1x
2m+1 =

ax+ ax3

1− (ab+ 2)x2 + x4
,

∞∑
m=0

l2mx2m =
2− (ab+ 2)x2

1− (ab+ 2)x2 + x4
. (7)

• The bi-periodic Fibonacci and the bi-peridoic Lucas sequences provide the
equations

ln = qn−1 + qn+1 (8)

(ab+ 4)qn = ln−1 + ln+1 , (9)

and

qm+n =
1

2

[
(
b

a
)ξ(m+1)ξ(n)qmln + (

b

a
)ξ(m)ξ(n+1)qnlm

]
, (10)

lm+n =
1

2

[
(a2b2 + 4ab)(

1

a2
)ξ(m+1)ξ(n+1)(

1

ab
)1−ξ(m+1)ξ(n+1)qmqn + (

b

a
)ξ(m)ξ(n)lmln

]
,

(11)
and

q−n = (−1)n−1qn , (12)

l−n = (−1)nln . (13)

On the other hand, split complex numbers have applications in different areas
of mathematics and theoretical physics. A split complex number (or hyperbolic
number, also perplex number, double number) has two real number components a
and b, and the set of split complex numbers is

H =
{
x = a+ hb : h2 = 1, a, b ∈ R

}
.
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The split complex ring H is a bidimensional Clifford algebra, look at [10] for details.
Also, split complex numbers are useful for measuring distances in the Lorentz space-
time plane (you can examine [12]). The addition and multiplication of any two split
complex numbers such as x = a+ hb, y = c+ hd are defined by

x+ y = a+ c+ h(b+ d) and xy = ac+ bd+ h(ad+ bc) .

It is clear that this algebra of split complex number is commutative. The conjugate
and norm of x are enounced by

x = a− bh, xx = a2 − b2 . (14)

For more information on split complex numbers, see for example, [4], [7], [9], [10],
[11] and [12].

Many researchs activities can be seen in resent years studies on split complex(or
hyperbolic) Fibonacci, Lucas, Jacobsthal and Tribonacci numbers (see [1], [5], [13],
[16]). For example, in [1], it was investigated some properties of the split complex

Fibonacci numbers are defined as F̃n = Fn + hFn+1 .

2. The split complex bi-periodic Fibonacci and Lucas numbers

The objective of this paper is to define split complex bi-periodic Fibonacci and
Lucas numbers(SCFLN) with a different aspect. In this part, we introduce the
SCFLN that generalize split complex Fibonacci, split complex Lucas, split complex
Pell and split complex Pell-Lucas numbers. We give some properties of the SCFLN
such as the Binet formulas, the generating functions, sums, binomial sums of the
SCFLN. We also present the Catalan, Cassini, D’Ocagne and other identities of the
SCFLN.

Definition 1. The split complex bi-periodic Fibonacci (q̃n) and Lucas (l̃n) numbers
are defined by

q̃n = qn + ha1−ξ(n)bξ(n)qn+1, q̃0 = ha, q̃1 = hab+ 1 (15)

and

l̃n = ln + haξ(n)b1−ξ(n)ln+1, l̃0 = hab+ 2, l̃1 = h(a2b+ 2a) + a (16)

where n ∈ N, h2 = 1, ξ(n) is as defined the equation (3) and qn, ln are the bi-periodic
Fibonacci and Lucas numbers, respectively.

It can be easily shown that

q̃n =

{
aq̃n−1 + q̃n−2, if n is even
bq̃n−1 + q̃n−2, if n is odd

(17)

and

l̃n =

{
bl̃n−1 + l̃n−2, if n is even

al̃n−1 + l̃n−2, if n is odd
. (18)
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From the equations (12), (13), (17) and (18), the SCFLN with negative subscripts
are defined by

q̃−n =

{
−aq̃−(n−1) + q̃−(n−2), if n is even
−bq̃−(n−1) + q̃−(n−2), if n is odd

, (19)

and

l̃−n =

{
−bl̃−(n−1) + l̃−(n−2), if n is even

−al̃−(n−1) + l̃−(n−2), if n is odd
, (20)

where n ∈ N.
After all, we give the following Table 1. This table show that the first few SCFLN

with positive and negative subscripts.

Table 1. The first few SCFLN with positive and negative sub-
scripts.

n q̃n l̃n
−4 h(a2b+ a)− a2b− 2a h(a2b+ 3a)− a2b2 + 4ab+ 2
−3 −hab+ ab+ 1 h(a2b+ 2a)− a2b− 3a
−2 ha− a −hab+ ab+ 2
−1 1 2ha− a
0 ha hab+ 2
1 hab+ 1 h(a2b+ 2a) + a
2 h(a2b+ a) + a h(a2b2 + 3ab) + ab+ 2
3 h(a2b2 + 2ab) + ab+ 1 h(a3b2 + 4a2b+ 2a) + a2b+ 3a
4 h(a3b2 + 3a2b+ a) + a2b+ 2a h(a3b3 + 5a2b2 + 5ab) + a2b2 + 4ab+ 2

Now, we give the Binet formulas for the SCFLN and so find some well-known
mathematical properties.

Theorem 1. For any integer n, the Binet formulas for the SCFLN are

q̃n =
a1−ξ(n)

(ab)⌊
n
2 ⌋

(
α̃αn − β̃βn

α− β

)
(21)

and

l̃n =
aξ(n)

(ab)⌊
n+1
2 ⌋

(
α̃αn + β̃βn

)
, (22)

where α, β are as the equation (4) and α̃ = 1 + hα, β̃ = 1 + hβ.

Proof. It can easily established by using the Definition 1 and the Equations (4),
(5). □

The generating functions of the SCFLN are given in the following theorem.
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Theorem 2. For the SCFLN, we have the generating functions

i)
∞∑

n=0
q̃nx

n =
h(abx+ a− ax2) + x+ ax2 − x3

1− (ab+ 2)x2 + x4
,

ii)
∞∑

n=0
l̃nx

n =
h(ab+ a2bx+ 2ax+ abx2 − 2ax3) + 2 + ax− abx2 − 2x2 + ax3

1− (ab+ 2)x2 + x4
.

Proof. i) Let f(x) =
∞∑

n=0
q̃nx

n. From the Definition 1, we have

f(x) =

∞∑
n=0

(ha1−ξ(n)bξ(n)qn+1 + qn)x
n

= hb

∞∑
n=0

q2n+2x
2n+1 + ha

∞∑
n=0

q2n+1x
2n +

∞∑
n=0

qnx
n.

By considering the Equation (6), we obtain

f(x) =
habx

1− (ab+ 2)x2 + x4
+

ha(1− x2)

1− (ab+ 2)x2 + x4
+

x+ ax2 − x3

1− (ab+ 2)x2 + x4
,

as needed.
ii) Similarly, we obtain equation in ii.

□

Next, we give the formulas which give the summations and binomial sums of the
SCFLN.

Theorem 3. For n ≥ 0, the following formulas are true:

i)
∑n

i=0 a
ξ(i)(ab)⌊

i
2⌋q̃i =

aξ(n)(ab)⌊
n
2 ⌋+1q̃n + aξ(n+1)(ab)⌊

n+1
2 ⌋q̃n+1 − a− ha

2ab− 1
,

ii)
∑n

i=0 a
−ξ(i)(ab)⌊

i+1
2 ⌋ l̃i =

a−ξ(n)(ab)⌊
n+1
2 ⌋+1 l̃n + a−ξ(n+1)(ab)⌊

n+2
2 ⌋ l̃n+1 − 2 + ab− 3hab

2ab− 1
,

iii)
∑n

i=0

(
n
i

)
aξ(i)(ab)⌊

i
2⌋q̃i = q̃2n,∑n

i=0

(
n
i

)
aξ(i+1)(ab)⌊

i+1
2 ⌋q̃i+1 = aq̃2n+1,

iv)
∑n

i=0

(
n
i

)
aξ(i+1)(ab)⌊

i+1
2 ⌋ l̃i = al̃2n,∑n

i=0

(
n
i

)
aξ(i)(ab)⌊

i+2
2 ⌋−1 l̃i+1 = l̃2n+1,

Proof. We will prove the parts i and iv, since the proof of the others can be done
similarly with them.
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i) The proof will be handled just the outcome of Theorem 1. Thus, we con-
sider:

n∑
i=0

aξ(i)(ab)⌊
i
2⌋q̃i =

n∑
i=0

a
α̃αi − β̃βi

α− β

=
aα̃

α− β

(
αn+1 − 1

α− 1

)
+

aβ̃

α− β

(
βn+1 − 1

β − 1

)
=

a

α− β

[
α̃(αn+1β − αn+1 − β + 1)− β̃(βn+1α− βn+1 − α+ 1)

αβ − α− β + 1

]
.

At this point, by rearragement the last equality by using the equalities
αβ = −ab and α+ β = ab, we give

n∑
i=0

aξ(i)(ab)⌊
i
2⌋q̃i =

−a2b

1− 2ab
q̃n

(ab)⌊
n
2 ⌋

a1−ξ(n)
− a

1− 2ab
q̃n+1

(ab)⌊
n+1
2 ⌋

a1−ξ(n+1)

− a

1− 2ab

β(1 + hα)− α(1 + hβ)

α− β
+

a

1− 2ab
h

=
aξ(n)(ab)⌊

n
2 ⌋+1q̃n + aξ(n+1)(ab)⌊

n+1
2 ⌋q̃n+1 − a− ha

2ab− 1
.

iv) From Theorem 1, we have

n∑
i=0

(
n

i

)
aξ(i+1)(ab)⌊

i+1
2 ⌋ l̃i =

n∑
i=0

(
n

i

)
a1−ξ(i)(ab)⌊

i+1
2 ⌋ aξ(i)

(ab)⌊
i+1
2 ⌋ (α̃α

i + β̃βi)

= aα̃(1 + α)n + aβ̃(1 + β)n.

By using the equalities ab(1 + α) = α2 and ab(1 + β) = β2, we get

n∑
i=0

(
n

i

)
aξ(i+1)(ab)⌊

i+1
2 ⌋ l̃i =

a

(ab)n
(α̃α2n + β̃β2n)

= al̃2n.

Similarly, we obtain
n∑

i=0

(
n

i

)
aξ(i)(ab)⌊

i+2
2 ⌋−1 l̃i+1 =

n∑
i=0

(
n

i

)
a

ab
(α̃αi+1 + β̃βi+1)

=
aα

ab
α̃(1 + α)n +

aβ

ab
β̃(1 + β)n

=
a

(ab)n+1
(α̃α2n+1 + β̃β2n+1)

= l̃2n+1.

□
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Theorem 4. The relations of between the SCFLN are

i)

q̃n+r =

(
b

a

)ξ(n+1)ξ(r)

qr+1

(
ha1−ξ(n)bξ(n)qn+1 + qn

)
+

(
b

a

)ξ(r+1)ξ(n)

qr

(
haξ(n)b1−ξ(n)qn + qn−1

)
,

ii)

l̃n+r =

(
b

a

)ξ(n)ξ(r)

qr+1

(
haξ(n)b1−ξ(n)ln+1 + ln

)
+

(
b

a

)ξ(n+1)ξ(r+1)

qr

(
ha1−ξ(n)bξ(n)ln + ln−1

)
,

iii) q̃−n = (−1)nq̃n−2 + (−1)n+1pn−1,

iv) l̃−n = (−1)n−1 l̃n−2 + (−1)n(ab+ 4)qn−1,

v) q̃n = l̃n+1 + l̃n−1,

vi) (ab+ 4)l̃n = q̃n+1 + q̃n−1,

where n, r ∈ N.

Proof. i) Using the Equation (1), Definition 1, Table 1 and iterative method,
it was obtained

q̃n = ha1−ξ(n)bξ(n)qn+1 + qn,

q̃n+1 = (hab+ 1)qn+1 + haξ(n)b1−ξ(n)qn,

q̃n+2 = a1−ξ(n)bξ(n)(hab+ 1 + h)qn+1 + (hab+ 1)qn,

q̃n+3 = (ha2b2 + ab+ 2hab+ 1)qn+1 + haξ(n)b1−ξ(n)(hab+ 1 + h)qn,

...

q̃n+r =

(
b

a

)ξ(n+1)ξ(r)

qr+1

(
ha1−ξ(n)bξ(n)qn+1 + qn

)
+

(
b

a

)ξ(r+1)ξ(n)

qr

(
haξ(n)b1−ξ(n)qn + qn−1

)
.

ii) Using the Equation (2), Definition 1, Table 1 and iterative method, it was
obtained

l̃n = haξ(n)b1−ξ(n)ln+1 + ln,

l̃n+1 = (hab+ 1)ln+1 + ha1−ξ(n)bξ(n)ln,

l̃n+2 = aξ(n)b1−ξ(n)(hab+ 1 + h)ln+1 + (hab+ 1)ln,
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l̃n+3 = (ha2b2 + ab+ 2hab+ 1)ln+1 + ha1−ξ(n)bξ(n)(hab+ 1 + h)ln,

...

l̃n+r =

(
b

a

)ξ(n)ξ(r)

qr+1

(
haξ(n)b1−ξ(n)ln+1 + ln

)
+

(
b

a

)ξ(n+1)ξ(r+1)

qr

(
ha1−ξ(n)bξ(n)ln + ln−1

)
.

iii) By taking account of the Definition 1, Equations (4), (12) and (19), it was
obtained

q̃−n = (−1)n−1 a
1−ξ(n)

(ab)⌊
n
2 ⌋

(
αn − βn

α− β

)
+ (−1)nh

abξ(n)

(ab)⌊
n−1
2 ⌋

(
αn−1 − βn−1

α− β

)

= (−1)n−1qn + (−1)nh
a1−ξ(n)

(ab)⌊
n
2 ⌋−1

(
αn−1 − βn−1

α− β

)
+ (−1)nqn−2 − (−1)nqn−2

= (−1)nq̃n−2 + (−1)n+1ln−1.

iv) The proof can be done quite similarly as the part iii by using the Definition
1, Equations (5), (13) and (20).

v) The result is obtained by using Definition 1 and Equation (8). That is, we
have

l̃n+1 + l̃n−1 = haξ(n+1)b1−ξ(n+1)ln+2 + ln+1 + haξ(n−1)b1−ξ(n−1)ln + ln−1

= haξ(n−1)b1−ξ(n−1)qn+1 + qn

= q̃n

as required.
vi) The proof can be done quite similarly as the part v by using Definition 1

and Equation (9).
□

Following Theorem gives Catalan’s identities for the SCFLN;

Theorem 5. For n, r ∈ N and n ≥ r, we get

i) aξ(n−r)b1−ξ(n−r)q̃n−r q̃n+r − aξ(n)b1−ξ(n)q̃2n = (−1)n+1−raξ(r)b1−ξ(r)(1 + hab− ab)q2r ,

ii)
(
b
a

)ξ(n+r)
l̃n−r l̃n+r−

(
b
a

)ξ(n)
l̃2n = (−1)n−r

(
b
a

)1−ξ(r)
(1+hab−ab)(ab+4)q2r .

Proof. i) From Theorem 1, we have

aξ(n−r)b1−ξ(n−r)q̃n−r q̃n+r =
a

(ab)n−1

(
α̃2α2n − α̃β̃αn−rβn+r − β̃α̃αn+rβn−r + β̃

2
β2n

(α− β)2

)
,

aξ(n)b1−ξ(n)q̃2n =
a

(ab)n−1

(
α̃2α2n − α̃β̃(αβ)n − β̃α̃(αβ)n + β̃

2
β2n

(α− β)2

)
.
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From the properties of split complex numbers, we write α̃β̃ = β̃α̃ =
1 + hab− ab. Then, by using equation (4), we have

aξ(n−r)b1−ξ(n−r)q̃n−r q̃n+r − aξ(n)b1−ξ(n)q̃2n = − a

(ab)n−1
(−ab)n−r(1 + hab− ab)

(
αr − βr

α− β

)2

= (−1)n+1−raξ(r)b1−ξ(r)(1 + hab− ab)q2r

ii) The proof can be done analogously to i.

□

Note that for r = 1 in Theorem 5, we obtain the following result which are
Cassini’s identities for the SCFLN.

Corollary 1. For any positive integer n, we have

i) aξ(n−1)b1−ξ(n−1)q̃n−1q̃n+1 − aξ(n)b1−ξ(n)q̃2n = a(−1)n(1 + hab− ab),

ii)
(
b
a

)ξ(n+1)
l̃n−1 l̃n+1 −

(
b
a

)ξ(n)
l̃2n = (−1)n−1(1 + hab− ab)(ab+ 4).

Note that for r = n in Theorem 5, we obtain the following result.

Corollary 2. For any positive integer n, we have

i) habq̃2n − aξ(n)b1−ξ(n)q̃2n = −aξ(n)b1−ξ(n)(1 + hab− ab)q2n,

ii) (hab+ 2)l̃2n −
(
b
a

)ξ(n)
l̃2n =

(
b
a

)1−ξ(n)
(1 + hab− ab)(ab+ 4)q2n.

Following Theorem gives D’ocagne identities for the SCFLN;

Theorem 6. For m ≥ n and m,n ∈ N, we obtain

i) aξ(mn+m)bξ(mn+n)q̃mq̃n+1 − aξ(mn+n)bξ(mn+m)q̃m+1q̃n = (−1)naξ(m−n)(1 + hab− ab)qm−n,

ii) aξ(mn+n)bξ(mn+m) l̃m l̃n+1 − aξ(mn+m)bξ(mn+n) l̃m+1 l̃n = (−1)n+1aξ(m−n)(1 + hab− ab)(ab+ 4)qm−n.

Proof. i) From Theorem 1, we have

aξ(mn+m)bξ(mn+n)q̃mq̃n+1 =
a(ab)−n

(ab)
m−n−ξ(m−n)

2

(
α̃2αm+n+1 − α̃β̃αmβn+1 − β̃α̃αn+1βm + β̃

2
βm+n+1

(α− β)2

)
,

aξ(mn+n)bξ(mn+m)q̃m+1q̃n =
a(ab)−n

(ab)
m−n−ξ(m−n)

2

(
α̃2αm+n+1 − α̃β̃αm+1βn − β̃α̃αnβm+1 + β̃

2
βm+n+1

(α− β)2

)
.

Let us label the left-hand side of the equality in i as LHS. Then, from equation
(4), we write

LHS =
a(ab)−n

(ab)⌊
m−n

2 ⌋ α̃β̃(αβ)
n

(
αm−n − βm−n

α− β

)
= (−1)naξ(m−n)(1 + hab− ab)qm−n.

ii) The proof can be done analogously to i.

□
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We give summation formulas for the SCFLN in the following theorem.

Theorem 7. For m,n ∈ Z, we have

i)
(
b
a

)ξ(m+1)ξ(n)
q̃m l̃n+

(
b
a

)ξ(m)ξ(n+1)
q̃n l̃m = 2q̃m+n+2ha1−ξ(m+n)bξ(m+n)q̃m+n+1,

ii) (ab+4)
(
b
a

)ξ(m+1)ξ(n+1)
q̃mq̃n+

(
b
a

)ξ(m)ξ(n)
l̃m l̃n = 2l̃m+n+2haξ(m+n)b1−ξ(m+n) l̃m+n+1.

Proof. i) The proof can be done analogously to ii.
ii) We must express that the proof should be examined for both cases of m

and n.
If both of m and n are even, from equations (15), (16) and (11), we find

(ab+ 4)

(
b

a

)
q̃mq̃n + l̃m l̃n = (ab+ 4)

(
b

a

)
(qmqn + haqmqn+1 + haqnqm+1 + a2qm+1qn+1)

+ lmln + hblmln+1 + hblnlm+1 + b2lm+1ln+1

= 2lm+n + 4hblm+n+1 + 2ablm+n+2

= 2l̃m+n + 2hbl̃m+n+1.

If both of m and n are odd, from equations (15), (16) and (11), we get

(ab+ 4)q̃mq̃n +

(
b

a

)
l̃m l̃n = (ab+ 4)(qmqn + hbqmqn+1 + hhqnqm+1 + b2qm+1qn+1)

+

(
b

a

)
(lmln + halmln+1 + halnlm+1 + a2lm+1ln+1)

= 2lm+n + 4hblm+n+1 + 2ablm+n+2

= 2l̃m+n + 2hbl̃m+n+1.

If one of m and n is even and the other is odd, from equations (15), (16)
and (11), we obtain

(ab+ 4)q̃mq̃n + l̃m l̃n = 2lm+n + 4halm+n+1 + 2ablm+n+2

= 2l̃m+n + 2hal̃m+n+1.

If we put the all results together, we obtain the desired equation.
□

If we take m = 0 in Theorem 7, it is easy to see the following:

Corollary 3. For n ∈ Z, we have

i) bq̃n +
(
b
a

)ξ(n)
l̃n = 2

(
b
a

)ξ(n)
q̃n+1,

ii) (ab+ 4)
(
b
a

)ξ(n+1)
q̃n + bl̃n = 2

(
b
a

)ξ(n+1)
l̃n+1.

If we take m = n in Theorem 7, it is easy to see the following:
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Corollary 4. For n ∈ Z, we have

i) q̃n l̃n = q̃2n + haq̃2n+1,

ii) (ab+ 4)
(
b
a

)1−ξ(n)
q̃2n +

(
b
a

)ξ(n)
l̃2n = 2l̃2n + 2hbl̃2n+1.

If we take m = 1 in Theorem 7, it is easy to see the following:

Corollary 5. For n ∈ Z, we have

i) q̃1 l̃n +
(
b
a

)ξ(n+1)
q̃n l̃1 = 2q̃n+1 + 2haξ(n)bξ(n+1)q̃n+2,

ii) (ab+ 4)q̃1q̃n +
(
b
a

)ξ(n)
l̃1 l̃n = 2l̃n+1 + 2haξ(n+1)bξ(n) l̃n+2.

3. Conclusion

In this paper, we define split complex bi-periodic Fibonacci and Lucas num-
bers and give some properties of these new numbers. Thus, it is obtained a new
genaralization for the split complex number sequences that have the similar recur-
rence relation. That is, in the all results of Section 2, we can express certain and
immediate relationships as follows:

• If we replace a = b = 1 in q̃n and l̃n, we get the same result in [1] for the
split complex Fibonacci and Lucas numbers.

• If we replace a = b = 2 in q̃n and l̃n, we find the split complex Pell and
Pell-Lucas numberss.

• If we replace a = b = k in q̃n and l̃n, we obtain the split complex k-Fibonacci
and k-Lucas numbers.

Declaration of Competing Interest The author declare that there are no con-
flicts of interest regarding the publication of this paper.
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Abstract. In this paper, some types of fuzzy filters of a strong Sheffer stroke

non-associative MV-algebra (for short, strong Sheffer stroke NMV-algebra) are

introduced. By presenting new properties of filters, we define a prime filter in
this algebraic structure. Then (prime) fuzzy filters of a strong Sheffer stroke

NMV-algebra are determined and some features are proved. Finally, we built

quotient strong Sheffer stroke NMV-algebra by a fuzzy filter.

1. Introduction

Sheffer operation was introduced by H. M. Sheffer as a single binary operation
on a Boolean algebra restated all Boolean operations or formulas [16]. Since it
has all diods on the chip forming processor in a computer, producing a single
diod for this operation is simpler and cheaper than to produce different diods for
other Boolean operations. Therefore, it is applied to algebraic structures such as
Boolean algebras ( [9], [16]), ortholattices [3], orthoimplication algebras [1], Hilbert
algebras [11], UP-algebras [14] and BL-algebras [13]. In recent times, Chajda et
al. introduced and studied non-associative MV-algebras (briefly, NMV-algebras)
( [4], [5], [6]) because associativity of the binary relation of a MV-algebra causes
serious problems in expert systems in artificial intelligence ( [2], [6]). Also, Oner
et al. analyzed filters and neutrosophic structures on strong Sheffer stroke NMV-
algebras ( [10], [15]). On the other side, the notion of fuzzy logic was originally
introduced by Lotfi Zadeh [18] and has been developing expeditiously. Since these
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concepts have an important position in classic or nonclassic logical algebras, it leads
to interesting results ( [7], [8], [12], [17]).

In this study, basic concepts and new properties of a strong Sheffer stroke NMV-
algebra are presented. Then a (prime) filter of strong Sheffer stroke NMV-algebras
is defined and some features examined. It is shown that a filter of a strong sheffer
stroke NMV-algebra is prime if and only if it is not contained by another filter of
this algebraic structure. Indeed, it is proved that a filter of a strong Sheffer stroke
NMV-algebra is prime if and only if the quotient structure defined by the filter is
totally ordered strong Sheffer stroke NMV-algebra and its cardinality is less than
or equals to 2. By describing a (prime) fuzzy filter of strong Sheffer stroke NMV-
algebras, related notions are stated. It is proved that α is a (prime) fuzzy filter
of a strong Sheffer stroke NMV-algebra if and only if αa = {x ∈ A : a ≤ α(x)}
is empty or a (prime) filter of A, for all a ∈ [0, 1]. Besides, it is shown that F
is a (prime) filter of a strong Sheffer stroke NMV-algebra if and only if a fuzzy
subset αF defined by F is a (prime) fuzzy filter of this algebraic structure. It is
demonstrated that a strong Sheffer stroke NMV-algebra is totally ordered if and
only if every fuzzy filter is prime if and only if the filter {1} is prime. Also, we
prove that a fuzzy filter α of a strong Sheffer stroke NMV-algebra is prime if and
only if αh is a prime fuzzy filter of this algebra, for a surjective endomorphism h
on this algebra, and that αh = α if and only if h(αa) = αa, for an automorphism h
on this algebra and a ∈ Im(α). Finally, a congruence relation on a strong Sheffer
stroke NMV-algebra is defined by a fuzzy filter, and so, a quotient strong Sheffer
stroke NMV-algebra is constructed by means of the congruence relation. In fact,
a fuzzy filter α of a strong Sheffer stroke NMV-algebra is prime if and only if the
quotient structure is a totally ordered strong Sheffer stroke NMV-algebra and its
cardinality is less than or equals to 2. In addition, it is shown that α ◦ h is a fuzzy
filter of A and the quotient structures defined by the fuzzy filters α ◦ h and α are
isomorphic, for strong Sheffer stroke NMV-algebras A and B, an epimorphism h
between these algebras and a fuzzy filter α of B. Consequently, it is stated that the
class of all fuzzy filters of a strong Sheffer stroke NMV-algebra forms a complete
lattice since the interval [0, 1] is a complete lattice and has important properties.

2. Preliminaries

In this section, basic definitions and notions about strong Sheffer stroke NMV-
algebras are presented.

Definition 1. [3] Let A = (A, |) be a groupoid. The operation | on A is said to be
a Sheffer stroke operation if it satisfies the following conditions:

(S1) x|y = y|x,
(S2) (x|x)|(x|y) = x,
(S3) x|((y|z)|(y|z)) = ((x|y)|(x|y))|z,
(S4) (x|((x|x)|(y|y)))|(x|((x|x)|(y|y))) = x.
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Definition 2. [4] A strong Sheffer stroke NMV-algebra is an algebra (A, |, 1) of
type (2, 0) satisfying the identities for all x, y, z ∈ A:

(n1) x|y ≈ y|x,
(n2) x|0 ≈ 1,
(n3) (x|1)|1 ≈ x,
(n4) ((x|1)|y)|y ≈ ((y|1)|x)|x,
(n5) (x|1)|((x|y)|1) ≈ 1,
(n6) x|(((((x|y)|y)|z)|z)|1) ≈ 1

where 0 denotes the algebraic constant 1|1.

Lemma 1. [10] Let (A, |, 1) be a strong Sheffer Stroke NMV-algebra. Then the
binary relation ≤ defined by

x ≤ y if and only if x|(y|1) ≈ 1

is a partial order on A. Hence, (A,≤) is a poset with the least element 0 and the
greatest element 1.

Lemma 2. [10] In a strong Sheffer stroke NMV-algebra A, the following properties
hold for all x, y, z ∈ A:

(i) x|(x|1) ≈ 1,
(ii) x ≤ y ⇔ y|1 ≤ x|1,
(iii) y ≤ x|(y|1),
(iv) y|1 ≤ x|y,
(v) x ≤ (x|y)|y,
(vi) x ≤ (((x|y)|y)|z)|z,
(vii) ((x|y)|y)|y ≈ x|y,
(viii) x|1 ≈ x|x,
(ix) x|(x|x) ≈ 1,
(x) 1|(x|x) ≈ x,
(xi) x ≤ y ⇒ y|z ≤ x|z,
(xii) x|(y|1) ≤ (y|(z|1))|((x|(z|1))|1),
(xiii) x|(y|1) ≤ (z|(x|1))|((z|(y|1))|1).

Definition 3. [10] A nonempty subset F ⊆ A is called a filter of A if it satisfies
the following properties:
(Sf − 1) 1 ∈ F ,
(Sf − 2) For all x, y ∈ A, x|(y|1) ∈ F and x ∈ F imply y ∈ F .

Definition 4. [10] Let F be a filter of a strong Sheffer stroke NMV-algebra (A, |, 1).
Define the binary relation ∝F on A as below: for all x, y ∈ A

x ∝F y if and only if x|(y|1) ∈ F and y|(x|1) ∈ F. (1)

Definition 5. [10] If xξy implies x|kξy|k, for all x, y, k ∈ A, then the equivalence
relation ξ is called a congruence relation on A.
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Lemma 3. [10] An equivalence relation ξ is a congruence relation on A if and only
if xξy and k1ξk2 imply x|k1ξy|k2.

Lemma 4. [10] Let F be a filter of a strong Sheffer stroke NMV-algebra (A, |, 1)
and the binary relation ∝F be defined as (1). Then ∝F is a congruence relation on
A.

Theorem 1. [10] Let F be a filter of a strong Sheffer stroke NMV-algebra (A, |, 1)
and ∝ be a congruence relation on A defined by F . Then (A/ ∝, |∝, [1]∝) is also a
strong Sheffer stroke NMV-algebra where A/F ≡ A/ ∝= {[x]∝ : x ∈ A}, the strong
Sheffer stroke |∝ on A/F is defined by [x]∝|∝[y]∝ ≈ [x|y]∝, for all x, y ∈ A and
F ≈ [1]∝.

Definition 6. [10] Let (A, |A, 1A) and (B, |B , 1B) be strong Sheffer stroke NMV-
algebras. A mapping h : A −→ B is called a homomorphism if

h(x|Ay) = h(x)|Bh(y),
for all x, y ∈ A.

3. Some Results in Strong Sheffer Stroke NMV-Algebras

In this section, new properties of strong Sheffer stroke NMV-algebras are given.
Unless otherwise stated, A represents a strong Sheffer stroke NMV-algebra.

Lemma 5. Let A be a strong Sheffer stroke NMV-algebra. Then (A,≤) is a bounded
lattice with the least element 0 and the greatest element 1 of A, where x ∨ y ≈
(x|(y|1))|(y|1) and x ∧ y ≈ (((x|1)|y)|y)|1, for all x, y ∈ A.

Proof. It is known from Lemma 1 that (A,≤) is a poset. Then x ≤ (x|(y|1))|(y|1)
and y ≤ (x|(y|1))|(y|1) from Lemma 2 (v) and (iii), respectively. Thus, (x|(y|1))|(y|
1) is an upper bound of x and y. Let x, y ≤ z. So, x|(z|1) ≈ 1 and y|(z|1) ≈ 1 from
Lemma 1. Since

(x|(y|1))|(y|1) ≤ (z|(y|1))|(y|1)
≈ (((z|1)|1)|(y|1))|(y|1)
≈ (((y|1)|1)|(z|1))|(z|1)
≈ (y|(z|1))|(z|1)
≈ (z|1)|1
≈ z

from Lemma 2 (i), (xi), (n1), (n3) and (n4), it follows that (x|(y|1))|(y|1) is the
least upper bound of x and y. Hence,x ∨ y ≈ (x|(y|1))|(y|1), and similarly, x ∧ y ≈
(((x|1)|y)|y)|1, for all x, y ∈ A.

Since 0|(x|1) ≈ (x|1)|0 ≈ 1 and x|(1|1) ≈ x|0 ≈ 1 from (n1) and (n2), it is
obtained from Lemma 1 that 0 ≤ x and x ≤ 1, for all x, y ∈ A. Therefore, 0 is the
least element and 1 is the greatest element of A □
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Proposition 1. Let A be a strong Sheffer stroke NMV-algebra. Then

x|((y|(z|1))|1) ≈ (x|(y|1))|((x|(z|1))|1),
for all x, y, z ∈ A.

Proof. Let A be a strong Sheffer stroke NMV-algebra.

x|((y|(z|1))|1) ≈ x|((y|(z|1))|(y|(z|1)))
≈ y|((x|(z|1))|(x|(z|1)))
≈ y|((x|(z|1))|1)
≥ (x|(y|1))|((x|(z|1))|1)

from Lemma 2 (viii), (iii), (xi), (S1) and (S3). Also,

x|((y|(z|1))|1) ≈ x|((y|(z|1))|(y|(z|1)))
≈ y|((x|(z|1))|(x|(z|1)))
≈ y|((x|(z|1))|1)
≤ (x|(y|1))|((x|((x|(z|1))|1))|1)
≈ (x|(y|1))|((x|((x|(z|1))|(x|(z|1))))|1)
≈ (x|(y|1))|((((x|x)|(x|x))|(z|1))|1)
≈ (x|(y|1))|((x|(z|1))|1)

from Lemma 2 (viii), (xiii), (S1)-(S3).
Hence, x|((y|(z|1))|1) ≈ (x|(y|1))|((x|(z|1))|1), for all x, y, z ∈ A. □

Proposition 2. Let A be a strong Sheffer stroke NMV-algebra. Then

(x|y)|1 ≤ x and (x|y)|1 ≤ y,

for all x, y ∈ A.

Proof. Let A be a strong Sheffer stroke NMV-algebra. Since ((x|y)|1)|(x|1) ≈
(x|1)|((x|y)|1) ≈ 1 and ((x|y)|1)|(y|1) ≈ (y|1)|((y|x)|1) ≈ 1 from (n1) and (n5), it
is obtained from Lemma 1 that (x|y)|1 ≤ x and (x|y)|1 ≤ y, for all x, y ∈ A. □

Lemma 6. A nonempty subset F of A is a filter of A if and only if
(Sf − 3) x, y ∈ F imply (x|y)|1 ∈ F ,
(Sf − 4) x ∈ F and x ≤ y imply y ∈ F ,
for all x, y ∈ A.

Proof. (⇒) Let F be a filter of A and x, y ∈ A. Since

x|(((x|y)|y)|1) ≈ x|(((x|y)|y)|((x|y)|y))
≈ (x|y)|((x|y)|(x|y))
≈ 1

from Lemma 2 (viii), (ix), (S1) and (S3), it follows from (Sf − 2) that (x|y)|y ∈ F .
Since y|(((x|y)|1)|1) = (x|y)|y ∈ F from (n1) and (n3), respectively, it is obtained
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from (Sf − 2) that (x|y)|1 ∈ F . Let x ∈ F and x ≤ y. Then x|(y|1) ∈ F from
Lemma 1 and (Sf − 1). Thus, y ∈ F from (Sf − 2).

(⇐) Let F be a nonempty subset of A satisfying (Sf − 3) and (Sf − 4). Assume
that x ∈ F . Since x ≤ 1 for all x ∈ A, it follows from (Sf − 4) that 1 ∈ F . Let
x|(y|1) ∈ F and x ∈ F . Then (x|(x|(y|1)))|1 ∈ F from (Sf − 3). Since

((x|(x|(y|1)))|1)|(y|1) ≈ ((((y|1)|x)|x)|1)|(y|1)
≈ ((((x|1)|y)|y)|1)|(y|1)
≈ (y|1)|((y|(y|(x|1)))|1)
≈ 1

from (n1), (n4) and (n5), it is obtained from Lemma 1 that (x|(x|(y|1)))|1 ≤ y.
Thus, y ∈ F from (Sf − 4). □

Lemma 7. Let F be a filter of A. Then

(a) z|(((y|(x|1))|(x|1))|1) ∈ F and z ∈ F imply (x|(y|1))|(y|1) ∈ F ,
(b) z|((y|(x|1))|1) ∈ F and z ∈ F imply ((x|(y|1))|(y|1))|(x|1) ∈ F and
(c) x|((y|(z|1))|1) ∈ F and x|(y|1) ∈ F imply x|(z|1) ∈ F ,

for all x, y, z ∈ A.

Proof. (a) Since

z|(((x|(y|1))|(y|1))|1) ≈ z|(((((x|1)|1)|(y|1))|(y|1))|1)
≈ z|(((((y|1)|1)|(x|1))|(x|1))|1)
≈ z|(((y|(x|1))|(x|1))|1) ∈ F

from (n3) and (n4) and z ∈ F , it follows from (Sf − 2) that (x|(y|1))|(y|1) ∈ F .
(b) Since

z|((((x|(y|1))|(y|1))|(x|1))|1) ≈ z|((((((x|1)|1)|(y|1))|(y|1))|(x|1))|1)
≈ z|((((((y|1)|1)|(x|1))|(x|1))|(x|1))|1)
≈ z|((((y|(x|1))|(x|1))|(x|1))|1)
≈ z|((y|(x|1))|1) ∈ F

from (n3), (n4) and Lemma 2 (vii) and z ∈ F , it is obtained from (Sf − 2) that
((x|(y|1))|(y|1))|(x|1) ∈ F .

(c) Since (x|(y|1))|((x|(z|1))|1) ≈ x|((y|(z|1))|1) ∈ F from Proposition 1 and
x|(y|1) ∈ F , it follows from (Sf − 2) that x|(z|1) ∈ F . □

Definition 7. Let F be a filter of A. Then F is a prime filter of A if x ∨ y ∈ F
implies x ∈ F or y ∈ F , for all x, y ∈ A.

Example 1. Consider a strong Shefeer stroke NMV-algebra (A, |, 1) where a set
A = {0, a, b, c, d, e, f, 1} and the operation | on A has the following Cayley table
( [10]):
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Table 1. Cayley table of |

| 0 a b c d e f 1
0 1 1 1 1 1 1 1 1
a 1 f 1 1 f f 1 f
b 1 1 e 1 e 1 e e
c 1 1 1 d 1 d d d
d 1 f e 1 c f e c
e 1 f 1 d f b d b
f 1 1 e d e d a a
1 1 f e d c b a 0

Then {a, d, e, 1} is a prime filter of A while {e, 1} is not since a /∈ {e, 1} and
c /∈ {e, 1} when a ∨ c ≈ (a|(c|1))|(c|1) ≈ (a|d)|d ≈ f |d ≈ e ∈ {e, 1}.

Lemma 8. Let F be a filter of A. Then F is a prime filter of A if and only if
x ∈ F or x|1 ∈ F , for all x ∈ A.

Proof. Let F be a prime filter of A. Since

x ∨ (x|1) ≈ (x|((x|1)|1))|((x|1)|1)
≈ x|(x|x)
≈ 1 ∈ F

from Lemma 5, (n1), (n3), Lemma 2 (ix) and (Sf − 1), it is obtained that x ∈ F
or x|1 ∈ F , for all x ∈ A.

Conversely, let F be a filter of A such that x ∈ F or x|1 ∈ F , for all x ∈ A.
Assume that x∨y ∈ F such that x /∈ F and y /∈ F , for some x, y ∈ A. Then x|1 ∈ F
and y|1 ∈ F . Since x|1 ≤ (y|1)|((x|1)|1) ≈ x|(y|1) and y|1 ≤ (x|1)|((y|1)|1) ≈
y|(x|1) from Lemma 2 (iii), (n1) and (n3), it follows from (Sf − 4) that x|(y|1) ∈ F
and y|(x|1) ∈ F . Since (x|(y|1))|(y|1) ≈ x ∨ y ∈ F and (y|(x|1))|(x|1) ≈ y ∨ x ≈
x∨ y ∈ F from Lemma 5, it is obtained from (Sf − 2) that x ∈ F and y ∈ F . This
is a contradiction. Thus, x ∨ y ∈ F implies x ∈ F or y ∈ F which means that F is
a prime filter of A. □

Lemma 9. Let F be a filter of A. Then F is a prime filter of A if and only if
x /∈ F and y /∈ F imply x|(y|1) ∈ F and y|(x|1) ∈ F , for all x, y ∈ A.

Proof. Let F be a prime filter of A, x /∈ F and y /∈ F . Then x|1 ∈ F and
y|1 ∈ F . Since x|1 ≤ (y|1)|((x|1)|1) ≈ x|(y|1) and y|1 ≤ (x|1)|((y|1)|1) ≈ y|(x|1)
from Lemma 2 (iii), (n1) and (n3), it follows from (Sf − 4) that x|(y|1) ∈ F and
y|(x|1) ∈ F .

Conversely, let F be a filter of A such that x /∈ F and y /∈ F imply x|(y|1) ∈ F
and y|(x|1) ∈ F , for all x, y ∈ A. Assume that x /∈ F and x|1 /∈ F , for some x ∈ A.
Then x|1 ≈ x|x ≈ x|((x|1)|1) ∈ F and x ≈ (x|x)|(x|x) ≈ (1|((x|x)|(x|x)))|(1|((x|x)
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|(x|x))) ≈ (x|1)|(x|1) ∈ F from (n3), Lemma 2 (viii), (x) and (S1)-(S2). This is a
contradiction. Thus, x ∈ F or x|1 ∈ F , for all x ∈ F , i.e., F is a prime filter of
A. □

Lemma 10. Let F be a filter of A. Then

(i) x ∈ F and y ∈ F imply x ∧ y ∈ F ,
(ii) F is a prime filter of A if and only if x|(y|1) ∈ F or y|(x|1) ∈ F ,

for all x, y ∈ A.

Proof. (i) It is clear.
(ii) Let F be a prime filter of A. Since

(x|(y|1)) ∨ (y|(x|1)) ≈ ((x|(y|1))|((y|(x|1))|1))|((y|(x|1))|1)
≈ ((x|(y|1))|((y|(x|x))|(y|(x|x))))|((y|(x|x))|1)
≈ ((((x|(y|1))|(x|x))|((x|(y|1))|(x|x)))|y)|((y|(x|x))|1)
≈ (y|(x|x))|((y|(x|x))|1)
≈ 1 ∈ F,

from Lemma 5, Lemma 2 (i) and (viii), (S1)-(S3), it follows that x|(y|1) ∈ F
or y|(x|1) ∈ F

Conversely, let F be a filter of A such that x|(y|1) ∈ F or y|(x|1) ∈ F ,
for all x, y ∈ A. Suppose that x ∨ y ∈ F . If x|(y|1) ∈ F , then we have
from (Sf − 2) that y ∈ F since (x|(y|1))|(y|1) ≈ x ∨ y ∈ F from Lemma
5. Similarly, if y|(x|1) ∈ F , then we get from (Sf − 2) that x ∈ F since
(y|(x|1))|(x|1) ≈ y ∨ x ≈ x ∨ y ∈ F from Lemma 5. Hence, F is a prime
filter of A.

□

Corollary 1. Let F be a filter of A such that F ̸= A. Then F is a prime filter of
A if and only if (x|(y|1)) ∨ (y|(x|1)) ∈ F , for all x, y ∈ A.

Lemma 11. Let F be a filter of A such that F ̸= A. Then F is a prime filter of
A if and only if there is no a filter G of A such that F ⊂ G ⊂ A.

Proof. Let F be a prime filter of A. Assume that G is a filter of A such that
F ⊂ G ⊂ A and y ∈ G such that y /∈ F . Then y|1 ∈ F , and so, y|1 ∈ G. Since
y ∈ G and y|1 ∈ G, it follows from Lemma 2 (ix), (n1), Lemma 5 and Lemma 10
(i) that

0 ≈ 1|1
≈ ((y|1)|((y|1)|(y|1)))|1
≈ (((y|1)|(y|1))|(y|1))|1
≈ y ∧ (y|1) ∈ G.
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Since 0 ∈ G and 0 is the least element of A, we have from (Sf − 4) that x ∈ G, for
all x ∈ A. Thus, G = A which is a contradiction. Therefore, there is no a filter G
of A such that F ⊂ G ⊂ A.

Conversely, let there be no a filter G of A such that F ⊂ G ⊂ A. Suppose that
x ∨ y ∈ F such that x, y /∈ F . Then there exists a filter G of A such that x ∈ G or
y ∈ G. Since x, y ≤ x ∨ y, we have from (Sf − 4) that x ∨ y ∈ G. Thus, F ⊂ G
which is a contradiction. Hence, x ∨ y ∈ F implies x ∈ F or y ∈ F which means
that F is a prime filter of A. □

Lemma 12. Let F be a filter of A and ∝F be a congruence relation on A defined
by F . Define a relation ⊆ on A/F by

[x]∝F
⊆ [y]∝F

⇔ x|(y|1) ∈ F,

for all x, y ∈ A. Then the relation ⊆ is a partial order on A/F .

Proof. Let F be a filter of A and ∝F be a congruence relation on A defined by F .
Then (A/F, |∝F

, F ) is a strong Sheffer stroke NMV-algebra by Theorem 1.
• Since x|(x|1) ≈ 1 ∈ F from Lemma 2 (i) and (Sf − 1), it follows that [x]∝F

⊆
[x]∝F

, for all x ∈ A.
• Let [x]∝F

⊆ [y]∝F
and [y]∝F

⊆ [x]∝F
. Then x|(y|1) ∈ F and y|(x|1) ∈ F , and

so, x ∝F y. Thus, [x]∝F
= [y]∝F

.
• Let [x]∝F

⊆ [y]∝F
and [y]∝F

⊆ [z]∝F
. Then x|(y|1) ∈ F and y|(z|1) ∈ F . Since

x|(y|1) ≤ (y|(z|1))|((x|(z|1))|1) from Lemma 2 (xii), it is obtained from (Sf − 4)
that (y|(z|1))|((x|(z|1))|1) ∈ F . Thus, it follows from (Sf − 2) that x|(z|1) ∈ F
which implies that [x]∝F

⊆ [z]∝F
.

Hence, the relation ⊆ is a partial order on A/F . □

Theorem 2. Let F be a filter of A and ∝F be a congruence relation on A defined
by F . Then F is a prime filter of A if and only if (A/F, |∝F

, F ) is totally ordered
and |A/F | ≤ 2.

Proof. Let F be a filter of A and ∝F be a congruence relation on A defined by F .
Then (A/F, |∝F

, F ) is a strong Sheffer stroke NMV-algebra by Theorem 1. Let F
be a prime filter of A. Then x|(y|1) ∈ F or y|(x|1) ∈ F by Lemma 10 (ii). Thus,
[x]∝F

⊆ [y]∝F
or [y]∝F

⊆ [x]∝F
from Lemma 12. Hence, (A/F, |∝F

, F ) is totally
ordered. Moreover, let |A/F | > 2. Then [x]∝F

∈ A/F such that [0]∝F
⊂ [x]∝F

⊂
[1]∝F

. Since F is a prime filter of A, it is known that x ∈ F or x|1 ∈ F . Assume
that x|1 ∈ F . Since x|(0|1) ≈ x|1 ∈ F and 0|(x|1) ≈ 1 ∈ F from (n2), we get
[x]∝F

= [0]∝F
which is a contradiction. Therefore, |A/F | ≤ 2.

Conversely, let (A/F, |∝F
, F ) be totally ordered. Then [x]∝F

⊆ [y]∝F
or [y]∝F

⊆
[x]∝F

, for all x, y ∈ A. So, x|(y|1) ∈ F or y|(x|1) ∈ F by Lemma 12. Thus, F is a
prime filter of A from Lemma 10 (ii). □

4. Fuzzy Filters of Strong Sheffer Stroke Nmv-Algebras

In this section, fuzzy filters strong Sheffer stroke NMV-algebras are introduced.
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Definition 8. A fuzzy subset α of A is called a fuzzy filter of A if
(FF1) α(x) ≤ α(1),
(FF2) min{α(x), α(x|(y|1))} ≤ α(y),
for all x, y ∈ A.

Example 2. Consider the strong Shefeer stroke NMV-algebra A in Example 1.
Then a fuzzy subset α of A defined by

α(x) =

{
0.19, if x ≈ 0, a, b, d
0.81, otherwise

is a fuzzy filter of A.

Lemma 13. Let α be a fuzzy filter of A. Then

(1) if x ≤ y, then α(x) ≤ α(y),
(2) α(x|(y|1)) = α(1) implies α(x) ≤ α(y),
(3) α((x|y)|1) = α(x) ∧ α(y),
(4) α(x ∧ y) = α(x) ∧ α(y),
(5) α(x) ∧ α(x|1) = α(0),
(6) α(x|(y|1)) ∧ α(y|(z|1)) ≤ α(x|(z|1)),
(7) α(x) ∧ α(x|(y|1)) = α(y) ∧ α(y|(x|1)) = α(x) ∧ α(y) and
(8) α((((x|1)|y)|y)|1) = α((((y|1)|x)|x)|1) = α(x ∧ y),

for all x, y, z ∈ A.

Proof. (1) Let x ≤ y. Then x|(y|1) ≈ 1 from Lemma 1. Thus,

α(x) = min{α(x), α(1)}
= min{α(x), α(x|(y|1))}
≤ α(y)

from (FF1) and (FF2).
(2) Let α(x|(y|1)) = α(1). Then

α(x) = min{α(x), α(1)}
= min{α(x), α(x|(y|1))}
≤ α(y)

from (FF1) and (FF2).
(3) Since (x|y)|1 ≤ x and (x|y)|1 ≤ y from Proposition 2, it follows from

(1) that α((x|y)|1) ≤ α(x) and α((x|y)|1) ≤ α(y). Thus, α((x|y)|1) ≤
α(x) ∧ α(y). Also,

α(x) ∧ α(y) = min{α(x), α(y)}
≤ min{α((x|y)|y), α(y)}
= min{α(y), α(y|(((x|y)|1)|1))}
= α((x|y)|1)
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from Lemma 2 (v), (1), (n1), (n3) and (FF2), respectively, Hence,

α((x|y)|1) = α(x) ∧ α(y),

for all x, y ∈ A.
(4) Since x ∧ y ≤ x and x ∧ y ≤ y, it is obtained from (1) that α(x ∧ y) ≤

α(x) and α(x ∧ y) ≤ α(y). So, α(x ∧ y) ≤ α(x) ∧ α(y). Moreover, since
(x|y)|1 ≤ x and (x|y)|1 ≤ y from Proposition 2, we have (x|y)|1 ≤ x ∧ y.
Thus, α(x) ∧ α(y) = α((x|y)|1) ≤ α(x ∧ y) from (3) and (1), respectively.
Therefore, α(x ∧ y) = α(x) ∧ α(y), for all x, y ∈ A.

(5) α(x) ∧ α(x|1) = α((x|(x|1))|1) = α(1|1) = α(0) from (3) and Lemma 2 (i).
(6)

α(x|(y|1)) ∧ α(y|(z|1)) = min{α(x|(y|1)), α(y|(z|1))}
= min{α(x|(y|1)), α(x|((y|(z|1))|1))}
= min{α(x|(y|1)), α((x|(y|1))|((x|(z|1))|1))}
≤ α(x|(z|1))

from Lemma 2 (iii), (1), Proposition 1 and (FF2).
(7)

α(y) ∧ α(y|(x|1)) = α((y|(y|(x|1)))|1)
= α((((x|1)|y)|y)|1)
= α(x ∧ y)

= α(x) ∧ α(y),

and similarly, α(x) ∧ α(x|(y|1)) = α(y) ∧ α(x) = α(x) ∧ α(y) from (3),
(n1), Lemma 5 and (4), respectively. Thus, α(x) ∧ α(x|(y|1)) = α(y) ∧
α(y|(x|1)) = α(x) ∧ α(y), for all x, y ∈ A.

(8) It is proved Lemma 5.
□

Theorem 3. Let α be a fuzzy subset of A. Then α is a fuzzy filter of A if and only
if

(i) α is order-preserving,
(ii) α(x) ∧ α(y) ≤ α((x|y)|1), for all x, y ∈ A.

Proof. Let α be a fuzzy filter of A. Then it follows from Lemma 13 (1) and (3).
Conversely, let α be a fuzzy subset of A satisfying (i) and (ii). Since x ≤ 1, it is

obtained from (i) that α(x) ≤ α(1), for all x ∈ A.

min{α(x), α(x|(y|1))} = α(x) ∧ α(x|(y|1))
≤ α((x|(x|(y|1)))|1)
= α(y ∧ x)

≤ α(y)
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from (ii), (n1), Lemma 5 and (i), respectively. Thus, α is a fuzzy filter of A. □

Theorem 4. Let α be a fuzzy subset of A. Then α is a fuzzy filter of A if and only
if x ≤ y|(z|1) implies α(x) ∧ α(y) ≤ α(z), for all x, y, z ∈ A.

Proof. Let α be a fuzzy filter of A and x ≤ y|(z|1). Then x|((y|(z|1))|1) ≈ 1 from
Lemma 1. Since

((x|y)|1)|(z|1) ≈ ((x|y)|(x|y))|(z|1)
≈ x|((y|(z|1))|(y|(z|1)))
≈ x|((y|(z|1))|1)
≈ 1

from Lemma 2 (viii) and (S3), it follows from Lemma 1 that (x|y)|1 ≤ z. So,
α(x) ∧ α(y) = α((x|y)|1) ≤ α(z) from Lemma 13 (3) and (1), respectively.

Conversely, let α be a fuzzy subset of A such that x ≤ y|(z|1) implies α(x) ∧
α(y) ≤ α(z), for all x, y, z ∈ A. Since x ≤ 1 ≈ x|0 ≈ x|(1|1), from (n2), it
is obtained that α(x) = α(x) ∧ α(x) ≤ α(1), for all x ∈ A. Since x ≤ x ∨
y ≈ (x|(y|1))|(y|1) from Lemma 5, it follows that min{α(x), α(x|(y|1))} = α(x) ∧
α(x|(y|1)) ≤ α(y), for all x, y ∈ A. Hence, α is a fuzzy filter of A. □

Theorem 5. Let A be a strong Sheffer stroke NMV-algebra. Then α is a fuzzy
filter of A if and only if αa = {x ∈ A : a ≤ α(x)} is empty or a filter of A, for all
a ∈ [0, 1].

Proof. Let α be a fuzzy filter of A and αa = {x ∈ A : a ≤ α(x)} ≠ ∅. Suppose that
x ∈ αa. Since a ≤ α(x) ≤ α(1), we have 1 ∈ αa. Let x, x|(y|1) ∈ αa. So, a ≤ α(x)
and a ≤ α(x|(y|1)). Since a ≤ min{α(x), α(x|(y|1))} ≤ α(y), it is obtained that
y ∈ αa. Hence, αa is a filter of A.

Conversely, let αa ̸= ∅ be a filter of A. Assume that x ∈ αa such that α(1) <
α(x). If a = 1/2(α(1) + α(x)), then α(1) < a < α(x). Thus, 1 /∈ αa which
is a contradiction with (Sf − 1). Hence, α(x) ≤ α(1), for all x ∈ A. Suppose
that x, x|(y|1) ∈ αa such that α(y) < min{α(x), α(x|(y|1))}. If a = 1/2(α(y) +
min{α(x), α(x|(y|1))}), then α(y) < a < min{α(x), α(x|(y|1))} ≤ α(x) and α(y) <
a < min{α(x), α(x|(y|1))} ≤ α(x|(y|1)). Thus, y /∈ αa which is a contradiction
with (Sf − 2). So, min{α(x), α(x|(y|1))} ≤ α(y), for all x, y ∈ A. Therefore, α is a
fuzzy filter of A. □

Lemma 14. Let αa and αb be two filter of A such that a < b. Then αa = αb if
and only if there exist no x0 ∈ A such that a ≤ α(x0) < b.

Proof. Let αa = αb be such that a < b. Then αa = {x ∈ A : a ≤ α(x)} = {x ∈ A :
b ≤ α(x)} = αb. If there exists x0 ∈ A such that a ≤ α(x0) < b, then x0 /∈ αb = αa

which is a contradiction with x0 ∈ αa. Thus, there exist no x0 ∈ A such that
a ≤ α(x0) < b.
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Conversely, suppose that there exist no x0 ∈ A such that a ≤ α(x0) < b. Let
αa ̸= αb be such that a < b. Then there exist x0 ∈ A such that a ≤ c = α(x0) < b
which is a contradiction. Hence, αa = αb. □

Corollary 2. Let α be a fuzzy filter of A. Then αa = αb, for any a, b ∈ Im(α) if
and only if a = b.

Proof. It is obvious that αa = αb, for any a, b ∈ Im(α) if a = b.
Conversely, let αa = αb, for any a, b ∈ Im(α). Then there exist x0, x1 ∈ A

such that α(x0) = a and α(x1) = b. So, x0 ∈ αa = αb and x1 ∈ αb = αa. Thus,
b ≤ α(x0) = a and a ≤ α(x1) = b which imply a = b. □

Lemma 15. Let α be a fuzzy filter of A and x0 ∈ A. Then α(x0) = a if and only
if x0 ∈ αa and x0 /∈ αb, for all a < b.

Proof. Let α(x0) = a. Since α(x0) = a < b, we get x0 ∈ αa and x0 /∈ αb, for all
a < b.

Conversely, let x0 ∈ αa and x0 /∈ αb, for all a < b. Then a ≤ α(x0) < b. If
a ≤ α(x0) = b0, then x0 /∈ αb0 which is a contradiction. Hence, α(x0) = a. □

Let α be a fuzzy subset of A. Define a subset

Aα = {x ∈ A : α(x) = α(1)}
of A.

Lemma 16. Let F be a nonempty subset of A and αF be a fuzzy subset of A by

αF (x) =

{
a1, if x ∈ F
a2, otherwise

where a1, a2 ∈ [0, 1] such that a1 > a2. Then αF is a fuzzy filter of A if and only if
F is a filter of A. Also, AαF

= F .

Proof. Let αF be a fuzzy filter of A. Since αF (1) = a1 by (FF1), we get 1 ∈
F . Let x, x|(y|1) ∈ F . Then αF (x) = a1 and αF (x|(y|1)) = a1. Since a1 =
min{αF (x), αF (x|(y|1))} ≤ α(y), we have αF (y) = a1, i.e., y ∈ F .

Conversely, let F be a filter of A. Since 1 ∈ F , αF (x) ≤ αF (1) = a1, for all
x ∈ A. Let min{αF (x), αF (x|(y|1))} = a1. Then αF (x) = a1 = αF (x|(y|1)) which
means that x ∈ F and x|(y|1) ∈ F . So, y ∈ F which implies αF (y) = a1. Thus,
min{αF (x), αF (x|(y|1))} ≤ α(y). Moreover, if min{αF (x), αF (x|(y|1))} = a2, then
min{αF (x), αF (x|(y|1))} ≤ α(y), for all x, y ∈ A. Hence, αF is a fuzzy filter of A.

Since F is a filter of A,

AαF
= {x ∈ A : αF (x) = αF (1)}
= {x ∈ A : αF (x) = a1}
= {x ∈ A : x ∈ F}
= A ∩ F = F.

□
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Definition 9. Let α be a fuzzy filter of A. Then α is called a prime fuzzy filter of
A if α(x ∨ y) = α(x) ∨ α(y), for all x, y ∈ A.

Example 3. Consider the strong Sheffer stroke NMV-algebra A in Example 1.
Then a fuzzy subset α1 of A defined by

α1(x) =

{
0.007, if x ≈ 0, a, c, e
0.993, otherwise

is a prime fuzzy filter of A.
However, a fuzzy subset α2 of A defined by

α2(x) =

{
0.92, if x ≈ 1
0.9, otherwise

is not a prime fuzzy filter of A since α2(b ∨ e) = α2((b|(e|1))|(e|1)) = α2(b|(b|b)) =
α2(b|e) = α2(1) ̸= α2(b) = α2(b) ∨ α2(e).

Theorem 6. Let α be a fuzzy filter of A. Then α is a prime fuzzy filter of A if
and only if α(x) = α(1) or α(x|1) = α(1), for all x ∈ A.

Proof. Let α be a prime fuzzy filter of A. Since

α(x) ∨ α(x|1) = α(x ∨ (x|1))
= α((x|((x|1)|1))|((x|1)|1))
= α(x|(x|x))
= α(1)

from Lemma 5, (n1), (n3) and Lemma 2 (ix), it follows that α(x) = α(1) or α(x|1) =
α(1), for all x ∈ A.

Conversely, let α be a fuzzy filter of A such that α(x) = α(1) or α(x|1) = α(1),
for all x ∈ A. Since x ≤ x ∨ y and y ≤ x ∨ y, it follows from Lemma 13 (1) that
α(x) ≤ α(x ∨ y) and α(y) ≤ α(x ∨ y), and so, α(x) ∨ α(y) ≤ α(x ∨ y), for all
x, y ∈ A. If α(x) = α(1) or α(y) = α(1), then α(x ∨ y) ≤ α(x) ∨ α(y) from (FF1).
If α(x) ̸= α(1) and α(y) ̸= α(1), then α(x|1) = α(1) and α(y|1) = α(1). Since

α(x ∨ y) = α(y ∨ x)

= α(1) ∧ α(y ∨ x)

= α(x|1) ∧ α(y ∨ x)

= α(((x|1)|(y ∨ x))|1)
= α(((x|1)|((y|(x|1))|(x|1)))|1)
= α((y|(x|1))|1)
≤ α(y),

and similarly, α(x ∨ y) ≤ α(x) from Lemma 13 (1) and (3), Lemma 5, (n1), (n3),
Lemma 2 (iv), (vii) and (ix), it is obtained that α(x ∨ y) ≤ α(x) ∨ α(y). Hence,
α(x ∨ y) = α(x) ∨ α(y), for all x, y ∈ A,, i.e., F is a prime fuzzy filter of A. □
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Theorem 7. Let α be a fuzzy filter of A. Then α is a prime fuzzy filter of A if and
only if α(x) ̸= α(1) and α(y) ̸= α(1) imply α(x|(y|1)) = α(1) and α(y|(x|1)) = α(1),
for all x, y ∈ A.

Proof. Let α be a prime fuzzy filter of A and α(x) ̸= α(1) and α(y) ̸= α(1). Then
α(x|1) = α(1) and α(y|1) = α(1) from Theorem 6. Since (x|1)|((x|(y|1))|1) ≈ 1
and (y|1)|((y|(x|1))|1) ≈ 1 from (n5), it follows from (FF2) that

α(1) = min{α(1), α(1)} = min{α(x|1), α((x|1)|((x|(y|1))|1))} ≤ α(x|(y|1))

and

α(1) = min{α(1), α(1)} = min{α(y|1), α((y|1)|((y|(x|1))|1))} ≤ α(y|(x|1)),

respectively. Thus, α(x|(y|1)) = α(1) and α(y|(x|1)) = α(1) from (FF1).
Conversely, let α be a fuzzy filter of A such that α(x) ̸= α(1) and α(y) ̸=

α(1) imply α(x|(y|1)) = α(1) and α(y|(x|1)) = α(1), for all x, y ∈ A. If α(x) ̸=
α(1) and α(1|1) = α(0) ̸= α(1) for any x ∈ A, then α(x|1) = α(x|(0|1)) = α(1)
and α(0|(x|1)) = α(1) from (n1) and (n2). Also, if α(x|1) ̸= α(1) and α(1|1) =
α(0) ̸= α(1) for any x ∈ A, then α(x) = α((x|1)|1) = α((x|1)|(0|1)) = α(1) and
α(0|((x|1)|1)) = α(1) from (n1)-(n3). Therefore, α(x) = α(1) or α(x|1) = α(1), for
all x ∈ A. Hence, α is a prime fuzzy filter of A by Theorem 6. □

Corollary 3. Let α be a fuzzy filter of A. Then α is a prime fuzzy filter of A if
and only if α(x ∨ (x|1)) = α(1), for all x, y ∈ A.

Theorem 8. Let α be a fuzzy filter of A. Then α is a prime fuzzy filter of A if
and only if α(x|(y|1)) = α(1) or α(y|(x|1)) = α(1), for all x, y ∈ A.

Proof. Let α be a prime fuzzy filter of A. Since

α(x|(y|1)) ∨ α(y|(x|1)) = α((x|(y|1)) ∨ (y|(x|1)))
= α(((x|(y|1))|((y|(x|1))|1))|((y|(x|1))|1))
= α(((x|(y|y))|((y|(x|x))|(y|(x|x))))|((y|(x|x))|(y|(x|x))))
= α(((((x|(y|y))|(x|x))|((x|(y|y))|

(x|x)))|y)|((y|(x|x))|(y|(x|x))))
= α((y|(x|x))|((y|(x|x))|(y|(x|x))))
= α(1)

from Lemma 5, Lemma 2 (viii), (ix) and (S1)-(S3), it follows that α(x|(y|1)) = α(1)
or α(y|(x|1)) = α(1), for all x, y ∈ A.

Conversely, let α be a fuzzy filter of A such that α(x|(y|1)) = α(1) or α(y|(x|1)) =
α(1), for all x, y ∈ A. By substituting [y := x|1] in the hypothesis, we have α(1) =
α(x|((x|1)|1)) = α(x|x) = α(x|1) and α(1) = α((x|1)|(x|1)) = α((x|x)|(x|x)) =
α(x) from (n3), Lemma 2 (viii) and (S2). Thus, α is a prime fuzzy filter of A. □
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Corollary 4. Let α be a fuzzy filter of A. Then α is a prime fuzzy filter of A if
and only if α(x|(y|1)) ∨ α(y|(x|1)) = α(1), for all x, y ∈ A.

Theorem 9. Let A be a strong Sheffer stroke NMV-algebra. Then α is a prime
fuzzy filter of A if and only if αa is empty or a prime filter of A, for all a ∈ [0, 1].

Proof. Let α be a prime fuzzy filter of A and αa ̸= ∅. Assume that x ∨ y ∈ αa.
Since a ≤ α(x ∨ y) = α(x) ∨ α(y), it follows that a ≤ α(x) or a ≤ α(y). Thus,
x ∈ αa or y ∈ αa which imply that αa is a prime filter of A.

Conversely, αa ̸= ∅ be a prime filter of A and a = α(x ∨ y). Since x ∨ y ∈ αa,
it is obtained that x ∈ αa or y ∈ αa. Hence, a ≤ α(x) or a ≤ α(y), and so,
α(x ∨ y) = a ≤ α(x) ∨ α(y). Since x ≤ x ∨ y and y ≤ x ∨ y, we get from Lemma
13 (1) that α(x) ≤ α(x ∨ y) and α(y) ≤ α(x ∨ y). So, α(x) ∨ α(y) ≤ α(x ∨ y).
Therefore, α(x ∨ y) = α(x) ∨ α(y) which means that α is a prime fuzzy filter of
A. □

Corollary 5. Let A be a strong Sheffer stroke NMV-algebra. Then α is a (prime)
fuzzy filter of A if and only if αα(1)

is a (prime) filter of A.

Corollary 6. Let F be a nonempty subset of A. Then F is a (prime) filter of A if
and only if the characteristic function χF of F is a (prime) fuzzy filter of A.

Corollary 7. Let F be a nonempty subset of A and αF be a fuzzy subset of A by

αF (x) =

{
a1, if x ∈ F
a2, otherwise

where a1, a2 ∈ [0, 1] such that a1 > a2. Then αF is a prime fuzzy filter of A if and
only if F is a prime filter of A.

Proof. Let αF be a prime fuzzy filter of A. It is obvious that F is a filter of A by
Lemma 16. Since αF (x) = αF (1) = a1 or αF (x|1) = αF (1) = a1 from (Sf − 1), it
follows that x ∈ F or x|1 ∈ F which means that F is a prime filter of A by Lemma
8.

Let F be a prime filter of A. It is clear that αF is a fuzzy filter of A by Lemma
16. Since x ∈ F or x|1 ∈ F , for all x ∈ A, it is obtained from (Sf − 1) that
αF (x) = a1 = αF (1) or αF (x|1) = a1 = αF (1) which means that αF is a prime
fuzzy filter of A by Theorem 6. □

Theorem 10. Let A be a strong Sheffer stroke NMV-algebra. Then the following
conditions are equivalent:
(1) A is totally ordered.
(2) Every fuzzy filter of A is prime.
(3) {1} is a prime filter of A.

Proof. Let A be a strong Sheffer stroke NMV-algebra.
(1)⇒(2) Let A be totally ordered and α be a fuzzy filter of A. Then x ≤ y or

y ≤ x, for all x, y ∈ A. Since x|(y|1) ≈ 1 or y|(x|1) ≈ 1 from Lemma 1, it follows
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that α(x|(y|1)) = α(1) or α(y|(x|1)) = α(1) for all x, y ∈ A which means that α is
a prime fuzzy filter of A from Theorem 8.

(2)⇒(3) Let every fuzzy filter of A be prime. Then χ{1} is a prime fuzzy filter

of A. Thus, {1} is a prime filter of A by Corollary 6.
(3)⇒(1) Let the filter {1} of A be prime. Then χ{1} is a prime fuzzy filter of A

by Corollary 6. Since χ{1}(x|(y|1)) ∨ χ{1}(y|(x|1)) = χ{1}(1) = 1 from Corollary

4, it follows that χ{1}(x|(y|1)) = 1 or χ{1}(y|(x|1)) = 1, for all x, y ∈ A. Thus,

x|(y|1) ≈ 1 or y|(x|1) ≈ 1 which implies that x ≤ y or y ≤ x from Lemma 1. Hence,
A is totally ordered. □

Let h be an endomorphism on A and α be a fuzzy subset of A. Define a new
fuzzy subset of A by

αh(x) = α(h(x)),

for all x ∈ A.

Theorem 11. Let h be a surjective endomorphism on A. Then α is a (prime)
fuzzy filter of A if and only if αh is a (prime) fuzzy filter of A.

Proof. (⇒) Let h be a surjective endomorphism on A and α be a fuzzy filter of A.
Then αh(x) = α(h(x)) ≤ α(1) = α(h(1)) = αh(1), for all x ∈ A. Also,

min{αh(x), αh(x|(y|1))} = min{α(h(x)), α(h(x|(y|1)))}
= min{α(h(x)), α(h(x)|(h(y)|h(1)))}
≤ α(h(y))

= αh(y),

for all x, y ∈ A. Thus, αh is a fuzzy filter of A. If α is prime, then αh(x) =
α(h(x)) = α(1) = α(h(1)) = αh(1) or αh(x|1) = α(h(x|1)) = α(h(x)|h(1)) =
α(h(x)|1) = α(1) = α(h(1)) = αh(1), for all x ∈ A, for all x ∈ A so that αh is
prime.

(⇐) Let h be a surjective endomorphism on A and αh be a fuzzy filter of A.
Then α(x) = α(h(a)) = αh(a) ≤ αh(1) = α(h(1)) = α(1) and

min{α(x), α(x|(y|1))} = min{α(h(a)), α(h(a)|(h(b)|h(1)))}
= min{α(h(a)), α(h(a|(b|1)))}
= min{αh(a), αh(a|(b|1))}
≤ αh(b)

= α(h(b))

= α(y)

where x = h(a) and y = h(b), for all x, y, a, b ∈ A. If αh is prime, then α(x) =
α(h(a)) = αh(a) = αh(1) = α(h(1)) = α(1) or α(x|1) = α(h(a)|h(1)) = α(h(a|1)) =
αh(a|1) = αh(1) = α(h(1)) = α(1), for all x, a ∈ A, for all x ∈ A. Hence, α is
prime. □
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Theorem 12. Let h be an automorphism on A and α be a fuzzy filter of A. Then
αh = α if and only if h(αa) = αa, for any a ∈ Im(α).

Proof. Let αh = α, a ∈ Im(α) and x ∈ αa. Then h(x) ∈ h(αa). Since a ≤ α(x) =
αh(x) = α(h(x)), it follows that h(x) ∈ αa, i.e., h(αa) ⊆ αa. Let x ∈ αa and y ∈ A
such that h(y) = x. Since a ≤ α(x) = α(h(y)) = αh(y) = α(y), it is obtained that
y ∈ αa. Then x = h(y) ∈ h(αa) which implies that αa ⊆ h(αa). Thus, h(αa) = αa,
for any a ∈ Im(α).

Conversely, let h(αa) = αa, for any a ∈ Im(α) and α(x) = a. By Lemma
15, x ∈ αa and x /∈ αb, for all a ≤ b. Since h(x) ∈ h(αa) = αa, we have a ≤
α(h(x)) = αh(x). Suppose that αh(x) = b. Then α(h(x)) = αh(x) = b, and
so, h(x) ∈ αb = h(αb). Since h is an automorphism, we get x ∈ αb which is a
contradiction. Thus, αh(x) = α(h(x)) = a = α(x), for all x ∈ A, i.e., αh = α. □

Definition 10. Let α be a fuzzy filter of A. Define the binary relation ∼α on A
by for all x, y ∈ A

x ∼α y if and only if α(x|(y|1)) = α(1) = α(y|(x|1)). (2)

Example 4. Consider the strong Sheffer stroke NMV-algebra A in Example 1. For
a fuzzy filter α of A by

α(x) =

{
0.87, if x ≈ d, 1
0.03, otherwise,

∼α= {(0, 0), (a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (1, 1), (d, 1), (1, d), (c, 0), (0, c), (a,
e), (e, a), (b, f), (f, b)} is a binary relation on A.

Lemma 17. Let α be a fuzzy filter of A and the binary relation ∼α be defined as
(2). Then ∼α is a congruence relation on A.

Proof. • Reflexive: Since α(x|(x|1)) = α(1) from Lemma 2 (i), it follows that
x ∼α x, for all x ∈ A.

• Let x ∼α y. Then α(x|(y|1)) = α(1) = α(y|(x|1)). Since α(y|(x|1)) = α(1) =
α(x|(y|1)), we get y ∼α x.

• Let x ∼α y and y ∼α z. Then α(x|(y|1)) = α(1) = α(y|(x|1)) and α(y|(z|1)) =
α(1) = α(z|(y|1)). Since α(1) = α(1) ∧ (1) = α(x|(y|1)) ∧ α(y|(z|1)) ≤ α(x|(z|1))
and α(1) = α(1) ∧ (1) = α(z|(y|1)) ∧ α(y|(x|1)) ≤ α(z|(x|1)) from Lemma 13 (6),
it is obtained that α(x|(z|1)) = α(1) = α(z|(x|1)). Thus, x ∼α z.

Hence, ∼α is an equivalence relation on A.
Let x ∼α y and z ∼α t. Then α(x|(y|1)) = α(1) = α(y|(x|1)) and α(z|(t|1)) =

α(1) = α(t|(z|1)).
(a) It follows from (n1), (n3) and Lemma 2 (xiii) that x|(y|1) ≈ (y|1)|((x|1)|1) ≤

(z|((y|1)|1))|((z|((x|1)|1))|1) ≈ (y|z)|((x|z)|1), and similarly, y|(x|1) ≤ (x|z)
|((y|z)|1). Since α((x|z)|((y|z)|1)) = α(1) = α((y|z)|((x|z)|1)) from Lemma
13 (1) and (FF1), it is obtained x|z ∼α y|z.
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(b) By substituting [x := z], [y := t] and [z := y] in (a), simultaneously, it
follows from (n1) that y|z ∼α y|t.

Therefore, x|z ∼α y|t from the transitivity of ∼α, and so, ∼α is a con-
gruence relation on A.

□

Theorem 13. Let α be a fuzzy filter of A and ∼ be a congruence relation on A
defined by α. Then (A/ ∼, |∼, [1]∼) is also a strong Sheffer stroke NMV-algebra
where A/ ∼= {[x]∼ : x ∈ A}, the strong Sheffer stroke |∼ on A/ ∼ is defined by
[x]∼|∼[y]∼ = [x|y]∼, for all x, y ∈ A. Also, a relation ⪯ defined by [x]∼ ⪯ [y]∼ ⇔
α(x|(y|1)) = α(1), for all x, y ∈ A, is a partial order on A/ ∼ and [1]∼ is the
greatest element and [0]∼ is the least element of A/ ∼.

Proof. Let α be a fuzzy filter of A, ∼ be a congruence relation on A defined by
α and the binary operation |∼ be defined by [x]∼|∼[y]∼ = [x|y]∼, for all x, y ∈ A.
Since

(n1)(and (S1)): [x]∼|∼[y]∼ = [x|y]∼ = [y|x]∼ = [y]∼|∼[x]∼,
(n2): [x]∼|∼[0]∼ = [x|0]∼ = [1]∼,
(n3): ([x]∼|∼[1]∼)|∼[1]∼ = [(x|1)|1]∼ = [x]∼,
(n4):

(([x]∼|∼[1]∼)|∼[y]∼)|∼[y]∼ = [((x|1)|y)|y]∼
= [((y|1)|x)|x]∼
= (([y]∼|∼[1]∼)|∼[x]∼)|∼[x]∼,

(n5): ([x]∼|∼[1]∼)|∼(([x]∼|∼[y]∼)|∼[1]∼) = [(x|1)|((x|y)|1)]∼ = [1]∼,
(n6):

[x]∼|∼((((([x]∼|∼[y]∼)|∼|∼[y]∼)|∼[z]∼)|∼[z]∼)|∼[1]∼)
= [x|(((((x|y)|y)|z)|z)|1)]∼
= [1]∼,

(S2): ([x]∼|∼[x]∼)|∼([x]∼|∼[y]∼) = [(x|x)|(x|y)]∼ = [x]∼,
(S3):

[x]∼|∼(([y]∼|∼[z]∼)|∼([y]∼|∼[z]∼)) = [x|((y|z)|(y|z))]∼
= [((x|y)|(x|y))|z]∼
= (([x]∼|∼[y]∼)|∼([x]∼|∼[y]∼))|∼[z]∼

and
(S4):
([x]∼|∼(([x]∼|∼[x]∼)|∼([y]∼|∼[y]∼)))|∼([x]∼|∼(([x]∼|∼[x]∼)|∼([y]∼|∼[y]∼)))
= [(x|((x|x)|(y|y)))|(x|((x|x)|(y|y)))]∼
= [x]∼,
for all x, y, z ∈ A, the binary operation |∼ is a strong Sheffer stroke.
• Reflexive: [x]∼ ⪯ [x]∼ since α(x|(x|1)) = α(1), from Lemma 2 (i).
• Antisymmetric: let [x]∼ ⪯ [y]∼ and [y]∼ ⪯ [x]∼. Since α(x|(y|1)) = α(1) =

α(y|(x|1)), we have x ∼ y which implies [x]∼ = [y]∼.
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• Transitive: let [x]∼ ⪯ [y]∼ and [y]∼ ⪯ [z]∼. Then α(x|(y|1)) = α(1) and
α(y|(z|1)) = α(1). Since α(1) = α(1) ∧ α(1) = α(x|(y|1)) ∧ α(y|(z|1)) ≤ α(x|(z|1))
from Lemma 13 (6), it follows from (FF1) that α(x|(z|1)) = α(1), i.e., [x]∼ ⪯ [z]∼.

Thus, ⪯ is a partial order on A/ ∼.
Since α(x|(1|1)) = α(x|0) = α(1) from (n2), it is ontained that [x]∼ ⪯ [1]∼, for

all x ∈ A. Thus, [1]∼ is the greatest element, and so, [0]∼ = [1|1]∼ = [1]∼|∼[1]∼ is
the least element of A/ ∼. □

Example 5. Consider the strong Shefeer stroke NMV-algebra A in Example 1. For
a fuzzy filter α of A defined by

α(x) =

{
1, if x ≈ f, 1
0.001, otherwise

∼α= {(0, 0), (a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (1, 1), (f, 1), (1, f), (a, 0), (0, a),
(c, e), (e, c), (b, d), (d, b)} is a congruence relation on A. Then (A/ ∼α, |∼α

, [1]∼)
is also a strong Sheffer stroke NMV-algebra with the following Cayley table where
A/ ∼α= {[0]∼α

, [d]∼α
, [e]∼α

, [1]∼α
}:

Table 2. Cayley table of |∼α

|∼α
[0]∼α

[d]∼α
[e]∼α

[1]∼α

[0]∼α
[1]∼α

[1]∼α
[1]∼α

[1]∼α

[d]∼α
[1]∼α

[e]∼α
[1]∼α

[e]∼α

[e]∼α
[1]∼α

[1]∼α
[d]∼α

[d]∼α

[1]∼α
[1]∼α

[e]∼α
[d]∼α

[0]∼α

Theorem 14. Let α be a fuzzy filter of A. Then α is a prime fuzzy filter of A if
and only if A/ ∼α is totally ordered and |A/ ∼α | ≤ 2.

Proof. Let α be a prime fuzzy filter of A. By Theorem 8, α(x|(y|1)) = α(1) or
α(y|(x|1)) = α(1). Then [x]∼ ⪯ [y]∼ or [y]∼ ⪯ [x]∼ which means that A/ ∼α

is totally ordered. Also, let |A/ ∼α | > 2. Then [x]∼α
∈ A/ ∼α such that

[0]∼α < [x]∼α < [1]∼α . Since α is a prime fuzzy filter of A, we have α(x) = α(1) or
α(x|1) = α(1). Assume that α(x|1) = α(1). Since α(x|(0|1)) = α(x|1) = α(1) and
α(0|(x|1)) = α(1) from (n2), it follows that [x]∼α

= [0]∼α
which is a contradiction.

So, |A/ ∼α | ≤ 2.
Conversely, let A/ ∼α be totally ordered. Then [x]∼ ⪯ [y]∼ or [y]∼ ⪯ [x]∼, for

all x, y ∈ A. Since α(x|(y|1)) = α(1) or α(y|(x|1)) = α(1), it is obtained from
Theorem 8 that α is a prime fuzzy filter of A. □

Theorem 15. Let (A, |A, 1A) and (B, |B , 1B) be strong Sheffer stroke NMV-algebras,
h : A −→ B be an epimorphism and α be a fuzzy filter of B. Then α ◦ h is a fuzzy
filter of A and A/ ∼α◦h∼= B/ ∼α.
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Proof. Let (A, |A, 1A) and (B, |B , 1B) be strong Sheffer stroke NMV-algebras, h :
A −→ B be an epimorphism and α be a fuzzy filter of B. It is first shown that
α ◦ h is a fuzzy filter of A.

• α ◦ h(x) = α(h(x)) ≤ α(1B) = α(h(1A)) = α ◦ h(1A) and
•

min{α ◦ h(x), α ◦ h(x|A(y|A1A))} = min{α(h(x)), α(h(x|A(y|A1A)))}
= min{α(h(x)), α(h(x)|B(h(y)|Bh(1A)))}
= min{α(h(x)), α(h(x)|B(h(y)|B1B))}
≤ α(h(y))

= α ◦ h(y),
for all x, y ∈ A.

A/ ∼α◦h and B/ ∼α are strong Sheffer stroke NMV-algebras by Theorem 13.
Let f : A/ ∼α◦h−→ B/ ∼α be defined by f([x]∼α◦h) = [h(x)]∼α , for all x ∈ A.

• f is well-defined and one-to-one: Let [x]∼α◦h , [y]∼α◦h ∈ A/ ∼α◦h. Then

[x]∼α◦h = [y]∼α◦h ⇔ x ∼α◦h y

⇔ α ◦ h(x|A(y|A1A)) = α ◦ h(1A) = α ◦ h(y|A(x|A1A))
⇔ α(h(x)|B(h(y)|bh(1A))) = α(h(1A))

= α(h(y)|B(h(x)|bh(1A)))
⇔ α(h(x)|B(h(y)|b1B)) = α(1B) = α(h(y)|B(h(x)|b1B))
⇔ h(x) ∼α h(y)

⇔ [h(x)]∼α = [h(y)]∼α

⇔ f([x]∼α◦h) = f([y]∼α◦h).

• f is a homomorphism: Let [x]∼α◦h , [y]∼α◦h ∈ A/ ∼α◦h. Then

f([x]∼α◦h |∼α◦h [y]∼α◦h) = f([x|Ay]∼α◦h)

= [h(x|Ay)]∼α

= [h(x)|Bh(y)]∼α

= [h(x)]∼α |∼α [h(y)]∼α

= f([x]∼α◦h)|∼αf([y]∼α◦h).

• f is onto: Let [y]∼α ∈ B/ ∼α. Since h is an epimorphism, there exists
x ∈ A such that h(x) = y. Thus, there exists [x]∼α◦h ∈ A/ ∼α◦h such that
f([x]∼α◦h) = [h(x)]∼α

= [y]∼α
. □

Theorem 16. The class FA of all fuzzy filters of A forms a complete lattice.

Proof. Since every fuzzy filter of A is a mapping from A to the interval [0, 1] and
[0, 1] is a complete lattice where a ∨ b = max{a, b} and a ∧ b = min{a, b}, for all
a, b ∈ [0, 1], FA forms a complete lattice. □
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5. Conclusion

In present study, basic definitions and notions of a strong Sheffer stroke NMV-
algebra are given. Then new properties, various filters, fuzzy filters of a strong
Sheffer stroke NMV-algebra and the relationships between them are investigated.
We prove that a filter of a strong Sheffer stroke NMV-algebra is prime if and only
if it is not contained by another filter of this algebraic structure, and examine some
features of a prime filter. Also, it is shown that the quotient structure of a strong
Sheffer stroke NMV-algebra defined by a prime filter is totally ordered and it has
at most 2 elements. Besides, we define a (prime) fuzzy filter of strong Sheffer stroke
NMV-algebras and show that α is a (prime) fuzzy filter of a strong Sheffer stroke
NMV-algebra if and only if αa = {x ∈ A : a ≤ α(x)} is empty or a (prime) filter
of A, for all a ∈ [0, 1]. It is demonstrated that a fuzzy subset αF is a (prime)
fuzzy filter of a strong Sheffer stroke NMV-algebra if and only if F is a (prime)
filter of the algebra. Thus, the relationships between filters and fuzzy filters of
a strong Sheffer stroke NMV-algebra are stated. We prove that a strong Sheffer
stroke NMV-algebra is totally ordered if and only if every fuzzy filter is prime if and
only if the filter {1} is prime. It is shown that a fuzzy subset αh of a strong Sheffer
stroke NMV-algebra is a (prime) fuzzy filter defined by means of a (prime) fuzzy
filter α and a surjective endomomorphism h on this algebra, and that αh = α if and
only if h(αa) = αa whenever h is an automorphism on this algebra and a ∈ Im(α).
By describing a congruence relation on a strong Sheffer stroke NMV-algebra by a
fuzzy filter, a quotient structure of a strong Sheffer stroke NMV-algebra is built
via the congruence relation. Hence, it is shown that the structure forms a strong
Sheffer stroke NMV-algebra. Indeed, we prove that the quotient structure defined
by a prime fuzzy filter is totally ordered strong Sheffer stroke NMV-algebra and
it has at most 2 elements. Moreover, we present that α ◦ h is a fuzzy filter of A
and the quotient structures defined by the fuzzy filters α ◦ h and α are isomorphic
when an epimorphism h between strong Sheffer stroke NMV-algebras A and B and
a fuzzy filter α of B. Finally, it is easy to see that the class of all fuzzy filters of a
strong Sheffer stroke NMV-algebra forms a complete lattice.

In the future works, we wish to investigate annihilators ans stabilizers on strong
Sheffer stroke NMV-algebras.
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OF HIGHER-ORDER DIFFERENCE EQUATIONS INVOLVING
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Abstract. In this paper, sufficient conditions are obtained for nonoscilla-

tion/oscillation of all solutions of a class of higher-order difference equations
involving the generalized difference operator of the form

∆k
a(pn∆

2
ayn) = f(n, yn,∆ayn,∆

2
ayn, ...,∆

k+1
a yn),

where ∆a is generalized difference operator which is defined as ∆ayn = yn+1−
ayn , a ̸= 0.

1. Introduction

In this paper, we study nonoscillation and oscillation of solutions of a class of
higher-order difference equations of the form

∆k
a(pn∆

2
ayn) = f(n, yn,∆ayn, ...,∆

k+1
a yn), n ∈ N, (1)

where N is the set of natural numbers, a ∈ R\{0}, R is the set of real numbers,
{pn} is a real sequence with pn ̸= 0 for n ∈ N and f : N × Rk+2 −→ R. The
generalized difference operator ∆a is defined as ∆ayn = yn+1 − ayn. For a = 1, we
write ∆1 = ∆ where ∆ is known forward difference operator. We define inductively
∆k

ayn = ∆a(∆
k−1
a yn) for k ≥ 2. By a solution of Eq. (1) we mean a sequence {yn}

of real numbers which satisfies Eq. (1) identically. We consider only nontrivial
solutions, i.e., such for which sup{|yn| : n ≥ i} > 0 for every i ∈ N. A solution
of Eq. (1) is called non-oscillatory if it is eventually of constant sign (positive
or negative) otherwise it is called oscillatory. For a ∈ R\{0}, Eq. (1) always
admits a solution on N. The oscillation and nonoscillation of solutions of difference
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equations are very popular for researchers in the last two decades. For this we refer
the monograps [1,2,3]. The oscillation and nonoscillation of solutions of higher
order difference equations has been studied by many authors. For example in
[9], oscillation criteria are obtained for higher-order neutral-type nonlinear delay
difference equations of the form

∆
(
rn
(
∆k−1 (yn + pnyτn

)
))

+ qnf (yσn
) = 0, n ≥ n0,

where rn, pn, qn ∈ [n0,∞) , rn > 0, qn > 0; 0 ≤ pn ≤ p0 < ∞, lim
n→∞

τn = ∞,

lim
n→∞

σn = ∞, σn ≤ n, σn is nondecreasing, ∆τn ≥ τ0 > 0, τσ = στ ;
f(u)
u ≥ m > 0

for u ̸= 0. In [5], Agarval et al. established some new criteria for the oscillation of
higher order difference equations of the form

∆
(
∆m−1 (xn)

)α
+ qnx

α[n− τ ] = 0,

where m ≥ 2, τ ≥ 1 and α is the ratio of positive odd integers. In [4], Agarval et
al. established sufficient conditions for the oscillation of all solutions of the even
order difference equations of the form

∆mxn + pn∆
m−1xn + F (xn−g,∆xn−h) = 0, m is even,

by comparing it with certain difference equations of lower order whose oscillatory
character is known. In [6], some oscillation criteria for solutions of nonlinear higher-
order forced difference equations are established. The investigations are carried out
without assuming that the coefficients of the equations are of a definite sign and
by showing that the forcing term needs not be the mth difference of an oscilla-
tory function. In [13], Saker et al. established some new oscillation criteria for a
certain class of third order nonlinear delay difference equations by employing the
generalized Riccati transformation technique. In [7], sufficient conditions are estab-
lished for the oscillatory and asymptotic behavior of higher–order half–linear delay
difference equation of the form

∆
(
pn
(
∆m−1 (xn + qnxτn)

)α)
+ rnx

β
σn

= 0, n ≥ n0,

where it is assumed that
∞∑

s=n0

1
ps

1
α

< ∞. In [8] Bolat et al. investigated the oscilla-

tory behavior of solutions of the th order half-linear functional difference equations
with damping term of the form

∆
(
pnQ

(
∆m−1yn

))
+ qnQ

(
∆m−1yn

)
+ rnQ (yτn

) = 0, n ≥ n0,

where m is even and Q(s) = |s|α−2
s, α > 1 is a fixed real number.

The generalized difference operator ∆a is a generalization of the difference op-
erator ∆. Due to the relation between the ordinary difference operator ∆ and gen-
eralized difference operator ∆a, most difference equation can be considered more
effectively by using generalized difference operator ∆a. In the literature there are
number of papers on the behavior of the difference equations involving operator
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∆a. In [12], Popenda obtained sufficient conditions for nonoscillation/oscillation of
solutions of a class of nonlinear nonhomogeneous second order difference equations
involving generalized difference of the form

∆2
axn = F (n, xn,∆bxn). (2)

For some results of this type we refer the reader to the recent papers [11,14,15]. In
[16], Tan and Yang generalized and improved the result of Popenda by considering
the equation

∆a(pn∆axn) + qn∆axn = F (n, xn,∆bxn). (3)

In [10], Parhi and Panda obtained sufficient conditions for nonoscillation /oscillation
of all solutions of a class of nonlinear third order difference equations of the form

∆a(pn∆
2
ayn) + qn∆

2
ayn = f(n, yn,∆ayn,∆

2
ayn). (4)

Our purpose is to establish oscillation and nonoscillation criteria for a class of
higher-order difference equations involving generalized difference operator of the
form Eq. (1).

2. Auxiliary Lemmas

Lemma 1. [10] Let {yn}be a real sequence. If {∆byn}, b > 0, is eventually of one
sign, then {yn} is non-oscillatory.

Lemma 2. [10] For b > 0, a real sequence {yn} is oscillatory if and only if {∆l
byn}

is oscillatory for all integers l ≥ 0, where ∆0
byn ≡ yn

Lemma 3. For n ∈ Z, ∆ayn+1 = ∆2
ayn + a∆ayn.

Proof. By the definition of generalized difference operator, we write ∆ayn = yn+1−
ayn. Thus, If we apply the generalized difference to the both sides of this equality,
we obtain that ∆2

ayn = ∆ayn+1 − a∆ayn. □

Lemma 4. [10] Let b < 0 and k ∈ N. Then ∆k
byl = bl+k∆k(yl

bl
), l ∈ N, for any

sequence {yn} of real numbers.

Lemma 5. For m ≥ 1, ∆m
a (pn∆

2
ayn) =

m∑
i=0

(−1)i
(
m
i

)
aipn+m−i∆

2
ayn+m−i.

Proof. One can easily show it using the definition of the generalized difference
operator. □

Lemma 6. For k ≥ 1, ∆ayl =
k∑

i=0

ai
(
k
i

)
∆k+1−i

a yl−k.

Proof. From Lemma 3, we can write ∆ayl−1 = ∆2
ayl−2+a∆ayl−2. If we apply the

generalized difference operator to the both sides of this equality, we obtain ∆2
ayl−1 =

∆3
ayl−2 + a∆2

ayl−2. Also from Lemma 3, we can write ∆ayl = ∆2
ayl−1 + a∆ayl−1.

Then we have
∆ayl = ∆3

ayl−2 + 2a∆2
ayl−2 + a2∆ayl−2.
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Thus we obtain

∆ayl−1 = ∆3
ayl−3 + 2a∆2

ayl−3 + a2∆ayl−3.

Similarly, by applying the generalized difference operator to the both sides of last
equality , we obtain that

∆2
ayl−1 = ∆4

ayl−3 + 2a∆3
ayl−3 + a2∆2

ayl−3.

By writing ∆ayl−1 and ∆2
ayl−1 in the last equation, we obtain

∆ayl = ∆4
ayl−3 + 3a∆3

ayl−3 + 3a2∆2
ayl−3 + a3∆ayl−3,

and so on , we reach

∆ayl =

k∑
i=0

ai
(
k

i

)
∆k+1−i

a yl−k.

□

Lemma 7. ∆2
ayn+k−1 =

∑k−1
i=0

(
k−1
i

)
ai∆k+1−i

a yn, for k ≥ 1, n ∈ N.

Proof. By the Lemma 3, we have

∆2
ayn+1 = ∆3

ayn + a∆2
ayn. (5)

From (5) we can write

∆2
ayn+2 = ∆3

ayn+1 + a∆2
ayn+1. (6)

Applying generalized difference operator to the Equation (5), we obtain ∆3
ayn+1 =

∆4
ayn + a∆3

ayn. Hence from (5) and (6) we have

∆2
ayn+2 = ∆4

ayn + 2a∆3
ayn + a2∆2

ayn.

Similarly, we obtain

∆2
ayn+3 = ∆5

ayn + 3a∆4
ayn + 3a2∆3

ayn + a3∆2
ayn

and so on we reach

∆2
ayn+k−1 =

k−1∑
i=0

(
k − 1

i

)
ai∆k+1−i

a yn, for k ≥ 1, n ∈ N. (7)

From (7) we can write

∆2
ayn =

k−1∑
j=0

(
k − 1

j

)
aj∆k+1−j

a yn−k+1, for k ≥ 1, n ∈ N. (8)

The proof is completed. □
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3. Nonoscillation of Solutions

In this section non-oscillatory behaviour of solutions of Eq. (1) is studied.

Theorem 1. Let a > 0. Assume that

k∑
i=0

ai
(
k
i

)
∆k+1−i

a yn

pn+k

[
f(n, yn,∆ayn, ...,∆

k+1
a yn)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+k−m

)
∆k+2−m

a yn

 ≥ 0, (9)

is satisfied. Then all solutions of Eq. (1) are non-oscillatory.

Proof. Assume that {yn} is a possible oscillatory solution of Eq. (1). Hence, for
every s ∈ N, there exists l > s such that yl ≥ 0 and yl+1 < 0 or yl > 0 and yl+1 ≤ 0.
Therefore, ∆ayl = yl+1 − ayl < 0. By the Lemma 5 and Lemma 7, for n ≥ l, Eq.
(1) can be written as

∆ayn+1 = a∆ayn +
1

pn

[
f(n− k, yn−k, ...,∆

k+1
a yn−k)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn−m

)
∆k+2−m

a yn−k

 . (10)

Multiplying (10) by ∆ayl and considering (9) we have

∆ayl∆ayl+1 = a(∆ayl)
2 +

∆ayl
pl

[
f(l − k, yl−k, ...,∆

k+1
a yl−k)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pl−m

)
∆k+2−m

a yl−k

 > 0

Hence ∆ayl+1 < 0, since ∆ayl =
k∑

i=0

ai
(
k
i

)
∆k+1−i

a yl−k < 0. Putting n = l + 1 in

(10) and proceeding as above, we obtain ∆ayl+1∆ayl+2 > 0. Hence ∆ayl+2 < 0 .
Generally, we see that ∆ayl+t < 0 for t ∈ N. That is, ∆ayl+t is eventually of one
sign. From Lemma 1 it follows that {yn} is eventually non-oscillatory. This is a
contradiction to our assumption. Thus the theorem is proved.

□

Theorem 2. Let a > 0. Assume that

1

pn+k

[
f(n, yn,∆ayn, ...,∆

k+1
a yn)
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+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+k−m

)
∆k+2−m

a yn

 ≤ 0, (11)

is satisfied. Then all solutions of Eq. (1) are non-oscillatory.

Proof. Let {yn} be a solution of Eq. (1). We claim that it is non-oscillatory. If
not, then {yn} is oscillatory. Hence, for every s ∈ N, there exists l > s such that
yl ≥ 0 and yl+1 < 0 or yl > 0 and yl+1 ≤ 0. Therefore, ∆ayl = yl+1 − ayl < 0. For
n ≥ l, we can write Eq. (1) as in (10). Considering (10) and ∆ayl < 0, we have

∆ayl+1 = a∆ayl +
1

pl

[
f(l − k, yl−k, ...,∆

k+1
a yl−k)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pl−m

)
∆k+2−m

a yl−k


< 0.

Putting n = l+ 1 in (10) and by (11) we obtain ∆ayl+2 < 0. By similar processes,
we reach that ∆ayl+s < 0 for s ∈ N. Hence {yn} is eventually non-oscillatory by
Lemma 1. This contradiction completes the proof. □

Theorem 3. Let a > 0. Assume that

1

pn+k

[
f(n, yn,∆ayn, ...,∆

k+1
a yn)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+k−m

)
∆k+2−m

a yn

≥ 0,

is satisfied. Then all solutions of Eq. (1) are non-oscillatory.

Proof. Assume that {yn} is an oscillatory solution of Eq. (1). So we choose n > n0,
where n0 ∈ N, such that yn ≤ 0 and yn+1 > 0 or yn < 0 and yn+1 ≥ 0. Thus
∆ayn = yn+1 − ayn > 0. The rest of proof can be made. □

Theorem 4. Let a > 0. Assume that
f(n, yn,∆ayn,∆

2
ayn, ...,∆

k+1
a yn) = 0, if ∆2

ayn = 0

∑k−1
j=0 (

k−1
j )aj∆k+1−j

a yn

pn+k

[
f(n, yn,∆ayn,∆

2
ayn, ...,∆

k+1
a yn) +

∑k
j=1

(
k
j

)
aj

×
(∑j

m=1

(
j
m

)
(−1)m+1pn+k−m

)
∆k+2−m

a yn

]
> 0, if ∆2

ayn ̸= 0

(12)

is satisfied. Then all solutions of Eq. (1) are non-oscillatory.
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Proof. Let X is the set of all solutions y = {yn} of Eq. (1). Assume that X1 =
{y ∈ X : ∆2

ayn = 0 for some n ∈ N} and X2 = X −X1. Suppose that y = {yn} is
a solution of Eq. (1). If y ∈ X1, then there exists t ∈ N such that ∆2

ayt = 0. From
the first part of assumption (12) it follows that f(t, yt,∆ayt,∆

2
ayt, ...,∆

k+1
a yt) = 0.

Thus from Eq. (1) we obtain

∆k
a(pt∆

2
ayt) = 0.

Hence, by from Lemma 5, we have

k∑
i=0

(−1)i
(
k

i

)
aipt+k−i∆

2
ayt+k−i = 0.

In here we know that pt+k∆
2
ayt+k =

(
k
1

)
apt+k−1∆

2
ayt+k−1−

(
k
2

)
a2pt+k−2∆

2
ayt+k−2+

...− (−1)kakpt∆
2
ayt. If ∆

2
ayt = 0, ∆ayt+1 = a∆ayt. Thus, If we apply the general-

ized difference operator to both sides of the last equality, we obtain that ∆2
ayt+1 =

a∆2
ayt. Since ∆2

ayt = 0, ∆2
ayt+1 = 0. Since ∆2

ayt+1 = 0, ∆ayt+2 = a∆ayt+1.
Likewise if we apply the generalized difference operator to both sides of the last
equality , we obtain that ∆2

ayt+2 = a∆2
ayt+1. Since ∆2

ayt+1 = 0, ∆2
ayt+2 = 0. Con-

tinuing the progress in the same way yields pt+k∆
2
ayt+k = 0, that is, ∆2

ayt+k = 0.
Writing t + k instead of n in Eq. (1) and using the first part of (15), we ob-

tain ∆k
a(pt+k∆

2
ayt+k) = 0, that is,

∑k
i=0(−1)i

(
k
i

)
aipt+2k−i∆

2
ayt+2k−i = 0. If

∆2
ayt+k = 0, ∆ayt+k+1 = a∆ayt+k. If we apply the generalized difference oper-

ator to both sides of the last equality, we obtain that ∆2
ayt+k+1 = a∆2

ayt+k. Thus
∆2

ayt+k+1 = 0 . Continuing the progress in the same way for the first part of
(12) yields ∆2

ayt+s = 0 for s ∈ N. We may observe that ∆2
ayt+1 = 0 implies

∆ayt+2 = a∆ayt+1 and ∆2
ayt+2 = 0 implies ∆ayt+3 = a∆ayt+2 = a2∆ayt+1. In

general case, we obtain

∆ayt+l = al−1∆ayt+1, l ∈ N. (13)

If ∆ayt+1 = 0, then ∆ayt+l = 0 for l ∈ N. Hence

yt+l+1 = ayt+l, l ∈ N. (14)

Since the solution {yn} of Eq. (1) is nontrivial, we can find n0 ∈ N, n0 ≥ t + 1,
such that yn0 ̸= 0. Putting l = n0 − t, n0 − t + 1, ... in (13) we get yn0+1 = ayn0 ,
yn0+2 = ayn0+1 = a2yn0 , etc. In general, yn0+s = asyn0 , s ∈ N. Hence {yn} is
eventually of one sign, that is, {yn} is non-oscillatory. From (13) it follows that
since ∆ayt+1 > 0 or < 0, ∆ayt+l > 0 or < 0 for l ∈ N. Hence {∆ayn} is eventually
of one sign. Thus {yn} is eventually of one sign by Lemma 1. Consequently, {yn}
is non-oscillatory.

Now let y ∈ X2. Then ∆2
ayn ̸= 0 for all n ∈ N. Eq. (1) can be written in the

form

∆2
ayn+k =

1

pn+k

[
f(n, yn, ...,∆

k+1
a yn)
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+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+k−m

)
∆k+2−m

a yn

 . (15)

Putting n = l− k+1 in (15) for a fixed l and multiplying (15 ) by ∆2
ayl, we obtain

∆2
ayl∆

2
ayl+1 =

∆2
ayl

pl+1

[
f(l − k + 1, yl−k+1, ...,∆

k+1
a yl−k+1)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pl−m+1

)
∆k+2−m

a yl−k+1


> 0

by the second part of the assumption (12). Since ∆2
ayl ̸= 0 , ∆2

ayl > 0 or < 0, also
∆2

ayl+1 > 0 or < 0. Putting n = l − k + 2 in (15) and considering the second part
of (12), we have ∆2

ayl+2∆
2
ayl+1 > 0. Therefore since ∆2

ayl > 0 or < 0, ∆2
ayl+2 > 0

or < 0. The repeated considering of the second part of (12), we yield ∆2
ayl+k > 0

or < 0 for k ∈ N. Hence from (8) we have ∆2
ayl =

∑k−1
j=0

(
k−1
j

)
aj∆k+1−j

a yl−k+1 > 0

or < 0.Thus {∆2
ayn} is non-oscillatory. From Lemma 2 it follows that {yn} is

non-oscillatory. Thus the theorem is proved. □

4. Oscillation of Solutions

In this section, we study oscillatory behavior of all solutions of Eq. (1).

Theorem 5. Let a < 0. Assume that∑k
i=0 a

i
(
k
i

)
∆k+1−i

a yn

pn+k

[
f(n, yn, ...,∆

k+1
a yn)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+k−m

)
∆k+2−m

a yn

 ≤ 0, (16)

is satisfied. Then all solutions of Eq. (1) are oscillatory.

Proof. Let {yn} be a solution of Eq. (1). If ∆ayn = 0, then yn+1 = ayn . Hence
{yn} is oscillatory because of a < 0. Suppose that ∆ayn ̸= 0. If we write Eq. (1)

as in (10) and multiply both of this equality ∆ayn =
∑k

i=0 a
i
(
k
i

)
∆k+1−i

a yn−k for
∆ayn ̸= 0, we have

∆ayn∆ayn+1 = a(∆ayn)
2 +

∆ayn
pn

[
f(n− k, yn−k, ...,∆

k+1
a yn−k)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn−m

)
∆k+2−m

a yn−k


< 0.
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Hence (16) holds. By the Lemma 4 we have an+1∆
(
yn

an

)
an+2∆

( yn+1

an+1

)
< 0, that

is, a2n+3∆
(
yn

an

)
∆
( yn+1

an+1

)
< 0. Since a < 0, then

∆
(yn
an

)
∆
(yn+1

an+1

)
> 0, n ∈ N. (17)

If ∆
(
yn

an

)
> 0, then ∆

( yn+1

an+1

)
> 0. As (17) holds for every n ∈ N, then ∆

( yn+1

an+1

)
> 0

implies that ∆
( yn+2

an+2

)
> 0 and so on. Hence {∆

(
yn

an

)
} is eventually of one sign.

Consequently, { yn

an } is eventually of one sign by Lemma 1 for b = 1. This implies

that {yn} is oscillatory because a < 0. Similarly, if ∆
(
yn

an

)
< 0, then {yn} is

oscillatory. Thus the theorem is proved. □

Remark 1. If

1

pn+k

[
f(n, yn,∆ayn, ...,∆

k+1
a yn)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+k−m

)
∆k+2−m

a yn

 = 0, (18)

then all solutions of Eq. (1) are oscillatory. Indeed, if {yn} is a non-oscillatory
solution of Eq. (1), then there exists ko ∈ N such that yn > 0 or < 0 for n ≥ k0.
Eq. (1) can be written in the form

∆2
ayn+k =

1

pn+k

[
f(n, yn, ...,∆

k+1
a yn)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+k−m

)
∆k+2−m

a yn

 .

Then considering (18), we have ∆2
ayn+k = 0, n ∈ N. Then for k ≥ 1, ∆2

ayn+1 = 0
implies that ∆ayn+2 = a∆ayn+1. Similarly, ∆2

ayn+2 = 0 implies that ∆ayn+3 =
a∆ayn+2 = a2∆ayn+1 . In general case, ∆2

ayn+k = 0 implies that ∆ayn+k+1 =
ak∆ayn+1, k ∈ N. In particular, ∆ayk0+k+1 = ak∆ayk0+1 for n ≥ k0. Let yn > 0
for n ≥ k0. We consider three possibilities for ∆ayk0+1, viz., ∆ayk0+1 = 0 , > 0 and
< 0 and obtain a contradiction in each case. If ∆ayk0+1 = 0, then ∆ayk0+k+1 = 0,
that is, yk0+k+2 = ayk0+k+1 < 0 for k ∈ N, a contradiction to the fact that yn > 0
for n ≥ k0. Let ∆ayk0+1 > 0. Then ∆ayk0+2k+2 = a2k+1∆ayk0+1 < 0 implies that
yk0+2k+3 = ayk0+2k+2 < 0, a contradiction. If ∆ayk0+1 < 0, then ∆ayk0+2k+1 =
a2k ∆ayk0+1 < 0 implies that yk0+2k+2 < ayk0+2k+1 < 0, a contradiction. Thus
yn > 0 for n ≥ k0 is not possible. Let yn < 0 for n ≥ k0. Proceeding as above
we arrive at a contradiction in each of the three cases, viz., ∆ayk0+1 = 0, > 0 and
< 0. Hence yn < 0 for n ≥ k0 is not possible. Thus {yn} is oscillatory.
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Theorem 6. Let a < 0. Assume that
f(n, yn,∆ayn,∆

2
ayn, ...,∆

k+1
a yn) = 0, if ∆2

ayn = 0

∑k−1
j=0 (

k−1
j )aj∆k+1−j

a yn

pn+k

[
f(n, yn,∆ayn,∆

2
ayn, ...,∆

k+1
a yn) +

∑k
j=1

(
k
j

)
aj

×
(∑j

m=1

(
j
m

)
(−1)m+1pn+k−m

)
∆k+2−m

a yn

]
< 0, if ∆2

ayn ̸= 0

(19)

is satisfied. Then all solutions of Eq. (1) are oscillatory.

Proof. Let X be the set of all solutions y = {yn} of Eq. (1). Assume that X1 =
{y ∈ X : ∆2

ayn = 0 for some n ∈ N} and X2 = X − X1. Suppose that y = {yn}
be a non-oscillatory solution of Eq. (1). Hence {yn} is eventually of one sign. If
y ∈ X1, then there exists t ∈ N such that ∆2

ayt = 0. Thus from Eq. (1) and (19) it

follows that ∆k
a(pt∆

2
ayt) = 0, that is,

∑k
i=0(−1)i

(
k
i

)
aipt+k−i∆

2
ayt+k−i = 0. Then

pt+k∆
2
ayt+k =

(
k

1

)
apt+k−1∆

2
ayt+k−1−

(
k

2

)
a2pt+k−2∆

2
ayt+k−2+...−(−1)kakpt∆

2
ayt.

If ∆2
ayt = 0, then ∆ayt+1 = a∆ayt. If we apply the generalized difference operator

to both sides of the last equality, we obtain that ∆2
ayt+1 = a∆2

ayt. Since ∆2
ayt = 0,

∆2
ayt+1 = 0. Since ∆2

ayt+1 = 0, ∆ayt+2 = a∆ayt+1. Likewise , if we apply
the generalized difference operator to both sides of the last equality, we obtain
that ∆2

ayt+2 = a∆2
ayt+1. Since ∆2

ayt+1 = 0, ∆2
ayt+2 = 0. By recurrence of the

processes ,we obtain that pt+k∆
2
ayt+k = 0, that is, ∆2

ayt+k = 0. If ∆2
ayt+1 = 0,

for k ≥ 1, ∆ayt+2 = a∆ayt+1. Since ∆2
ayt+2 = 0, ∆ayt+3 = a∆ayt+2 = a2∆ayt+1

and so on. Generally, we have ∆ayt+k = ak−1∆ayt+1. We can choose k0 ∈ N
such that yk > 0 or < 0 for k ≥ k0. Let yk > 0 for k ≥ k0. If ∆ayt+1 = 0,
then ∆ayt+k0

= 0 and hence yt+k0+1 = ayt+k0
< 0, a contradiction. If ∆ayt+1 >

0, then ∆ayt+2k0 = a2k0−1∆ayt+1 < 0 and hence yt+2k0+1 = ayt+2k0 < 0, a
contradiction. If ∆ayt+1 < 0, then ∆ayt+2k0+1 = a2k0∆ayt+1 < 0 implies that
yt+2k0+2 = ayt+2k0+1 < 0, a contradiction. Similar contradiction is obtained if
yk < 0 for k ≥ k0. Thus y /∈ X1. Now let y ∈ X2. Hence ∆2

ayn ̸= 0 for all n ∈ N.
Writing Eq. (1) as we obtain

∆2
ayn∆

2
ayn+1 =

∆2
ayn

pn+1

[
f(n− k + 1, yn−k+1,∆ayn−k+1, ...,∆

k+1
a yn−k+1)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn−m+1

)
∆k+2−m

a yn−k+1


< 0,

by the second of (19). In here ∆2
ayn =

∑k−1
j=0

(
k−1
j

)
aj∆k+1−j

a yn−k+1. Applying

Lemma 4 we get a2n+5∆2
(
yn

an

)
∆2
( yn+1

an+1

)
< 0. Hence ∆2

(
yn

an

)
∆2
( yn+1

an+1

)
> 0,

n ∈ N, since a < 0. If ∆2
(
yn

an

)
> 0, then ∆2

( yn+1

an+1

)
> 0. This in turn implies
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that ∆2
( yn+2

an+2

)
> 0 and so on. If ∆2

(
yn

an

)
< 0, then ∆2

( yn+1

an+1

)
< 0 which in turn

implies that ∆2
( yn+2

an+2

)
< 0 and so on. Therefore {∆2

(
yn

an

)
} is of one sign. By

Lemma 1, {∆
(
yn

an

)
} is eventually of one sign and hence { yn

an } is eventually of one
sign . Consequently {yn} is oscillatory. This contradicts our assumption y = {yn}
be a non-oscillatory solution of Eq. (1) . Thus y /∈ X2. Consequently, all solutions
of Eq. (1) are oscillatory and this completes the proof of the theorem. □

5. Examples

Example 1. Consider

4∆4
ayn = (1− 8a)∆3

ayn + 2a(1− 2a)∆2
ayn + a2∆ayn, (20)

where a > 0, pn = 4, k = 2 and f(n, yn,∆ayn,∆
2
ayn,∆

3
ayn) = (1 − 8a)∆3

ayn +
2a(1− 2a)∆2

ayn + a2∆ayn. Since

2∑
i=0

ai
(
2
i

)
∆2+1−i

a yn

pn+2

[
f(n, yn,∆ayn, ...,∆

2+1
a yn)

+

2∑
j=1

(
2

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+2−m

)
∆2+2−m

a yn


=

∆3
ayn + 2a∆2

ayn + a2∆ayn
pn+2

[
f(n, yn,∆ayn,∆

2
ayn,∆

3
ayn)

+2apn+1∆
3
ayn + a2(2pn+1 − pn)∆

2
ayn
]

=
∆3

ayn + 2a∆2
ayn + a2∆ayn
4

[
(1− 8a)∆3

ayn + 2a(1− 2a)∆2
ayn + a2∆ayn

+4a∆3
ayn + 2a2∆2

ayn
]

=
(∆3

ayn + 2a∆2
ayn + a2∆ayn)

2

4
≥ 0,

all solutions of (20) are non-oscillatory by Theorem 1. In other way, Equation (20)
can be written as

4yn+4 + (−1− 8a)yn+3 + (4a2 + a)yn+2 = 0.

The characteristic equation concerning with this equation is given by

4λ4 + (−1− 8a)λ3 + (4a2 + a)λ2 = 0,

that is,
(λ− a)(4λ3 + (−1− 4a)λ2) = 0.

A fundamental set of all solutions of (20) equation is
{
{an}, {( 1+4a

4 )n}
}
. Thus we

again see that all solutions of (20) are non-oscillatory.



NONOSCILLATION AND OSCILLATION OF SOLUTIONS 199

Example 2. Consider the equation

− 2∆5yn = 6∆4yn + 6∆3yn + 2∆2yn + (∆yn)
2, (21)

where a = 1, pn = −2, k = 3 and f(n, yn,∆ayn,∆
2
ayn,∆

3
ayn,∆

4
ayn) = 6∆4yn +

6∆3yn + 2∆2yn + (∆yn)
2. Thus

1

pn+3

[
f(n, yn,∆ayn, ...,∆

3+1
a yn)

+

3∑
j=1

(
3

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+3−m

)
∆3+2−m

a yn


=

1

pn+3

[
f(n, yn,∆ayn,∆

2
ayn,∆

3
ayn,∆

4
ayn)

+3apn+2∆
4
ayn + 3a2(2pn+2 − pn+1)∆

3
ayn + a3(3pn+2 − 3pn+1 + pn)∆

2
ayn
]

=
1

−2

[
6∆4yn + 6∆3yn + 2∆2yn + (∆yn)

2

−6∆4yn − 6∆3yn − 2∆2yn
]

= − (∆yn)
2

2
≤ 0

and the condition of Theorem 2 is satisfied. Hence it follows that all solutions of
(21) are non-oscillatory. In particular, yn ≡ c, where c ̸= 0 is a constant, is a
non-oscillatory solution of the equation.

Example 3. Consider

− 2∆5yn = 6∆4yn + 6∆3yn + 2∆2yn − (∆yn)
2, (22)

where a = 1, pn = −2, k = 3 and f(n, yn,∆ayn,∆
2
ayn,∆

3
ayn,∆

4
ayn) = 6∆4yn +

6∆3yn + 2∆2yn − (∆yn)
2. Thus

1

pn+3

[
f(n, yn,∆ayn, ...,∆

3+1
a yn)

+

3∑
j=1

(
3

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+3−m

)
∆3+2−m

a yn


=

1

pn+3

[
f(n, yn,∆ayn,∆

2
ayn,∆

3
ayn,∆

4
ayn)

+3apn+2∆
4
ayn + 3a2(2pn+2 − pn+1)∆

3
ayn + a3(3pn+2 − 3pn+1 + pn)∆

2
ayn
]

=
1

−2

[
6∆4yn + 6∆3yn + 2∆2yn − (∆yn)

2

−6∆4yn +−6∆3yn +−2∆2yn
]

=
(∆yn)

2

2
≥ 0.
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Then all solutions of the equation (22) are non-oscillatory due to Theorem 3.

Example 4. Consider
3∆3

ayn = 2∆2
ayn, (23)

where a > 0, pn = 3, k = 1 and f(n, yn,∆ayn,∆
2
ayn) = 2∆2

ayn. f(n, yn,∆ayn,∆
2
ayn) =

0 if ∆2
ayn = 0, and if ∆2

ayn ̸= 0,∑1−1
j=0

(
1−1
j

)
aj∆1+1−j

a yn

pn+1

f(n, yn,∆ayn,∆
2
ayn, ...,∆

1+1
a yn) +

1∑
j=1

(
1

j

)
aj

×

(
j∑

m=1

(
j

m

)
(−1)m+1pn+1−m

)
∆1+2−m

a yn

]

=
∆2

ayn
pn+1

[
f(n, yn,∆ayn,∆

2
ayn) + apn∆

2
ayn
]

=
∆2

ayn
3

[
2∆2

ayn + 3a∆2
ayn
]

=
(∆2

ayn)
2(2 + 3a)

3
> 0,

Therefore all solution of (23) are non-oscillatory by Theorem 4. We can make the
proof by the another way. For this, we can write the Eq. (23) as in the form

3yn+3 − (9a+ 2)yn+2 + (9a2 + 4a)yn+1 − (2a2 + 3a3)yn = 0.

The characteristic equation concerning with this equation is

3λ3 − (9a+ 2)λ2 + (9a2 + 4a)λ− (2a2 + 3a3) = 0,

that is,
(λ− a)(3λ2 − (6a+ 2)λ+ 3a2 + 2a) = 0.

Hence a fundamental set of all solutions of Eq. (23) is
{
{an}, {nan}, {

(
3a+2

3

)n}
.

Thus all solutions of (23) are non-oscillatory.

Example 5. Consider

∆3
ayn = −(1 + a)∆2

ayn − a∆ayn, (24)

where a < 0, pn = 1, k = 1 and f(n, yn,∆ayn,∆
2
ayn) = −(1 + a)∆2

ayn − a∆ayn.
Since ∑1

i=0 a
i
(
1
i

)
∆1+1−i

a yn

pn+1

[
f(n, yn, ...,∆

1+1
a yn)

+

1∑
j=1

(
1

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+1−m

)
∆1+2−m

a yn


=

∆2
ayn + a∆ayn

pn+1

[
f(n, yn,∆ayn,∆

2
ayn) + apn∆

2
ayn
]
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=
∆2

ayn + a∆ayn
1

[
−(1 + a)∆2

ayn − a∆ayn + a∆2
ayn
]

= −(∆2
ayn + a∆ayn)

2

≤ 0,

all solutions of the equation are oscillatory by Theorem 5. In particular, a funda-
mental set of all solutions of Eq. (24) is {{(an)}, {(a− 1)

n}}. Thus all of solutions
of (24) are oscillatory.

Example 6. Consider

2∆4
ayn = −(4a∆3

ayn + 2a2∆2
ayn), (25)

where a < 0, pn = 2, k = 2 and f(n, yn,∆ayn,∆
2
ayn,∆

3
ayn) = −(4a∆3

ayn +
2a2∆2

ayn). Since

1

pn+2

[
f(n, yn,∆ayn, ...,∆

2+1
a yn)

+

2∑
j=1

(
2

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+2−m

)
∆2+2−m

a yn


=

1

pn+2

[
f(n, yn,∆ayn,∆

2
ayn,∆

3
ayn) + 2apn+1∆

3
ayn + a2(2pn+1 − pn)∆

2
ayn
]

=
1

2

[
−(4a∆3

ayn + 2a2∆2
ayn) + 4a∆3

ayn + 2a2∆2
ayn
]

= 0,

all solutions of the equation (25) are oscillatory in view of Remark 1. In particular,
{an} and {nan} are two oscillatory solutions of the equation.

Example 7. Consider

3∆3
ayn = −2∆2

ayn, (26)

where a < 0, k = 1, pn = 3 and f(n, yn,∆ayn,∆
2
ayn) = −2∆2

ayn. Hence ∆2
ayn = 0

implies that f(n, yn,∆ayn,∆
2
ayn) = 0. If ∆2

ayn ̸= 0, then∑1−1
j=0

(
1−1
j

)
aj∆1+1−j

a yn

pn+k

f(n, yn,∆ayn,∆
2
ayn, ...,∆

1+1
a yn) +

1∑
j=1

(
1

j

)
aj

×

(
j∑

m=1

(
j

m

)
(−1)m+1pn+1−m

)
∆1+2−m

a yn

]

=
∆2

ayn
pn+1

[
f(n, yn,∆ayn,∆

2
ayn) + apn∆

2
ayn
]

=
∆2

ayn
3

[
−2∆2

ayn + 3a∆2
ayn
]
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= (∆2
ayn)

2

(
−2 + 3a

3

)
< 0.

Hence by Theorem 6 all solution of (26) are oscillatory . On the other hand, the
characteristic equation of (26) is

(λ− a)2(3λ2 + (2− 6a)λ+ 3a2 − 2a) = 0.

Hence a fundamental set of all solutions of Eq. (26) is {{an}, {nan}, {
(
3a−2

3

)n}}
which consists of all oscillatory solutions.

6. Conclusion

In this paper we investigated the sufficient conditions of the oscillation and non-
oscillation of higher -order difference equations (1). In this study, we used definitions
of generalized difference operator and oscillation/non-oscillation for the proof of the
results. Also, we have considered both cases of a < 0 and a > 0. We have obtained
non-oscillatory behaviour of solution of Eq. (1) in Section 3, we have studied oscil-
latory behaviour of solution of Eq. (1) in Section 4, respectively. Finally, we have
discussed some examples related to our main results.
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OPERATOR INEQUALITIES IN REPRODUCING KERNEL

HILBERT SPACES

Ulaş YAMANCI
Department of Statistics, Suleyman Demirel University, 32260 Isparta, TURKEY

Abstract. In this paper, by using some classical Mulholland type inequal-
ity, Berezin symbols and reproducing kernel technique, we prove the power

inequalities for the Berezin number ber(A) for some self-adjoint operators A

on H(Ω). Namely, some Mulholland type inequality for reproducing kernel
Hilbert space operators are established. By applying this inequality, we prove

that (ber(A))n ≤ C1ber(An) for any positive operator A on H(Ω).

1. Introduction

If p > 1,
1

p
+

1

q
= 1, an, bn ≥ 0 satisfy 0 <

∞∑
m=2

1

m
apm < +∞ and 0 <

∞∑
n=2

1

n
bqn,

then the Mulholland’s inequality [13,20] is given by

∞∑
m=2

∞∑
n=2

ambn
mn lnmn

<
π

sin
(

π
p

) { ∞∑
n=2

1

n
apn

} 1
p
{ ∞∑

n=2

1

n
bqn

} 1
q

(1)

and an equivalent form is

∞∑
n=2

1

n

( ∞∑
m=2

am
m lnmn

)p

<

 π

sin
(

π
p

)
p

∞∑
n=2

1

n
apn, (2)

where the constants
π

sin
(

π
p

) and

 π

sin
(

π
p

)
p

are the best possible.
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The integral analogues of (1) and (2) are as follows:

∞∫
1

∞∫
1

f (x) g (y)

xy lnxy
dxdy <

π

sin (π/p)

 ∞∫
1

fp (x)

x
dx

1/p ∞∫
1

gq (y)

y
dy

1/q

, (3)

∞∫
1

 ∞∫
1

f (x)

xy lnxy
dx

 dy <

[
π

sin (π/p)

]p ∞∫
1

fp (x)

x
dx.

Inequalities (1) and (3) are called the Mulholland’s inequality and Mulholland’s
integral inequality, respectively (see [13, 20]). Some generalizations of these type
inequalities are given in [5, 8, 11,12,14,29].

Denote by F (Ω) the set of all complex valued functions on some set Ω. A
reproducing kernel Hilbert space (RKHS for short) on the set Ω is a Hilbert space
H ⊂ F (Ω) with a function kλ : Ω×Ω → H, which is called the reproducing kernel
enjoying the reproducing property kλ := k (., λ) ∈ H for all λ ∈ Ω and

f(λ) = ⟨f, kλ⟩H
holds for all λ ∈ Ω and all f ∈ H (see [1, 23]).

Let k̂λ = kλ

∥kλ∥ be the normalized reproducing kernel of the space H. For any

bounded linear operator A on H, the Berezin symbol of A is the function Ã defined
by (see [4])

Ã(λ) :=
〈
Ak̂λ, k̂λ

〉
H

(λ ∈ Ω).

Recall that the Berezin set and the Berezin number for an operator A ∈ B(H(Ω))
were introduced in [15,16] as follows:

Ber(A) := Range(Ã) =
{
Ã(λ) : λ ∈ Ω

}
(Berezin set).

ber(A) := sup
{∣∣∣Ã(λ)

∣∣∣ : λ ∈ Ω
}

(Berezin number).

Clearly, Ber(A) ⊂ W (A) := {⟨Ax, x⟩ : ∥x∥H = 1} (numerical range) and ber(A) ≤
w(A) := sup {|⟨Ax, x⟩| : ∥x∥H = 1} (numerical radius). More information about
numerical range and numerical radius can be found in [6, 7, 9, 18,19,21].

Using the Hardy-Hilbert type inequalities and some well-known inequalities,
some important results about the Berezin number inequalities were obtained in
[2, 3, 10,22,24–28].

In the present paper, by using inequalities (1), (2) and some ideas of paper [17],
we will estimate Berezin number (which is a new numerical value of the bounded
linear operators on RKHS) of operators acting in the reproducing kernel Hilbert
spaces.
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2. Mulholland Type Inequalities and Berezin Number of Some
Operators

In the following result, we prove an analog of inequality (1) for some self-adjoint
operators on a RKHS H = H(Ω).

Theorem 1. Let p > 1 and
1

p
+

1

q
= 1. Let f, g be two continuous functions defined

on an interval ∆ ⊂ (0,+∞) and f, g ≥ 0. Then the following is true:

8 ˜f(A)g(A)(λ) + ˜f (C) g (C) (ξ)

32 ln 4
+

f̃(A)(λ)g̃(B)(µ) + f̃(B)(µ)g̃(A)(λ)

6 ln 6
(4)

+
f̃(A)(λ)g̃ (C) (ξ) + f̃ (C) (ξ) g̃(A)(λ)

8 ln 8
+

1
2

˜f(B)g(B)(µ)

9 ln 9

+
f̃(B)(µ)g̃ (C) (ξ) + f̃ (C) (ξ) g̃(B)(µ)

12 ln 12

<
π

sin (π/p)

〈(
fp(A)

2
+

fp(B)

3
+

fp (C)

4

)1/p(
gq(A)

2
+

gq(B)

3
+

gq (C)

4

)1/q

k̂λ, k̂λ

〉
,

for all self-adjoint operators A,B,C ∈ B(H(Ω)) with spectra contained in ∆ and
for all µ, λ, ξ ∈ Ω.

Proof. Let a2, a3, a4, b2, b3, b4 be positive scalars. Then using inequality (1) , we
have

8a2b2 + a4b4
32 ln 4

+
a2b3 + a3b2

6 ln 6
+

a2b4 + a4b2
8 ln 8

+
a3b3
9 ln 9

+
a3b4 + a4b3
12 ln 12

(5)

<
π

sin (π/p)

(
ap2
2

+
ap3
3

+
ap4
4

)1/p(
bq2
2

+
bq3
3

+
bq4
4

)1/q

.

Let x, y, z ∈ ∆. By the hypothyses of the theorem f(x) ≥ 0, g(x) ≥ 0 for all x ∈ ∆.
If we put a2 = f(x), a3 = f(y), a4 = f (z) , b2 = g(x), b3 = g(y), b4 = g (z) in (5) ,
then we have

8f(x)g(x) + f (z) g (z)

32 ln 4
+

f(x)g(y) + f(y)g(x)

6 ln 6
(6)

+
f(x)g (z) + f (z) g(x)

8 ln 8
+

f(y)g(y)

9 ln 9
+

f(y)g (z) + f (z) g(y)

12 ln 12

<
π

sin (π/p)

(
fp(x)

2
+

fp(y)

3
+

fp (z)

4

)1/p(
gq(x)

2
+

gq(y)

3
+

gq (z)

4

)1/q

for all x, y, z ∈ ∆. Let A be a self-adjoint operator. Then, by using functional
calculus and inequality (6) , we get

8f(A)g(A) + f (z) g (z)

32 ln 4
+

f(A)g(y) + f(y)g(A)

6 ln 6



OPERATOR INEQUALITIES IN REPRODUCING KERNEL HILBERT SPACES 207

+
f(A)g (z) + f (z) g(A)

8 ln 8
+

f(y)g(y)

9 ln 9
+

f(y)g (z) + f (z) g(y)

12 ln 12

<
π

sin (π/p)

(
fp(A)

2
+

fp(y)

3
+

fp (z)

4

)1/p(
gq(A)

2
+

gq(y)

3
+

gq (z)

4

)1/q

,

and therefore, we have that

8
〈
f(A)g(A)k̂λ, k̂λ

〉
+ f (z) g (z)

32 ln 4
+

〈
f(A)k̂λ, k̂λ

〉
g(y) + f(y)

〈
g(A)k̂λ, k̂λ

〉
6 ln 6

+

〈
f(A)k̂λ, k̂λ

〉
g (z) + f (z)

〈
g(A)k̂λ, k̂λ

〉
8 ln 8

+
f(y)g(y)

9 ln 9
+

f(y)g (z) + f (z) g(y)

12 ln 12

<
π

sin (π/p)

〈(
fp(A)

2
+

fp(y)

3
+

fp (z)

4

)1/p(
gq(A)

2
+

gq(y)

3
+

gq (z)

4

)1/q

k̂λ, k̂λ

〉
,

for all λ ∈ Ω and any y, z ∈ ∆.
Using the functional calculus once more to the self-adjoint operators B and C,

we get

8
〈
f(A)g(A)k̂λ, k̂λ

〉
+ f (C) g (C)

32 ln 4
+

〈
f(A)k̂λ, k̂λ

〉
g(B) + f(B)

〈
g(A)k̂λ, k̂λ

〉
6 ln 6

(7)

+

〈
f(A)k̂λ, k̂λ

〉
g (C) + f (C)

〈
g(A)k̂λ, k̂λ

〉
8 ln 8

+
f(B)g(B)

9 ln 9
+

f(B)g (C) + f (C) g(B)

12 ln 12

<
π

sin (π/p)

[(
fp(A)

2
+

fp(B)

3
+

fp (C)

4

)1/p(
gq(A)

2
+

gq(B)

3
+

gq (C)

4

)1/q
]̃
(λ) .

Hence, we have from (7) that

8 ˜f(A)g(A)(λ) + ˜f (C) g (C) (ξ)

32 ln 4
+

f̃(A)(λ)g̃(B)(µ) + f̃(B)(µ)g̃(A)(λ)

6 ln 6

+
f̃(A)(λ)g̃ (C) (ξ) + f̃ (C) (ξ) g̃(A)(λ)

8 ln 8
+

˜f(B)g(B)(µ)

9 ln 9

+
f̃(B)(µ)g̃ (C) (ξ) + f̃ (C) (ξ) g̃(B)(µ)

12 ln 12

<
π

sin (π/p)

〈(
fp(A)

2
+

fp(B)

3
+

fp (C)

4

)1/p(
gq(A)

2
+

gq(B)

3
+

gq (C)

4

)1/q

k̂λ, k̂λ

〉
,

for all self-adjoint operators A,B,C ∈ B(H(Ω)) and for all λ, µ, ξ ∈ Ω. This proves
the theorem. □
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Corollary 1. (ber (f (A)))
2
< C1ber

(
f (A)

2
)

for any self-adjoint operator A ∈
B(H(Ω)) with spectrum contained in ∆; in particular,

(ber (A))
2
< C1ber

(
A2
)
,

where C1 =

(
2.904π

sin (π/p)
− 0.678

)
.

Proof. Indeed, for C = B = A, g = f and ξ = µ = λ, we have from inequality (4)
that

9f̃2(A)(λ)

32 ln 4
+

2
[
f̃(A)(λ)

]2
6 ln 6

+
2
[
f̃(A)(λ)

]2
8 ln 8

+
f̃2(A)(λ)

18 ln 3
+

2
[
f̃(A)(λ)

]2
12 ln 12

<
13π

12 sin (π/p)
f̃2(A)(λ),

or equivalently (
4 log6 e+ 3 log8 e+ 2 log12 e

12

)[
f̃(A)(λ)

]2
<

(
13π

12 sin (π/p)
− 81 log4 e+ 16 log3 e

288

)
f̃2(A)(λ)

for all λ ∈ Ω. Since
[
f̃(A)(λ)

]2
≥ 0 and f̃(A)2(λ) ≥ 0, we have that

sup
λ∈Ω

[
f̃(A)(λ)

]2
<

(
2.904π

sin (π/p)
− 0.678

)
sup
λ∈Ω

f̃2(A)(λ)

for all λ ∈ Ω. This obviously implies that

ber(f(A))2 <

(
2.904π

sin (π/p)
− 0.678

)
ber(f2(A));

in particular, for f(x) = x, we have that

ber(A)2 <

(
2.904π

sin (π/p)
− 0.678

)
ber(A2).

□

Our more general result is the following theorem which gives a sharper estimate
than Corollary 1.

Theorem 2. Let p > 1 and
1

p
+

1

q
= 1. Let f be a continuous function defined on

an interval △⊂ (0,+∞) and f ≥ 0. Let A : H(Ω)→H(Ω) be a positive operator on
a RKHS H(Ω) with spectrum contained in △ . Then there exists a constant C1 > 1
such that

[ber(f(A))]p < C1ber(f
p(A));
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in particular, ber(A)p < C1ber(A
p), where C1 = 1.73

[
π

sin (π/p)

]p
.

Proof. Let a2, a3, a4 be positive numbers. Then using (2), we have that

1

2

( a2
2 ln 4

+
a3

3 ln 6
+

a4
4 ln 8

)p
+

1

3

( a2
2 ln 6

+
a3

3 ln 9
+

a4
4 ln 12

)p
(8)

+
1

4

( a2
2 ln 8

+
a3

3 ln 12
+

a4
4 ln 16

)p
<

(
π

sin (π/p)

)p(
ap2
2

+
ap3
3

+
ap4
4

)
.

Let x, y, z ∈△ . Since f(x) ≥ 0 for all x ∈△, by putting a2 = f(x), a3 = f(y) and
a4 = f(z) in (8), we have

1

2

(
f(x)

2 ln 4
+

f(y)

3 ln 6
+

f(z)

4 ln 8

)p

+
1

3

(
f(x)

2 ln 6
+

f(y)

3 ln 9
+

f(z)

4 ln 12

)p

(9)

+
1

4

(
f(x)

2 ln 8
+

f(y)

3 ln 12
+

f(z)

4 ln 16

)p

<

(
π

sin (π/p)

)p(
fp(x)

2
+

fp(y)

3
+

fp(z)

4

)
.

So, by using the same functional calculus arguments as in the proof of Theorem 1,
finally we get from (9) that

1

2


〈
f(A)k̂λ, k̂λ

〉
2 ln 4

+

〈
f(B)k̂µ, k̂µ

〉
3 ln 6

+

〈
f(C)k̂ξ, k̂ξ

〉
4 ln 8

p

+
1

3


〈
f(A)k̂λ, k̂λ

〉
2 ln 6

+

〈
f(B)k̂µ, k̂µ

〉
3 ln 9

+

〈
f(C)k̂ξ, k̂ξ

〉
4 ln 12

p

+
1

4


〈
f(A)k̂λ, k̂λ

〉
2 ln 8

+

〈
f(B)k̂µ, k̂µ

〉
3 ln 12

+

〈
f(C)k̂ξ, k̂ξ

〉
4 ln 16

p

<

(
π

sin (π/p)

)p

〈
fp(A)k̂λ, k̂λ

〉
2

+

〈
fp(B)k̂µ, k̂µ

〉
3

+

〈
fp(C)k̂ξ, k̂ξ

〉
4

 .

and hence

1

2

(
f̃(A) (λ)

2 ln 4
+

f̃(B) (µ)

3 ln 6
+

f̃(C) (ξ)

4 ln 8

)p

+
1

3

(
f̃(A) (λ)

2 ln 6
+

f̃(B) (µ)

3 ln 9
+

f̃(C) (ξ)

4 ln 12

)p
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+
1

4

(
f̃(A) (λ)

2 ln 8
+

f̃(B) (µ)

3 ln 12
+

f̃(C) (ξ)

4 ln 16

)p

<

(
π

sin (π/p)

)p
(
f̃p(A) (λ)

2
+

f̃p(B) (µ)

3
+

f̃p(C) (ξ)

4

)
.

for all positive operators A,B,C which spectrum contained in △ and all λ, µ, ξ ∈ Ω.
Now by replacing C = B = A and ξ = µ = λ, we have from the latter equality that[
129 log2 e+ 32 log3 e+ 192 log6 e+ 96 log12 e

576

] [
f̃(A)(λ)

]p
<

13

12

[
π

sin (π/p)

]p [
f̃p(A)(λ)

]
,

for all λ ∈ Ω. Since f̃p(A)(λ) ≥ 0 for all λ ∈ Ω and for all p > 1, the last inequality
shows that

sup
λ∈Ω

[
f̃(A)(λ)

]p
< 1.73

[
π

sin (π/p)

]p
sup
λ∈Ω

[
f̃p(A)(λ)

]
for all λ ∈ Ω and p > 1. This implies that

[ber(f(A))]p < 1.73

[
π

sin (π/p)

]p
ber(fp(A)),

in particular,

[ber(A)]p < 1.73

[
π

sin (π/p)

]p
ber(Ap).

This proves the theorem. □
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[28] Yamancı, U., Tunç, R., Gürdal, M., Berezin number, Grüss-type inequalities
and their applications, Bull. Malays. Math. Sci. Soc., 43(3) (2020), 2287-2296.
https://doi.org/10.1007/s40840-019-00804-x

[29] Yang, B., A new half-discrete Mulholland-type inequality with parameters, Ann. Funct.

Anal., 3(1) (2012), 142-150. https://doi.org/10.15352/afa/1399900031



Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 71, Number 1, Pages 212–225 (2022)
DOI:10.31801/cfsuasmas.845845
ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr

Research Article; Received: December 23, 2020; Accepted: August 18, 2021

GENERALIZED OSCULATING CURVES OF TYPE (n-3) IN THE

n-DIMENSIONAL EUCLIDEAN SPACE

Özcan BEKTAŞ and Zafer BEKIRYAZICI

Department of Mathematics, Faculty of Arts and Sciences,

Recep Tayyip Erdogan University, Rize, TURKEY

Abstract. In this paper, we give a generalization of the osculating curves to
the n-dimensional Euclidean space. Based on the definition of an osculating

curve in the 3 and 4 dimensional Euclidean spaces, a new type of osculating

curve has been defined such that the curve is independent of the (n − 3)th
binormal vector in the n-dimensional Euclidean space, which has been called ”a

generalized osculating curve of type (n−3)”. We find the relationship between
the curvatures for any unit speed curve to be congruent to this osculating curve

in En. In particular, we characterize the osculating curves in En in terms of

their curvature functions. Finally, we show that the ratio of the (n− 1)th and
(n − 2)th curvatures of the osculating curve is the solution of an (n − 2)th

order linear nonhomogeneous differential equation.

1. Introduction

Curve theory is a popular research interest in classical differential geometry and
osculating curves are a known example in this field. There are many studies on
osculating curves in the Euclidean 3-space E3. The significant property of these
curves is that the position vector of osculating curves always lie in their osculating
planes. The osculating curve α : I → E3 is defined by

α (s) = λ (s)T (s) + µ (s)N (s) ,

for some differentiable functions λ and µ of s ∈ I ⊂ R, where T (s) is the tangent
vector field and N (s) is the normal vector field. Similar curves are present in
curve theory such as normal curves, where the position vector always lies in the
normal plane, and the rectifying curves, where the position vector always lies in the
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rectifying plane [1]. B. Y. Chen has studied rectifying curves in his paper ”When
does the position vector of a space curve always lie in its rectifying plane?”. Since
this study, normal, rectifying and osculating curves have been studied from different
perspectives. Some of the studies in the literature have been listed below.

Chen and Dillen have studied rectifying curves in [2], where they established a
relationship between rectifying curves and centrodes in mechanics. They also show
that rectifying curves satisfy the equality case of a general inequality in their study.
The characterization of the rectifying curve in Euclidean 4−space and Minkowski
3−space are given in [3], [4] and [5]. Cambie et al. investigated rectifying curves
in an arbitrary dimensional Euclidean space using conditions on their curvature
[6]. Additionally, there are some papers on spacelike, timelike and null normal
curves in Minkowski space [7], [8]. Characterizations of an osculating curve in the
3-dimensional Euclidean space has been given in [9] and a specific osculating curve
has been defined in the Euclidean 4-space. Normal, osculating and rectifying curves
have been defined in the Euclidean and semi Euclidean space by using quaternion
algebra in [10], [11], [16] and [25]. Bi-null curves of these types have also been
analyzed in R6

3 and R5
2 in [12, 13]. Several studies in the literature on the topic of

interest of this study can be found in [14-18, 26, 27].
In this paper, using similar methods to those used in [6] and the definition of an

osculating curve as stated in [9], we investigate the properties of a generalized form
of osculating curves in the n−dimensional Euclidean space which are independent
of the (n − 3)th binormal vector. We call this osculating curve ”a generalized
osculating curve of type (n− 3)”. Firstly, basic concepts of curve theory in En are
given as preliminaries. Then, the characterization of the osculating curves is given
in En. The necessary and sufficient condition for a curve to be an osculating curve
in the n-dimensional Euclidean space is also obtained. Additionally, using this
necessary and sufficient condition, we show that if a curve is an osculating curve
in the n-dimensional Euclidean space, its curvatures define a differential equation.
Finally, we state the existence and uniqueness of the solution of this differential
equation and propose a general form for the general solution of the equation.

2. Preliminaries

Basic concepts of curve theory in the n-dimensional Euclidean space En are given
in this section. Let α : I ⊂ R → En, s ∈ I → α (s) be an arclength parameterized,
n times continuously differentiable curve. The curve α is called a unit speed curve
if ⟨α, α⟩ = 1, where ⟨ , ⟩ is the function that shows the standart inner product in
the n-dimensional Euclidean space En given by

⟨X,Y ⟩ =
n∑

i=1

xiyi

for each X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) ∈ En. The norm of X is given

by ∥X∥ =
√

⟨X,X⟩. On the other hand, if ∥X∥ = 1, then X is an unit vector.
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Also, if the curve α in En is an arclength parameterized curve, then
∥∥dα

ds

∥∥ = 1.
The Serret Frenet formulas for En are given as the following equations (see [19]):

T
′
(s) = κ1 (s)N (s)

N
′
(s) = −κ1 (s)T (s) + κ2 (s)B1 (s)

B
′

1 (s) = −κ2 (s)N (s) + κ3 (s)B2 (s)

B
′

i (s) = −κi+1 (s)Bi−1 (s) + κi+2 (s)Bi+1 (s) , 2 ≤ i ≤ n− 3

B
′

n−2 (s) = −κn−1 (s)Bn−3 (s) ,

(1)

where κ1, κ2, κ3,. . . ,κn−1 are the curvature functions of the curve and are positive.
For more information on curve theory, the reader is advised to see the liteature
[20-22].

3. Osculating curves of type (n-3) in the n−dimensional Euclidean space

In this section, generalizations of several fundamental definitions, theorems, and
results to generalized osculating curves of type (n-3) in the n-dimensional Euclidean
space are given. All of the mentions to osculating curves in our study refer to the
generalized osculating curves of type (n-3) from this point.

Definition 1. Let α : I ⊂ R → En, s ∈ I → α (s) be an arclength parameterized,
n times continuously differentiable curve. In En, a curve for which the position
vector always lies in the orthogonal complement B⊥

n−3 (s) of its (n− 3) th binormal

vector field Bn−3 (s) is called the osculating curve. B⊥
n−3 (s) is defined as

B⊥
n−3 (s) = {W ∈ En |⟨W,Bn−3 (s)⟩ = 0}

where ⟨ , ⟩ denotes the standard scalar product in En. Thus B⊥
n−3 (s) is a (n− 1)-

dimensional subspace of En, spanned by the tangent, the principal normal, the first
binormal, second binormal,...,(n− 4) th binormal and, (n− 2) th binormal vector
fields T ,N ,B1 (s),...,Bn−4 (s),Bn−2 (s) respectively. Therefore, the position vector
of an osculating curve with respect to a specific origin is given as

α (s) = µ1 (s)T (s) + µ2 (s)N (s) +

n−4∑
i=1

µi+2 (s)Bi (s) + µn−1 (s)Bn−2 (s) (2)

for some differentiable functions µi (1 ≤ i ≤ n− 3) of s ∈ I ⊂ R.

Theorem 1. Let α (s) be a unit speed curve in En with nonzero curvatures. Then
α (s) is congruent to a osculating curve in En if and only if

n−3∑
z=0

(
Γi,z (s)

dz

dsz

(
κn−1 (s)

κn−2 (s)

))′

− κ1 (s)

n−4∑
z=0

Γi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
=

1

c
,

c ∈ R− {0}, where 1 ≤ i ≤ n− 1.
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Proof. Let α be an arclength parameterized osculating curve in the n-dimensional
Euclidean space. The derivative of (2) with respect to s for both sides of the
equation is

α
′
(s) = µ

′

1 (s)T (s) + µ1 (s)T
′
(s) + µ

′

2 (s)N (s) + µ2 (s)N
′
(s)

+

n−4∑
i=2

(
µ

′

i+2 (s)Bi (s) + µi+2 (s)B
′

i (s)
)

+µ
′

n−1 (s)Bn−2 (s) + µn−1 (s)Bn−2 (s) .

Implementing the Serret Frenet formulas for the n-dimensional Euclidean space and
rearranging the terms of the right hand side, we get

T (s) =
(
µ

′

1 (s)− µ2 (s)κ1 (s)
)
T (s)

+
(
µ1 (s)κ1 (s) + µ

′

2 (s)− µ3 (s)κ2 (s)
)
N (s)

+
(
µ2 (s)κ2 (s) + µ

′

3 (s)− µ4 (s)κ3 (s)
)
B1 (s)

+

n−5∑
i=2

(
µi+1 (s)κi+1 (s) + µ

′

i+2 (s)− µi+3 (s)κi+2 (s)
)
Bi (s)

+
(
µn−3 (s)κn−3 (s) + µ

′

n−2 (s)
)
Bn−4 (s)

+
(
µn−2 (s)κn−2 (s)− µn−1 (s)κn−1 (s)

)
Bn−3 (s)

+µ
′

n−1 (s)Bn−2 (s)

Using the equality of both sides, we get the following expressions for the coefficients
of T (s), N(s), Bi(s) for i = 2, 3, . . . , n− 2:

µ
′

1 (s)− µ2 (s)κ1 (s) = 1 (3)

µ1 (s)κ1 (s) + µ
′

2 (s)− µ3 (s)κ2 (s) = 0 (4)

µ2 (s)κ2 (s) + µ
′

3 (s)− µ4 (s)κ3 (s) = 0 (5)

µi+1 (s)κi+1 (s) + µ
′

i+2 (s)− µi+3 (s)κi+2 (s) = 0, 2 ≤ i ≤ n− 3 (6)

µn−3 (s)κn−3 (s) + µ
′

n−2 (s) = 0 (7)

µn−2 (s)κn−2 (s)− µn−1 (s)κn−1 (s) = 0 (8)

µ
′

n−1 (s) = 0. (9)

Starting from (9), we integrate these expressions with respect to s to obtain the
coefficient functions

µn−1 (s) = c, c ∈ R. (10)
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Similarly, the integrations of (7) and (8) yield

µn−2 (s) = −κn−1 (s)

κn−2 (s)
(11)

and

µn−3 (s) = − c

κn−3 (s)

(
κn−1 (s)

κn−2 (s)

)′

. (12)

On the other hand, for i = n− 4, and n− 5, we get the following equations:

µn−4 (s) = −c
κn−3 (s)

κn−4 (s)

(
κn−1 (s)

κn−2 (s)

)
(13)

+
c

κn−4 (s)

(
1

κn−3 (s)

)′ (
κn−1 (s)

κn−2 (s)

)′

+
c

κn−4 (s)

(
1

κn−3 (s)

)(
κn−1 (s)

κn−2 (s)

)′′

and

µn−5 (s) = − c

κn−5 (s)

(
κn−3 (s)

κn−4 (s)

)′ (
κn−1 (s)

κn−2 (s)

)
(14)

−
[

c

κn−5 (s)

((
κn−3 (s)

κn−4 (s)

)
− κn−4 (s)

κn−3 (s)

)](
κn−1 (s)

κn−2 (s)

)′

+
c

κn−5 (s)

(
1

κn−4 (s)

(
1

κn−3 (s)

)′)′ (
κn−1 (s)

κn−2 (s)

)′

+
2c

κn−5 (s)

1

κn−4 (s)

1

κn−3 (s)

(
κn−1 (s)

κn−2 (s)

)′′

− c

κn−5 (s)

1

κn−4 (s)

1

κn−3 (s)

(
κn−1 (s)

κn−2 (s)

)′′′

.

The other curvature functions have expressions of a complicated structure. Hence,
we define the following functions to express these curvatures: The function Γn−4,0 (s)
is defined as

Γn−4,0 (s) = −κn−3 (s)

κn−4 (s)
, Γn−4,1 (s) =

1

κn−4 (s)

(
1

κn−3 (s)

)′

,

Γn−4,2 (s) =
1

κn−4 (s)

(
1

κn−3 (s)

)
,
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then we get

µn−4 (s) = cΓn−4,0 (s)

(
κn−1 (s)

κn−2 (s)

)
+ cΓn−4,1 (s)

(
κn−1 (s)

κn−2 (s)

)′

+cΓn−4,2 (s)

(
κn−1 (s)

κn−2 (s)

)′′

.

Similarly, Γn−5,0 (s), Γn−5,1 (s), Γn−5,2 (s), and Γn−5,3 (s) are defined as

Γn−5,0 (s) = − 1

κn−5 (s)

(
κn−3 (s)

κn−4 (s)

)′

,

Γn−5,1 (s) =

[
1

κn−5 (s)

((
κn−3 (s)

κn−4 (s)

)
− κn−4 (s)

κn−3 (s)

)]

+
1

κn−5 (s)

(
1

κn−4 (s)

(
1

κn−3 (s)

)′)′

,

Γn−5,2 (s) =
2

κn−5 (s)

1

κn−4 (s)

1

κn−3 (s)
,

Γn−5,3 (s) = − 1

κn−5 (s)

1

κn−4 (s)

1

κn−3 (s)
,

then we get

µn−5 (s) = cΓn−5,0 (s)

(
κn−1 (s)

κn−2 (s)

)
+ cΓn−5,1 (s)

(
κn−1 (s)

κn−2 (s)

)′

+cΓn−5,2 (s)

(
κn−1 (s)

κn−2 (s)

)′′

+ cΓn−5,3 (s)

(
κn−1 (s)

κn−2 (s)

)′′′

.

Altogether, the following expression can be defined for the functions defined above:

µi (s) =

n−i−2∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
, 1 ≤ i ≤ n− 1. (15)

Thus we get the following coefficient functions for i = 1, and i = 2

µ1 (s) =

n−3∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
, (16)

and

µ2 (s) =

n−4∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
. (17)
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Substituting (16) and (17) into (3), we obtain the relations below

n−3∑
z=0

(
Γi,z (s)

dz

dsz

(
κn−1 (s)

κn−2 (s)

))′

− κ1 (s)

n−4∑
l=0

Γi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
=

1

c
, (18)

for c ∈ R− 0.
Conversely, consider an arbitrary unit speed curve in En for which the curvature

functions satisfy the relation (18). Then, we consider the the vector X ∈ En

defined by

X (s) = α (s) +

n−3∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
T (s)

+

n−4∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
N (s)

+...+

n−i−4∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
Bi (s)

+...−

(
c

κn−3 (s)

(
κn−1 (s)

κn−2 (s)

)′)
Bn−5 (s)

−
(
κn−1 (s)

κn−2 (s)

)
Bn−4 (s)

+cBn−2 (s)

It can be seen that X
′
(s) = 0 through the relations (1) and (18). Thus, X is a

constant vector. This implies that α is congruent to an osculating curve. Hence,
the proof is complete. □

Theorem 2. Let α (s) be a unit speed osculating curve in En with nonzero curva-
tures. Then the following hold:

i) The tangential, the principal normal, the first, the second, ..., the i-th,..., the
(n− 5)th, and (n− 4)th binormal components of the position vector of the curve
are respectively given by

⟨α (s) , T (s)⟩ =
n−3∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
, (19)

⟨α (s) , N (s)⟩ =
n−4∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
. (20)

⟨α (s) , B1 (s)⟩ =
n−5∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
, (21)
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⟨α (s) , B2 (s)⟩ =
n−6∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
, (22)

...

⟨α (s) , Bi (s)⟩ =
n−i−4∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
(23)

...

⟨α (s) , Bn−5 (s)⟩ = − c

κn−3 (s)

(
κn−1 (s)

κn−2 (s)

)′

, (24)

⟨α (s) , Bn−4 (s)⟩ = −κn−1 (s)

κn−2 (s)
. (25)

ii) The (n− 2)th binormal component of the position vector of the curve is a non-
zero constant.

Conversely, if α (s) is a unit speed curve in En with non-zero curvatures and one
of the statements (i), (ii) holds, then α (s) is an osculating curve or is congruent
to an osculating curve in En.

Proof. By using the relations (2) and (3)-(9), the position vector of the curve can
be written as follows:

α (s) =

n−3∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
T (s) (26)

+

n−4∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
N (s)

+...+

n−i−4∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
Bi (s)

+...−

(
c

κn−3 (s)

(
κn−1 (s)

κn−2 (s)

)′)
Bn−5 (s)

−
(
κn−1 (s)

κn−2 (s)

)
Bn−4 (s) + cBn−2 (s)

From (19), we get (19)- (25). Thus, (i) and (ii) have been proved.
Conversely, assume that statements (i) and (ii) hold. By taking the derivative

of ⟨α (s) , Bn−4 (s)⟩ = −κn−1(s)
κn−2(s)

with respect to s and using (1) we get,

−κn−3 (s) ⟨α (s) , Bn−5 (s)⟩+ κn−2 (s) ⟨α (s) , Bn−3 (s)⟩ = −κn−1 (s)

κn−2 (s)
.
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By using ⟨α (s) , Bn−5 (s)⟩ = − c
κn−3(s)

(
κn−1(s)
κn−2(s)

)′

and κn−2 (s) ̸= 0, we get

⟨α (s) , Bn−3 (s)⟩ = 0, which means that this is an osculating curve.
If statement (ii) holds, then we have ⟨α (s) , Bn−2 (s)⟩ = c, c ∈ R − {0}. Differ-

entiating the previous equation with respect to s and using (1), we find
−κn−1 (s) ⟨α (s) , Bn−3 (s)⟩ = 0. It follows that ⟨α (s) , Bn−3 (s)⟩ = 0 and hence the
curve α is an osculating curve. □

Theorem 3. Let α (s) be a unit speed osculating curve in En with nonzero curva-
tures. The differential equation

n−3∑
z=0

(
Γi,z (s)

dz

dsz

(
κn−1 (s)

κn−2 (s)

))′

− κ1 (s)

n−4∑
z=0

Γi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
=

1

c
, ,

where c ∈ R− {0} ., n > 4, i = 1, 2, . . . , n− 1 with the initial conditions

κn−1(s0)

κn−2(s0)
= k0,

[
κn−1(s0)

κn−2(s0)

]′

= k1, . . . ,

[
κn−1(s0)

κn−2(s0)

](n−3)

= k(n−3)

for s0 ∈ I ⊂ R has a unique solution on an open interval I ⊂ R if the functions

[Γ
′

i,0(s)− κ1Γi,0(s)], [Γi,0(s) + Γ
′

i,1(s)− κ1Γi,1(s)], . . . ,

[Γi,m−1(s) + Γ
′

i,m(s)− κ1Γi,m(s)], . . . , [Γi,n−4(s) + Γ
′

i,n−3(s)], [Γi,n−3(s)],
1

c

are continuous on I and [Γ
′

i,0(s)−κ1Γi,0(s)] ̸= 0, . . . , [Γi,n−3(s)] ̸= 0 for every s ∈ I.
This equation has a general solution of the form(

κn−1(s)

κn−2(s)

)
= c1

(
κn−1

κn−2

)
1

(s) + . . .+ cn−2

(
κn−1

κn−2

)
n−2

(s) +

(
κn−1

κn−2

)
p

where
(

κn−1

κn−2

)
1
(s),

(
κn−1

κn−2

)
2
(s), . . . ,

(
κn−1

κn−2

)
n−2

(s) form the fundamental set of so-

lutions for the homogeneous equation(
κn−1(s)

κn−2(s)

)(n−2)

+

(
Γi,n−4(s) + Γ

′

i,n−3(s)

Γi,n−3(s)

)(
κn−1(s)

κn−2(s)

)(n−3)

+ . . .

+

(
Γi,m−1(s) + Γ

′

i,m(s)− κ1(s)Γi,m(s)

Γi,n−3(s)

)(
κn−1(s)

κn−2(s)

)(m)

+ . . .

+

(
Γi,0(s)− κ1(s)Γi,0(s)

Γi,n−3(s)

)(
κn−1(s)

κn−2(s)

)
= 0.

satisfying the condition

W

((
κn−1

κn−2

)
1

,

(
κn−1

κn−2

)
2

, . . . ,

(
κn−1

κn−2

)
n−2

)
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=

∣∣∣∣∣∣∣∣∣∣∣∣

(
κn−1

κn−2

)
1

(
κn−1

κn−2

)
2

. . .
(

κn−1

κn−2

)
n−2(

κn−1

κn−2

)′

1

(
κn−1

κn−2

)′

2
. . .

(
κn−1

κn−2

)′

n−2

. . . . . . . . .(
κn−1

κn−2

)(n−3)

1

(
κn−1

κn−2

)(n−3)

2
. . .

(
κn−1

κn−2

)(n−3)

n−2

∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0,

(
κn−1

κn−2

)
p
is a particular solution of the initial value problem and c1, c2, . . . , cn−2 are

arbitrary constants.

Proof. If the summation operators are expanded in the differential equation, we get(
Γi,0(s)

κn−1(s)

κn−2(s)

)′

+

(
Γi,1(s)

(
κn−1(s)

κn−2(s)

)′)′

+

(
Γi,2(s)

(
κn−1(s)

κn−2(s)

)′′)′

+

(
Γi,3(s)

(
κn−1(s)

κn−2(s)

)′′′)′

+ . . .+

(
Γi,n−5(s)

(
κn−1(s)

κn−2(s)

)(n−5)
)′

+

(
Γi,n−4(s)

(
κn−1(s)

κn−2(s)

)(n−4)
)′

+

(
Γi,n−3(s)

(
κn−1(s)

κn−2(s)

)(n−3)
)′

−κ1

[
Γi,0(s)

(
κn−1(s)

κn−2(s)

)
+ . . .+ Γi,n−4(s)

(
κn−1(s)

κn−2(s)

)(n−4)
]
=

1

c
.

Applying the derivations in the first summation and collecting the derivatives of
same order yields

[Γ
′

i,0(s)− κ1Γi,0(s)]

(
κn−1(s)

κn−2(s)

)
+ [Γi,0(s) + Γ

′

i,1(s)− κ1Γi,1(s)]

(
κn−1(s)

κn−2(s)

)′

+[Γi,1(s) + Γ
′

i,2(s)− κ1Γi,2(s)]

(
κn−1(s)

κn−2(s)

)′′

+ . . .

+[Γi,n−5(s) + Γ
′

i,n−4(s)− κ1Γi,n−4(s)]

(
κn−1(s)

κn−2(s)

)(n−4)

+[Γi,n−4(s) + Γ
′

i,n−3(s)]

(
κn−1(s)

κn−2(s)

)(n−3)

+ Γi,n−3(s)

(
κn−1(s)

κn−2(s)

)(n−2)

=
1

c
.

This equation is a nonhomogeneous linear differential equation of the order n −

2. Considered along with the initial conditions, κn−1(s0)
κn−2(s0)

= k0,
[
κn−1(s0)
κn−2(s0)

]′
=

k1, . . . ,
[
κn−1(s0)
κn−2(s0)

](n−3)

= kn−3, it defines an initial value problem. The conti-

nuity of the coefficients of the higher order linear differential equation [Γ
′

i,0(s) −
κ1Γi,0(s)], [Γi,0(s) + Γ

′

i,1(s) − κ1Γi,1(s)], . . . , [Γi,m−1(s) + Γ
′

i,m(s) − κ1Γi,m(s)], . . .,
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[Γi,n−4(s) + Γ
′

i,n−3(s)], [Γi,n−3(s)] and the function 1
c guarentees the existence and

uniqueness of the solution for the initial value problem on I ⊂ R since [Γ
′

i,0(s) −
κ1Γi,0(s)] ̸= 0, . . . , [Γi,n−3(s)] ̸= 0 for every s ∈ I [23]. Division of the equation by
the coefficient of the highest order derivative gives(

κn−1(s)

κn−2(s)

)(n−2)

+

[
Γi,n−4(s) + Γ

′

i,n−3(s)

Γi,n−3(s)

](
κn−1(s)

κn−2(s)

)(n−3)

+

[
Γi,n−5(s) + Γ

′

i,n−4(s)− κ1Γi,n−4(s)

Γi,n−3(s)

](
κn−1(s)

κn−2(s)

)(n−4)

+

[
Γi,0(s) + Γ

′

i,1(s)− κ1Γi,1(s)

Γi,n−3(s)

](
κn−1(s)

κn−2(s)

)′

+

[
Γ

′

i,0(s)− κ1Γi,0(s)

Γi,n−3(s)

](
κn−1(s)

κn−2(s)

)
=

1

cΓi,n−3(s)
,

such that Γi,n−3 ̸= 0. The continuity of the new coefficients comes from the con-
tinuity assumption of the theorem and the fact that [Γi,n−3(s)] ̸= 0. Hence, The
homogeneous version of this linear differential equation has a fundamental set of

solutions on I ⊂ R containing solutions of the form
(

κn−1

κn−2

)
k
for k = 1, 2, ... [23].

The fundamental set of solutions is linearly independent if and only if

W

((
κn−1

κn−2

)
1

,

(
κn−1

κn−2

)
2

, . . . ,

(
κn−1

κn−2

)
n−2

)

=

∣∣∣∣∣∣∣∣∣∣∣∣

(
κn−1

κn−2

)
1

(
κn−1

κn−2

)
2

. . .
(

κn−1

κn−2

)
n−2(

κn−1

κn−2

)′

1

(
κn−1

κn−2

)′

2
. . .

(
κn−1

κn−2

)′

n−2

. . . . . . . . .(
κn−1

κn−2

)(n−3)

1

(
κn−1

κn−2

)(n−3)

2
. . .

(
κn−1

κn−2

)(n−3)

n−2

∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0

for every s ∈ I and the superposition principle suggests that the homogeneous
linear differential equation has a general solution of the form(

κn−1(s)

κn−2(s)

)
= c1

(
κn−1

κn−2

)
1

(s) + c2

(
κn−1

κn−2

)
2

(s) + . . .+ cn−2

(
κn−1

κn−2

)
n−2

(s).

for arbitrary constants ci, i = 1, 2, ...., n − 2 [23]. Using the initial conditions, the
particular solution can be found as(

κn−1(s)

κn−2(s)

)
= c1

(
κn−1

κn−2

)
1

(s) + . . .+ cn−2

(
κn−1

κn−2

)
n−2

(s) +

(
κn−1

κn−2

)
p

.

□
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There are several methods in the literature for analyzing the solutions of higher
order linear differential equations. For instance, the variation of parameters method
proposes a particular solution for the nonhomogeneous differential equation in the
form of (

κn−1(s)

κn−2(s)

)
=

n−2∑
m=1

(
κn−1

κn−2

)
m

(s)

∫
(cΓi,n−3(t))

−1Wm(t)

W (t)
dt

where
(

κn−1

κn−2

)
m
(s) form the fundamental set of solutions and Wm(t) are obtained

by replacing the m-th column of the Wronskian by (0, 0, . . . , (cΓi,n−3(t))
−1) [24].

4. Conclusion

In this paper, we have investigated some concepts of osculating curves, defined
on 3- and 4-dimensional Euclidean spaces, on the n-dimensional Euclidean space.
This generalization of osculating curves to En has been called ”generalized oscu-
lating curve of type (n − 3). A total of n − 2 generalizations of osculating curves
to En can be found by using the other binormal vectors. However, we have used
the (n− 3)th binormal vector for the generalization since the relations between the
curvatures provide meaningful results. Since the differential equation that gives the
relation between curvature functions of the osculating curve in the n-dimensional
Euclidean space is a higher order differential equation, we have invesitaged the ex-
istence and uniquness of a general solution for the initial value problem of order
n − 2. The differential equation of order n-2 is a linear differential equation with
variable coefficients. Several methods in the literature can be used for analyzing
the particular solution of the higher order differential equation.
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Abstract. Our aim in this paper is to introduce some idea about general-

ized relative Nevanlinna order (α, β) and generalized relative Nevanlinna type
(α, β) of an analytic function with respect to another analytic function in the

unit disc where α and β are continuous non-negative functions on (−∞,+∞).

So we discuss about some growth properties relating to the composition of two
analytic functions in the unit disc on the basis of generalized relative Nevan-

linna order (α, β) and generalized relative Nevanlinna type (α, β) as compared

to the growth of their corresponding left and right factors.

1. Introduction

A function g which is analytic in the unit disc U = {z : |z| < 1} is said to
have finite Nevanlinna order [1] if there exists a number µ for which the Nevanlinna

characteristic function Tg (r) of g satisfies Tg (r) < (1− r)
−µ

for all r in 0 < r0 (µ) <
r < 1 where Tg (r) is defined as

T (r, g) =
1

2π

2π∫
0

log+
∣∣g (reiθ)∣∣ dθ

where log+ r = max(0, log r).
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The infimum of all such numbers µ is called the Nevanlinna order of g. Hence
the Nevanlinna order ρ(g) of g is formulated as

ρ(g) = lim sup
r→1

log Tg (r)

− log (1− r)
.

Similarly, the Nevanlinna lower order λ(g) of g is formulated as

λ(g) = lim inf
r→1

log Tg (r)

− log (1− r)
.

Now let L be a class of continuous non-negative functions α defined on (−∞,∞)
such that α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ ∞ as x → ∞. Also through-
out the present paper we take α, β ∈ L. Considering the above, Sheremeta [5]
introduced the concept of generalized order (α, β) of an entire function. During the
past decades, several authors made close investigations on the properties of entire
functions related to generalized order (α, β) in some different directions. For the
purpose of further applications, Biswas et al. [2] have introduced the definitions
of the generalized Nevanlinna order (α, β) and generalized Nevanlinna lower order
(α, β) of an analytic function g in the unit disc U which are as follows:

Definition 1. [2] The generalized Nevanlinna order (α, β) denoted by ρ(α,β)[g]

and generalized Nevanlinna lower order (α, β) denoted by λ(α,β)[g] of an analytic
function g in the unit disc U are defined as:

ρ(α,β)[g] = lim sup
r→1

α(exp(Tg(r)))

β
(

1
1−r

) and λ(α,β)[g] = lim inf
r→1

α(exp(Tg(r)))

β
(

1
1−r

) .

Clearly ρ(log log r,log r)[g] = ρ (g) and λ(log log r,log r)[g] = λ (g) .
Now we can introduce the definitions of the generalized relative Nevanlinna order

(α, β) and generalized relative Nevanlinna lower order (α, β) of an analytic function
g with respect to another entire function w in the unit disc U which are as follows:

Definition 2. The generalized relative Nevanlinna order (α, β) denoted by ρ(α,β)[g]w
and generalized relative Nevanlinna lower order (α, β) denoted by λ(α,β)[g]w of an
analytic function g with respect to another entire function w in the unit disc U are
defined as:

ρ(α,β)[g]w = lim sup
r→1

α
(
T−1
w (Tg(r))

)
β
(

1
1−r

) and λ(α,β)[g]w = lim inf
r→1

α
(
T−1
w (Tg(r))

)
β
(

1
1−r

) .

The previous definitions are easily generated as particular cases, e.g. if w = z,
then Definition 2 reduces to Definition 1, and if α(r) = β(r) = log r and w(z) =
exp z, then ρ(α,β)[g]w = ρ(g) and λ(α,β)[g]w = λ(g).

Now one may give the definitions of generalized relative Nevanlinna hyper order
(α, β) and generalized relative Nevanlinna logarithmic order (α, β) of an analytic
function g with respect to another entire function w in the unit disc U in the
following way:
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Definition 3. The generalized relative Nevanlinna hyper order (α, β) denoted by
ρ(α,β)[g]w and generalized relative Nevanlinna hyper lower order (α, β) denoted by

λ(α,β)[g]w of an analytic function g with respect to entire function w in the unit
disc U are defined as:

ρ(α,β)[g]w = lim sup
r→1

α(log
(
T−1
w (Tg(r))

)
)

β
(

1
1−r

) and λ(α,β)[g]w = lim inf
r→1

α(log
(
T−1
w (Tg(r))

)
)

β
(

1
1−r

) .

Definition 4. The generalized relative Nevanlinna logarithmic order (α, β) denoted
by ρ

(α,β)
[g]w and generalized relative Nevanlinna logarithmic lower order (α, β)

denoted by λ(α,β)[g]w of an analytic function g with respect to entire function w in
the unit disc U are defined as:

ρ
(α,β)

[g]w = lim sup
r→1

α
(
T−1
w (Tg(r))

)
β
(
log

(
1

1−r

)) and λ(α,β)[g]w = lim inf
r→1

α
(
T−1
w (Tg(r))

)
β
(
log

(
1

1−r

)) .

Now in order to refine the growth scale namely the generalized relative Nevan-
linna order (α, β), we introduce the definitions of another growth indicators, called
generalized relative Nevanlinna type (α, β) and generalized relative Nevanlinna
lower type (α, β) respectively of an analytic function g with respect to entire func-
tion w in the unit disc U which are as follows:

Definition 5. The generalized relative Nevanlinna type (α, β) and generalized rel-
ative Nevanlinna lower type (α, β) of an analytic function g with respect to entire
function w in the unit disc U having finite positive generalized relative Nevanlinna

order (α, β)
(
0 < ρ(α,β)[g]w < ∞

)
are defined as :

σ(α,β)[g]w = lim sup
r→1

exp(α(T−1
w (Tg (r))))(

exp
(
β
(

1
1−r

)))ρ(α,β)[g]w

and σ(α,β)[g]w = lim inf
r→1

exp(α(T−1
w (Tg (r))))(

exp
(
β
(

1
1−r

)))ρ(α,β)[g]w
.

It is obvious that 0 ≤ σ(α,β)[g]w ≤ σ(α,β)[g]w ≤ ∞.

Analogously, to determine the relative growth of two analytic functions in the
unit disc U having same non zero finite generalized relative Nevanlinna lower order
(α, β), one can introduced the definition of generalized relative Nevanlinna weak
type (α, β) and generalized relative Nevanlinna upper weak type (α, β) of an ana-
lytic function g with respect to entire function w in the unit disc U of finite positive
generalized relative Nevanlinna lower order (α, β) , λ(α,β)[g]w in the following way:

Definition 6. The generalized Nevanlinna upper weak type (α, β) and generalized
Nevanlinna weak type (α, β) of an analytic function g with respect to entire function
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w in the unit disc U having finite positive generalized relative Nevanlinna lower
order (α, β)

(
0 < λ(α,β)[g]w < ∞

)
are defined as :

τ (α,β)[g]w = lim sup
r→1

exp(α(T−1
w (Tg (r))))(

exp
(
β
(

1
1−r

)))λ(α,β)[g]w

and τ (α,β)[g]w = lim inf
r→1

exp(α(T−1
w (Tg (r))))(

exp
(
β
(

1
1−r

)))λ(α,β)[g]w
.

It is obvious that 0 ≤ τ (α,β)[g]w ≤ τ (α,β)[g]w ≤ ∞.
In this paper we study some growth properties relating to the composition of two

analytic functions in the unit disc on the basis of generalized relative Nevanlinna
order (α, β), generalized relative Nevanlinna hyper order (α, β), generalized relative
Nevanlinna logarithmic order (α, β), generalized relative Nevanlinna type (α, β)
and generalized relative Nevanlinna weak type (α, β) as compared to the growth
of their corresponding left and right factors. Also the standard definitions and
notations relating to the theory of entire functions are not explained here, as those
are available in [1], [3] and [4].

2. Main Results

In this section, the main results of the paper are presented.

Theorem 1. Let g be an analytic function and h,w and k be non-constant entire
functions in the unit disc U such that 0 < λ(α,β)[g(h)]w ≤ ρ(α,β)[g(h)]w < ∞ and

0 < λ(α,β)[g]k ≤ ρ(α,β)[g]k < ∞. Then

λ(α,β)[g(h)]w

ρ(α,β)[g]k
≤ lim inf

r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤ min

{
λ(α,β)[g(h)]w

λ(α,β)[g]k
,
ρ(α,β)[g(h)]w

ρ(α,β)[g]k

}

≤ max

{
λ(α,β)[g(h)]w

λ(α,β)[g]k
,
ρ(α,β)[g(h)]w

ρ(α,β)[g]k

}
≤ lim sup

r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤
ρ(α,β)[g(h)]w

λ(α,β)[g]k
.

Proof. From the definitions of λ(α,β)[g(h)]w, ρ(α,β)[g(h)]w, λ(α,β)[g]k, ρ(α,β)[g]k and

we have for arbitrary positive ε and for all sufficiently large values of 1
1−r that

α
(
T−1
w (Tg(h)(r))

)
⩾

(
λ(α,β)[g(h)]w − ε

)
β((1− r)−1), (1)

α
(
T−1
w (Tg(h)(r))

)
≤

(
ρ(α,β)[g(h)]w + ε

)
β((1− r)−1), (2)

α
(
T−1
k (Tg(r))

)
⩾

(
λ(α,β)[g]k − ε

)
β((1− r)−1) (3)

and α
(
T−1
k (Tg(r))

)
≤

(
ρ(α,β)[g]k + ε

)
β((1− r)−1). (4)

Again for a sequence of values of 1
1−r tending to infinity,

α
(
T−1
w (Tg(h)(r))

)
≤

(
λ(α,β)[g(h)]w + ε

)
β((1− r)−1), (5)
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α
(
T−1
w (Tg(h)(r))

)
⩾

(
ρ(α,β)[g(h)]w − ε

)
β((1− r)−1), (6)

α
(
T−1
k (Tg(r))

)
≤

(
λ(α,β)[g]k + ε

)
β((1− r)−1) (7)

and α
(
T−1
k (Tg(r))

)
⩾

(
ρ(α,β)[g]k − ε

)
β((1− r)−1). (8)

Now from (1) and (4) it follows for all sufficiently large values of 1
1−r that

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ⩾
λ(α,β)[g(h)]w − ε

ρ(α,β)[g]k + ε
.

As ε (> 0) is arbitrary, we obtain that

lim inf
r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ⩾
λ(α,β)[g(h)]w

ρ(α,β)[g]k
, (9)

which is the first part of the theorem.
Combining (5) and (3) , we have for a sequence of values of 1

1−r tending to infinity
that

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤
λ(α,β)[g(h)]w + ε

λ(α,β)[g]k − ε
.

Since ε (> 0) is arbitrary it follows that

lim inf
r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤
λ(α,β)[g(h)]w

λ(α,β)[g]k
. (10)

Again from (1) and (7), for a sequence of values of 1
1−r tending to infinity, we

get

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≥
λ(α,β)[g(h)]w − ε

λ(α,β)[g]k + ε
.

As ε (> 0) is arbitrary, we get from above that

lim sup
r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≥
λ(α,β)[g(h)]w

λ(α,β)[g]k
. (11)

Now, it follows from (3) and (2) , for all sufficiently large values of 1
1−r that

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤
ρ(α,β)[g(h)]w + ε

λ(α,β)[g]k − ε
.

Since ε (> 0) is arbitrary, we obtain that

lim sup
r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤
ρ(α,β)[g(h)]w

λ(α,β)[g]k
. (12)

Which is the last part of the theorem.
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Now from (2) and (8) , it follows for a sequence of values of 1
1−r tending to

infinity that

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤
ρ(α,β)[g(h)]w + ε

ρ(α,β)[g]k − ε
.

As ε (> 0) is arbitrary, we obtain that

lim inf
r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤
ρ(α,β)[g(h)]w

ρ(α,β)[g]k
. (13)

So combining (4) and (6) , we get for a sequence of values of 1
1−r tending to

infinity that

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ⩾
ρ(α,β)[g(h)]w − ε

ρ(α,β)[g]k + ε
.

Since ε (> 0) is arbitrary, it follows that

lim sup
r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ⩾
ρ(α,β)[g(h)]w

ρ(α,β)[g]k
. (14)

So, the second part of the theorem follows from (10) and (13) ,the third part is
trivial and fourth part follows from (11) and (14) .

Thus the theorem follows from (9) , (10) , (11), (12) , (13) and (14) . □

Remark 1. If we take “0 < λ(α,β)[h]k ≤ ρ(α,β)[h]k < ∞” instead of “0 <

λ(α,β)[g]k ≤ ρ(α,β)[g]k < ∞” and other conditions remain same, the conclusion

of Theorem 1 remains true with “λ(α,β)[g]k”, “ρ(α,β)[g]k” and “α
(
T−1
k (Tg(r))

)
”

replaced by “λ(α,β)[h]k”, “ρ(α,β)[h]k” and “α
(
T−1
k (Th(r))

)
” respectively in the de-

nominator.

Theorem 2. Let g be an analytic function and h,w and k be non-constant en-
tire functions in the unit disc U such that 0 < λ(α,β)[g]k ≤ ρ(α,β)[g]k < ∞ and

λ(α,β)[g(h)]w = ∞. Then

lim
r→1

α(T−1
w (Tg(h)(r)))

α(T−1
k (Tg(r)))

= ∞.

Proof. If possible, let the conclusion of the theorem does not hold. Then we can
find a constant ∆ > 0 such that for a sequence of values of 1

1−r tending to infinity

α(T−1
w (Tg(h)(r))) ≤ ∆ · α(T−1

k (Tg(r))). (15)

Again from the definition of ρ(α,β)[g]k, it follows for all sufficiently large values of
1

1−r that

α(T−1
k (Tg(r))) ≤ (ρ(α,β)[g]k + ϵ)β(

1

1− r
). (16)
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From (15) and (16), for a sequence of values of r tending to 1,we have

α(T−1
w (Tg(h)(r))) ≤ ∆(ρ(α,β)[g]k + ϵ)β(

1

1− r
)

i.e.,
α(T−1

w (Tg(h)(r)))

β( 1
1−r )

≤ ∆(ρ(α,β)[g]k + ϵ)

i.e., lim inf
r→1

α(T−1
w (Tg(h)(r)))

β( 1
1−r )

= λ(α,β)[g(h)]w < ∞.

This is a contradiction. □

Thus the theorem follows.

Remark 2. If we take “0 < λ(α,β)[h]k ≤ ρ(α,β)[h]k < ∞” instead of “0 <

λ(α,β)[h]k ≤ ρ(α,β)[h]k < ∞” and other conditions remain same, the conclusion

of Theorem 2 remains true with “α(T−1
k (Tg(r)))” replaced by “α(T−1

k (Th(r)))” in
the denominator.

Remark 3. Theorem 2 and Remark 2 are also valid with “limit superior” instead
of “limit” if “λ(α,β)[g(h)] = ∞” is replaced by “ρ(α,β)[g(h)] = ∞” and the other
conditions remain the same.

We may now state the following theorem without proof based on Definition 3.

Theorem 3. Let g be an analytic function and h,w and k be non-constant en-
tire functions in U such that 0 < λ(α,β)[g(h)]w ≤ ρ(α,β)[g(h)]w < ∞ and 0 <

λ(α,β)[g]k ≤ ρ(α,β)[g]k < ∞. Then

λ(α,β)[g(h)]w

ρ(α,β)[g]k
≤ lim inf

r→1

α(log
(
T−1
w

(
T

g(h)
(r)

))
)

α(log
(
T−1
k (Tg(r)

)
))

≤ min

{
λ(α,β)[g(h)]w

λ(α,β)[g]k
,
ρ(α,β)[g(h)]w

ρ(α,β)[g]k

}

≤ max

{
λ(α,β)[g(h)]w

λ(α,β)[g]k
,
ρ(α,β)[g(h)]w

ρ(α,β)[g]k

}
≤ lim sup

r→1

α(log
(
T−1
w

(
T

g(h)
(r)

))
)

α(log
(
T−1
k (Tg(r)

)
))

≤
ρ(α,β)[g(h)]w

λ(α,β)[g]k
.

Remark 4. If we take “0 < λ(α,β)[h]k ≤ ρ(α,β)[h]k < ∞” instead of “0 <

λ(α,β)[g]k ≤ ρ(α,β)[g]k < ∞” and other conditions remain same, the conclusion of

Theorem 3 remains true with “λ(α,β)[g]k”, “ρ(α,β)[g]k” and “α(log
(
T−1
k (Tg(r)

)
))”

replaced by “λ(α,β)[h]k”, “ρ(α,β)[h]k” and “α(log
(
T−1
k (Th(r)

)
))” respectively in the

denominator.

We may now state the following theorem without proof based on Definition 4.

Theorem 4. Let g be an analytic function and h,w and k be non-constant entire
functions in the unit disc U such that 0 < λ(α,β)[g(h)]w ≤ ρ

(α,β)
[g(h)]w < ∞ and

0 < λ(α,β)[g]k ≤ ρ
(α,β)

[g]k < ∞. Then
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λ(α,β)[g(h)]w

ρ
(α,β)

[g]k
≤ lim inf

r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤ min

{
λ(α,β)[g(h)]w

λ(α,β)[g]k
,
ρ
(α,β)

[g(h)]w

ρ
(α,β)

[g]k

}

≤ max

{
λ(α,β)[g(h)]w

λ(α,β)[g]k
,
ρ
(α,β)

[g(h)]w

ρ
(α,β)

[g]k

}
≤ lim sup

r→1

α
(
T−1
w (Tg(h)(r))

)
α
(
T−1
k (Tg(r))

) ≤
ρ
(α,β)

[g(h)]w

λ(α,β)[g]k
.

Remark 5. If we take “0 < λ(α,β)[h]k ≤ ρ
(α,β)

[h]k < ∞” instead of “0 <

λ(α,β)[g]k ≤ ρ
(α,β)

[g]k < ∞” and other conditions remain same, the results of The-

orem 4 remain true with “λ(α,β)[g]k”, “ρ(α,β)[g]k” and “α
(
T−1
k (Tg(r))

)
” replaced

by “λ(α,β)[h]k”, “ρ(α,β)[h]k” and “α
(
T−1
k (Th(r))

)
” respectively in the denominator.

Theorem 5. Let g be an analytic function and h,w and k be non-constant entire
functions in the unit disc U such that 0 < σ(α,β)[g(h)]w ≤ σ(α,β)[g(h)]w < ∞, 0 <
σ(α,β)[g]k ≤ σ(α,β)[g]k < ∞ and ρ(α,β)[g(h)]w = ρ(α,β)[g]k. Then

σ(α,β)[g(h)]w

σ(α,β)[g]k
≤ lim inf

r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤ min

{
σ(α,β)[g(h)]w

σ(α,β)[g]k
,
σ(α,β)[g(h)]w

σ(α,β)[g]k

}
≤ max

{
σ(α,β)[g(h)]w

σ(α,β)[g]k
,
σ(α,β)[g(h)]w

σ(α,β)[g]k

}
≤ lim sup

r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤
σ(α,β)[g(h)]w

σ(α,β)[g]k
.

Proof. From the definitions of σ(α,β)[g]k, σ(α,β)[g]k, σ(α,β)[g(h)]w and σ(α,β)[g(h)]w,

we have for arbitrary positive ε and for all sufficiently large values of 1
1−r that

exp(α(T−1
w

(
Tg(h)(r))

)
) ≥

(
σ(α,β)[g(h)]w − ε

)
(exp(β((1− r)−1)))ρ(α,β)[g(h)]w , (17)

exp(α(T−1
k (Tg(r)))) ≤

(
σ(α,β)[g]k + ε

)
(exp(β((1− r)−1)))ρ(α,β)[g]k , (18)

exp(α(T−1
k (Tg(r)))) ≥

(
σ(α,β)[g]k − ε

)
(exp(β((1− r)−1)))ρ(α,β)[g]k , (19)

exp(α(T−1
w

(
Tg(h)(r))

)
) ≤

(
σ(α,β)[g(h)]w + ε

)
(exp(β((1− r)−1)))ρ(α,β)[g(h)]w . (20)

Again for a sequence of values of 1
1−r tending to infinity, we get that

exp(α(T−1
w

(
Tg(h)(r))

)
) ≤

(
σ(α,β)[g(h)]w + ε

)
(exp(β((1− r)−1)))ρ(α,β)[g(h)]w , (21)

exp(α(T−1
k (Tg(r)))) ≤

(
σ(α,β)[g]k + ε

)
(exp(β((1− r)−1)))ρ(α,β)[g]k , (22)

exp(α(T−1
k (Tg(r)))) ≥

(
σ(α,β)[g]k − ε

)
(exp(β((1− r)−1)))ρ(α,β)[g]k , (23)

exp(α(T−1
w

(
Tg(h)(r))

)
) ⩾ (σ(α,β)[g(h)]w − ε)(exp(β((1− r)−1)))ρ(α,β)[g(h)]w . (24)

Now from (17), (18) and the condition ρ(α,β)[g(h)]w = ρ(α,β)[g]k, it follows for

all sufficiently large values of 1
1−r that

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

⩾
σ(α,β)[g(h)]w − ε

σ(α,β)[g]k + ε
.
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As ε (> 0) is arbitrary, we obtain from above that

lim inf
r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
w (Tg(r))))

⩾
σ(α,β)[g(h)]w

σ(α,β)[g]w
. (25)

Combining (21) and (19) and the condition ρ(α,β)[g(h)]w = ρ(α,β)[g]k, we get for

a sequence of values of 1
1−r tending to infinity that

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤
σ(α,β)[g(h)]w + ε

σ(α,β)[g]k − ε
.

Since ε (> 0) is arbitrary, it follows from above that

lim inf
r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤
σ(α,β)[g(h)]w

σ(α,β)[g]k
. (26)

Now from (17), (22) and the condition ρ(α,β)[g(h)]w = ρ(α,β)[g]k, we obtain for

a sequence of values of 1
1−r tending to infinity that

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≥
σ(α,β)[g(h)]w − ε

σ(α,β)[g]k + ε
.

As ε (> 0) is arbitrary, we get from above that

lim sup
r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≥
σ(α,β)[g(h)]w

σ(α,β)[g]k
. (27)

In view of the condition ρ(α,β)[g(h)]w = ρ(α,β)[g]k, it follows from (19) and (20)

for all sufficiently large values of 1
1−r that

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤
σ(α,β)[g(h)]w + ε

σ(α,β)[g]k − ε
.

Since ε (> 0) is arbitrary, we obtain that

lim sup
r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤
σ(α,β)[g(h)]w

σ(α,β)[g]k
. (28)

Now from (20), (23) and the condition ρ(α,β)[g(h)]w = ρ(α,β)[g]k, it follows for a

sequence of values of 1
1−r tending to infinity that

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤
σ(α,β)[g(h)]w + ε

σ(α,β)[g]k − ε
.

As ε (> 0) is arbitrary, we obtain that

lim inf
r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤
σ(α,β)[g(h)]w

σ(α,β)[g]k
. (29)
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So combining (18) and (24) and in view of the condition ρ(α,β)[g(h)]w = ρ(α,β)[g]k,

we get for a sequence of values of 1
1−r tending to infinity that

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

⩾
σ(α,β)[g(h)]w − ε

σ(α,β)[g]k + ε
.

Since ε (> 0) is arbitrary, it follows that

lim sup
r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

⩾
σ(α,β)[g(h)]w

σ(α,β)[g]k
. (30)

Thus the theorem follows from (25) , (26) , (27), (28) , (29) and (30) . □

Remark 6. If we take “0 < σ(α,β)[h]k ≤ σ(α,β)[h]k < ∞”and “ρ(α,β)[g(h)]w =

ρ(α,β)[h]k” instead of “0 < σ(α,β)[g]k ≤ σ(α,β)[g]k < ∞” and “ρ(α,β)[g(h)]w =

ρ(α,β)[g]k” and other conditions remain same, the results of Theorem 5 remain true

with “σ(α,β)[g]k”, “σ(α,β)[g]k” and “exp(α(T−1
k (Tg(r))))” replaced by “σ(α,β)[h]k”,

“σ(α,β)[h]k” and “exp(α(T−1
k (Th(r))))” respectively in the denominator.

Remark 7. If we take “0 < τ (α,β)[g]k ≤ τ (α,β)[g]k < ∞” and “ρ(α,β)[g(h)]w =

λ(α,β)[g]k” instead of “0 < σ(α,β)[g]k ≤ σ(α,β)[g]k < ∞” and “ρ(α,β)[g(h)]w =

ρ(α,β)[g]k” and other conditions remain same, the results of Theorem 5 remain

true with “σ(α,β)[g]k” and “σ(α,β)[g]k“ replaced by “τ (α,β)[g]k” and “τ (α,β)[g]k”
respectively in the denominator.

Remark 8. If we take “0 < τ (α,β)[h]k ≤ τ (α,β)[h]k < ∞” and “ρ(α,β)[g(h)]w =

λ(α,β)[h]k” instead of “0 < σ(α,β)[g]k ≤ σ(α,β)[g]k < ∞” and “ρ(α,β)[g(h)]w =

ρ(α,β)[g]k” and other conditions remain same, the results of Theorem 5 remain true

with “σ(α,β)[g]k”, “σ(α,β)[g]k” and “exp(α(T−1
k (Tg(r))))” replaced by “τ (α,β)[h]k”,

“τ (α,β)[h]k” and “exp(α(T−1
k (Th(r))))” respectively in the denominator.

Now in the line of Theorem 5 , one can easily prove the following theorem using
the notion of generalized Nevanlinna weak type and therefore the proof is omitted.

Theorem 6. Let g be a analytic function and h,w and k be non-constant entire
functions in the unit disc U such that 0 < τ (α,β)[g(h)]w ≤ τ (α,β)[g(h)]w < ∞, 0 <
τ (α,β)[g]k ≤ τ (α,β)[g]k < ∞ and λ(α,β)[g(h)]w = λ(α,β)[g]k. Then

τ (α,β)[g(h)]w

τ (α,β)[g]k
≤ lim inf

r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤ min

{
τ (α,β)[g(h)]w

τ (α,β)[g]k
,
τ (α,β)[g(h)]w

τ (α,β)[g]k

}
≤ max

{
τ (α,β)[g(h)]w

τ (α,β)[g]k
,
τ (α,β)[g(h)]w

τ (α,β)[g]k

}
≤ lim sup

r→1

exp(α(T−1
w

(
Tg(h)(r))

)
)

exp(α(T−1
k (Tg(r))))

≤
τ (α,β)[g(h)]w

τ (α,β)[g]k
.

Remark 9. If we take “0 < τ (α,β)[h]k ≤ τ (α,β)[h]k < ∞” and “λ(α,β)[g(h)]w =
λ(α,β)[h]k” instead of “0 < τ (α,β)[g]k ≤ τ (α,β)[g]k < ∞” and “λ(α,β)[g(h)]w =
λ(α,β)[g]k” and other conditions remain same, the results of Theorem 6 remain true
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with “τ (α,β)[g]k”, “τ (α,β)[g]k” and “exp(α(T−1
k (Tg(r))))” replaced by “τ (α,β)[h]k”,

“τ (α,β)[h]k” and “exp(α(T−1
k (Th(r))))” respectively in the denominator.

Remark 10. If we take “0 < σ(α,β)[g]k ≤ σ(α,β)[g]k < ∞” and “λ(α,β)[g(h)]w =
ρ(α,β)[g]k” instead of “0 < τ (α,β)[g]k ≤ τ (α,β)[g]k < ∞” and “λ(α,β)[g(h)]w =

λ(α,β)[g]k” and other conditions remain same, the results of Theorem 6 remain
true with “τ (α,β)[g]k” and “τ (α,β)[g]k” replaced by “σ(α,β)[g]k” and “σ(α,β)[g]k”
respectively in the denominator.

Remark 11. If we take “0 < σ(α,β)[g]k ≤ σ(α,β)[g]k < ∞” and “λ(α,β)[g(h)]w =
ρ(α,β)[h]k” instead of “0 < τ (α,β)[g]k ≤ τ (α,β)[g]k < ∞” and “λ(α,β)[g(h)]w =

λ(α,β)[g]k” and other conditions remain same, the results of Theorem 6 remain true

with “τ (α,β)[g]k”, “τ (α,β)[g]k” and “exp(α(T−1
k (Tg(r))))” replaced by “σ(α,β)[h]k”,

“σ(α,β)[h]k” and “exp(α(T−1
k (Th(r))))” respectively in the denominator.
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k-FREE NUMBERS AND INTEGER PARTS OF αp

Şermin ÇAM ÇELIK
Department of Mathematics, Faculty of Engineering and Natural Sciences,
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Abstract. In this note, we obtain asymptotic results on integer parts of αp
that are free of kth powers of primes, where p is a prime number and α is a

positive real number.

1. Introduction and Statement of Results

Let α and β be real numbers such that α > 0. Let ⌊x⌋ denote the largest
integer not greater than x. Sequences of the form {⌊αn+ β⌋}∞n=1 are called Beatty
sequences. A Beatty sequence is said to be homogeneous if β = 0. Beatty sequences
have been attracting a lot of attention since they can be viewed as analogues of
arithmetic progressions, therefore they show up in a broad context. The interested
reader is referred to [1, 2, 4–6,8–11,14–16,19,24].

Let k ⩾ 2 be an integer. An integer is said to be k-free if it is not divisible
by a kth power of a prime. Very recently in [3], an asymptotic formula with an
explicit error term is obtained for k-free values of homogeneous Beatty sequences
at prime arguments (i.e. sequences of the form {⌊αp⌋}∞p=2) provided that α is of
finite type (see Definition 1). This result can be viewed as a natural analogue of
the result of Mirsky [20]. In this article, we pursue this result and obtain two
asymptotic formulas that are of the same flavour. The results we present here are
well applicable to non-homogeneous Beatty sequences.

Theorem 1. Let k ≥ 2 be an integer. Let {αi}ℓi=1 be a finite type subset of
irrational numbers each greater than one. Assume that {αi}ℓi=1 satisfies (1) for
some τ > 0. Let α = (α1, α2, . . . , αℓ) and

π(x, k,α) = #{p ⩽ x : ⌊αip⌋ is k-free for each i = 1, . . . , ℓ}.
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238 S. ÇAM ÇELIK

Then the following asymptotic is satisfied:

π(x, k,α) =
π(x)

ζℓ(k)
+O

(
x1−

k−1
(k−1+ℓ)(3τ+2)+k(ℓ−1)τ+kℓ e

C log x
log log x

)
for some constant C = C(α1, . . . , αℓ) and every large x.

A nested version of Theorem 1 is given below.

Theorem 2. Let k ⩾ 2 be an integer. Let {α1α2, α2} be a finite type subset
of irrational numbers each greater than zero. Then the following asymptotic is
satisfied:

#{p ⩽ x : ⌊α1 ⌊α2p⌋⌋ is k-free} =
π(x)

ζ(k)
+O(x1−ε)

for some ε > 0.

Here, the interested reader is invited to investigate the following problem: Let
{αi}ni=1 be positive real numbers. Define

aj =

j∏
i=1

αn+1−i.

Assuming that
{
a1, a2, . . . , an

}
is of finite type (see Definition 1), show that

#{p ⩽ x : ⌊an ⌊an−1 · · · ⌊a1p⌋⌋⌋ is k-free} =
π(x)

ζ(k)
+O(x1−ε)

for some ε > 0. It might also be fruitful to investigate the possible power saving in
the error term above.

1.1. Preliminaries and Notation.

1.1.1. Notation. We recall that for functions F and G where G is real non-negative,
the notations F ≪ G and F = O(G) are equivalent to the statement that the
inequality |F | ⩽ αG holds for some constant α > 0. Further we use F ∼ G to
indicate (F/G)(x) tends to 1 as x→ ∞.

Given a real number x, we use the notation {x} for the fractional part of x, the
notation ⌊x⌋ for the greatest integer not exceeding x and e(x) = e2πix.

We use ∥x∥ to denote the distance from the real number x to the nearest integer.
Λ(n) = log p if n = pr where p is a prime number (here and hereafter). Otherwise,
Λ(n) = 0. µ(n) denotes the Mobius function. ϕ(n) denotes the Euler’s totient
function. τ(n) denotes the number of positive divisors of n. We also use π(x) to
denote the number of primes not more than x.
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1.1.2. Preliminaries.

Definition 1. An irrational number α is called of finite type τ , if

τ = sup

{
β : lim inf

q→∞
q∈N

qβ ||αq|| = 0

}
<∞.

If α is an irrational number of finite type τ , then by Dirichlet’s approximation
theorem (Lemma 2.1 of [25]) one has τ ⩾ 1. The celebrated theorems of Khinchin
[17] and of Roth [21,22] state that τ = 1 for almost all (in the sense of the Lebesque
measure) real numbers and for all irrational algebraic numbers respectively.

Definition 2. A finite subset of real numbers {β1, β2, . . . , βℓ} is said to be of finite
type if there is τ > 0 such that the inequality

||h1β1 + h2β2 + · · ·+ hℓβℓ|| < (max{1, |h1|, . . . , |hℓ|})−τ (1)

has only finitely many solutions for hi ∈ Z.

If {βi}ℓi=1 satisfies (1) for some τ > 0, then it follows from Dirichlet’s theorem on
rational approximations that τ ⩾ 1. Furthermore, such a set is linearly independent
over Q.

Throughout this paper, we shall mostly use the weak form of the prime number
theorem, that is

π(x) ∼ x

log x
.

Lemma 1. For every positive integer n ≥ 1,

τ(n) < e
C log 5n
log log 5n

for some constant C > 0.

Proof. Follows from [23, Theorem 2.11]. □

Lemma 2. If ∣∣∣∣α− a

q

∣∣∣∣ ⩽ 1

q2

for some integers a and q such that (a, q) = 1, then∑
p⩽x

e(αp) ≪ x log3 x
(
q−

1
2 + x−

1
5 + q

1
2x−

1
2

)
.

Proof. This follows in a standard way using the main result of [12, §25]. □

Lemma 3 (Erdős-Turán-Koksma Inequality). If {xi}Ni=1 is a finite sequence in Rℓ,
then for any J ⊆ [0, 1)ℓ that is a Cartesian product of subintervals of [0, 1) and any
H ⩾ 1, we have

#{1 ⩽ i ⩽ N : xi ∈ J mod 1} − |J |N ≪ N

H
+

∑
0<||h||⩽H

1

r(h)

∣∣∣∣∣∣
∑

1⩽i⩽N

e(⟨h,xi⟩)

∣∣∣∣∣∣ .
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Here |J | denotes the ℓ-dimensional Lebesgue measure of J , ⟨·, ·⟩ denotes the standard
inner product in Rℓ and we set ||h|| = max1⩽i⩽ℓ{|hi|} and

r(h) =

ℓ∏
i=1

max{|hi|, 1} (2)

for all h = (h1, h2, . . . , hℓ) ∈ Zℓ. Moreover, the implied constant depends only on
ℓ.

Proof. For the proof see [18]. □

The following lemma is a classical result due to Vinogradov [26, Lemma 12].

Lemma 4. Let α, β and ∆ be real numbers such that

0 < ∆ <
1

2
and ∆ ⩽ β − α ⩽ 1−∆.

Then there exists a periodic function Ψ(x), with period 1, satisfying

(i) Ψ(x) = 1 in the interval α+ 1
2∆ ⩽ x ⩽ β − 1

2∆,

(ii) Ψ(x) = 0 in the interval β + 1
2∆ ⩽ x ⩽ 1 + α− 1

2∆,

(iii) 0 ⩽ Ψ(x) ⩽ 1 in the remainder of the interval α− 1
2∆ ⩽ x ⩽ 1 + α− 1

2∆,

(iv) Ψ(x) has a Fourier expansion of the form

Ψ(x) =

∞∑
h=−∞

ahe(hx),

where

|ah| ⩽ c ·min

{
|h|−1, |h|−2∆−1

}
for every |h| ⩾ 1 and some c fixed. Furthermore, a0 = β − α.

2. Proof of The Main Results

2.1. Proof of Theorem 1. Let α = (α1, α2, . . . , αℓ) and

π(x, k,α) = #{p ⩽ x : ⌊αip⌋ is k-free for each i = 1, . . . , ℓ}.
Let Ik denote the characteristic function of k-free integers. Since

Ik(n) =
∑
dk|n

µ(d), (3)

we have
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π(x, k,α)

=
∑
p⩽x

Ik(⌊α1p⌋) · · · Ik(⌊αℓp⌋)

=
∑
p⩽x

 ∑
dk
1 |⌊α1p⌋

µ(d1)

 · · ·

 ∑
dk
ℓ |⌊αℓp⌋

µ(dℓ)


=

∑
p⩽x

∑
(d1,...,dℓ)

dk
i |⌊αip⌋
i=1,...,ℓ

µ(d1) · · ·µ(dℓ)

=
∑

(d1,...,dℓ)

µ(d1) · · ·µ(dℓ)
∑
p⩽x

dk
i |⌊αip⌋
i=1,...,ℓ

1

=
∑

(d1,...,dℓ)
di⩽z

i=1,...,ℓ

µ(d1) · · ·µ(dℓ)
∑
p⩽x

dk
i |⌊αip⌋
i=1,...,ℓ

1 +
∑

(d1,...,dℓ)
di>z

for some i=1,...,ℓ

µ(d1) · · ·µ(dℓ)
∑
p⩽x

dk
i |⌊αip⌋
i=1,...,ℓ

1,

where z ⩽ x1/k will be chosen later. It follows from Lemma 1 that for all i =
1, 2, . . . , ℓ there exists a positive constant ci = ci(αi) depending on αi such that

τ(⌊αip⌋) ≪ e
ci log x

log log x

for every p ⩽ x. Then, for all i = 1, 2, . . . , ℓ and p ≤ x

τ(⌊αip⌋) ≪ e
c log x

log log x , (4)

where c = max{c1, . . . , cℓ}. Set C = c(ℓ − 1). Then, by (4) and using partial
summation in the last step, we get

∑
(d1,...,dℓ)

di>z
for some i=1,...,ℓ

µ(d1) · · ·µ(dℓ)
∑
p⩽x

dk
i |⌊αip⌋
i=1,...,ℓ

1

<
∑

(d1,...,dℓ)
d1>z

∑
p⩽x

dk
i |⌊αip⌋
i=1,...,ℓ

1 + · · ·+
∑

(d1,...,dℓ)
dℓ>z

∑
p⩽x

dk
i |⌊αip⌋
i=1,...,ℓ

1

=
∑
p⩽x

 ∑
dk
1 |⌊α1p⌋
d1>z

1

 · · ·

 ∑
dk
ℓ |⌊αℓp⌋

1

+ · · ·+
∑
p⩽x

 ∑
dk
1 |⌊α1p⌋

1

 · · ·

 ∑
dk
ℓ |⌊αℓp⌋
dℓ>z

1


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⩽
∑
p⩽x

 ∑
dk
1 |⌊α1p⌋
d1>z

1


(

ℓ∏
i=2

τ(⌊αip⌋)

)
+ · · ·+

∑
p⩽x

 ∑
dk
ℓ |⌊αℓp⌋
dℓ>z

1


(

ℓ−1∏
i=1

τ(⌊αip⌋)

)

≪ e
C log x
log log x

∑
p⩽x

∑
dk
1 |⌊α1p⌋
d1>z

1 + · · ·+
∑
p⩽x

∑
dk
ℓ |⌊αℓp⌋
dℓ>z

1



≪ e
C log x
log log x

∑
d1>z

∑
p⩽x

dk
1 |⌊α1p⌋

1 + · · ·+
∑
dℓ>z

∑
p⩽x

dk
ℓ |⌊αℓp⌋

1



⩽ e
C log x
log log x

∑
d1>z

∑
m⩽α1x

dk
1 |m

1 + · · ·+
∑
dℓ>z

∑
m⩽αℓx

dk
ℓ |m

1


⩽ e

C log x
log log x

(∑
d1>z

α1x

dk1
+ · · ·+

∑
dℓ>z

αℓx

dkℓ

)
≪ e

C log x
log log xx

zk−1
.

Therefore,

π(x, k,α) =
∑

(d1,...,dℓ)
di⩽z

i=1,...,ℓ

µ(d1) · · ·µ(dℓ)
∑
p⩽x

dk
i |⌊αip⌋
i=1,...,ℓ

1 +O

(
e

C log x
log log xx

zk−1

)
. (5)

Next, we will study the sum above appearing in (5) which runs over all tuples
(d1, . . . , dℓ) of positive integers where di ⩽ z for all i = 1, . . . , ℓ.
So, let d = (d1, . . . , dℓ) be such a tuple and set

D =

ℓ∏
j=1

dkj , Di =

ℓ∏
j=1
j ̸=i

dkj and Id =

[
0,

1

dk1

)
× · · · ×

[
0,

1

dkℓ

)
(6)

for all i = 1, . . . , ℓ. For a positive integer i, let pi denote the ith prime. Observing
that

⌊αp⌋ ≡ 0 (mod d) if and only if
{αp
d

}
<

1

d
, (7)
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we have∑
p⩽x

dk
i |⌊αip⌋
i=1,...,ℓ

1 =
∑
p⩽x

⌊αip⌋≡0 (mod dk
i )

i=1,...,ℓ

1 =
∑
p⩽x{

αip

dk
i

}
< 1

dk
i

i=1,...,ℓ

1 =
∑
p⩽x({

α1p

dk1

}
,...,
{

αℓp

dk
ℓ

})
∈Id

1

= #{i ⩽ π(x) : ti ∈ Id},

(8)

where

ti =

({α1pi
dk1

}
, . . . ,

{αℓpi
dkℓ

})
.

It follows from Erdős-Turán-Koksma Inequality that for all H ⩾ 1,

#{i ⩽ π(x) : ti ∈ Id} −
π(x)

dk1 · · · dkℓ

≪ π(x)

H
+

∑
0<∥h∥⩽H

1

r(h)

∣∣∣∣∣∣
∑

i⩽π(x)

e (⟨h, ti⟩)

∣∣∣∣∣∣
≪ π(x)

H
+

∑
0<∥h∥⩽H

1

r(h)

∣∣∣∣∣∣
∑
p⩽x

e

(
h1D1α1 + · · ·+ hℓDℓαℓ

D
· p
)∣∣∣∣∣∣ .

(9)

Next, we shall prove the following lemma.

Lemma 5.∑
p⩽x

e

(
h1D1α1 + · · ·+ hℓDℓαℓ

D
· p
)

≪ x log3 x
(
x−

1
2(τ+1) (max{|h1|D1, . . . , |hℓ|Dℓ})

τ
2(τ+1)D

1
2(τ+1) + x−

1
5

)
uniformly for all h = (h1, . . . , hℓ) ∈ Zℓ such that ||h|| > 0, where Di and D are
defined in (6).

Proof. Since {αi}ℓi=1 satisfies (1) for some τ > 0, there exists a positive constant
A ≥ 1 such that

(max{|h1|, . . . , |hℓ|})−τ ⩽ A ||h1α1 + h2α2 + · · ·+ hℓαℓ|| (10)

for all (h1, . . . , hℓ) ∈ Zℓ such that max1⩽i⩽ℓ{|hi|} > 0. Let h = (h1, . . . , hℓ) ∈ Zℓ

be such a tuple and set

mh =
h1D1α1 + · · ·+ hℓDℓαℓ

D
.

Let 1 ⩽ Q < x/2 to be determined later. By Dirichlet’s rational approximation

theorem, there exists
r

q
∈ Q such that 1 ⩽ q ⩽

x

Q
and∣∣∣∣mh − r

q

∣∣∣∣ < Q

qx
.



244 S. ÇAM ÇELIK

So,

∥q(h1D1α1 + · · ·+ hℓDℓαℓ)∥ <
QD

x
. (11)

On the other hand, it follows from (10) that

∥q(h1D1α1 + · · ·+ hℓDℓαℓ)∥ ⩾ A−1q−τ (max{|h1D1|, . . . , |hℓDℓ|})−τ . (12)

Combining (11) and (12), we get

q ⩾
x

1
τ

max{|h1D1|, . . . , |hℓDℓ|}A
1
τ D

1
τ Q

1
τ

. (13)

Then it follows from Lemma 2 that∑
p⩽x

e (mh · p) ≪ x log3 x
(
x−

1
2τ M

1
2D

1
2τ Q

1
2τ + x−

1
5 +Q− 1

2

)
, (14)

where for the sake of brevity we set M = max{|h1D1|, . . . , |hℓDℓ|}. By [13, Lemma
2.4], there exists 1 ⩽ Q < x/2 such that the left hand side of (14) is

≪ x log3 x
(
x−

1
2(τ+1)M

τ
2(τ+1)D

1
2(τ+1) + x−

1
2τ M

1
2D

1
2τ + x−

1
5

)
.

At this point, we can assume that x−
1
2τ M

1
2D

1
2τ < 1, because otherwise the required

upper bound holds trivially. Therefore, the second term is beaten by the first term
giving the proof of Lemma 5. □

We next proceed by plugging this upper bound into (9). We also use the upper
bound |hi| ⩽ H together with the upper bounds D ⩽ zkℓ and Di ⩽ zk(ℓ−1). Then
the difference in the first line of (9) is

≪ π(x)

H
+
(
x1−

1
2(τ+1)H

τ
2(τ+1) z

k(ℓ−1)τ+kℓ
2(τ+1) log3 x+ x

4
5 log3 x

) ∑
0<∥h∥⩽H

1

r(h)

 .

(15)
Now, by (2)

∑
0<∥h∥⩽H

1

r(h)
⩽

∑
0⩽∥h∥⩽H

1∏ℓ
i=1 (max{|hi|, 1})

⩽

1 + 2
∑

1⩽h⩽H

1

h

ℓ

≪ logℓH,

(16)
where in the last step we use integral test. Here we note that the implied constant
depends on ℓ. Coupling (8), (9), (15) and (16), we arrive at

∑
p⩽x

dk
i |⌊αip⌋
i=1,...,ℓ

1

− π(x)

dk1 · · · dkℓ
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≪ π(x)

H
+ x1−

1
2(τ+1)H

τ
2(τ+1) z

k(ℓ−1)τ+kℓ
2(τ+1) logℓH log3 x+ x

4
5 logℓH log3 x (17)

for every H ⩾ 1 and every (d1, . . . , dℓ) such that di ⩽ z ⩽ x1/k for each i. Noting
π(x) ≪ x and choosing 1 ⩽ H ⩽ x by [13, Lemma 2.4], the left hand side of (17)
is

≪ logℓ+3 x
(
x1−

1
3τ+2 z

k(ℓ−1)τ+kℓ
3τ+2 + x1−

1
2(τ+1) z

k(ℓ−1)τ+kℓ
2(τ+1) + x

4
5

)
.

On summing this over all tuples (d1, . . . , dℓ) of positive integers where di ⩽ z for
all i = 1, . . . , ℓ, we observe from (5) that for all 1 ⩽ z ⩽ x1/k,

π(x, k,α)− π(x)
∑

(d1,...,dℓ)
di⩽z

i=1,...,ℓ

µ(d1) · · ·µ(dℓ)
dk1 · · · dkℓ

≪ logℓ+3 x
(
x1−

1
3τ+2 z

k(ℓ−1)τ+kℓ
3τ+2 +ℓ + x1−

1
2(τ+1) z

k(ℓ−1)τ+kℓ
2(τ+1)

+ℓ + x
4
5 zℓ
)
+
e

C log x
log log xx

zk−1
.

Here, ∑
(d1,...,dℓ)

di⩽z
i=1,...,ℓ

µ(d1) · · ·µ(dℓ)
dk1 · · · dkℓ

=

∑
d⩽z

µ(d)

dk

ℓ

and using the following inequality∣∣∣∣∣∣
∑
d⩽z

µ(d)

dk
−

∞∑
d=1

µ(d)

dk

∣∣∣∣∣∣ ⩽
∑
d>z

1

dk
≪ 1

zk−1
,

it follows by the mean value theorem that∑
d⩽z

µ(d)

dk

ℓ

−

( ∞∑
d=1

µ(d)

dk

)ℓ

≪ 1

zk−1
.

Therefore, the contribution of the sums running over di ⩽ z for all i = 1, . . . , ℓ is

π(x)

ζℓ(k)
+O

(
π(x)

zk−1

)
yielding for all 1 ⩽ z ⩽ x1/k

π(x, k,α)− π(x)

ζℓ(k)

≪ logℓ+3 x
(
x1−

1
3τ+2 z

k(ℓ−1)τ+kℓ
3τ+2 +ℓ + x1−

1
2(τ+1) z

k(ℓ−1)τ+kℓ
2(τ+1)

+ℓ + x
4
5 zℓ
)
+
e

C log x
log log xx

zk−1
,

(18)
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where C = C(ℓ,α) is positive. On the right hand side of (18), the first term beats
the third term as τ ≥ 1 and the second term whenever

z ⩽ x
1

k(ℓ−1)τ+kℓ

which one can assume since otherwise (18) holds trivially. Using now [13, Lemma
2.4] to choose optimal z ⩽ x1/k, the left hand side of (18) is

≪ e
C′ log x
log log x

(
x1−

1
3τ+2 + x

1
k + x

(k−1)(3τ+1)+k(ℓ−1)τ+kℓ+ℓ(3τ+2)
(k−1)(3τ+2)+k(ℓ−1)τ+kℓ+ℓ(3τ+2)

)
≪ x1−

k−1
(k−1+ℓ)(3τ+2)+k(ℓ−1)τ+kℓ e

C′ log x
log log x

for some constant C ′ depending on ℓ and α, therefore the claim follows.

2.2. Proof of Theorem 2. The proof will be similar to that of Theorem 1. We
shall therefore be brief. Let α = (α1, α2) and define

πα(x, k) = #{p ⩽ x : ⌊α1 ⌊α2p⌋⌋ is k-free}.

Let 1 ⩽ z ⩽ x1/k be a number to be determined. Using (3), it follows that

πα(x, k) =
∑
p⩽x

∑
dk|⌊α1⌊α2p⌋⌋

µ(d) =
∑
p⩽x

∑
dk|⌊α1⌊α2p⌋⌋

d⩽z

µ(d) +
∑
p⩽x

∑
dk|⌊α1⌊α2p⌋⌋

d>z

µ(d).

As we did before, we have∑
p⩽x

∑
dk|⌊α1⌊α2p⌋⌋

d>z

µ(d) ≪ x

zk−1
,

where the implied constant depends only on α1 and α2. This yields

πα(x, k) =
∑
p⩽x

∑
dk|⌊α1⌊α2p⌋⌋

d⩽z

µ(d) +O
( x

zk−1

)
.

We now proceed to derive the main term. Writing

∑
p⩽x

∑
dk|⌊α1⌊α2p⌋⌋

d⩽z

µ(d) =
∑
d⩽z

µ(d)


 ∑

p⩽x

⌊α1⌊α2p⌋⌋≡0 (mod dk)

1

− π(x)

dk

+π(x)
∑
d⩽z

µ(d)

dk
,

and using partial summation to get∑
d⩽z

µ(d)

dk
=

1

ζ(k)
+O

(
1

zk−1

)
,
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one arrives at

πα(x, k) =
π(x)

ζ(k)
+O

 x

zk−1
+
∑
d⩽z

∣∣∣∣∣∣∣∣
 ∑

p⩽x

⌊α1⌊α2p⌋⌋≡0 (mod dk)

1

− π(x)

dk

∣∣∣∣∣∣∣∣
 (19)

for any 1 ⩽ z ⩽ x1/k. Let us now concentrate on the error term and proceed to
show that it is ≪ x1−ε for some ε > 0. Using observation (7), together with Lemma
3 one ends up with ∑

p⩽x

⌊α1⌊α2p⌋⌋≡0 (mod dk)

1

− π(x)

dk
≪ π(x)

H1
+

∑
1⩽|h1|⩽H1

1

|h1|

∣∣∣∣∣∣
∑
p⩽x

e

(
α1h1 ⌊α2p⌋

dk

)∣∣∣∣∣∣ ,
(20)

where H1 is a positive number to be determined. So, it boils down to estimate the
exponential sum above. To do this, we let K be a sufficiently large number and we
write

⌊α2p⌋ = α2p− {α2p},
yielding∑

p⩽x

e

(
α1h1 ⌊α2p⌋

dk

)
=

∑
0⩽i⩽K−1

∑
p∈Ii(x)

e

(
α1α2h1p

dk
− α1h1{α2p}

dk

)
, (21)

where Ii(x) =
{
p ⩽ x : i

K ⩽ {α2p} < i+1
K

}
. Since

e(t) = 1 +O(|t|)

uniformly for all t ∈ R, we have

e

(
α1α2h1p

dk
− α1h1{α2p}

dk

)
= e

(
−α1h1i

Kdk

)(
e

(
α1α2h1p

dk

)
+O

(
|h1|
Kdk

))
if p ∈ Ii(x). Therefore, the left hand side of (21) is

≪ |h1|π(x)
Kdk

+
∑

0⩽i⩽K−1

∣∣∣∣∣∣
∑

p∈Ii(x)

e

(
α1α2h1p

dk

)∣∣∣∣∣∣ . (22)

Given 0 ⩽ i ⩽ K − 1, let βi = i/K, γi = (i+1)/K and 0 < ∆ < 1/K be a number
to be chosen. By Lemma 4, there exists a periodic function Ψi(x), with period 1,
satisfying

(i) Ψi(x) = 1 in the interval βi +
1
2∆ ⩽ x ⩽ γi − 1

2∆,

(ii) Ψi(x) = 0 in the interval γi +
1
2∆ ⩽ x ⩽ 1 + βi − 1

2∆,
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(iii) 0 ⩽ Ψi(x) ⩽ 1 in the remainder of the interval βi − 1
2∆ ⩽ x ⩽ 1+βi − 1

2∆,

(iv) Ψi(x) has a Fourier expansion of the form

Ψi(x) =

∞∑
h=−∞

ahe(hx),

where a0 = 1/K and

|ah| ⩽ c ·min

{
|h|−1, |h|−2∆−1

}
for every |h| ⩾ 1 and some c fixed.

Let ψi(x) be 1 if βi ⩽ {x} ⩽ γi and ψi(x) = 0 otherwise. It follows that Ψi(x) and
ψi(x) agree on [0, 1] except possibly for two subintervals of [0, 1] of length ⩽ ∆.
Therefore,

∑
p∈Ii(x)

e

(
α1α2h1p

dk

)
=
∑
p⩽x

Ψi(α2p)e

(
α1α2h1p

dk

)
+O

 ∑
p⩽x

{α2p}∈I

1

 (23)

where I is a union of two intervals and is of length ∆. Since α2 is of finite type, fol-
lowing the proof of Theorem 5.1 in [8] together with a partial summation argument,
it follows that for some 0 < ε′′ < 1/5, one has∑

p⩽x
{α2p}∈I

1 = ∆π(x) +O
(
x1−ε′′

)
, (24)

uniformly for all 0 < ∆ < 1/K. Therefore, we see that the left hand side of (23) is

=
1

K

∑
p⩽x

e

(
α1α2h1p

dk

)

+O

 ∑
|h2|>0

|ah2
|

∣∣∣∣∣∣
∑
p⩽x

e

(
(α1α2h1 + α2h2d

k)p

dk

)∣∣∣∣∣∣+∆π(x) + x1−ε′′

 .

Letting H2 be a positive integer to be determined, we split the sum running over
h2 at H2. For |h2| > H2, estimating the innermost exponential sum by π(x), and
using the upper bounds ah ≪ 1/(∆h2) and ah ≪ 1/|h|, we obtain that the left
hand side of (23) is

=
1

K

∑
p⩽x

e

(
α1α2h1p

dk

)
+O

 ∑
0<|h2|⩽H2

1

|h2|

∣∣∣∣∣∣
∑
p⩽x

e

(
(α1α2h1 + α2h2d

k)p

dk

)∣∣∣∣∣∣


+O

(
π(x)

∆H2
+∆π(x) + x1−ε′′

)
.
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Plugging this upper bound into (22) yields that∑
p⩽x

e

(
α1h1 ⌊α2p⌋

dk

)

≪

∣∣∣∣∣∣
∑
p⩽x

e

(
α1α2h1p

dk

)∣∣∣∣∣∣+
∑
i⩽K

∑
0<|h2|⩽H2

1

|h2|

∣∣∣∣∣∣
∑
p⩽x

e

(
(α1α2h1 + α2h2d

k)p

dk

)∣∣∣∣∣∣
+
π(x)K

∆H2
+∆Kπ(x) +Kx1−ε′′ +

|h1|π(x)
Kdk

.

(25)

We are therefore left with the estimation of∑
p⩽x

e

(
(α1α2h1 + α2h2d

k)p

dk

)
, (26)

whenever max{|h1|, |h2|} > 0. To estimate the exponential sum, by Dirichlet’s
theorem we pick up a rational number a/q satisfying∣∣∣∣ (α1α2h1 + α2h2d

k)

dk
− a

q

∣∣∣∣ < 1

qx1−κ

with 1 ⩽ q ⩽ x1−κ, where 0 < κ < 1 is to be determined. Since {α1α2, α2} is of
finite type, similar to how we obtain (13)

x
1−κ
τ

d
k
τ max{|h1|, |h2dk|}

≪ q ⩽ x1−κ

for some τ ⩾ 1. Then by Lemma 2, the exponential sum (26) is

≪ x log3 x
(
(max{|h1|, |h2dk|})

1
2 d

k
2τ x−

1−κ
2τ + x−

1
5 + x−

κ
2

)
.

At this point, we assume that 0 < max{|h1|, |h2|} ⩽ xε
′
where ε′ is a sufficiently

small number to be determined in terms of κ. Then,∑
p⩽x

e

(
(α1α2h1 + α2h2d

k)p

dk

)
≪
(
d

kτ+k
2τ x1−

1−κ
2τ + ε′

2 + x
4
5 + x1−

κ
2

)
log3 x, (27)

uniformly for

0 < max{|h1|, |h2|} ⩽ xε
′
.

Plugging the upper bound (27) into (25), we arrive at∑
p⩽x

e

(
α1h1 ⌊α2p⌋

dk

)
≪ K

(
d

kτ+k
2τ x1−

1−κ
2τ + ε′

2 + x
4
5 + x1−

κ
2

)
log4 x

+
π(x)K

∆H2
+∆Kπ(x) +Kx1−ε′′ +

H1π(x)

Kdk
,
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uniformly for |h1| ⩽ xε
′
, provided that H2 ⩽ xε

′
, 0 < κ < 1, 0 < ∆ < 1/K and K

is sufficiently large. Plugging this upper bound into (20) and summing over d ⩽ z,
we see that the error term in (19) is

≪ xz

H1
+K

(
z1+

kτ+k
2τ x1−

1−κ
2τ + ε′

2 + zx
4
5 + zx1−

κ
2

)
log5 x

+

(
zxK

∆H2
+ z∆Kx+ zKx1−ε′′ +

H1x

K

)
log x+

x

zk−1
(28)

provided that 0 < H1, H2 ⩽ xε
′
, 0 < κ < 1, 0 < ∆ < 1/K and K is sufficiently

large. We now make all unspecified constants explicit. For 0 < ε1, ε2, ε3, ε4, ε5 < 1
to be determined, we set

K = xε1 , H1 = xε2 , H2 = xε3 ,∆ = x−ε4 and z = xε5 ,

where 0 < ε5 ⩽ 1/k (this assumption is from the beginning of the proof). Examin-
ing each term in (28), the right hand side of (28) is ≪ x1−ε for some ε > 0, if the
following inequalities are satisfied:

(1) ε5 < 1/k,
(2) ε2, ε3 < ε′,
(3) ε5 < ε2 < ε1,
(4) ε1 + ε5 < min{ε4, ε′′, κ/2},
(5) ε1 + ε4 + ε5 < ε3,

(6) ε1 + ε5(1 +
kτ+k
2τ ) + ε′

2 < 1−κ
2τ ,

where ε′′ < 1/5 is a fixed positive number defined in (24), τ ⩾ 1 is a fixed number
and 0 < κ < 1 and 0 < ε′ < 1 are to be chosen. We choose κ = 2/5 and
ε′ = (1 − κ)/(2τ). Then since ε′′ < 1/5, we assume that ε4 < ε′′ so that the
fourth inequality becomes equivalent to ε1 + ε5 < ε4. We next choose ε3 < ε′

and ε4 < min
{
ε3, ε

′′} and ε1 < min
{
ε4, ε3 − ε4, (1− κ)/(4τ)

}
. Finally, we choose

ε2 < min
{
ε1, ε

′} and

ε5 < min

{
ε2, ε4 − ε1, ε3 − ε1 − ε4,

1

k
,

2τ

(k + 2)τ + k

(
1− κ

4τ
− ε1

)}
,

completing the proof.
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Abstract. In this paper, a new three-parameter lifetime distribution is pro-

posed by mixing modified Weibull and generalized gamma distributions. The

point estimation on the distribution parameters are discussed through several
estimators. The interval estimation is also studied with two methods based on

asymptotic normality and likelihood ratio. A Monte Carlo simulation study

is performed to evaluate the biases and mean square errors behaviors of point
estimates for a different sample of size. A simulation study is also conducted to

investigate the coverage probabilities of confidence intervals. The distribution
modeling analyses are provided based on several real data sets to demonstrate

the fitting ability of the introduced distribution.

1. Introduction

The Lindley (L) distribution is introduced in [18] with cumulative distribution
function (cdf) and probability density function (pdf),

FL (x; θ) = 1− θ + 1 + θx

θ + 1
e−θx,

and

fL (x; θ) =
θ2

1 + θ
(1 + x) e−θx, x > 0
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respectively, and θ > 0 is a parameter.
L distribution can be represented as a mixture of two distributions with pdf

fL (x; θ) = p fE (x; θ) + (1− p) fG (x; θ) , (1)

where fE (x; θ) = θe−θx and fG (x; θ) = θ2xe−θx are the pdfs of exponential and
gamma distributions respectively and p = θ

1+θ is the mixing proportion of distribu-
tions. Since the L distribution is IFR, it is unsuitable for modelling the data that
obeys the non-linear hazard rate structure. [12] introduced the power Lindley (PL)
distribution, which generalizes the Lindley distribution with the following pdf

fPL (x;α, θ) = αθ2

θ+1 (1 + xα)xα−1e−θxα

, x > 0, α, θ > 0,

= p fW (x;α, θ) + (1− p) fGG (x;α, θ) ,

where fW (x;α, θ) = αθxα−1e−θxα

and fGG (x;α, θ) = αθ2x2α−1e−θxα

are the pdfs
of Weibull and generalized gamma (GG) distributions respectively and p = θ

1+θ

is the mixing proportion of distributions. [12] investigated properties of the PL
distribution with an application and outlined that the PL distribution is a better
model than the other L and exponential based distribution.

Moreover, several generalizations have been proposed in the literature in order to
increase the flexibility and usefulness of the L model. Some of them are: generalized
Lindley (GL) [32], exponentiated Lindley (EL) [22], discrete Lindley [11], extended
Lindley [6], beta Lindley [20,21], exponentiated power Lindley (EPL) [31], odd log
logistic power Lindley [1], odd log-logistic Lindley Poisson [24], odd Burr Lindley [3],
binomial discrete Lindley [16], Weibull-Lindley [4] and generalized power Lindley
[15] among others.

This paper aims to introduce a new flexible distribution that generalizes the L
and PL distributions with the same structure of (1). Furthermore, we are also
motivated to propose a new L distribution because introduced model has various
pdf shapes as well as non-monotone hazard rate function (hrf) shapes unlike L and
PL models.

The paper is organized as follows: In Section 2, a new lifetime distribution is
proposed and several distributional properties are discussed. Several point estima-
tion methods are discussed for the distribution parameters in Section 3. In Section
4, the interval estimation is considered with two well-known methods. The Section
5 close the paper with three distribution modeling analyses based on real data.

2. Modified Lindley Distribution and Some Properties

A random variable X has a Modified Lindley (MoL) distribution if its pdf is
given by

fMoL (x;Ξ) = θ2

θ+1

[
(α+ βx) e−θxα(eβx−1)+βx + αxα

]
xα−1e−θxα

, x > 0,
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where α, β, θ > 0 are parameters and Ξ = (α, β, θ). Indeed MoL distribution is a
mixture of two distribution with the following representation:

f (x;Ξ) = p g1 (x;α, β, θ) + (1− p) g2 (x;α, θ) , x > 0, α, β, θ > 0, (2)

where p = θ
θ+1 is the weighting parameter of the distributions, g1 (x;α, β, θ) is the

pdf of Modified Weibull (MW) distribution introduced in [17], with the following
pdf

g1 (x;α, β, θ) = θ (α+ βx)xα−1eβx−θxα exp(βx), x > 0,

and g2 (x;α, θ) is the pdf of a GG distribution introduced in [28], with the following
pdf

g2 (x;α, θ) = αθ2x2α−1e−θxα

, x > 0.

From (2), we see that the MoL distribution is a two-component mixture of MW
and GG distributions with weighting parameter p. We denote the MoL distribution
with parameter Ξ by MoL(Ξ).
While β → 0, MoL distribution reduces to the PL distribution. While β → 0 and
α → 1, it is reduced to L distribution.

The cdf and hrf of the MoL distribution are

F (x;Ξ) = 1− 1 + θxα + θe−θxαeβx+θxα

θ + 1
e−θxα

, x > 0 (3)

and

h (x;Ξ) =
θ2xα−1

{
(α+ βx) e−θxα(eβx−1)+βx + αxα

}
1 + θxα + θe−θxαeβx+θxα , x > 0

respectively. The plots of the pdf and hrf are given in Figure 1 to identify their
possible shapes. These figures show that the MoL distribution can be unimodal,
bimodal, decreasing and firstly decreasing then unimodal shaped. On the other
hand, the hrf of MoL can be both monotone and non-monotone structures.

In distribution theory, stochastic ordering is an essential measure for evaluating
the comparative behavior of random variables. It is known that X <lr Y ⇒ X
<hr Y ⇒ X <st Y , see [25]. For more information about stochastic ordering with
different applications, one can see [27]. Likelihood ratio ordering is shortly defined
as follow: X is less than Y in the likelihood ratio order (denoted by X <lr Y ) if
fX (x) / fY (x) increases in x over the union of the supports of X and Y .

Theorem 1. If X ∼MoL(α, β, θ1) and Y ∼MoL(α, β, θ2) and θ1 < θ2, then X
<lr Y .

Proof. See Appendix.

Corollary 1. If X ∼MoL(α, β, θ1) and Y ∼MoL(α, β, θ2) and θ1 < θ2 then X
<hr Y and X <st Y .
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Figure 1. Possible pdf and hrf plots of MoL distribution
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Theorem 2. For r ∈ N+, the raw moments of MoL(Ξ) are given by

µ′
r = E (Xr) =

1

θ + 1

Γ (r/α+ 2) θ−r/α +

∞∑
i1,...,ir=1

Ai1,...,irΓ (sr/α+ 1) θ1−sr/α

 .

(4)

Proof. See Appendix.

Corollary 2. The mean and rth central moment of the MoL(Ξ) are given, respec-
tively, by

µ =
1

θ + 1

[
Γ (1/α+ 2) θ−1/α +

∞∑
i=1

aiΓ (i/α+ 1) θ1−i/α

]
, (5)

and

µr = E(X − µ)r =

r∑
h=0

(−1)h
(
r

h

)
µr µ′

r−h. (6)

Using (6), the skewness and kurtosis coefficients can be obtained by√
β1 =

√
µ2
3

µ3
2

and β2 =
µ4

µ2
2

,

respectively. The mean, variance, skewness and kurtosis are computed for some
choices of parameters and given in Table 1. From Table 1, it is seen that the
coefficient of kurtosis can take negative and positive values. This shows that the
distribution has a flexible structure in data modeling. In addition, it is seen that
the new distribution is flatter than the normal distribution. When θ increases, the
kurtosis coefficient increases and the variance decreases. E(X) decreases when the
parameter β increases.

Table 1. The mean, variance, coefficients of skewness and kurto-
sis for some choices of parameters

θ = 0.9 θ = 1.5
α β E (X) V ar (X) Skewness Kurtosis E (X) V ar (X) Skewness Kurtosis
0.9 0.9 1.5597 3.0668 2.2407 9.9440 0.7844 0.8065 2.5707 12.4062

1.5 1.5104 3.1444 2.2221 9.7165 0.7466 0.8203 2.6166 12.4272
5 1.4181 3.3299 2.1388 9.1238 0.6687 0.7341 2.5844 11.8172

1.5 0.9 1.1363 0.6088 1.1457 4.2521 0.7436 0.2664 1.3223 5.0558
1.5 1.0910 0.6416 1.1738 4.1289 0.7042 0.2750 1.4381 5.1801
5 0.9906 0.7491 1.1068 3.6418 0.6099 0.3188 1.5008 4.8333

5 0.9 0.9740 0.0536 -0.1046 2.6206 0.8486 0.0419 0.0095 2.7336
1.5 0.9444 0.0614 0.0376 2.3197 0.8166 0.0466 0.2250 2.5554
5 0.8473 0.1046 0.1864 1.5997 0.7086 0.0764 0.5842 1.9761
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3. Point Estimation

In this section, the maximum likelihood, least square, weighted least square,
Anderson-Darling, Cramer-von Mises, and maximum product spacing methods are
discussed to estimate the MoL distribution parameters. It is noticed that these
estimates are also used in [2], [13], [14], [29], [30] among others. Let X1, X2, . . . , Xn

be a random sample from the MoL(Ξ) distribution with realizations x1, x2, . . . , xn.
Furthermore, X(1), X(2), . . . , X(n) be the corresponding ordered statistics with re-
alizations x(1), x(2), . . . , x(n). Then the log likelihood function can be written by

ℓ ( Ξ) = 2n log θ − n log (θ + 1) + (α− 1)

n∑
i=1

log (xi)

−
n∑

i=1

log
[
(α+ βxi) exp

{
−θxα

i

(
eβxi − 1

)
− βxi

}
+ αxα

i

]
. (7)

Hence, the maximum likelihood estimate (MLE) Ξ̂ of Ξ is written by

Ξ̂ = argmax
Ξ

ℓ (Ξ) . (8)

The maximum product spacing estimate (MPSE) was proposed by [9]. The

MPSE Ξ̂MPS of parameter Ξ are achieved by maximizing

MPS(Ξ) =
1

n+ 1

n+1∑
i=1

log
[
F (x(i);Ξ)− F (x(i−1);Ξ)

]
, (9)

where, F is MoL cdf given in (3) and F (x(0);Ξ) = 0 and F (x(n+1);Ξ) = 1. Note
that the MPSE can be written by

Ξ̂MPS = argmax
Ξ

MPS(Ξ). (10)

The least square estimate (LSE) Ξ̂LSE of parameter Ξ are obtained by minimiz-
ing the function

LS(Ξ) =

n∑
i=1

(
F
(
x(i);Ξ

)
− i

n+ 1

)2

, (11)

where F is MoL cdf given in (3). Hence, LSE of Ξ is given by

Ξ̂LSE = argmin
Ξ

LS(Ξ). (12)

The weighted least square estimate (WLSE) Ξ̂WLSE of Ξ are obtained by min-
imizing

WLS(Ξ) =

n∑
i=1

(n+ 2) (n+ 1)
2

i (n− i+ 1)

(
F
(
x(i);Ξ

)
− i

n+ 1

)2

. (13)
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Then the WLSE of Ξ is presented by

Ξ̂WLSE = argmin
Ξ

WLS(Ξ). (14)

The Anderson-Darling (ADE) type estimate Ξ̂AD of parameters Ξ are obtained
by minimizing

ADD (Ξ) = −n−
n∑

i=1

2i−1
n

[
logF

(
x(i);Ξ

)
+ log

{
1− F

(
x(n+1−i);Ξ

)}]
. (15)

The ADE of Ξ is written by

Ξ̂AD = argmin
Ξ

ADD(Ξ). (16)

The Cramer-von Mises (CVME) type estimate, Ξ̂CVM of parameter Ξ are ob-
tained by minimizing

CVM (Ξ) = 1
12n +

n∑
i=1

[
F
(
x(i);Ξ

)
− 2i− 1

2n

]2
. (17)

The CVME of Ξ is given by

Ξ̂CVM = argmin
Ξ

CVM(Ξ). (18)

In order to achieve the values of estimates, the R functions such as constrOptim,
optim or maxLik can be used.

The simulation study is performed for the bias and mean square errors (MSEs)
of estimates and the results are presented by graphically. We consider N = 1000
trials of size n = 20, 25, . . . , 1000 from the MoL distribution with true parameter
Ξ =(5, 5, 2). All estimates are achieved by using constrOptim routine in the R.
The simulation results are presented in Figs. 2-4. Figs. 2-4 show that all estimates
are consistent since the MSEs decrease to zero for large sample size. The CVME
and MPSE have the maximum amount of the biases for all parameters while CVME
and WLSE have the maximum MSEs for all parameters. On the other hand, MPSE
is the best estimator according to MSEs for small sample size. It is noticed that the
MPSE and MLE has almost same MSEs for moderate and large sample size cases.
The ADE and LSE have the lowest bias for all parameters. As a final comment
on the simulation study, we recommend that the MLE or MPSE should be used to
estimate the parameters.

4. Interval Estimation of MoL Distribution Parameters

In this section, the confidence intervals (CIs) are discussed for the parameters
a, β and θ. In general, CIs are constructed by using MLE based on pivotal quanti-
ties through the asymptotic normality(AN) property of MLE. These CIs are most
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Figure 2. The empirical means, biases and MSEs of the param-
eter α
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Figure 3. The empirical means, biases and MSEs of the param-
eter β

popular in many fields and they are commonly used in statistical software. The
AN of MLE can be written by

Ξ̂
d→ N3

(
Ξ, I−1 (Ξ)

)
,

where Ξ̂ is MLE of Ξ given in (8) and I (Ξ) is Fisher Information matrix. Using
this fact, the 100 × (1− γ)% AN CIs of parameters α, β and θ are constructed,
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Figure 4. The empirical means, biases and MSEs of the param-
eter θ

respectively, by

α̂± z1− γ
2
× se (α̂) ,

β̂ ± z1− γ
2
× se

(
β̂
)
,

θ̂ ± z1− γ
2
× se

(
θ̂
)
,

where za, is the ath quantile of the standard normal distribution, se (α̂), se
(
β̂
)

and se
(
θ̂
)
are the roots of the diagonal member of I−1

(
Ξ̂
)
which is a consistent

estimate of I−1 (Ξ) and the se (·) stands for standard error.
There is another method called uncorrected likelihood ratio (ULR). It is noticed

that AN and ULR CIs are asymptotically equivalent [10].
Under usual regularity assumptions on the likelihood function, if the α is true

parameter, then −2 log
(
ℓ
(
α, λ̃

)
− ℓ

(
Ξ̂
))

distributed as χ2
(1), where λ = (β, θ)

are the nuisance parameters, ℓ is the log-likelihood function as in (7), Ξ̂ is the joint

MLE of (α, β, θ) given in (8), λ̃ =
(
β̃, θ̃

)
is the restricted MLE of λ given a fixed

value of α. Using this fact, 100 × (1− γ)% ULR CI limits αL and αU that satisfy

ℓ
(
α, λ̃

)
= ℓ

(
Ξ̂
)
− 1

2
χ2
(1) (1− α)︸ ︷︷ ︸

LR Bound

(19)
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with αL < α and αU > α, where χ2
(1) (a) is the ath quantile of the χ2 distribution

with 1 degrees of freedom. The 100 × (1− γ)% ULR CIs can be produced in the
same manner for the other parameters β and θ.

In the simulation study, 5000 trials are used to predict the coverage probabilities
(CPs) of the AN and ULR CIs. The nominal level is fixed at 0.95. In order to get
CPs of ULR CIs, there is no need to obtain the CIs limits. It is possible that the
CPs of ULR CIs can be simulated by a likelihood ratio test on the true parameter.
The simulated CPs of these intervals are given in Table 2. Let us discuss the
true parameter cases Ξ = (1, 1, 0.5) , (1, 1, 2.5) , (5, 5, 2), (1, 2, 3) , (3, 0.5, 1.5) and
(2, 1, 0.25) . From Table 2, it is observed that the CPs of ULR reach to the desired
level when the all sample of size discussed here (say n ≥ 50) for all parameters.
However, the CPs of AN can not reach the desired level for small sample of size
case especially for parameter β. The CPs reach the nominal level when the sample
of size increases (say n ≥ 250 or n ≥ 500 according to selected true parameters).
Under discussion given here, it is indicated that ULR CIs powerful tool to construct
the CIs for the MoL parameters.

5. Real-life Data Analysis

In this section, we provide three applications to the real data sets to demonstrate
empirically the potentiality of the proposed model. All data sets, we compare the
MoL model with MW, PL, GL, EPL, EL and L models. In order to reveal the best

model, the estimated log-likelihood values ℓ(Ξ̂), Akaike information criteria (AIC),
consistent Akaike information criteria (CAIC), Kolmogorov-Smirnov (KS), Cramer
von Mises (W ∗) and Anderson-Darling (A∗) goodness of-fit statistics are computed
for all models.

The first data set represents the times between successive failures (in thousands
of hours) in events of secondary reactor pumps studied by [5], [19] and [26]. The
data are: 2.160, 0.746, 0.402, 0.954, 0.491, 6.560, 4.992, 0.347, 0.150, 0.358, 0.101,
1.359, 3.465, 1.060, 0.614, 1.921, 4.082, 0.199, 0.605, 0.273, 0.070, 0.062, 5.320.

The second data for breaking stress of carbon fibers of 50 mm length (GPa) was
studied in [23].The data are: 0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80,
1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 2.41, 2.43, 2.48, 2.50, 2.53, 2.55, 2.55,
2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97,
3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39,
3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90.

The third data reported in [7] which corresponds to the survival times (in years)
of a group of patients given chemotherapy treatment alone. The data consisting
of survival times (in years) for 45 patients are: 0.047, 0.115, 0.121, 0.132, 0.164,
0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 0.529,
0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447,
1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658,
3.743, 3.978, 4.003, 4.033.
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Table 2. The CPs of AN and ULR CIs

True parameter AN ULR
α β θ n α β θ α β θ
1 1 0.5 50 0.9480 0.8698 0.9390 0.9472 0.9412 0.9480

100 0.9462 0.8848 0.9354 0.9474 0.9366 0.9444
250 0.9488 0.9294 0.9472 0.9494 0.9430 0.9508
500 0.9476 0.9394 0.9500 0.9468 0.9438 0.9494
1000 0.9502 0.9484 0.9520 0.9500 0.9510 0.9526

1 1 2.5 50 0.9514 0.8840 0.9688 0.9374 0.9544 0.9556
100 0.9524 0.9174 0.9618 0.9464 0.9534 0.9468
250 0.9484 0.9386 0.9514 0.9466 0.9492 0.9422
500 0.9470 0.9470 0.9494 0.9480 0.9520 0.9450
1000 0.9488 0.9470 0.9486 0.9488 0.9498 0.9464

5 5 2 50 0.9480 0.9428 0.9472 0.9420 0.9392 0.9456
100 0.9464 0.9444 0.9500 0.9444 0.9430 0.9458
250 0.9464 0.9498 0.9482 0.9452 0.9498 0.9472
500 0.9548 0.9506 0.9522 0.9534 0.9502 0.9510
1000 0.9554 0.9544 0.9518 0.9554 0.9544 0.9502

1 2 3 50 0.9474 0.8976 0.9712 0.9396 0.9368 0.9422
100 0.9468 0.9310 0.9602 0.9414 0.9496 0.9454
250 0.9496 0.9380 0.9566 0.9464 0.9428 0.9488
500 0.9428 0.9462 0.9472 0.9430 0.9474 0.9442
1000 0.9544 0.9482 0.9506 0.9554 0.9478 0.9508

3 0.5 1.5 50 0.9276 0.8896 0.9426 0.9326 0.9426 0.9698
100 0.9324 0.9120 0.9360 0.9422 0.9516 0.9674
250 0.9444 0.9490 0.9502 0.9548 0.9680 0.9688
500 0.9422 0.9514 0.9592 0.9526 0.9608 0.9582
1000 0.9492 0.9638 0.9580 0.9542 0.9558 0.9486

2 1 0.25 50 0.9580 0.8750 0.9472 0.9580 0.9500 0.9584
100 0.9572 0.8886 0.9510 0.9614 0.9480 0.9586
250 0.9444 0.9164 0.9428 0.9458 0.9376 0.9452
500 0.9444 0.9390 0.9464 0.9446 0.9504 0.9466
1000 0.9538 0.9478 0.9510 0.9540 0.9494 0.9510
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We give the summary statistics of the data sets in Table 3. The first and third
data sets have right skewness as well as the second data set has the left skewness.

Table 3. Some summary statistics of the data sets

Data set Mean Median Standard Deviation Skewness Kurtosis

I 1.5780 0.6140 1.9306 1.3643 3.5445
II 2.7600 2.8350 0.8914 -0.1314 3.2230
III 1.3410 0.8410 1.2466 0.9721 2.6638

Tables 4-6 list the MLEs, standard errors, ℓ(Ξ̂) and goodness-of-fits statistics
from the fitted models. Tables 4-6 show that the MoL model can be chosen as
the best model based on all criteria. In addition, we give the parameter estima-
tion results and goodness-of-fit statistics of the MoL distribution based on other
estimation methods in Table 7. Figures 5-7 show the fitted densities, cdfs and
probability-probability (P-P) plots of the MoL model. We also sketch the P-P
plots of others models in Figures 8-10. From Figures 8-10, we clearly show that the
MoL model fits this data set better than the other models.

Table 4. MLEs, standard erros of the estimates (in parentheses),

ℓ̂, goodness-of-fits statistics and related p-values [in parentheses]
for the first data set

Model α̂ β̂ θ̂ −ℓ̂ AIC CAIC KS A∗ W ∗

MoL 0.8148 1.7119 0.9419 31.3782 68.7565 70.0196 0.0785 0.1881 0.0204
(0.1582) (2.0132) (0.2169) [0.9967] [0.9934] [0.9972]

MW 0.7922 0.0093 0.7517 32.5082 71.0165 72.2796 0.1198 0.4141 0.0639
(0.1925) (0.0850) (0.2199) [0.8575] [0.8330] [0.7939]

PL 0.7253 1.1948 32.7476 69.4952 70.0952 0.1189 0.4279 0.0643
(0.1129) (0.2119) [0.8628] [0.8190] [0.7918]

GL 0.7457 0.00016 0.4728 32.7592 71.5184 72.7815 0.1379 0.5236 0.0889
(0.1885) (0.0116) (0.1659) [0.7293] [0.7209] [0.6462]

EL 0.6130 0.7251 33.4889 70.9779 71.5779 0.1558 0.7059 0.1246
(0.1647) (0.1782) [0.5784] [0.5521] [0.4799]

EPL 0.2770 11.5880 3.7238 31.8359 69.6718 70.9349 0.0963 0.2264 0.0253
(0.2404) (32.7190) (2.9916) [0.9691] [0.9814] [0.9903]

L 0.9575 35.3054 72.6107 72.8013 0.2439 2.2967 0.3821
(0.1504) [0.1085] [0.0640] [0.0798]

In Table 8, 95% AN and ULR confidence limits of the parameters are presented
for the all data sets. In general the limits of AN and ULR intervals are close to
each other. Figure 11 demonstrate the ULR intervals for the third real data.
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Table 5. MLEs, standard erros of the estimates (in parentheses),

ℓ̂, goodness-of-fits statistics and related p-values [in parentheses]
for the second data set

Model α̂ β̂ θ̂ −ℓ̂ AIC CAIC KS A∗ W ∗

MoL 2.7039 0.7905 0.0967 85.6419 177.2838 177.6709 0.0741 0.3956 0.0620
(0.2170) (0.4304) (0.0257) [0.8607] [0.8526] [0.8025]

MW 2.1535 0.4302 0.0228 85.9866 177.9732 178.3603 0.0905 0.5266 0.0838
(1.0622) (0.3581) (0.0092) [0.6519] [0.7192] [0.6719]

PL 2.5099 0.1241 85.8055 175.6111 175.8015 0.0790 0.4651 0.0819
(0.2088) (0.0311) [0.8051] [0.7820] [0.6824]

GL 6.9574 8.0712 2.7905 90.9276 187.8552 188.2423 0.1318 1.2861 0.2420
(1.4779 (21.2598) (0.4860) [0.2014] [0.2368] [0.1991]

EL 7.0411 1.2461 93.7970 191.5939 191.7844 0.1470 1.8375 0.3284
(1.6730) (0.1090) [0.1154] [0.1132] [0.1124]

EPL 3.1439 0.6238 0.0458 85.4258 176.8516 177.2387 0.0772 0.4094 0.0683
(0.8257) (0.3149) (0.0585) [0.8258] [0.8388] [0.7638]

L 0.5903 122.3841 246.7681 246.8306 0.2977 10.6922 2.0914
(0.0532) [0.0000] [0.0000] [0.0000]

Table 6. MLEs, standard erros of the estimates (in parentheses),

ℓ̂, goodness-of-fits statistics and related p-values [in parentheses]
for the third data set

Model α̂ β̂ θ̂ −ℓ̂ AIC CAIC KS A∗ W ∗

MoL 1.1610 2.5389 0.8263 55.8323 117.6647 118.250 0.0661 0.3437 0.0393
(0.1378) (0.7903) (0.1309) [0.9819] [0.9015] [0.9388]

MW 0.9677 0.0620 0.6529 57.9942 121.9885 122.5738 0.1116 0.5700 0.0864
(0.2047) (0.1235) (0.1702) [0.5958] [0.6758] [0.6577]

PL 0.9465 1.1351 58.4028 120.8056 121.0913 0.1104 0.5656 0.0845
(0.1076) (0.1465) [0.6033] [0.6801] [0.6683]

GL 1.0931 0.8896 0.0991 58.0862 122.1725 122.7578 0.1110 0.5482 0.0842
(0.2256) (0.4456) (0.7380) [0.5967] [0.6973] [0.6702]

EL 0.9412 1.0656 58.4784 120.9568 121.2425 0.1196 0.6498 0.1015
(0.1919) (0.1693) [0.5026] [0.6013] [0.5794]

EPL 0.6579 2.0911 1.8562 58.1167 122.2333 122.8187 0.0972 0.4736 0.0702
(0.3390) (2.2867) (1.1306) [0.7521] [0.7729] [0.7530]

L 1.1004 58.5231 119.0461 119.1391 0.1304 0.7721 0.1253
(0.1249) [0.3964] [0.5007] [0.4758]

Table 7. The different estimations results of the MoL model pa-
rameters for the data sets

Data set-I Data set-II Data set-III

Method α̂ β̂ θ̂ A∗ W ∗ KS α̂ β̂ θ̂ A∗ W ∗ KS α̂ β̂ θ̂ A∗ W ∗ KS
LSE 0.6773 1.5845 0.9559 0.1593 0.0132 0.0677 2.9451 1.9433 0.0748 0.4434 0.0668 0.0701 1.0068 2.0508 0.8411 0.2629 0.0301 0.0626

WLSE 0.7205 1.8431 0.9376 0.1554 0.0131 0.0689 2.5905 0.0144 0.1124 0.5642 0.1054 0.0898 1.0586 2.1764 0.8467 0.2873 0.0369 0.0658
AD 0.7659 1.9442 0.9314 0.1417 0.0131 0.0595 2.8612 1.4052 0.0815 0.3394 0.0408 0.0661 1.0537 2.1279 0.8455 0.2619 0.0292 0.0642
CVM 0.7315 1.6954 0.9514 0.1481 0.0124 0.0666 2.9952 1.6715 0.0712 0.3852 0.0354 0.0585 1.0479 2.1197 0.8354 0.2673 0.0283 0.0683
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Table 8. Confidence limits for parameters α, β and θ based on
AN and ULR for the data sets

Data AN ULR
α β θ α β θ

Data set-I (0.5051, 1.1247) (−2.2231, 5.6466) (0.5167, 1.3669) (0.5628, 1.1177) (0, 4.6380) (0.5967, 1.3985)
Data set-II (2.2759, 3.1253) (−0.0451, 1.6400) (0.0465, 0.1470) (2.1268, 3.1366) (0, 3.2554) (0.0565, 0.1991)
Data set-III (0.8909, 1.4311) (0.9898, 4.0880) (0.5695, 1.0830) (0.9069, 1.4431) (1.1613, 3.9695) (0.5983, 1.1126)

fa�lure t�mes

f�

tt
e
d
 d

e
n
s

� t
y

0 1 2 3 4 5 6 7

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

MoL
MW
PL
GL
EPL
EL
L

0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

fa�lure t�mes

f�

tt
e

d
 c

d
fs

MoL

MW

PL

GL

EPL

EL

L

0.0 0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

Observed Probability

E
x
p
e
c
te

d
 P

ro
b
a
b
il
it
y

Figure 5. The fitted plots for the first data set
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Figure 6. The fitted plots for the second data set
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Figure 7. The fitted plots for the third data set
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Appendix

Proof of Theorem 1.
The pdf of the X is

f (x) =
θ

θ + 1
g1 (x;α, β, θ) +

1

θ + 1
g2 (x;α, β, θ)

Get the W (x) density ratio of MoL distribution in two parts as W1 (x) and W2 (x).
If W1 (x) and W2 (x) density ratios are increasing functions in x, the W (x) density
ratio is also an increasing function of x. The W1 (x) and W2 (x) ratios are given by

W1 (x) =
g1 (x;α, β, θ1)

g1 (x;α, β, θ2)

and

W2 (x) =
g2 (x;α, β, θ1)

g2 (x;α, β, θ2)

where g1 (x;α, β, θ) and g2 (x;α, β, θ) are the pdfs of MW and GG distributions
respectively. Firstly, the MW density ratio is given by

W1 (x) =
g1 (x;α, β, θ1)

g1 (x;α, β, θ2)
=

θ1 exp (βx− θ1x
α exp (βx))

θ2 exp (βx− θ2xα exp (βx))
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Figure 8. The PP plots for the first data set

Taking the derivative with respect to x,

W ′
1 (x) = −

>0︷ ︸︸ ︷
θ1x

α exp (βx) (α+ βx) exp (βx− θ1x
α exp (βx)) (θ1 − θ2)

xθ2 exp (βx− θ2x
α exp (βx))︸ ︷︷ ︸

>0

for θ1 < θ2, − ((θ1 − θ2)) is greater than zero. So W ′
1 (x) > 0 when θ1 < θ2 is

taken. W1 (x) is an increasing function in x. Secondly, the same steps are applied
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Figure 9. The PP plots for the second data set

for GG density ratio. The GG density ratio is given by

W2 (x) =
g2 (x;α, β, θ1)

g2 (x;α, β, θ2)
=

θ21 exp (−θ1x
α)

θ22 exp (−θ2xα)

Taking the derivative with respect to x,

W ′
2 (x) = −

>0︷ ︸︸ ︷
θ21 exp (−θ1x

α)xαα (θ1 − θ2)

xθ22 exp (−θ2x
α)︸ ︷︷ ︸

>0
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Figure 10. The PP plots for the third data set

for θ1 < θ2, − ((θ1 − θ2)) is greater than zero. So W ′
2 (x) > 0 when θ1 < θ2. W2 (x)

is an increasing function in x. Since both W1 (x) and W2 (x) are increasing func-
tions in x, W (x) = W1 (x) +W2 (x) is also an increasing function in x. The proof
is completed.

Proof of Theorem 2
Using the fact that mixed representation MoL pdf given in (2), the rth moment,
µ′
r = E (Xr), of the MoL distribution can be written by
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Figure 11. ULR confidence limits for parameters α, β and θ for
the real data III

µ′
r =

θ

θ + 1
E (Xr

MW ) +
1

θ + 1
E (Xr

GG) , (20)

where

E (Xr
GG) = Γ (r/α+ 2) θ−r/α (21)

is the rth moment of GG distribution and

E (Xr
MW ) =

∞∑
i1,...,ir=1

Ai1,...,irΓ (sr/α+ 1) θ−sr/α, (22)

is the rth moment of the MW distribution [8] with

Ai1,...,ir = ai1 , . . . , air , sr = i1 + · · ·+ ir

and

ai = (−1)
i+1

ii−2βi−1
[
αi−1 (i− 1)!

]−1
.

The proof is completed by using (21) and (22) in (20),

µ′
r =

1

θ + 1

Γ (r/α+ 2) θ−r/α +

∞∑
i1,...,ir=1

Ai1,...,irΓ (sr/α+ 1) θ1−sr/α

 .
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Abstract. The Fibonacci sequence has many interesting properties and stud-

ied by many mathematicians. The terms of this sequence appear in nature and
is connected with combinatorics and other branches of mathematics. In this

paper, we investigate the orbit of a special subgroup of the modular group.
Taking

Tc :=

(
c2 + c+ 1 −c

c2 1− c

)
∈ Γ0(c

2), c ∈ Z, c ̸= 0,

we determined the orbit

{T r
c (∞) : r ∈ N}.

Each rational number of this set is the form Pr(c)/Qr(c), where Pr(c) and

Qr(c) are the polynomials in Z[c]. It is shown that Pr(1), and Qr(1) the sum
of the coefficients of the polynomials Pr(c) and Qr(c) respectively, are the

Fibonacci numbers, where

Pr(c) =

r∑
s=0

(
2r − s

s

)
c2r−2s +

r∑
s=1

(
2r − s

s− 1

)
c2r−2s+1

and

Qr(c) =

r∑
s=1

(
2r − s

s− 1

)
c2r−2s+2.

1. Introduction

The modular group theory plays an important role in many areas of mathe-
matics, such as number theory, graph theory, automorphic function theory and
combinatorics. A natural action of the modular group on extended rationals, yields
interesting results. In [4], by using this action, Jones et. al. studied the suborbital
graphs known as the Farey graph for the modular group. Kader et al. studied the
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suborbital graphs for the extended modular group in [11]. Değer et. al. investi-
gate some results on continued fractions in suborbital graphs [1]. In [8, 9], Keskin
searched the suborbital graphs for the normalizer of Γ0(n). Güler et. al. exam-
ined relations between elliptic elements and circuits in graphs for the normalizer
of Γ0(n) in PSL(2,R) which turns to be a very important group in the studies of
moonshine [2].

Some results in these studies are directly related to the number theory. Köroğlu
et. al. obtained interesting results about the Fibonacci numbers and the suborbital
graphs by means of the action of a special subgroup of the modular group on
extended rationals [7]. Güler et. al. studied on solutions of congruence equations
that come from the action of the normalizer of Γ0(n) via suborbital graphs [3].

On the other hand, it is known that Pascal and Fibonacci numbers are crucial
subjects in combinatorics [5]. In [10], Falcon and Plaza obtained some results about
Fibonacci sequence and Pascal’s triangle.

The aim of the paper is to examine the action of a special subgroup of the
modular group on the extended rationals. With the idea of this group action,
some interesting results are obtained about the number theory. Many properties of
Fibonacci numbers are deduced and associated with the so-called Pascal’s triangle
mentioned.

2. Modular Group

Let PSL(2,R) denote the group of all linear fractional transformations
T : z → az+b

cz+d , where a, b, c and d are real and ad− bc = 1.

In terms of the matrix representation, the elements of PSL(2,R) correspond to the
matrices

±
(
a b
c d

)
; a, b, c, d ∈ R and ad− bc = 1.

These matrix representations are composed of the special linear group denoted by
SL(2,R). The modular group denoted by Γ is the subgroup of SL(2,R) consisting
of the 2 × 2 matrices having integer entries. Furthermore, the modular group is
generated by the matrices

x =

(
0 −1
1 0

)
, y =

(
1 −1
1 0

)
with defining relationships x2 = y3 = −I, where I is the identity matrix. Here, x
and y are cyclic matrices of order two and three, respectively. And we can write

Γ =< x, y > .

We remark that something very related to the trace Tr(

(
a b
c d

)
) := |a + d| will

be of great use in the classification. Note that, an element of modular group is
called elliptic, parabolic or hyperbolic if its trace Tr(·) < 2, Tr(·) = 2 or Tr(·) >
2 respectively. Important subgroups of the modular group Γ, called congruence
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subgroups, are given by imposing congruence relations on the associated matrices.
One of them is

Γ0(n) =

{(
a b
c d

)
∈ Γ : c ≡ 0 modn

}
.

3. The Action of Γ on Q̂ = Q ∪ {∞}

Any element of Q̂ (the extended rational numbers set) can be written as a reduced
fraction x

y , with x, y ∈ Z and (x, y) = 1; since x
y = −x

−y , this representation is unique.

We represent ∞ as 1
0 = −1

0 . The action z → az+b
cz+d of Γ on Q̂ now becomes(

a b
c d

)
:
x

y
→ ax+ by

cx+ dy
.

Note that as

c(ax+ by)− a(cx+ dy) = −y

and

d(ax+ by)− b(cx+ dy) = x,

it follows that (ax+by, cx+dy) = 1 and so (ax+by)/(cx+dy) is a reduced fraction.

4. Main Calculations

In this section, we investigate the action of a special subgroup of the congruence
subgroup Γ0(c

2) on extended rationals for some integer c ̸= 0. Here, we use the

action of the group generated by the commutator of the elements x =

(
1 1
0 1

)
and

y =

(
1 0
c 1

)
on Q̂. Let

xyx−1y−1 =

(
c2 + c+ 1 −c

c2 1− c

)
.

Since Tr(Tc) = c2 + 2 > 2, we can say the element Tc is hyperbolic element of
modular group for c ̸= 0.

Proposition 1. The fixed points of the element Tc are,

c+ 2

2c
±

√
c2 + 4

2c
. (1)

Furthermore, Tc generates an infinitely ordered subgroup < Tc > whose elements
are in congruence subgroup Γ0(c

2). At the same time, the group < Tc > generated
by Tc is a subgroup of commutator subgroup of modular group. Also, Tc(∞) =
c2+c+1

c2 is an element of Q̂.
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Proposition 2. The group Γ0(c
2) acts on the set M := { x

c2y : x, y ∈ Z, gcd(x, yc) =
1, y ̸= 0} ∪ {∞} transitively.

Note that, if y = 0 and x ̸= 0 then we assumed that, x
c2y = x

0 = ∞ such as the

definition of extended rationals in [4].

Proof. For arbitrary x, y ∈ Z, gcd(x, yc) = 1, there exists T =

(
x ∗
yc2 ∗

)
∈ Γ0(c

2).

such that T (∞) = x
yc2 . This completes the proof. □

We interested in sequence of natural powers of the number Tc(∞) denoted by
{T r

c (∞)}, where r ∈ N. Clearly {T r
c (∞)} ⊂ M ∪{∞}. Hence, there is some element

of Γ0(c
2) such that its orbit coincidence the terms of the sequence {T r

c (∞)}. The
following theorem show us how {T r

c (∞)} sequence proceeds.

Theorem 1. Let Tc =

(
c2 + c+ 1 −c

c2 1− c

)
, with c ∈ Z. Suppose

T r
c (∞) :=

Pr(c)

Qr(c)
.

Then

Pr := Pr(c) =

r∑
s=0

(
2r − s

s

)
c2r−2s +

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+1, (2)

Qr := Qr(c) =

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+2. (3)

Since Theorem 1 includes the combinatorial identities we frequently use some
combinatorial basics such as,(

r
s

)
=

(
r − 1
s− 1

)
+

(
r − 1
s

)
(4)

so-called the Pascal Identity for integers 1 ≤ s ≤ r.
Before the proof of the theorem, we give the following lemma.

Lemma 1. Assume that the identities (2) and (3) are true for any r > 1. Then,
we have

c2Pr − cQr =

r∑
s=0

(
2r − s

s

)
c2r−2s+2. (5)

Proof. By using (4) and other properties of the combinatorial theory we get proof
easily, as follow:

c2Pr − cQr = c2
r∑

s=0

(
2r − s

s

)
c2r−2s + c2

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+1
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− c

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+2

=

r∑
s=0

(
2r − s

s

)
c2r−2s+2 +

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+3

−
r∑

s=1

(
2r − s
s− 1

)
c2r−2s+3

=

r∑
s=0

(
2r − s

s

)
c2r−2s+2.

□

Now we give the proof of Theorem 1 by using the mathematical induction
method.

Proof. For r = 1, it is clear that

Tc(∞) =

(
c2 + c+ 1 −c

c2 1− c

)(
1
0

)
=

(
c2 + c+ 1

c2

)
.

So, P1 = c2 + c+ 1 and Q1 = c2. This shows that (2) and (3) are true for r = 1.
As

T r+1
c (∞) =

Pr+1

Qr+1
(6)

and

T r+1
c (∞) = Tc(T

r
c (∞)) =

(
c2 + c+ 1 −c

c2 1− c

)(
Pr

Qr

)
=

(
c2Pr + cPr + Pr − cQr

c2Pr − cQr +Qr

)
,

(7)

we get

Pr+1 = c2aPr + cPr + Pr − cQr (8)

and

Qr+1 = c2Pr − cQr +Qr. (9)

Now assume that (2) and (3) are true for any r > 1. We will show that (2) and (3)
are true for r+ 1. To complete the proof, by using Lemma 1, it can be shown that
the following two equations can be obtained from the identities (8) and (9).

Pr+1 =

r∑
s=0

(
2r − s

s

)
c2r−2s+2 + (c+ 1)Pr, (10)

Qr+1 =

r∑
s=0

(
2r − s

s

)
c2r−2s+2 +Qr. (11)
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Indeed, if we begin with the right side of the equation (10), then we obtain desired
results as follow.

r∑
s=0

(
2r − s

s

)
c2r−2s+2 + (c+ 1)Pr

=

r∑
s=0

(
2r − s

s

)
c2r−2s+2

+ (c+ 1)

[
r∑

s=0

(
2r − s

s

)
c2r−2s +

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+1

]

=

r∑
s=0

(
2r − s

s

)
c2r−2s+2 + c2r+1 +

r∑
s=1

(
2r − s

s

)
c2r−2s+1

+

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+2 +

r∑
s=0

(
2r − s

s

)
c2r−2s

+

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+1.

(12)

From the equation (12), we obtain

r+1∑
s=0

(
2r − s+ 2

s

)
c2r−2s+2

=

r∑
s=0

(
2r − s

s

)
c2r−2s+2 +

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+2

+

r∑
s=0

(
2r − s

s

)
c2r−2s,

(13)

and
r+1∑
s=1

(
2r − s+ 2

s− 1

)
c2r−2s+3

=

r∑
s=1

(
2r − s

s

)
c2r−2s+1 +

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+1 + c2r+1.

(14)

So, by using (13) and (14) we have

Pr+1 =

r+1∑
s=0

(
2r − s+ 2

s

)
c2r−2s+2 +

r+1∑
s=1

(
2r − s+ 2

s− 1

)
c2r−2s+3.

Hence, the equation (2) is true for r + 1.
By using Lemma 1, we get
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Qr+1 = c2Pr − cQr +Qr =

r∑
s=0

(
2r − s

s

)
c2r−2s+2 +Qr

=

r∑
s=0

(
2r − s

s

)
c2r−2s+2 +

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+2

= c2r+2 +

r∑
s=1

(
2r − s

s

)
c2r−2s+2 +

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+2

= c2r+2 +

r∑
s=1

[(
2r − s

s

)
+

(
2r − s
s− 1

)]
c2r−2s+2

(4)
= c2r+2 +

r∑
s=1

(
2r − s+ 1

s

)
c2r−2s+2

=

r∑
s=0

(
2r − s+ 1

s

)
c2r−2s+2

=

r+1∑
s=1

(
2r − s+ 2

s− 1

)
c2r−2s+4 = Qr+1.

This implies that (3) is true for r + 1.
□

5. Pascal Numbers and Fibonacci Sequence

In this section, we give some useful informations for Fibonacci numbers related
to our results in this study. The Fibonacci numbers Fr are given by the recurrence
in [6];

F1 = F2 = 1, Fr+2 = Fr+1 + Fr, r ≥ 1.

Thus, the first few Fibonacci numbers are

1, 1, 3, 5, 8, , 13, 21, . . .

Also, the elegant formula is

Fr+1 =

⌊r/2⌋∑
s=0

(
r − s
s

)
(15)

where ⌊r/2⌋ denotes the largest integer less than or equal to r/2 [6].
We consider coefficients of the polynomials Pr and Qr as shown below in first five

terms of Pr and Qr. Furthermore we investigate that these coefficents are related
to the Pascal triangle.

P1 = c2 + c+ 1

P2 = c4 + c3 + 3c2 + 2c+ 1
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P3 = c6 + c5 + 5c4 + 4c3 + 6c2 + 3c+ 1

P4 = c8 + c7 + 7c6 + 6c5 + 15c4 + 10c3 + 10c2 + 4c+ 1

P5 = c10 + c9 + 9c8 + 8c7 + 28c6 + 21c5 + 35c4 + 20c3 + 15c2 + 5c+ 1

...

Each sequences of numerators obtained from this action consists of numbers in
Pascal 2-Triangle as shown in Table 1. For example, second sequences of numerators
(1, 1, 3, 2, 1) are located by bold numbers in Table 1.

Table 1. The Pascal 2-Triangle

1
1

1 1
1 2

↗ ↘ ↗ ↘
1 3 1
1 4 3

1 5 6 1
1 6 10 4

1 7 15 10 1
1 8 21 20 5

1 9 28 35 15 1
1 10 36 56 35 6

Proposition 3. Sum of all coefficients of Pr gives the (2r + 2) − th Fibonacci
number denoted by F2r+2, i.e. Pr(1) = F2r+2.

Proof. We remark that sum of all coefficients of Pr is Pr(1). So, by using the
identities (4) and (15) we have desired result as follows:

Pr(1) = 1 +

r∑
s=1

[(
2r − s
s− 1

)
+

(
2r − s

s

)]
(4)
= 1 +

r∑
s=1

(
2r − s+ 1

s

)

=

r∑
s=0

(
2r − s+ 1

s

)

=

⌊(2r+1)/2⌋∑
s=0

(
2r − s+ 1

s

)
(15)
= F2r+2.
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□

Now, we consider the coefficients of the polynomial Qr. These coefficients are
written at the sub rows in Pascal 2-triangle in Table 1. For example, 1, 3, 1 and 1,
6, 10, 4. So the first five terms of Qr are listed as follow:

Q1 = c2

Q2 = c4 + 2c2

Q3 = c6 + 4c4 + 3c2

Q4 = c8 + 6c6 + 10c4 + 4c2

Q5 = c10 + 8c8 + 21c6 + 20c4 + 5c2

...

Proposition 4. Sum of all coefficients of Qr gives the 2r−th Fibonacci number,
i.e. Qr(1) = F2r.

Proof.

Qr(1) =

r∑
s=1

(
2r − s
s− 1

)
=

r−1∑
j=0

(
2r − (j + 1)

j

)

=

r−1∑
j=1

(
2r − 1− j

j

)
=

⌊(2r−1)/2⌋∑
j=0

(
2r − 1− j

j

)
(15)
= F2r.

□

Proposition 5. Pr(−1) = F2r−1.
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Proof.

Pr(−1) =

r∑
s=0

(
2r − s

s

)
−

r∑
s=1

(
2r − s
s− 1

)
=

r∑
s=0

(
2r − s

s

)
−

r−1∑
s=0

(
2r − s− 1

s

)

= 1 +

r−1∑
s=0

(
2r − s

s

)
−

r−1∑
s=0

(
2r − s− 1

s

)

= 1 +

r−1∑
s=0

[(
2r − s

s

)
−

(
2r − s− 1

s

)]
(4)
= 1 +

r−1∑
s=1

(
2r − s− 1

s− 1

)
= 1 +

r−2∑
s=0

(
2(r − 1)− s

s

)

= 1 +

u−1∑
s=0

(
2u− s

s

)
=

u∑
s=0

(
2u− s

s

)
(15)
= F2u+1 = F2r−1.

□

Proposition 6. Sum of the coefficients of odd order terms of Pr is F2r.

Proof. We remark that the sum of the coefficients of odd order terms of Pr is
Pr(1)−Pr(−1)

2 . Therefore, by using Proposition 3, Proposition 5 and recurrence rela-
tions of Fibonacci numbers, we obtain the desired result as follows:

Pr(1)− Pr(−1)

2
=

F2r+2 − F2r−1

2
=

F2r + F2r+1 − F2r−1

2

=
F2r−1 + 2F2r − F2r−1

2
= F2r.

□

Also considering the scope of this study, we can also talk about k−Fibonacci
numbers. Let k ̸= 0 be an integer and Fk,0 = 0, Fk,1 = 1, and Fk,n = kFk,n−1 +
Fk,n−2 for n ≥ 2. The sequence (Fk,n) is called k−Fibonacci sequence. A few terms
of this sequence are

0, 1, k, k2 + 1, k3 + 2k, k4 + 3k2 + 1, k5 + 4k3 + 3k, k6 + 5k4 + 6k2 + 1, . . .

In [10], it is proved that

Fk,n =

⌊n−1
2 ⌋∑

i=0

(
n− 1− i

i

)
kn−1−2i for n ≥ 2.

That is,

Fk,n+1 =

⌊n
2 ⌋∑

i=0

(
n− i
i

)
kn−2i for n ≥ 1.



SOME GROUP ACTIONS AND FIBONACCI NUMBERS 283

Considering this result for k = c and n = r, we can give the following two conjec-
tures:

Qr = Qr(c) = cFc,2r

and
Pr = Pr(c) = Fc,2r + Fc,2r+1.

6. Conclusion

In this paper, we examined the action of a special subgroup of the congruence
subgroup on Q̂. Using this action we obtained some results on Pascal and Fibonacci
numbers via the modular group. The results obtained are important for the fields
of number theory and combinatorics. Further, it has also been observed that

∞ → Tc(∞) → T 2
c (∞) → · · · → T r

c (∞) → T r+1
c (∞) → · · ·

is an infinitely long path in the suborbital graph G(∞, c2+c+1
c2 ). Hence, this action

is related to suborbital graphs theory which firstly studied by Jones et. al. in the
reference [4]. This relationship can be examined in the future studies.
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Abstract. In this work, we firstly introduce notions of principal directed

curves and principal donor curves which are associated curves of a Frenet curve

in the dual Lorentzian space D3
1. We give some relations between the curvature

and the torsion of a dual principal directed curve and the curvature and the

torsion of a dual principal donor curve. We show that the dual principal
directed curve of a dual general helix is a plane curve and obtain the equation

of dual general helix by using position vector of plane curve. Then we show

that the principal donor curve of a circle in D2 or a hyperbola in D2
1 and

the principal directed curve of a slant helix in D3
1 are a helix and general

helix, respectively. We explain with an example for the second case. Finally,
according to causal character of the principal donor curve of principal directed

rectifying curve in D3
1, we show this curve to correspond to any timelike or

spacelike ruled surface in Minkowski 3−space R3
1.

1. Introduction

It is very interesting to study curves in both dual space D3 and dual Lorentzian
space D3

1. Because a differentiable curve on dual unit sphere in D3 represents a ruled
surface in Euclidean 3−space R3 with the aid of the E. Study mapping. Similarly,
a differentiable curve on dual pseudo hyperbolic space H2

0 in D3
1 corresponds to a

timelike ruled surface in Minkowski 3−space R3
1 and the timelike (resp. spacelike)

curve on dual pseudo sphere S21 in D3
1 corresponds to any spacelike (resp. timelike)

ruled surface in R3
1. Therefore, we can say something about ruled surfaces in R3 or

R3
1 when examining curves in D3 or D3

1, respectively [9, 16–18].

Keywords. Dual Lorentzian space, associated curves, dual general helix, dual slant helix, prin-
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In this paper, we examine associated curves of a Frenet curve in D3
1 and show

these curves to correspond to any timelike or spacelike ruled surfaces in Minkowski
3−space R3

1. For this purpose, we recall the fundamental properties of R3
1 and D3

1.
R3

1
is the 3−dimensional Lorentzian space (or Minkowski 3−space) with sym-

metric, bilinear and non-degenerate metric given by

⟨u, v⟩ = −u1v1 + u2v2 + u3v3

for vectors u = (u1, u2, u3) and v = (v1, v2, v3) in Euclidean 3−space R3. In R3
1,

the Lorentzian vector product of u and v is defined by

u× v = (u3v2 − u2v3, u3v1 − u1v3, u1v2 − u2v1).

We know that a vector and a curve have three different categories, namely, spacelike,
timelike and null, depending on their causal characters. Then a vector u is said to
be spacelike, timelike or null (lightlike) if ⟨u, u⟩ > 0 (or u = 0), ⟨u, u⟩ < 0, ⟨u, u⟩ = 0
(and u ̸= 0), respectively. Similarly, a curve γ is called spacelike, timelike or null
(lightlike) if its velocity vector is spacelike, timelike or null vector, respectively. We
also state that Frenet curves are timelike curves and spacelike curves with spacelike
or timelike principal normal vector. Lastly, a surface is named non-degenerate (or
degenerate) if induced metric on its tangent plane is non-degenerate (or degenerate).
The pseudo sphere of radius r > 0 in R3

1 denoted by

S2
1 = {p ∈ R3

1 : ⟨p, p⟩ = r2, r > 0}

and the pseudo hyperbolic space of radius r > 0 in R3
1 denoted by

H2
0 = {p ∈ R3

1 : ⟨p, p⟩ = −r2, r > 0}

are non-degenerate surfaces [2, 12,13].
A number expressed as

â = a+ ξa∗ or â = (a, a∗)

is called a dual number for ∀a, a∗ ∈ R and the set of all dual numbers is indicated
by D, where ξ is called as dual unit with properties

ξ ̸= 0, 0ξ = ξ0 = 0, 1ξ = ξ1 = ξ, ξ2 = 0.

Equality and some operations on D are defined as follows:

i) Equality: â = b̂ for â = a+ ξa∗, b̂ = b+ ξb∗ iff a = b and a∗ = b∗.

ii) Addition: â+ b̂ = (a+ ξa∗) + (b+ ξb∗) = (a+ b) + ξ(a∗ + b∗).

iii) Multiplication: âb̂ = (a+ ξa∗)(b+ ξb∗) = ab+ ξ(ab∗ + a∗b).

iv) Division: â

b̂
= a

b + ξ(a
∗b−ab∗

b2 ), b ̸= 0.

We note that D is a commutative ring according to the above addition and multi-
plication operations. Also f on D is defined by

f(â) = f(a+ ξa∗) = f(a) + ξa∗f
′
(a),
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where f
′
represents the derivative of f . For example,

sin(â) = sin(a+ ξa∗) = sin a+ ξa∗ cos a

(see [9, 17,19] for more details).
A dual vector x̂ is an ordered triple of dual numbers (x̂1, x̂2, x̂3) and also a dual

vector x̂ has the form x̂ = x + ξx∗ for ∀x = (x1, x2, x3), x
∗ = (x∗

1, x
∗
2, x

∗
3) ∈ R3,

where x and x∗ are the real and dual parts of x̂, respectively. The set of all dual
vectors which is denoted as D3 is a module on the ring D. The Lorentzian inner
product of dual vectors x̂ and ŷ is defined by

⟨x̂, ŷ⟩ = ⟨x, y⟩+ ξ(⟨x, y∗⟩+ ⟨x∗, y⟩).

The dual space D3 together with this Lorentzian inner product is called dual
Lorentzian space and it is represented by D3

1. The causal characterization of a
dual vector x̂ = x + ξx∗ depends on the causal characterization of x, that is a
dual vector x̂ is called to be spacelike, timelike, null (lightlike) if the vector x is
spacelike, timelike, null (lightlike), respectively. The Lorentzian vector product of
dual vectors x̂ = (x̂1, x̂2, x̂3) and ŷ = (ŷ1, ŷ2, ŷ3) in D3

1 is defined by

x̂× ŷ = (x̂3ŷ2 − x̂2ŷ3, x̂3ŷ1 − x̂1ŷ3, x̂1ŷ2 − x̂2ŷ1).

If x ̸= 0, then the norm of x̂ is given by

∥x̂∥ =
√
|< x̂, x̂ >| = ∥x∥+ ξ

< x, x∗ >

∥x∥2
.

A dual vector x̂ with norm 1+ξ0 = (1, 0) ∈ D is called a dual unit vector. Therefore,
dual pseudo sphere and dual pseudo hyperbolic space are defined by

S21 =
{
x̂ = x+ ξx∗| ∥x̂∥ = (1, 0) ; x, x∗ ∈ R3

1 and the vector x̂ is spacelike
}

and

H2
0 =

{
x̂ = x+ ξx∗| ∥x̂∥ = (1, 0) ; x, x∗ ∈ R3

1 and the vector x̂ is timelike
}
,

respectively.
Let γ̂(σ) = γ(σ) + ξγ∗(σ) be a dual curve with parameter σ ∈ R in D3

1. The
real curve γ(σ) is called the (real) indicatrix of γ̂(σ). If every γ(σ) and γ∗(σ) are
differentiable, then γ̂(σ) is differentiable in D3

1. The dual arc length of the dual
curve γ̂ is given by

ŝ =

s∫
0

∥γ̂(σ)′∥ dσ =

s∫
0

∥γ(σ)′∥ dσ + ξ

s∫
0

< t, γ∗(σ) > dσ = s+ ξs∗,

where s and t is arclength and the unit tangent vector of γ, respectively. As in
R3

1 we call timelike dual curves and spacelike dual curves with spacelike or timelike
dual principal normal vector as dual Frenet curves (or Frenet curves in D3

1). Assume
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that γ̂ is a reparametrization curve with the parametrization s of the indicatrix.
Hence the dual Frenet formulae for the dual unit speed Frenet curve γ̂ are

d

dŝ

 t̂
n̂

b̂

 =

 0 κ̂ 0
−ε0ε1κ̂ 0 τ̂

0 −ε1ε2τ̂ 0

 t̂
n̂

b̂

 , (1)

such that < t, t >= ε0 = ±1, < n, n >= ε1 = ±1 and < b, b >= ε2 = ±1, where

κ̂ : R → D
s → κ̂(s) = κ(s) + ξκ∗(s)

is nowhere pure dual curvature and

τ̂ : R → D
s → τ̂(s) = τ(s) + ξτ∗(s)

is nowhere pure dual torsion [4, 14,16–20].

Let γ̂ be a dual unit speed Frenet curve in D3
1 and Ŵ be a dual unit vector field

along γ̂. The curve γ̂0 in D3
1 is called the Ŵ−directional dual curve of γ̂ if the dual

unit tangent vector t̂0 of γ̂0 is equal to Ŵ . Moreover γ̂ is called the Ŵ−donor dual
curve of γ̂0. Thus, we can define three different dual curves by special selection of

Ŵ :
i) If Ŵ = t̂, then t̂0 = t̂. In this case γ̂ and γ̂0 are the same dual curves.

ii) If Ŵ = n̂, then t̂0 = n̂. In this case γ̂0 is called the dual principal directional
curve of γ̂ and γ̂ is called the dual principal donor curve of γ̂0.

iii) If Ŵ = b̂ then t̂0 = b̂. In this case γ̂0 is called the dual binormal directional
curve of γ̂ and γ̂ is called the dual binormal donor curve of γ̂0 [1, 7, 8, 11].

In this paper, we obtain firstly some relations between the curvature and the
torsion of a principal directed curve and the curvature and the torsion of a principal
donor curve in D3

1. We see that the principal directed curve of a dual general helix is
a plane curve and give the equation of a dual general helix by using position vector
of a plane curve. Then we show that the principal donor curve of a circle in D2 or a
hyperbola in D2

1 is a dual helix and we also obtain that the principal directed curve
of a dual slant helix is a dual general helix. We give an example for simple closed
dual slant helix. Finally, according to causal character of the principal donor curve
of a principal directed rectifying curve in D3

1, we show that this curve to correspond
to any timelike or spacelike ruled surface in Minkowski 3−space R3

1.

2. Principal Directional and Principal Donor Curves of a Frenet
Curve in D3

1

In this section, we examine principal directional and principal donor curves of
a Frenet curve in the dual Lorentzian space D3

1. Firstly, we state that the causal
characterization of a curve γ̂ in D3

1 depends on the causal characterization of a curve
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γ which is the real part of γ̂. Then we give the following Lemma from Lemma 3.1
in [8].

Lemma 1. There is no timelike dual general helix or spacelike dual general helix
with spacelike principal normal that provides the condition

∣∣ τ̂
κ̂

∣∣ = (1, 0) in the dual

Lorentzian space D3
1.

Now we give the following theorem which expresses the relationship between the
dual curvature and torsion of γ̂(s) and the dual curvature and torsion of γ̂0 which
is the principal direction of γ̂.

Theorem 1. Let γ̂ be a dual unit speed Frenet curve with the dual curvature κ̂ and
the dual torsion τ̂ and γ̂0 be the principal directional curve of γ̂ in D3

1. Then the
dual curvature κ̂0 and the dual torsion τ̂0 of γ̂0 is

κ̂0 =

√
ε̃1

(
ε0κ̂

2 + ε2τ̂
2
)
, τ̂0 =

ε̃2ε1ε2κ̂
2

ε0κ̂
2 + ε2τ̂

2

d

dŝ

(
τ̂

κ̂

)
, (2)

where ε0 =< t, t >, ε1 =< n, n >, ε2 =< b, b >, ε̃1 =< n0, n0 > and ε̃2 =< b0, b0 >
such that {t, n, b} and {t0, n0, b0} Frenet frames of the curves γ and γ0, respectively.

Proof. Since γ̂0 is the principal direction curve of a dual unit speed Frenet curve

γ̂, the equations t̂0 = n̂ and dt̂0
dŝ = dn̂

dŝ are provided. Considering the dual Frenet
formulae (1) we have

dt̂0
dŝ

= −ε0ε1κ̂t̂+ τ̂ b̂

and

κ̂2
0 < n̂0, n̂0 >= ε0κ̂

2 + ε2τ̂
2.

Therefore, we obtain

< n0, n0 >=
ε0κ

2 + ε2τ
2

κ2
0

. (3)

The dual curvature of γ̂ is also

κ̂0 =

√
ε̃1

(
ε0κ̂

2 + ε2τ̂
2
)
.

Thus, the dual Frenet vectors along γ̂0 are

t̂0 = n̂, n̂0 =
−ε0ε1κ̂t̂+ τ̂ b̂√
ε̃1

(
ε0κ̂

2 + ε2τ̂
2
) , b̂0 = ε̃0ε̃1

κ̂b̂+ ε1ε2τ̂ t̂√
ε̃1

(
ε0κ̂

2 + ε2τ̂
2
) . (4)

By taking differentiation of equation (4) with respect to ŝ and this is written in the
equation

τ̂0 = −ε̃2 <
db̂0
dŝ

, n̂0 >,
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we have

τ̂0 = −ε̃2 <

(
ε0ε2

κ̂(κ̂ dτ̂
dŝ −τ̂ dκ̂

dŝ )

(ε̃1(ε0κ̂2+ε2τ̂
2))

3
2

)
t̂−

(
ε1ε2

τ̂(κ̂ dτ̂
dŝ −τ̂ dκ̂

dŝ )

(ε̃1(ε0κ̂2+ε2τ̂
2))

3
2

)
b̂, −ε0ε1κ̂t̂+τ̂ b̂√

ε̃1(ε0κ̂2+ε2τ̂
2)

> .

Then we get

τ̂0 =
ε̃2ε1ε2κ̂

2

ε0κ̂
2 + ε2τ̂

2

d

dŝ

(
τ̂

κ̂

)
.

□

We can write the dual curvature κ̂ and the dual torsion τ̂ of γ̂ in terms of the
dual curvature κ̂0 and the dual torsion τ̂0 of γ̂0 in the following theorem:

Theorem 2. Let γ̂ be a dual unit speed spacelike Frenet curve having a spacelike
principal normal with the dual curvature κ̂ and the dual torsion τ̂ and γ̂0 with the
dual curvature κ̂0 and the dual torsion τ̂0 be a spacelike principal direction of γ̂ in
D3

1.
(a) If κ > |τ |, then γ̂0 is a spacelike dual curve with spacelike dual principal normal.
Then the curvature and the torsion of principal donor curve of γ̂0 are

κ̂(s) = κ̂0(s) cosh(

∫
τ̂0(s)dŝ), τ̂(s) = κ̂0(s) sinh(

∫
τ̂0(s)dŝ) (5)

(b) If κ < |τ |, then γ̂0 is a spacelike dual curve with timelike dual principal normal.
Then the curvature and the torsion of principal donor curve of γ̂0 are

κ̂(s) = κ̂0(s) sinh(

∫
τ̂0(s)dŝ), τ̂(s) = −κ̂0(s) cosh(

∫
τ̂0(s)dŝ) (6)

Proof. (a) If κ > |τ |, as a result of (3), γ̂0 is a spacelike dual curve with spacelike
dual principal normal. Then by using (2) the curvature and the torsion functions
of γ̂0 are,

κ̂2
0(s) = κ̂2(s)− τ̂2(s), τ̂0(s) =

κ̂2(s)

κ̂2(s)− τ̂2(s)

d

dŝ

(
τ̂(s)

κ̂(s)

)
(7)

respectively. Firstly we replace τ̂
κ̂ in the second equation of (7) with f̂ . Then the

second equation of (7) is rewritten as

τ̂0(s) =
1

1−
(

τ̂(s)
κ̂(s)

)2 df̂(s)dŝ
=

1

1− f̂2(s)

df̂(s)

dŝ
,

where

f̂(s) = f(s) + ξf∗(s) =
τ(s)

κ(s)
+ ξ(

τ∗(s)

κ(s)
− τ(s)κ∗(s)

κ2(s)
).

On the other hand, since κ > |τ |, |f(s)| is less than 1. Thus, we get that∫
τ̂0(s)dŝ =

∫ df̂(s)
dŝ

1− f̂2(s)
dŝ = tanh−1 f̂(s) + ĉ,
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where ĉ is dual constant. If we take ĉ = 0 without breaking the generality, then we
obtain

f̂(s) = tanh

(∫
τ̂0(s)dŝ

)
.

By using f̂ = τ̂
κ̂ we obtain

τ̂(s) = tanh

(∫
τ̂0(s)dŝ

)
κ̂(s).

If this equation is written in place of the first equation of (7) and the necessary
arrangements are made, then both equations of (5) are obtained.

(b) The proof is similar to the proof of the statement (a). □

Similarly, we can write Theorem 3 and Theorem 4.

Theorem 3. Let γ̂ be a dual unit speed spacelike Frenet curve having a timelike
principal normal with the dual curvature κ̂ and the dual torsion τ̂ and γ̂0 with the
dual curvature κ̂0 and the dual torsion τ̂0 be a timelike principal direction of γ̂ in
D3

1. Then the dual curvature and the dual torsion of principal donor curve of γ̂0

are

κ̂(s) = κ̂0(s) cos(

∫
τ̂0(s)dŝ), τ̂(s) = −κ̂0(s) sin(

∫
τ̂0(s)dŝ). (8)

Theorem 4. Let γ̂ be a dual unit speed timelike Frenet curve with the dual curvature
κ̂ and the dual torsion τ̂ and γ̂0 with the dual curvature κ̂0 and the dual torsion τ̂0
be principal direction of γ̂ in D3

1.
(a) If κ < |τ |, then γ̂0 is a spacelike dual curve with spacelike dual principal normal.
Then the dual curvature and the dual torsion of principal donor curve of γ̂0 are

κ̂(s) = κ̂0(s) sinh(

∫
τ̂0(s)dŝ), τ̂(s) = κ̂0(s) cosh(

∫
τ̂0(s)dŝ). (9)

(b) If κ > |τ |, then γ̂0 is a spacelike dual curve with timelike dual principal normal.
Then the dual curvature and the dual torsion of principal donor curve of γ̂0 are

κ̂(s) = κ̂0(s) cosh(

∫
τ̂0(s)dŝ), τ̂(s) = −κ̂0(s) sinh(

∫
τ̂0(s)dŝ). (10)

3. Principal Directional Curves of General Helices in D3
1

In this section, we show that principal directional curves of general helices in D3
1

is plane curves. Then we obtain the position vectors of dual general helices with
the aid of this plane curves (see [5, 12] for general helix in R3

1
).

Theorem 5. A dual unit speed Frenet curve γ̂ in D3
1 is a general helix iff the

principal directional curve of γ̂ is a plane curve.
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Proof. Since γ̂ is a dual unit speed Frenet curve, we will only give the proof for a
spacelike dual Frenet curve with timelike principal normal.

(⇒) Let γ̂(s) be a dual unit speed Frenet curve with the dual curvature κ̂ and
the dual torsion τ̂ and γ̂0 be the principal directional curve of γ̂ in D3

1. Then it is
clear that

τ̂

κ̂
= − tan

(∫
τ̂0(s)dŝ

)
(11)

from the equation (8). By taking derivative of (11) with respect to ŝ we have

d

dŝ

(
τ̂

κ̂

)
= −τ̂0(s) sec

2

(∫
τ̂0(s)dŝ

)
= 0.

Since sec2
(∫

τ̂0(s)dŝ
)
̸= 0, we say that τ̂0(s) = 0. Then γ̂0 is a plane curve in D3

1
.

(⇐) Let γ̂0 which is principal directional curve of γ̂ be a plane curve in D3
1
.

Then τ̂0 = 0. As a result of κ̂ ̸= 0, d
dŝ

(
τ̂
κ̂

)
= 0 and τ̂

κ̂ is a dual constant from (2).

Consequently the Frenet curve γ̂ is a general helix in D3
1. □

Similarly, we can also prove in case γ̂ is a timelike curve or a spacelike curve
with spacelike principal normal D3

1.

Theorem 6. Let γ̂ be a spacelike plane curve with the dual curvature κ̂ in D3
1.

(a) If the principal normal vector of γ̂ in D3
1 is a spacelike, then the position vector

of γ̂ is given by

γ̂(s) =

∫ (
0, cos

(∫
κ̂(s)dŝ

)
, sin

(∫
κ̂(s)dŝ

))
dŝ, (12)

(b) If the principal normal vector of γ̂ in D3
1 is a timelike, then the position vector

of γ̂ is given by

γ̂(s) =

∫ (
sinh

(∫
κ̂(s)dŝ

)
, cosh

(∫
κ̂(s)dŝ

)
, 0

)
dŝ. (13)

Proof. Let γ̂ be a spacelike plane curve with the dual curvature κ̂ in D3
1. Since γ̂

is a spacelike dual curve,
〈
t̂, t̂
〉
= (1, 0). On the other hand if we consider the dual

Frenet formulae (1) and θ̂ =
∫
κ̂(s)dŝ, then the following statements hold:

(a) If the principal normal vector of γ̂ is spacelike, then t̂(s) =
(
0, cos θ̂, sin θ̂

)
.

Therefore, we have the equation (12).

(b) If the principal normal vector of γ̂ is timelike, then t̂(s) =
(
sinh θ̂, cosh θ̂, 0

)
.

Therefore, we have the equation (13). □

Theorem 7. The position vector γ̂ of a timelike plane curve with the dual curvature κ̂
in D3

1 is given by

γ̂(s) =

∫ (
cosh

(∫
κ̂(s)dŝ

)
, sinh

(∫
κ̂(s)dŝ

)
, 0

)
dŝ. (14)
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Theorem 8. Let γ̂ be a dual unit speed spacelike general helix having a spacelike
principal normal with the dual curvature κ̂ and the dual torsion τ̂ = m̂κ̂ for dual
constant m̂ = m+ ξm∗ in D3

1.

(a) If |τ |
κ = |m| < 1, then the position vector γ̂ is given by

γ̂(s) =
1√

1− m̂2

∫ (
m̂, sin

(√
1− m̂2

∫
κ̂(s)dŝ

)
,− cos

(√
1− m̂2

∫
κ̂(s)dŝ

))
dŝ,

(15)
and the principal directional curve of γ̂ is a spacelike plane curve with a spacelike
principal normal in D2,

(b) If |τ |
κ = |m| > 1 then the position vector γ̂ is given by

γ̂(s) =
1√

m̂2 − 1

∫ (
cosh

(√
m̂2 − 1

∫
κ̂(s)dŝ

)
, sinh

(√
m̂2 − 1

∫
κ̂(s)dŝ

)
, m̂

)
dŝ.

(16)
and the principal directional curve of γ̂ is a spacelike plane curve with a timelike
principal normal in D2

1.

Proof. Let γ̂0 be principal directional curve of γ̂ in D3
1. γ̂0 is a spacelike dual curve

because γ̂ has a spacelike principal normal.
In case (a) we can say that γ̂0 has the dual Frenet vectors,

t̂0(s) =
(
0, cos

[∫
κ̂0(s)dŝ

]
, sin

[∫
κ̂0(s)dŝ

])
n̂0(s) =

(
0,− sin

[∫
κ̂0(s)dŝ

]
, cos

[∫
κ̂0(s)dŝ

])
b̂0(s) = (1, 0, 0)

by using (12). If we consider the equation (11) and 0 < |m| < 1, then the equations

κ̂(s) =
κ̂0(s)√
1− m̂2

and τ̂(s) = m̂κ̂(s)

are hold. From (4) and κ̂0(s) = κ̂(s)
√
1− m̂2, the dual unit tangent vector t̂ is

obtained as

t̂ =
1√

1− m̂2

(
m̂, sin

[√
1− m̂2

∫
κ̂(s)dŝ

]
,− cos

[√
1− m̂2

∫
κ̂(s)dŝ

])
.

Hence, if |τ |
κ = |m| < 1, then a spacelike general helix with a spacelike principal

normal in D3
1 is given by the equation (15).

(b) The proof is similar to the proof of the statement (a). □

Similarly, we have Theorem 9 and Theorem 10.

Theorem 9. Let γ̂ be a dual unit speed spacelike general helix having timelike
principal normal with the dual curvature κ̂ and the dual torsion τ̂ = m̂κ̂ for dual
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constant m̂ = m+ ξm∗ in D3
1. The position vector of γ̂ is given by

γ̂(s) =
1√

1 + m̂2

∫ (
sinh

[√
1 + m̂2

∫
κ̂(s)dŝ

]
, cosh

[√
1 + m̂2

∫
κ̂(s)dŝ

]
,−m̂

)
dŝ

(17)
and the principal directional curve of γ̂ is a timelike plane curve in D2

1..

Theorem 10. Let γ̂ be a dual unit speed timelike general helix with the dual cur-
vature κ̂ and the dual torsion τ̂ = m̂κ̂ for dual constant m̂ = m+ ξm∗ in D3

1.

(a) If |τ |
κ = |m| > 1, then the position vector of γ̂ is given by

γ̂(s) =
1√

m̂2 − 1

∫ (
m̂, sin

[√
m̂2 − 1

∫
κ̂(s)dŝ

]
,− cos

[√
m̂2 − 1

∫
κ̂(s)dŝ

])
dŝ

(18)
and the principal directional curve of γ̂ is a spacelike plane curve with spacelike
principal normal in D2,

(b) If |τ |
κ = |m| < 1, then the position vector of γ̂ is given by

γ̂(s) =
1√

1− m̂2

∫ (
cosh

[√
1− m̂2

∫
κ̂(s)dŝ

]
, sinh

[√
1− m̂2

∫
κ̂(s)dŝ

]
, m̂

)
dŝ

(19)
and the principal directional curve of γ̂ is a spacelike plane curve with timelike
principal normal in D2

1.

Taking into consideration the above three theorems, the following three results
are obtained:

Corollary 1. Let γ̂ be a dual unit speed spacelike Frenet curve with a spacelike
principal normal and γ̂0 be a spacelike principal directional curve of γ̂ in D3

1. Then
γ̂0 is a plane curve in D2 or D2

1 iff γ̂ is a general helix in D3
1 with inequalities κ > |τ |

or κ < |τ | , respectively. Furthermore γ̂0 is a circle in D2 or spacelike hyperbola in
D2

1 if and only if γ̂ is a helix in D3
1 with κ > |τ | or a helix κ < |τ | ,respectively.

Corollary 2. Let γ̂ be a dual unit speed spacelike Frenet curve with a timelike
principal normal and γ̂0 be a timelike principal directional curve of γ̂ in D3

1. Then
γ̂0 is a plane curve iff γ̂ is a general helix in D3

1. Furthermore γ̂0 is a timelike
hyperbola if and only if γ̂ is a helix in D3

1.

Corollary 3. Let γ̂ be a dual unit speed timelike Frenet curve and γ̂0 be a spacelike
principal directional curve of γ̂ in D3

1. Then γ̂0 is a plane curve in D2 or D2
1 iff γ̂ is

a general helix in D3
1 with inequalities κ < |τ | or κ > |τ | , respectively. Furthermore

γ̂0 is a circle in D2 or a spacelike hyperbola in D2
1 iff γ̂ is a helix in D3

1 with κ < |τ |
or κ > |τ |, respectively.

Consequently, the general helices are characterized in D3
1 according to the asso-

ciated curve as follows:

Theorem 11. A general helix in D3
1 is the principal donor curve of some planar

curves.
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4. Principal Directional Curves of Slant Helices in D3
1

In this section, we examine the causal characters of general helices which are
principal directional curves of slant helices according to causal characters of slant
helices in D3

1
. We are state that the connections between general helices and slant

helices in D3
1
as follows:

Let γ̂ be a Frenet curve in D3
1
and Ŵ be a dual unit vector along the dual Frenet

curve γ̂. If Ŵ has a constant dual angle with a constant dual vector V̂ along γ̂,

then the tangent vector of γ̂0, which is the Ŵ−directional curve of γ̂, also has a

constant dual angle with V̂ along γ̂. Conversely, if the dual unit tangent vector of

the Frenet curve γ̂0 in D3
1
makes a constant dual angle with the constant vector V̂

in D3
1
then γ̂ is the Ŵ−donor curve of γ̂0.

In the expression given above, we take principal normal vector instead of Ŵ
along γ̂ in D3

1
. Then γ̂ is a dual slant helix (slant helix in D3

1) that is the principal

normal vector of γ̂ makes a constant dual angle with a constant vector V̂ in D3
1 iff

the principal directional curve of γ̂ is a general helix in D3
1 that is the dual unit

tangent vector of γ̂0 makes a constant dual angle with a constant vector V̂ in D3
1.

On the other hand, a slant helix is the principal donor curve of a general helix and
a general helix is the principal directional curve of a slant helix in D3

1 (see [3, 15]
for slant helices)

Now let γ̂0 be a spacelike general helix having a spacelike dual principal normal
with the dual curvature κ̂ and the dual torsion τ̂0 = ĉκ̂0 for dual constant ĉ in
D3

1
. Then the spacelike principal donor curve γ̂1 of γ̂0 has the dual curvature κ̂1 =

κ̂0(s) cosh
[
ĉ
∫
κ̂0(s)dŝ

]
and the dual torsion τ̂1 = κ̂0(s) sinh

[
ĉ
∫
κ̂0(s)dŝ

]
. A time-

like principal donor curve γ̂2 of γ̂0 has the dual curvature κ̂2 = κ̂0(s) sinh
[
ĉ
∫
κ̂0(s)dŝ

]
and the dual torsion τ̂2 = κ̂0(s) cosh

[
ĉ
∫
κ̂0(s)dŝ

]
. The dual Frenet curves γ̂1 and

γ̂2 hold the equations of slant helices:

κ̂2
1(

κ̂2
1 − τ̂21

)3/2 d

dŝ

(
τ̂1
κ̂1

)
=

cosh2
[
ĉ
∫
κ̂0(s)dŝ

]
κ̂0

d

dŝ

(
tanh

[
ĉ

∫
κ̂0(s)dŝ

])
= ĉ (20)

and

−κ̂2
2(

τ̂22 − κ̂2
2

)3/2 d

dŝ

(
τ̂2
κ̂2

)
= −

sinh2
[
ĉ
∫
κ̂0(s)dŝ

]
κ̂0

d

dŝ

(
coth

[
ĉ

∫
κ̂0(s)dŝ

])
= ĉ,

(21)
respectively.

Let γ̂0 be a spacelike general helix having a timelike principal normal with
the dual curvature κ̂ and the dual torsion τ̂0 = ĉκ̂0 for dual constant ĉ in D3

1
.

Then the spacelike principal donor curve γ̂3 of γ̂0 has the dual curvature κ̂3 =
κ̂0(s) sinh

[
ĉ
∫
κ̂0(s)dŝ

]
and the dual torsion τ̂3 = −κ̂0(s) cosh

[
ĉ
∫
κ̂0(s)dŝ

]
. The
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timelike principal donor curve γ̂4 of γ̂0 has the dual curvature κ̂4 = κ̂0(s) cosh
[
ĉ
∫
κ̂0(s)dŝ

]
and the dual torsion τ̂4 = −κ̂0(s) sinh

[
ĉ
∫
κ̂0(s)dŝ

]
. The dual Frenet curves γ̂3 and

γ̂4 hold the equations of slant helices:

κ̂2
3(

τ̂23 − κ̂2
3

)3/2 d

dŝ

(
τ̂3
κ̂3

)
=

sinh2
[
ĉ
∫
κ̂0dŝ

]
κ̂0(s)

d

dŝ

(
− coth

[
ĉ

∫
κ̂0dŝ

])
= ĉ (22)

and

−κ̂2
4(

κ̂2
4 − τ̂24

)3/2 d

dŝ

(
τ̂4
κ̂4

)
= −

cosh2
[
ĉ
∫
κ̂0(s)dŝ

]
κ̂0(s)

d

dŝ

(
− tanh

[
ĉ

∫
κ̂0(s)dŝ

])
= ĉ,

(23)
respectively.

Finally, let γ̂0 be a timelike general helix with the dual curvature κ̂ and the
dual torsion τ̂0 = ĉκ̂0 for dual constant ĉ in D3

1
. Then the principal donor curve

γ̂5 of γ̂0 has the dual curvature κ̂5 = κ̂0(s) cos
[
ĉ
∫
κ̂0(s)dŝ

]
and the dual torsion

τ̂5 = −κ̂0(s) sin
[
ĉ
∫
κ̂0(s)dŝ

]
. The dual Frenet curve γ̂5 hold the equation of slant

helix:

−κ̂2
5(

τ̂25 + κ̂2
5

)3/2 d

dŝ

(
τ̂5
κ̂5

)
=

− cos2
[
ĉ
∫
κ̂0(s)dŝ

]
κ̂0(s)

d

dŝ

(
− tan

[
ĉ

∫
κ̂0(s)dŝ

])
= ĉ.

(24)
The value of a dual slant helix equation is called the dual slant helix constant.

Then we can write following proposition:

Proposition 1. Let γ̂0(s) be a general helix with the dual curvature κ̂0 and the
dual torsion τ̂0 and γ̂ be the principal donor curve of γ̂0 in D3

1. Then γ̂ is a dual

slant helix with the dual slant helix constant τ̂0

κ̂0
.

In the previous section, general helices were constructed in D3
1 with the help of

plane curves. The above methods gave idea to construct slant helix with the help
of general helices in D3

1. Now, by using the method in the third chapter the slant
helices will be constructed from the general helices in D3

1.

Theorem 12. Let γ̂ be a dual unit speed spacelike slant helix having a spacelike
principal normal with the dual curvature κ̂ and the dual torsion τ̂ in D3

1 and ĉ =
c+ ξc∗ be a dual slant helix constant.



ASSOCIATED CURVES OF A FRENET CURVE IN THE DUAL LORENTZIAN SPACE 297

(a) If κ > |τ | and |c| < 1, then the position vector γ̂ is given by

γ̂(s) = −
∫ (

− sinh[ĉK̂1(s)]√
1−ĉ2

,

cosh
[
ĉK̂1(s)

]
cos
[√

1− ĉ2K̂1(s)
]
− ĉ sinh[ĉK̂1(s)] sin[

√
1−ĉ2K̂1(s)]√

1−ĉ2
,

cosh
[
ĉK̂1(s)

]
sin
[√

1− ĉ2K̂1(s)
]

+
ĉ sinh[ĉK̂1(s)] cos[

√
1−ĉ2K̂1(s)]√

1−ĉ2

)
dŝ,

(25)

where K̂1(s) =
∫ √

κ̂2(s)− τ̂2(s)dŝ.

(b) If κ > |τ | and |c| > 1 then the position vector γ̂ is given by

γ̂(s) = −
∫ (

sinh
[
ĉK̂1(s)

]
sinh

[√
ĉ2 − 1K̂1(s)

]
− ĉ cosh[ĉK̂1(s)] cosh[

√
ĉ2−1K̂1(s)]√

ĉ2−1
, sinh

[
ĉK̂1(s)

]
cosh

[√
ĉ2 − 1K̂1(s)

]
− ĉ cosh[ĉK̂1(s)] sinh[

√
ĉ2−1K̂1(s)]√

ĉ2−1
,− cosh[ĉK̂1(s)]√

ĉ2−1

)
dŝ,

(26)

where K̂1(s) =
∫ √

κ̂2(s)− τ̂2(s)dŝ.

(c) If κ < |τ | then the position vector γ̂ is given by

γ̂(s) = −
∫ (

sinh
[
ĉK̂2(s)

]
cosh

[√
1 + ĉ2K̂2(s)

]
− ĉ cosh[ĉK̂2(s)] sinh[

√
1+ĉ2K̂2(s)]√

1+ĉ2
, sinh

[
ĉK̂2(s)

]
cosh

[√
1 + ĉ2K̂2(s)

]
− ĉ cosh[ĉK̂2(s)] sinh[

√
1+ĉ2K̂2(s)]√

1+ĉ2
,

cosh[ĉK̂2(s)]√
1+ĉ2

)dŝ

)
,

(27)

where K̂2(s) =
∫ √

τ̂2(s)− κ̂2(s)dŝ.

Proof. Let γ̂0 the principal directional curve of γ̂ in D3
1. Since γ̂0 is a general helix

with the dual torsion τ̂0 = ĉκ̂0 for dual constant ĉ.
(a) From the equation (15) we obtain

t̂0(s) = 1√
1−ĉ2

(
ĉ, sin

[√
1− ĉ2

∫
κ̂0(s)dŝ

]
,

− cos
[√

1− ĉ2
∫
κ̂0(s)dŝ

])
,

n̂0(s) =
(
0, cos

[√
1− ĉ2

∫
κ̂0(s)dŝ

]
, sin

[√
1− ĉ2

∫
κ̂0(s)dŝ

])
,

b̂0(s) = 1√
1−ĉ2

(
1, − ĉ sin

[√
1− ĉ2

∫
κ̂0(s)dŝ

]
,

ĉ cos
[√

1− ĉ2
∫
κ̂0(s)dŝ

])
.

. (28)

On the other hand from (4) it is clear that

t̂ = − cosh

[∫
τ̂0(s)dŝ

]
n̂0 + sinh

[∫
τ̂0(s)dŝ

]
b̂0.
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If we take into consideration the equation (28) then the dual unit tangent vector t̂
of γ̂ can be written as

t̂ =
(

sinh[
∫
τ̂0(s)dŝ]√
1−ĉ2

,

− cosh
[∫

τ̂0(s)dŝ
]
cos
[√

1− ĉ2
∫
κ̂0(s)dŝ

]
− ĉ sinh[

∫
τ̂0(s)dŝ] sin[

√
1−ĉ2

∫
κ̂0(s)dŝ]√

1−ĉ2
,

− cosh
[∫

τ̂0(s)dŝ
]
sin
[√

1− ĉ2
∫
κ̂0(s)dŝ

]
+

ĉ sinh[
∫
τ̂0(s)dŝ] cos[

√
1−ĉ2

∫
κ̂0(s)dŝ]√

1−ĉ2

)
.

By using the equations K̂1(s) =
∫
κ̂0(s)dŝ =

∫ √
κ̂2(s)− τ̂2(s)dŝ and ĉK̂1(s) =∫

τ̂0(s)dŝ we have

t̂ =

(
sinh[ĉK̂1(s)]√

1−ĉ2
,

− cosh
[
ĉK̂1(s)

]
cos
(√

1− ĉ2K̂1(s)
)
− ĉ sinh[ĉK̂1(s)] sin(

√
1−ĉ2K̂1(s))√

1−ĉ2
,

− cosh
[
ĉK̂1(s)

]
sin
[√

1− ĉ2K̂1(s)
]
+

ĉ sinh[ĉK̂1(s)] cos[
√
1−ĉ2K̂1(s)]√

1−ĉ2

)
.

(29)

If we take into consideration t̂ = dγ̂(s)
dŝ and integrate both sides of the equation (29)

with respect to ŝ, then we get (25).
The proofs of (b) and (c) are similar to the proof of the statement (a). □

Similarly, we have Theorem 13 and Theorem 14.

Theorem 13. Let γ̂ be a dual unit speed spacelike slant helix having a timelike
principal normal with the dual curvature κ̂ and the dual torsion τ̂ in D3

1 and ĉ =
c+ ξc∗ be a dual slant helix constant.
(a) If |c| > 1 then the position vector γ̂ is given by

γ̂(s) =
∫ ( sin[ĉK̂3(s)]√

ĉ2−1
,

ĉ sin[ĉK̂3(s)] cos[
√
ĉ2−1K̂3(s)]√

ĉ2−1
− cos

[
ĉK̂3(s)

]
sin
[√

ĉ2 − 1K̂3(s)
]
,

ĉ sin[ĉK̂3(s)] sin[
√
ĉ2−1K̂3(s)]√

ĉ2−1
+ cos

[
ĉK̂3(s)

]
cos
[√

ĉ2 − 1K̂3(s)
])

dŝ,

(30)

where K̂3(s) =
∫ √

κ̂2(s) + τ̂2(s)dŝ.

(b) If |c| < 1 then the position vector γ̂ is given by

γ̂(s) =
∫ (

cos
[
ĉK̂3(s)

]
sinh

[√
1− ĉ2K̂3(s)

]
+

ĉ sin[ĉK̂3(s)] cosh[
√
1−ĉ2K̂3(s)]√

1−ĉ2
, cos

[
ĉK̂3(s)

]
cosh

[√
1− ĉ2K̂3(s)

]
+

ĉ sin[ĉK̂3(s)] sinh[
√
1−ĉ2K̂3(s)]√

1−ĉ2
,
sin[ĉK̂3(s)]√

1−ĉ2

)
dŝ

(31)
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where K̂3(s) =
∫ √

κ̂2(s) + τ̂2(s)dŝ.

Theorem 14. Let γ̂(s) be a dual unit speed timelike slant helix with the dual
curvature κ̂ and the dual torsion τ̂ in D3

1 and ĉ = c + ξc∗ be a dual slant helix
constant.
(a) If κ < |τ | and |c| < 1 then the position vector γ̂ is given by

γ̂(s) =
∫ ( sinh[ĉK̂2(s)]√

1−ĉ2
, cos

(√
1− ĉ2K̂2(s)

)
cosh

[
ĉK̂2(s)

]
− ĉ√

1−ĉ2
sin
(√

1− ĉ2K̂2(s)
)
sinh

[
ĉK̂2(s)

]
,

sin
[√

1− ĉ2K̂2(s)
]
cosh

[
ĉK̂2(s)

]
+ ĉ√

1−ĉ2
cos
[√

1− ĉ2K̂2(s)
]
sinh

[
ĉK̂2(s)

])
dŝ

(32)

where K̂2(s) =
∫ √

τ̂2(s)− κ̂2(s)dŝ.

(b) If κ < |τ | and |c| > 1 then γ̂ can denoted by

γ̂(s) =
∫ (

cosh
[
ĉK̂2(s)

]
sinh

[√
ĉ2 − 1K̂2(s)

]
− ĉ cosh[ĉK̂2(s)] cosh[

√
ĉ2−1K̂2(s)]√

ĉ2−1
,

sinh
[
ĉK̂2(s)

]
cosh

[√
ĉ2 − 1K̂2(s)

]
− ĉ cosh[ĉK̂2(s)] sinh[

√
ĉ2−1K̂2(s)]√

ĉ2−1
,

− cosh[ĉK̂2(s)]√
ĉ2−1

)

)
dŝ,

(33)

where K̂2(s) =
∫ √

τ̂2(s)− κ̂2(s)dŝ.

(c) If κ > |τ | then the position vector γ̂ is given by

γ̂(s) =
∫
(cosh

[
ĉK̂1(s)

]
cosh

[√
1 + ĉ2K̂1(s)

]
− ĉ sinh[ĉK̂1(s)] sinh[

√
1+ĉ2K̂1(s)]√

1+m2
, cosh

[
ĉK̂1(s)

]
sinh

[√
1 + ĉ2K̂1(s)

]
− ĉ sinh[ĉK̂1(s)] cosh[

√
1+ĉ2K̂1(s)]√

1+ĉ2
,

sinh[ĉK̂1(s)]√
1+ĉ2

)dŝ,

(34)

where K̂1(s) =
∫ √

κ̂2(s)− τ̂2(s)dŝ.

In Theorem 11, general helices in D3
1 were characterized according to the as-

sociated curve. Similarly, the characterization of slant helices in D3
1 is given as

follows:

Theorem 15. A slant helix in D3
1 is the second principal donor curve of some

plane curves.
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A Frenet curve γ̂ in D3
1 is called a circular slant helix or hyperbolic slant helix

if the second principal directional curve of γ̂ a circle in D2 or a hyperbola in D2
1,

respectively. These curves are called simple dual curves.
Now we will deal with simple closed slant helices in D3

1. Taking into consideration
the equations (25)-(27) and (30)-(34), we can state that there are no closed simple
dual slant helices given by (25)-(27) and (31)−(34). Therefore we only interest a
closed simple dual slant helix given by (30).

Remark 1. Let γ̂ be a spacelike circular slant helix providing the equation (30) and
its first principal directional curve of γ̂0 and its second principal directional curve

of γ̂1 be a helix with |τ0|
κ0

= |c| > 1 and a circle with radius r̂ in D3
1, respectively.

Since the dual curvature of γ̂1 is κ̂1 = 1
r̂ , the dual curvature κ̂0 is expressed by

κ̂0 = 1
r̂
√
ĉ2−1

. Thus the dual function K̂3 in (30) is given by

K̂3(s) =

∫ √
κ̂2 + τ̂2dŝ =

∫
κ̂0dŝ =

ŝ

r̂
√
ĉ2 − 1

.

Therefore, by the a simple integration we can give that γ̂ is closed iff c√
c2−1

is

rational. Similarly, it appears that other simple dual slant helices are not closed.

Example 1. A spacelike circular dual slant helix

γ̂(s) = γ(s) + ξγ∗(s) (35)

of (30) can be denoted by

γ(s) = −r
(

1
c cos

[
cs

r
√
c2−1

]
,(

2c2 − 1
)
cos
[

cs
r
√
c2−1

]
cos
[
s
r

]
+ 2c

√
c2 − 1 sin

[
cs

r
√
c2−1

]
sin
[
s
r

]
,(

2c2 − 1
)
cos
[

cs
r
√
c2−1

]
sin
[
s
r

]
− 2c

√
c2 − 1 sin

[
cs

r
√
c2−1

]
cos
[
s
r

])
(36)

and

γ∗(s) =

(
rc∗−r∗c

c2 cos
[

cs
r
√
c2−1

]
+ cr∗−c∗r−c3r∗

rc(c2−1)
3
2

s sin
[

cs
r
√
c2−1

]
,(

csr∗
(
1− c2

)
+ c∗sr

(
1− 2c2

))
sin
[

cs
r
√
c2−1

]
cos
[
s
r

]
+
(

r∗s
r + 2cc∗s

c2−1

)
cos
[

cs
r
√
c2−1

]
sin
[
s
r

]
+
(
r∗ − 2r∗c2 − 4cc∗r

)
cos
[

cs
r
√
c2−1

]
cos
[
s
r

]
−2c

(
cc∗r+c2r∗−r∗√

c2−1

)
sin
[

cs
r
√
c2−1

]
sin
[
s
r

]
,(

csr∗
(
1− c2

)
+ c∗sr

(
1− 2c2

))
sin
[

cs
r
√
c2−1

]
sin
[
s
r

]
−
(

r∗s
r + 2cc∗s

c2−1

)
cos
[

cs
r
√
c2−1

]
cos
[
s
r

]
+
(
r∗ − 2r∗c2 − 4cc∗r

)
cos
[

cs
r
√
c2−1

]
sin
[
s
r

]
+2c

(
cc∗r+c2r∗−r∗√

c2−1

)
sin
[

cs
r
√
c2−1

]
cos
[
s
r

])
.

. (37)
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If we put c = 3
2
√
2
for dual constant ĉ = c + ξc∗ and r̂ = (1, 0), then the closed

condition c√
c2−1

= 3 is provided and an example of a spacelike closed circular dual

slant helix with timelike principal normal is given by

γ̂1(s) = −
(

2
√
2 cos[3s]
3 , 5 cos[3s] cos[s]+3 sin[3s] sin[s]

4 , 5 cos[3s] sin[s]−3 sin[3s] cos[s]
4

)
+ξc∗

(
8 cos[3s]

9 − 64s sin[3s]
3 , −5s sin[3s] cos[s]

4 + 12
√
2s cos [3s] sin [s]

−3
√
2 cos [3s] cos [s]− 9

√
2 sin[3s] sin[s]

2 ,−5s sin[3s] sin[s]
4 − 12

√
2s cos [3s] cos [s]

−3
√
2 cos [3s] sin [s] + 9

√
2 sin[3s] cos[s]

2

)
.

.

If we put c = 2 for dual constant ĉ = c+ξc∗ and r̂ = (1, 0), then the closed condition
c√

c2−1
= 2√

3
is not provided and the an example of a spacelike non-closed circular

dual slant helix with timelike principal normal is given by

γ̂2(s) = −
(

cos
[

2s√
3

]
2 , 7 cos [s] cos

[
2s√
3

]
+ 4

√
3 sin

[
2s√
3

]
sin [s] ,

7 cos
[

2s√
3

]
sin [s]− 4

√
3 sin

[
2s√
3

]
cos [s]

)
+ ξc∗

(
cos

[
2s√
3

]
4 − s

sin
[

2s√
3

]
6
√
3

,

−7s sin
[

2s√
3

]
cos [s] + 4s

3 cos
[

2s√
3

]
sin [s]− 8 cos

[
2s√
3

]
cos [s]

− 8√
3
sin
[

2s√
3

]
sin [s] , − 7s sin

[
2s√
3

]
sin [s]− 4s

3 cos
[

2s√
3

]
cos [s]

−8 cos
[

2s√
3

]
sin [s] + 8√

3
sin
[

2s√
3

]
cos [s]

)
.

Corollary 4. The closed simple slant helix γ̂ given by (35) whose real part (36)
and dual part (37) in D3

1 is a spacelike circular slant helix with timelike principal
normal having slant helix constant ĉ = c + ξc∗ providing the condition c√

c2−1
is

rational.

5. Principal Directed Rectifying Curve in D3
1

In this section, we examine the principal directed rectifying curve whose the
position vector always lie in rectifying plane of its principal donor curve in D3

1 (see
[6, 10, 14, 19] for rectifying curve). We show that a principal directional rectifying
curve in D3

1 corresponds to a spacelike or a timelike ruled surface in R3
1 depending

on causal characters of its principal donor curves.

Theorem 16. Let γ̂0 be a pseudo spherical Frenet curve (a Frenet curve lies on
S21 or H2

0) and γ̂ be a principal donor curve of γ̂0 in D3
1. Then γ̂0 is a principal

directed rectifying curve.

Proof. Let γ̂0 be a pseudo spherical Frenet curve and γ̂ be a principal donor curve
of γ̂0 in D3

1. According to the dual Frenet frame of γ̂, the position vector of γ̂0 is
written as

γ̂0(s) = λ̂(s)t̂(s) + µ̂(s)n̂(s) + β̂(s)̂b(s), (38)
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for some dual functions λ̂, µ̂ and β̂. Since dγ̂0

dŝ = t̂0, we have

t̂0 = n̂ =

(
dλ̂

dŝ
− ε0ε1κ̂µ̂

)
t̂+

(
κ̂λ̂+

dµ̂

dŝ
− ε1ε2τ̂ β̂

)
n̂+

(
µ̂τ̂ +

dβ̂

dŝ

)
b̂.

Thus the system of equations
dλ̂
dŝ − ε0ε1κ̂µ̂ = 0

κ̂λ̂+ dµ̂
dŝ − ε1ε2τ̂ β̂ = 1

µ̂τ̂ + dβ̂
dŝ = 0

(39)

is formed. Since γ̂0 is a pseudo spherical Frenet curve, taking into consideration
the equation (38) we obtain

ε0λ̂(s)
2 + ε1µ̂(s)

2 + ε2β̂(s)
2 = ∓r̂2.

If we take derivative of this last equation with respect to ŝ, then we get

ε0λ̂
dλ̂
dŝ + ε1µ̂

dµ̂
dŝ + ε2β̂

dβ̂
dŝ = 0 (40)

is denoted. By using the equations (39) and (40) it is clear that µ̂(s) = 0. Hence
we can rewrite the equation (38) as

γ̂0(s) = λ̂(s)t̂(s) + β̂(s)̂b(s).

So the position vector of γ̂0(s) lies in the rectifying plane of γ̂ which is the principal
donor curve of γ̂0. Therefore, γ̂0 is principal directed rectifying curve. □

Theorem 17. Let γ̂ be a Frenet curve with the dual curvature κ̂ and the dual
torsion τ̂ and a pseudo spherical Frenet curve γ̂0 be principal directional curve of

γ̂ in D3
1. Then the position vector of γ̂0 lies in the normal plane Sp

{
n̂0, b̂0

}
and

the position vector of γ̂0 is given by

γ̂0(s) = − ε̃1(ε1ĉ1κ̂+ ε2ĉ2τ̂)

(ε̃1

(
ε0κ̂

2 + ε2τ̂
2
)
)3/2

n̂0(s) +
ĉ1τ̂ + ε0ε1ĉ2κ̂

(ε̃1

(
ε0κ̂

2 + ε2τ̂
2
)
)3/2

b̂0(s) (41)

for dual constants ĉ1 and ĉ2.

Proof. Let γ̂ is a Frenet curve with the dual curvature κ̂ and the dual torsion τ̂ and
a pseudo spherical Frenet curve γ̂0 be principal directional curve of γ̂ in D3

1. We
know that the dual curve γ̂0 lies on the rectifying plane of γ̂. Then the position
vector of γ̂0 can be written by

γ̂0(s) = λ̂t̂(s) + β̂b̂(s) (42)

for dual functions λ̂ and β̂. If we take derivative of the equation (42) with respect
to ŝ, then we have

n̂ =
dλ̂

dŝ
t̂(s) + (λ̂κ̂− ε1ε2β̂τ̂)n̂(s) +

dβ̂

dŝ
b̂(s).
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From the last equation it is clear that λ̂ = ĉ1 and β̂ = ĉ2 are dual constants.
Therefore, we obtain (41) by using (4). □

Corollary 5. Let γ̂ be a spacelike Frenet curve with a spacelike principal normal
in D3

1. Then the principal directed rectifying curve of γ̂ corresponds to a timelike
ruled surface in R3

1.

Corollary 6. Let γ̂ be a spacelike Frenet curve with a timelike principal normal
in D3

1. Then the principal directed rectifying curve of γ̂ corresponds to a spacelike
ruled surface in R3

1.

Corollary 7. Let γ̂ be a timelike Frenet curve in D3
1. Then the principal directed

rectifying curve of γ̂ corresponds to a timelike ruled surface in R3
1.
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[14] Özbey, E., Oral, M., A study on rectifying curves in the dual Lorentzian space, Bull. Korean

Math. Soc., 46(5) (2009), 967-978. https://doi.org/10.4134/BKMS.2009.46.5.967
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