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CHARACTERIZATIONS MOTIVATED BY THE
NEXUS BETWEEN CONVOLUTION AND SIZE
BIASING FOR EXPONENTIAL VARIABLES
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Jose A. Villasenor*
Department of Statistics,
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Montecillo, Mexico

Abstract: For a continuous density f(x) with support on the real interval (0,∞) and finite mean μ, its
size biased density is defined to be of the form (x/μ)f(x). It is well known that for exponential variables,
the convolution of two copies of the density yields the size biased form. This is the basis of the so-called
inspection paradox. We verify that this agreement between size biasing and convolution actually characterizes
the exponential distribution. We next consider the case in which the addition of one more term in a sum of
independent identically distributed (i.i.d.) positive random variables also coincides with size biasing. Some
related conjectures are also introduced. We then consider the problem of characterizing the class of all pairs
of densities that can be called size-bias convolution pairs in the sense that their convolution is just a size
biased version of one of them. We then consider discrete analogs to the size bias convolution results. It turns
out that matters are more easily dealt with in the case of non-negative integer valued variables. Related
geometric and Poisson characterizations are provided. Next, denote the sum of n i.i.d non-negative integer
valued random variables {Xi}, i = 1,2, ... by Sn. We verify that the ratio of the densities of Sn1 and Sn2

determines the distribution of the X’s. The absolutely continuous version of this result, though judged to
be plausible, can only be conjectured at this time.

Key words : Continuous density, Size biased density, Convolution, Non negative integer valued variables,
Exponential distribution, Size-bias convolution pairs.

1. Introduction
If we consider the convolution of two identical exponential distributions, the resulting density is

just a size biased version of the exponential density involved in the convolution. This observation,
discussed below in Section 2, provides a characterization of the exponential density. This char-
acterization is so simply verified that it seems inevitable that it must have been proved in some
earlier paper, but we have not been able to find a reference. In fact, in the exponential case, we
can observe that the n-fold convolution of the exponential distribution also produces a weighted
version of the common density of the convolutants. This too will be shown to be a characteristic
property of the exponential density. In Section 3, we investigate the problem of identifying all pairs
of densities corresponding to positive random variables that can be called size-bias convolution
pairs in the sense that their convolution is just a size-biased version of one of the densities in the
pair. If we turn to consider non-negative integer valued random variables, as we shall in Section 4,
not unexpected parallel results involving geometric variables can be formulated. Analogous Poisson
characterizations can also be identified. In fact, in Sub-section 4.3, very general characterization
results will be proved for any distribution with support equal to the non-negative integers. Similar
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results are obtained for bounded non-negative integer valued random variables. It is tempting to
propose that parallel general results will be available for general absolutely continuous positive
random variables. This ambitious conjecture remains open, except for a few exponential cases.

2. Exponential characterizations
Suppose that X1 and X2 are i.i.d exponential random variables and that we define S2 =X1+X2.

A comprehensive survey of distributional properties of exponential variables may be found in the
volume dedicated to the exponential distribution that includes [1]. The density function of S2 is
that of a gamma distributed random variable and thus is a size biased version of the density of the
Xi’s. That this is a characteristic property of the exponential distribution is readily confirmed as
follows.

Theorem 1. Suppose that X1 and X2 are i.i.d positive absolutely continuous random variables
and that S2 =X1 +X2. Suppose that, for some positive c we have

fS2
(x) = cxfX1

(x), x > 0. (2.1)

It follows that X1 has an exponential distribution with mean 1/c.

Proof. Denote the Laplace transform of a positive random random variable X by LX(s) =
E(e−sX), s > 0. Chapter 13 of [3] will provide adequate discussion of Laplace transforms for our
current purposes. Since LS2

(s) = [LX1
(s)]2, we can conclude from (2.1) that

[LX1
(s)]2 =

∫ ∞

0

e−sxcxfX1
(x)dx=−c(d/ds)LX1

(s).

However, this is a simple “variables-separable” differentiable equation with general solution of the
form LX1

(s) = (k+ s/c)−1. Since LX1
(0) = 1 it follows that k= 1, and that X1 has an exponential

density with λ= c.
Several closely related characterizations can be formulated. A sample of five such possibilities

follows. Proofs will be supplied for three of them, while the other two at present lack proofs and
are labeled as (plausible) conjectures.

Theorem 2. Let {Xi}∞i=1 be i.i.d. positive absolutely continuous random variables and for each
n define Sn =

∑n

i=1Xi If, for some c > 0 and some positive integer k, we have

fSk+1
(x) = cxfSk

(x) (2.2)

then X1 has an exponential distribution with mean 1/ck.

Proof. Using Laplace transforms we may rewrite (2.2) in the form

Lk+1
X1

(s) =−c(d/ds)Lk
X1

(s) =−ckLk−1
X1

(s)(d/ds)LX1
(s)

Dividing both sides by Lk−1
X1

(s) yields an equation identical to that encountered in the proof of
Theorem 1 with c replaced by ck. It follows that X1 has an exponential density with λ= ck.
In the next items we will use the standard notation for a convolution of two densities, f1 and f2,

namely f1 ∗ f2.
Theorem 3. If f ∗ g(x) = cxf(x) where g is an exponential density with intensity λ, then f is

a gamma density.
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Proof. Using Laplace transforms we have, by hypothesis,

Lf (s)(1+ s/λ)−1 =−c(d/ds)Lf (s).

The general solution to this differential equation is Lf (s) = (1 + s/λ)−α where α > 0, indicating
that f is a gamma density.
Instead of using x as a weighting or biasing function. we may ask what happens when x is

replaced by a power of x. For the case involving x2, we have the following result.

Theorem 4. Suppose that X1 and X2 are i.i.d positive absolutely continuous random variables
and that S2 =X1 +X2. Suppose that, for some positive c we have

fS2
(x) = cx2fX1

(x), x > 0. (2.3)

Provided that var(X1) = (1/2)E2(X1), it follows that X1 has a gamma distribution with shape
parameter 2.

Proof. First, note that it is readily verified that if X1 ∼ Γ(2, β) then (2.3) holds. Suppose now
that (2.3) holds. Evidently we must have c= 1/μ2 = 1/E(X2

1 )<∞. Rewriting this in terms of L(s),
the Laplace transform of X1, we have

L′′(s) = μ2L
2(s). (2.4)

Multiplying both sides of this equality by 2L′(s), we have

2L′(s)L′′(s) =
2μ2

3
3L2(s)L′(s)

Integrating over the interval (0, t) and recalling that L(0) = 1 and L′(0) =−μ=−E(X1), we have

[L′(t)]2 − (−μ)2 =
2μ23

L

3

(t)− 2μ2

3
.

This will simplify when we apply the condition, stated in the hypothesis of the theorem, that
var(X1) = (1/2)E2(X1), equivalently that μ2 − (3/2)μ2 = 0. Under this assumption, we have

[L′(t)]2 =
2μ2

3
L3(t).

However, from (2.4) we can write
L′′(t)L(t) = μ2L

3(t),

and consequently
[L′(t)]2 = (2/3)L′′(t)L(t).

we may rearrange this to obtain
3

2

L′(t)
L(t)

=
−L′′(t)
−L′(t)

.

Integrating with respect to t over the interval (0, s) yields

(3/2) logL(s) = log[−L′(s)]− logμ,

so that −μ= [L(s)−3/2L′(s). Integrating with respect to s over the interval (0, t) produces

−μt=−2{[L(t)]−(3/2)−1 − 1},
so that L(t) = (1+μt/2)−2 and consequently X1 ∼ Γ(2, μ/2). Since in this expression, μ can take on
any positive value, we conclude that, if (2.3) holds and if var(X1) = (1/2)E2(X1), then X1 ∼ Γ(2/β)
for some β > 0. After viewing this result, it is inevitable that one would consider the following
unproved conjecture.
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Conjecture 1. If f ∗ f(x) = cxαf(x) then, subject to regularity conditions involving certain
moments of the density, f is a gamma density with shape parameter α.

Motivated by the fact that for the exponential case, convolution corresponds to size biasing
(when n1 = 1 and n2 = 2 below) we have the following quite general conjecture.

Conjecture 2. Let {Xi}∞i=1 be i.i.d. positive absolutely continuous random variables and for
each n define Sn =

∑n

i=1Xi Claim: If for a fixed pair 1≤ n1 <n2 we have

fSn2
(x) = cxn2−n1fSn1

(x)

∀x, and for some c > 0 then X1 has an exponential distribution. Here too, it is likely that it will be
necessary to invoke regularity conditions involving certain moments of the density of X1.

A proof or disproof of this last conjecture has eluded us. However, as we shall see below, better
results are available in discrete cases. To introduce the discussion of non-negative integer valued
random variables, we will first consider geometric and Poisson examples. But before leaving the
absolutely continuous case, we will consider the general problem of identifying all cases, not just
exponential and gamma cases, in which convolution is equivalent to size biasing.

3. Size-bias convolution pairs of densities
Throughout this section we will be dealing with density functions corresponding to positive

absolutely continuous random variables which are positive throughout the interval (0,∞). If f is
such a density, we will denote its Laplace transform by Lf (s), thus

Lf (s) =

∫ ∞

0

e−sxf(x)dx, s∈ (0,∞).

We know that if f is a gamma density with shape parameter α and scale parameter 1/λ and if g
is an exponential density with mean 1/λ,, then the convolutionf ∗ g is again a gamma density. In
fact we have the following situation:

f ∗ g(x) = cxf(x), x > 0. (3.1)

for some positive c. In the particular case just mentioned we have c= [
∫∞
0

xf(x)dx]−1.
If a pair of densities (f, g) satisfies equation (3.1), we will call it a size-bias-convolution (or sbc)

pair. We have seen one example of an sbc pair. The name comes from the fact that when (3.1)
holds then the convolution of f and g produces a size biased version of f .
Our goal is to characterize all valid sbc pairs of densities.

3.1. Laplace transforms corresponding to a size-bias-convolution pair of densities
If f and g are legitimate densities satisfying the sbc equation (3.1), then the corresponding

Laplace transforms can readily be shown to be related by

Lg(s) =−c

[
d

ds
logLf (s)

]
, (3.2)

or, equivalently

Lf (s) = exp

[
−1

c

∫ s

0

Lg(t)dt

]
. (3.3)

Note that in (3.2), in order that Lg(0) = 1 we must set c= 1/μf where μf is the necessarily finite
mean of the density f .
Uniqueness considerations: For a given density f it is clear that if there exists a density g
with (f, g) being an sbc pair. then g is the unique density with this property. Likewise, for a given
density g it is clear that if there exists a density f with (f, g) being an sbc pair. then f is the
unique density with this property.
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3.2. Identifying sbc pairs
It might be hoped that every density f , with Laplace transform Lf (s) will form part of an sbc

pair. We may consider a candidate choice of g to be that density with a Laplace transform given
by equation (3.2). This will be a solution provided that the expression on the right side of (3.2) is
a valid Laplace transform, i.e,. if it is completely monotone. Alternatively, it might be possible to
recognize the right hand side of (3.2) as the Laplace transform of some well-known density. It is
not at all obvious that the right hand side of (3.2) will always be completely monotone. We know
it is for certain choices for f of the gamma form. But are there other cases ?
It turns out that the key result that allows us to resolve our identification problem is a charac-

terization of infinite divisibility of distributions on (0,∞) provided by [3]. The result in question is
as follows. The Laplace transform Lf (s) corresponds to an infinitely divisible f if and only if the
function − log(Lf (s)) has a completely monotone derivative. However this is precisely the condition
necessary for Lg(s) defined by (3.2) to be a valid Laplace transform.

Note [2] made use of this characterization to verify the infinite divisibility of generalized inverse
Gaussian densities.
We are able then to characterize the set of all valid sbc pairs (f, g) to consist of all pairs in which

f is infinitely divisible and a corresponding g has its Laplace transform determined by (3.2).
Example 1. If we choose f to correspond to a gamma density, which is infinitely divisible, then

from (3.2) we can identify the choice of g to yield a valid sbc pair will be an exponential density.
This observations (and analogous observations involving different sbc pairs) can be rephrased as
characterizations of distributions. For example, we might wish to identify all possible densities g
such that (f, g) constitutes an sbc pair with f being a gamma density. It follows that g must be
an exponential density. This particular characterization appeared in [4], see also [5] and [6].

Example 2. If f is taken to correspond to an inverse Gaussian distribution with parameters
μ and λ denoted by IG(μ,λ), which is known to be infinitely divisible, then its Laplace transform
is of the form

Lf (s) = exp[(λ/μ)(1−
√
1+2μ2λ−1s)].

Differentiating with respect to s yields

L
′
f (s) = exp[(λ/μ)(1−

√
1+2μ2λ−1s)]

{
−μ

(
1+

2μ2

λ
s

)−1/2
}
.

The corresponding density g to form an sbc pair is, from (3.2), one with Laplace transform given
by

Lg(s) =−c
d

ds
logLf (s) =−c

L‘
f (s)

Lf (s)
= cμ

(
1+

2μ2

λ
s

)−1/2

=

(
1+

2μ2

λ
s

)−1/2

.

where c has been chosen equal to 1/μ to ensure that Lg(0) = 1. Thus g is a gamma density with
shape parameter α = 1/2 and scale parameter (2μ2/λ), i.e. corresponding to a random variable
Y = (μ2/λ)U where U has a chi-squared distribution with one degree of freedom.
Example 3. If f is taken to correspond to a generalized inverse Gaussian distribution with

parameters a, b and p denoted by GIG(a, b, p), which is also known to be infinitely divisible, then
its Laplace transform is of the form

Lf (s)∝ (a+2s)−p/2Kp(
√
b(a+2s)),

where Kp(u) is a modified Bessel function of the second kind. Differentiating with respect to s
yields

L‘
f (s)∝ (−p)(a+2s)−p/2−1Kp(

√
b(a+2s))+ b(a+2s)−(p+1)/2K ‘

p(
√
b(a+2s)).
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The corresponding density g to form an sbc pair is, from (3.2), one with Laplace transform given
by

Lg(s) =−c
L‘

f (s)

Lf (s)

where c is chosen to ensure that Lg(0) = 1. We can then recognize the density g as a linear
combination of gamma densities.

4. Analogous discrete characterizations
We now turn to consider a selection of discrete characterizations suggested as natural analogs of

the absolutely continuous results in Section 2.

4.1. Geometric characterizations
Parallel to the situation for exponential variables, in the geometric case, convolution essentially

corresponds to size biasing. For a sample of size two, we have the following geometric characteri-
zation.

Theorem 5. Let X1 and X2 be i.i.d. non-negative integer valued random variables. Suppose
that for each k and some c > 0

P (X1 +X2 = k) = c(k+1)P (X1 = k), (4.1)

it follows that X1 has a geometric distribution.

Proof. Let P (s) be the probability generating function of X1. Then, from (4.1) we have

P 2(s) = csP ′(s)+ cP (s).

Rearranging this becomes:
P ′(s)

P (s)[P (s)− c]
=

1

cs

i.e., writing dP/ds for P ′(s) and P for P (s), as is usual in differential equations,

dP

P (P − c)
=

ds

cs
.

Using partial fractions applied to 1/P (P − c) this is equivalent to

ds

s
=

dP

P − c
− dP

P
.

Integrating we get
log(s) = log(P − c)− log(P )+ k.

Thus

s= k̃
P − c

P
.

From this we have
P =

c

1− s

k̃

.

However, we know that P (0) = p0 and that P (1) = 1, so that finally we get

P (s) =
p0

1− (1− p0)s
,
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i.e., X1 has a geometric(p0) distribution.
A more general result is available. First note that if we have i.i.d. geometric(p) random variables,

then for any n≥ 2,we have

P (Sn = k) = p

(
1+

k

n− 1

)
P (Sn−1 = k). k= 0.1,2, ...

where Sn =
∑n

i=1Xi.

Theorem 6. Let {Xi}∞i=1 be i.i.d. non-negative integer valued random variables. For each n
define Sn =

∑n

i=1Xi. If for a fixed integer n≥ 2 and for every k we have

P (Sn = k) = c

(
1+

k

n− 1

)
P (Sn−1 = k). k= 0.1,2, ... (4.2)

for some positive c, then the Xi’s have a common geometric distribution.

Proof. Let P (s) be the probability generating function of X1, so that the generating function
of Sn is [P (s)]n. From (4.2) we then have

[P (s)]n = c[P (s)]n−1 +
cs

n− 1

d

ds
[P (s)]n−1 = c[P (s)]n−1 + cs[P (s)]n−2P ′(s).

Consequently we have

[P (s)]2 = c[P (s)] + csP ′(s).

But this is exactly the equation solved in the case n= 2 and we can conclude that

P (s) =
p0

1− (1− p0)s
,

i.e., X1 has a geometric(p0) distribution.
In fact, in the geometric case, we are able to prove an even more general result which is parallel

to the conjectured exponential characterization described in the previous section.

Theorem 7. Let {Xi}∞i=1 be i.i.d. non-negative integer valued random variables. For each n
define Sn =

∑n

i=1Xi

If for a fixed pair 1≤ n1 <n2 we have

P (Sn2
= k) = c

(n2 + k− 1)!

(n1 + k− 1)!
P (Sn1

= k) (4.3)

∀k, for some c > 0 then X1 has a geometric distribution.

We will defer proving this result until Section 5, where will prove an even more general result as
follows.
Consider a sequence of non-negative integer valued random variables {Xi}∞i=1 and define

A(n,k) =
P (

∑n

i=1Xi = k)

P (
∑n−1

i=1 Xi = k)
.

Claim : For any fixed n≥ 2, the sequence A(n,k) determines the common distribution of the Xi’s.
We will illustrate a special case of this claim in the following Section where a Poisson sequence

is considered.
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4.2. Poisson characterizations
As usual, let the Xi’s be i.i.d. non-negative integer valued r.v.’s and for each n define Sn =∑n

i=1Xi. It is readily verified that if the Xi’s have a common Poisson(λ) distribution then for a
fixed pair 1≤ n1 <n2 we have

P (Sn2
= k) = c

(
n2

n1

)k

P (Sn1
= k), (4.4)

∀k, for c= e−(n2−n1)λ.
This observation leads to the following characterization of the Poisson distribution.

Theorem 8. Let the Xi’s be i.i.d. non-negative integer valued random variables and for each
n define Sn =

∑n

i=1Xi. If for a fixed pair 1≤ n1 <n2 we have

P (Sn2
= k) = c

(
n2

n1

)k

P (Sn1
= k) (4.5)

∀k, for some c > 0, i.e., if (4.4) holds for some c > 0, then X1 has a Poisson distribution.

Proof. It is tempting to try to resolve this issue by using probability generating functions. The
generating function of X1, denoted by P (s) must satisfy

P n2(s) = cP n1(
n2

n1

s).

However, it is not obvious how to solve this equation, even in the case in which n1 = 1 and n2 = 2.
We can make progress by considering equation(4.5) for a series of values of k. We will denote

P (X1 = i) by pi for i= 0,1,2... Next denote the ratio between p1 and p0 by λ. The case k = 2 of
(4.5) simplifies to yield p2 = p21/(2p0) = λ2p0/2. Next if we consider k= 3 we obtain an equation for
p3 as a function of p0, p1 and p2 which can be solved to yield p3 = λ3p0/3!. We may then conclude
that pi = λip0/i! for every i by using an induction argument whereby we assume that for j < i
we have pj = λjp0/j! and, inserting these values in equation (4.5) for k = i, we may verify that
pi = λip0/i!. The value of p0 is then determined by the requirement that

∑∞
i=0 pi = 1. Thus we find

p0 = e−λ and confirm that X1 has a Poisson(λ) distribution.

4.3. General characterizations of discrete distributions
Conjecture 2 in Section 2 was an instance in which for a sequence of i.i.d. Xi’s with sums

defined by Sn =
∑n

i=1Xi, it was felt to be plausible that the ratio of densities of Sn1
and Sn2

would determine the density of the Xi’s. In the absolutely continuous case, the conjecture remains
open. However, progress can be made in the case in which the Xi’s are non-negative integer valued
random variables.
Suppose that X∗

i ’s are i.i.d. random variables with P (X∗
i = k) = p∗k > 0, k = 0,1,2, .... The

corresponding sums will be denoted by S∗
n =

∑n

i=1X
∗
i . For 1≤ n1 < n2 the corresponding ratio of

densities of sums will be denoted by

A∗(n1.n2, k) =
P (

∑n2

i=1X
∗
i = k)

P (
∑n1

i=1X
∗
i = k)

(4.6)

We claim that if another sequence {Xi}∞i=1 has the same ratio of densities of sums as do the X∗
i ’s

and if P (X1 = 1) = P (X∗
1 = 1) then X1

d
=X∗

1 .
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Theorem 9. Let {Xi}∞i=1 be a sequence of i.i.d non-negative integer valued random variables
with P (X1 = k) = pk > 0, k = 0,1,2, ... and with p1 = p∗1 as defined above. Suppose that for some
pair n1, n2 with 1≤ n1 <n2 and every k= 0,1,2, ... we have

P (Sn2
= k) =A∗(n1, n2, k)P (Sn1

= k). (4.7)

It follows that X1
d
=X∗

1 .

Proof. Note that (4.7) holds for the S∗
n’s as well as for the Sn’s.

Consider the case in which k= 0, we have

pn2
0 = P (

n2∑
i=1

Xi = 0) =A∗(n1.n2,0)P (

n1∑
i=1

Xi = 0) =A∗(n1.n2,0)p
n1
0 ,

so that p0 is determined by A∗(n1.n2,0), and indeed p0 = p∗0.
Next consider k= 1, we have

n2p1p
n2−1
0 = P (

n2∑
i=1

Xi = 1) =A∗(n1.n2,1)P (

n1∑
i=1

Xi = 1) =A∗(n1.n2,1)n1p1p
n1−1
0 .

Note that p1 cancels and is not determined by this equation. However, by one of our hypotheses,
p1 = p∗1. Next consider k= 2,

[n2p2p
n2−1
0 +n2(n2 − 1)p21p

n2−2
0 ] = P (

n2∑
i=1

Xi = 2) =A∗(n1.n2,2)P (

n1∑
i=1

Xi = 2)

=A∗(n1.n2,2)[n2p2p
n2−1
0 +n2(n2 − 1)p21p

n2−2
0 ].

This gives p2 as a linear function with coefficients that are functions of p0 and p1. Thus p2 is
determined by A∗(n1, n2,2) and indeed p2 = p∗2.
Now each successive value of k will introduce a new pk which will be a linear function with

coefficients that are known functions of the preceding pi’s. By an inductive argument the full

sequence p0, p1, p2, p3, .... is determined by the sequence A∗(n1, n2, k) . Thus we conclude that X1
d
=

X∗
1 .

Corollary 1. If the random variables, the Xi’s have bounded support say 0,1,2,...,M, then for
any fixed 1≤ n1 <n2, the finite sequence {A∗(n1, n2, k)}Mk=0 determines the common distribution of
the Xi’s.

Proof. Just the same as in the theorem, except that we only need to consider values of k that
are less than or equal to M .

5. Conclusions
Almost inevitably, when characterization results are presented to a statistical audience, the

question of possible application of the results is raised. One strong argument for the study of
characterizations is that they often enable researchers to realize interesting consequences of dis-
tributional assumptions that they routinely make. Characterizations often can be used to apply
quick preliminary tests of certain distributional assumptions. In reliability settings, it will be of
interest to know whether a size biased version of the lifetime distribution (the lifetime of an item in
service) really behaves like a sum of two independent device lifetimes. If it doesn’t, then a desirable
assumption of exponentially distributed lifetimes must be set aside. If it does, then we can be more
comfortable about the common distributional assumption.
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Abstract: In this paper we propose and study the so called Pólya-Aeppli process of order k of the second
type. Firstly, the process is defined using probability generating function, followed by its definition as a birth
process. The distribution of the related counting process is presented by recursion formulae. The Pólya-
Aeppli process of order k of the second type is considered within the framework of the risk process and
corresponding probability of ruin is studied. Using simulation, some interesting results for the probability of
ruin are obtained. Also, a comparison between the Pólya-Aeppli process of order k and Pólya-Aeppli process
of order k of the second type is discussed.
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1. Introduction
Our motivation is based on the risk process, {X(t), t≥ 0}, and its use as a main tool in modeling

of the surplus of an insurance company. In details, the risk process is given by

X(t) = c t−
N(t)∑
i=1

Zi, (1.1)

where c is a premium income per unit time, N(t) is a counting process, {Zi}∞i=1 is a sequence
of independent identically distributed, positive random variables, independent of N(t), with Zi

representing the size of the ith claim. We assume that the individual claim amount has a continuous
distribution with distribution function F , F (0) = 0, and mean value μ=EZ1 <∞. In the classical
risk model the process N(t) is assumed to be a homogeneous Poisson process.
Let us consider the following stochastic process N(t) =X1 + . . .+XN1(t), where X1,X2, . . . are

mutually independent random variables and also independent of the process N1(t).
It is well known that if the compounding random variable X has a discrete distribution with a

finite support and truncated at 0, the random variable N(t) has a distribution of order k, see for
example [1], [3], [8] and [2]

Pólya-Aeppli distribution of order k was introduced by [10], and applied as a counting distribu-
tion in the risk model considered in [4]. There, the random variable N1(t) is Poisson distributed

*Corresponding author. E-mail address:leda@fmi.uni-sofia.bg
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with parameter λ and Xi are truncated geometrically distributed with probability mass function
(PMF) and probability generating function (PGF) given by

P (X = i) =
1− ρ

1− ρk
ρi−1, i= 1,2, . . . k, (1.2)

and

ψX(s) =
(1− ρ)s

1− ρk
1− ρksk

1− ρs
,

where k ≥ 1 is a fixed integer number and ρ ∈ [0,1). As a result, the above process N(t) is called
Pólya-Aeppli process of order k, denoted by PAk(λ,ρ).
In this paper we introduce another Pólya-Aeppli process of order k and call it Pólya-Aeppli

process of order k of the second type, and denote it by PAkII(λ,ρ). The two Pólya-Aeppli processes
of order k are different due to the difference of the compounding distributions included in their
definitions. In the truncated geometric distribution in (1.2) the mass from k + 1 to infinity is
uniformly distributed over the points 1,2, . . . , k. Here, we consider the case when the mass from
k+1 to infinity is clumped at point k.
So, what is the motivation for this new model PAkII(λ,ρ), and what is the difference between

the current model and the model PAk(λ,ρ) in [4]? As mentioned above, our motivation for both
modeling approaches comes from the risk process presented in (1.1). For the first model (the model
in [4]) we consider (1.1) embedded in an usual operational environment for the insurance company,
i.e., an environment without any major natural disasters or calamities, say storms, hurricanes,
floods, earthquakes and so on. The only restriction we impose in this model is a limitation on the
maximum possible number of simultaneous claims at any time, say k, which reasonably represents
the reality faced by the insurance company in its everyday operations. Also, an environment with no
major natural disasters, suggests no preference on any of the allowed integer numbers within [1, k] of
simultaneous claims, which means that the tail probability should be uniformly distributed over the
domain [1, k], leading to the truncated distribution considered in [4]. So, what is the motivation for
the current model? The modeling in this study is for (1.1) embedded in an operational environment
for the insurance company under the occurrence of a major natural disaster. As before, we preserve
the limitation on the maximum possible number of simultaneous claims k at any time, but due to
the external disastrous conditions we expect to have high number of simultaneous claims, so we
place the tail probability at the maximum possible number of simultaneous claims to reflect the
severity of the disaster, which leads to our model in this study.
The paper is organize as follows. In Section 2, we introduce the Pólya-Aeppli process of order

k of second type. In Section 3, we define this process as a birth process. Some applications of
this process to the risk model are given in Section 4. In Section 5, we present and discuss some
simulation results related to Pólya-Aeppli process of order k of second type and Section 6 concludes
this study.

2. Pólya-Aeppli process of order k of the second type
In this section we introduce the distribution of the Pólya-Aeppli process of order k of the second

type as a compound Poisson distribution. The distribution of the compounding random variables
Xi is given by the following PMF, which clumps the right tail of the distribution at point k:

P (X = i) =

⎧⎨⎩
(1− ρ)ρi−1, i= 1,2, . . . k− 1

ρi−1, i= k.
(2.1)

The corresponding PGF is given by

ψX(s) =
(1− ρ)s+(1− s)(ρs)k

1− ρs
. (2.2)
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Definition 1. The distribution defined by (2.1) or (2.2) is called a clumped geometric distribution
with parameters k and 1− ρ, and it is denoted by CGe(k,1− ρ).
In this case, the PGF of the N(t) is given by

ψN(t)(s) = e
−λt

(
1− (1−ρ)s+(1−s)(ρs)k

1−ρs

)
. (2.3)

Definition 2. The process defined by the PGF in (2.3) is called a Pólya-Aeppli process of order
k of the second type with parameters λ> 0 and ρ∈ [0,1), and denoted by PAkII(λ,ρ).
If k →∞, the clumped geometric distribution approaches the usual geometric distribution with
parameter 1− ρ.
If k→∞, the Pólya-Aeppli process of order k of second type, approaches the usual Pólya-Aeppli
process, see [9] and [5]. If ρ= 0, it is the usual homogeneous Poisson process.
The mean and the variance functions of the PAkII(λ,ρ) are given by

EN(t) = λt
1− ρk

1− ρ

and

V ar(N(t)) =
λt

(1− ρ)2
[1+ ρ− (2k+1)ρk +(2k− 1)ρk+1].

For the Fisher index, we obtain

FI(N(t)) =
V ar(N(t))

E(N(t))
=

1+ ρ

1− ρ
− 2k

ρk

1− ρk
.

The Fisher index of the distribution of the Pólya-Aeppli process is equal to 1+ρ
1−ρ

, see [5]. Hence, the
distribution of the counting process PAkII(λ,ρ) is underdispersed with respect to the distribution
of the Pólya-Aeppli process.
Let us denote by Pn(t) = P (N(t) = n), n= 0,1, . . . The following proposition gives an extension

of the Panjer recursion formulas, see [11].

Proposition 1. The PMF of the N(t)∼ PAkII(λ,ρ) satisfies the following recursion formulae:

P1(t) = λt(1− ρ)P0(t),

Pn(t) = (2ρ+ λt(1−ρ)−2ρ

n
)Pn−1(t)− (1− 2

n
)ρ2Pn−2(t), n= 2,3, . . . k− 1

Pn(t) = (2ρ+ λt(1−ρ)−2ρ

n
)Pn−1(t)− (1− 2

n
)ρ2Pn−2(t)+λtρk k

n
Pn−k(t)

−λtρk[k+1
n

+ k−1
n
ρ]Pn−k−1(t)+λtρk+1 k

n
Pn−k−2(t), n= k, k+1, k+2, . . .

and P−1(t) = P−2(t) = 0.

Proof. Differentiation in (2.3) leads to

(1− ρs)2
∂

∂s
ψN(t)(s) = λt[1− ρ+ kρksk−1 − ρk((k+1)+ (k− 1)ρ)sk + kρk+1sk+1]ψN(t)(s), (2.4)

where ψN(t)(s) =
∑∞

n=0Pn(t)s
n and ∂

∂s
ψN(t)(s) =

∑∞
n=0(n+1)Pn+1(t)s

n. The recursions are obtained
by equating the coefficients of sn on both sides of (2.4) for fixed n= 0,1,2, . . . .

�
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3. Pólya-Aeppli process of order k of the second type as a birth process
Suppose that N(t)∼ PAkII(λ,ρ). The properties of this process are specified by the following

assumptions: For any small h> 0

P (N(t+h) = n |N(t) =m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1−λh+ o(h), n=m,

(1− ρ)ρi−1λh+ o(h), n=m+ i,
i= 1,2, . . . , k− 1,

ρk−1λh+ o(h), n=m+ k,

(3.1)

for every m = 0,1, . . . , where o(h) → 0 as h → 0. Note that the assumptions imply that for i =
k+1, k+2, . . . , P (N(t+h) =m+ i |N(t) =m) = o(h).
The above assumptions yield the following Kolmogorov forward equations:∣∣∣∣∣∣∣∣∣∣

P ′
0(t) =−λP0(t),

P ′
n(t) =−λPn(t)+ (1− ρ)λ

∑n

j=1 ρ
j−1Pn−j(t), n= 1,2, . . . , k− 1,

P ′
n(t) =−λPn(t)+ (1− ρ)λ

∑k−1

j=1 ρ
j−1Pn−j(t)+λρk−1Pn−k(t), n= k, k+1, . . . ,

(3.2)

with the conditions

P0(0) = 1 and Pn(0) = 0, n= 1,2, . . . . (3.3)

Multiplying the nth equation of (3.2) by sn and summing for all n= 0,1,2, . . . we get the following
differential equation

∂ΨN(t)(s)

∂t
=−λ[1−ψX(s)]ΨN(t)(s). (3.4)

The solution of (3.4) with the initial condition

ΨN(1)(s) = 1

is given by (2.3), which is the PGF of the distribution of PAkII(λ,ρ). This leads to the following
definition for the Pólya-Aeppli process of order k of second type, namely:
Definitin 3.The process defined by (3.2) and (3.3) is the Pólya-Aeppli process of order k of second
type.

4. Application to risk model
We consider the risk model (1.1), where N(t)∼ PAkII(λ,ρ). We call this model a Pólya-Aeppli

of order k of second type risk model. In this case the relative safety loading θ is defined by

θ=
EX(t)

E
∑N(t)

i=1 Zi

=
c(1− ρ)

λμ(1− ρk)
− 1.

To ensure that θ > 0, the premium income per unit time c should satisfy the following inequality

c >
λμ(1− ρk)

1− ρ
.

Denote by τ = inf{t :X(t)<−u} the time to ruin of an insurance company having initial capital
u≥ 0, and by

Ψ(u) = P (τ <∞) (4.1)
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the related ruin probability. Let G(u, y) be the probability of the following event:
{ruin occurs with initial capital u and deficit, immediately after ruin occurs, is at most y} with u≥
0 and y≥ 0. Hence

G(u, y) = P (τ <∞,D≤ y), (4.2)

where D= |u+X(τ)| is the deficit immediately after ruin occurs. Therefore

lim
y−→∞

G(u, y) =Ψ(u). (4.3)

Using the assumptions in (3.1), and for any small h> 0, we have

G(u, y) = (1−λh)G(u+ ch, y)+

+(1− ρ)λh

k−1∑
i=1

ρi−1

[∫ u+ch

0

G(u+ ch−x, y)dF ∗i(x)+
(
F ∗i(u+ ch+ y)−F ∗i(u+ ch)

)]
+

+ρk−1λh

[∫ u+ch

0

G(u+ ch−x, y)dF �k(x)+
(
F �k(u+ ch+ y)−F �k(u+ ch)

)]
+ o(h),

(4.4)

where F �i(x), i= 1,2, . . . is the distribution function of Z1 +Z2 + . . .+Zi.
Let us denote by

H(x) = (1− ρ)
k−1∑
i=1

ρi−1F ∗i(x)+ ρk−1F ∗k(x) (4.5)

the non defective probability distribution function of the claims with

H(0) = 0, H(∞) = 1.

Rearranging the terms in (4.4) and letting h→ 0 we obtain the following differential equation

∂G(u, y)

∂u
=

λ

c

[
G(u, y)−

∫ u

0

G(u−x, y)dH(x)− [H(u+ y)−H(u)]

]
. (4.6)

In terms of the safety loading the equation has the form

∂G(u, y)

∂u
=

1− ρ

μ(1− ρk)

1

1+ θ

[
G(u, y)−

∫ u

0

G(u−x, y)dH(x)− [H(u+ y)−H(u)]

]
. (4.7)

4.1. Ruin probability

Theorem 1. The probability of ruin Ψ(u) satisfies the equation

dΨ(u)

du
=

λ

c

[
Ψ(u)−

∫ u

0

Ψ(u−x)dH(x)− [1−H(u)]

]
, u≥ 0. (4.8)

Proof. The result follows from (4.6) and (4.3).
�

Similarly to [4], we obtain the function G(0, y) given by

G(0, y) =
λ

c

∫ y

0

[1−H(u)]du, (4.9)

and for the ruin probability with no initial capital we obtain

Ψ(0) =
λμ

(1− ρ)c
(1− ρk). (4.10)
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4.2. Exponentially distributed claims
Let us consider the case of exponentially distributed claim sizes with mean μ, i.e. F (x) = 1−

e−
x
μ , x≥ 0, μ > 0. In this case, the function

F ∗i(x) = 1−
i−1∑
j=0

(
x
μ

)j

j!
e−

x
μ , x≥ 0

is an Erlang distribution function. Then, the distribution function H(x) in (4.5) is given by

H(x) = 1−
k−1∑
i=0

(
ρx
μ

)i

i!
e−

x
μ .

The density function h(x) has the form

h(x) =
1

μ

⎡⎢⎣(1− ρ)

k−2∑
i=0

(
ρx
μ

)i

i!
+

(
ρx
μ

)k−1

(k− 1)!

⎤⎥⎦ e−
x
μ .

So, the initial condition (4.9) in the case of exponential distribution is

G(0, y) =
λμ

c

k−1∑
i=0

ρi

i!
γ(i+1, y/μ),

where γ(α,x) =
∫ x

0
tα−1e−tdt is the incomplete Gamma function.

5. Simulation
In what follows, we apply the simulation approach for calculating the probability of ruin sug-

gested in [6] for the case of exponentially distributed claims with initial capital u= 0. We confirm
the validity of our simulated results by matching them with the value of the ruin probability
computed analytically using (4.10). Then, using our simulator, we provide results for the case
of non-zero initial capital not only for exponentially distributed claims but also for claims with
gamma and Weibull distributions. For a summary of the simulation approach for calculating the
probability of ruin see [4]. All of our simulation results are based on 3 000 000 runs. Next, we pro-
vide some results regarding the probability of ruin for different scenarios of the claim distribution
as well as the value of the initial capital.

5.1. Results
We consider the case of exponentially distributed claims and no initial capital u= 0. We verify

the correctness of our simulator by comparing the results for the probability of ruin for fixed model
parameters, produced in two different ways : (i) by the simulator, given in column “simulated“,
and (ii) computed using (4.10) given in column “analytical“. These are given in Table 1.

λ k ρ simulated Exp(1) analytical Exp(1)
1.0 15 0.6 0.208117 0.208235
1.5 4 0.8 0.316531 0.316286
2.0 10 0.4 0.256365 0.256383
2.5 3 0.9 0.423526 0.423437
3.0 6 0.2 0.288426 0.288443

Table 1: Simulated and analytical Exp(1)
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As it is easy to see, the “analytical“ and “simulated“ results are very close. So, we use our
simulator, written in MATHEMATICA, to compute a reasonable approximation of the probability
of ruin for non-exponentially distributed claims and non-zero initial capital (u �= 0) and a summary
of our results is given in subsection 5.1.1.

5.1.1. Case 1: Exponentially distributed claims
Here, we present some simulation results for the case of exponentially distributed claims with

non-zero initial capital.

(a) u= 0, dependence on k and ρ (b) u= 0, dependence on ρ and k

(c) ρ= 0.7, dependence on u and k (d) u= 5, dependence on ρ and k

Figure 1. Probability of ruin: exponentially distributed claims

Comparing part(b) and part(d) of Figure 1, both with x-label k, it is easy to see that the
probability of ruin is shifted downwards as the initial capital increases. If the initial capital is u= 0,
the smallest values for the probability of ruin is just above 0.35 for ρ= 0.1, whereas the analogous
value for u = 5 is just below 0.1. The depicted overall dependence on ρ, regardless of the value
of the initial capital, is as expected, the probability of ruin increases as ρ increases. The overall
trends depicted in part(a), with x-label ρ, and part(c), with x-label k, of Figure 1 also agree with
our intuition. Namely, for a fixed value of ρ, the probability of ruin is higher for low values of the
initial capital and it increases on k. It is worth to point out the sharp increase of the probability
of ruin for large values of ρ and large k, as shown in part(a) of Figure 1.

5.1.2. Case 2: Gamma distributed claims
Next, we consider gamma distributed claims with parameters α and β, i.e., the density function

of the claim sizes is

f(x) =
xα−1

βαΓ(α)
e−

x
β , x≥ 0,
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where Γ(α) is the Gamma function. Suppose that α= 2 and β = 0.5. In this case the mean values
of the claims are EZi = αβ = 1. We present results for different values of the model parameters u,
k and ρ.

(a) u= 0, dependence on k and ρ (b) u= 5, dependence on k and ρ

Figure 2. Probability of ruin: gamma distributed claims

The trends observed for the gamma distributed claims are similar to the one we have presented
and discussed for the case of exponentially distributed claims in subsection 5.1.1. Here, in Figure
2, with x-label ρ, we depict the dependence of the probability of ruin from u, for similar ρ and
k. Overall the probability of ruin for lower value of the capital u is higher, similar to what we
have observed in the exponential case. In addition we see that for high values of u and ρ, k have a
strong impact on the probability of ruin, e.g., see for u= 0 and ρ= 0.9, the range of the probability
of ruin is approximately (0.35,0.65), whereas for u = 5 this range is much larger, approximately
(0.05,0.53).

5.1.3. Case 3: Weibull distributed claims
Next, we consider the Weibull distribution with parameters α= 1.43552259 and β = 1.1013206

distributed claims. Here α is the shape parameter and β is the scale parameter. The parameters
of the Weibull and gamma distributions were selected so that the three claim size distributions
considered in sections 5.1.1, 5.1.2 and 5.1.3 have the same expectation μ= 1 and the Weibull and
gamma claim sizes have the same variances.

(a) u= 0, dependence on k and ρ (b) u= 5, dependence on k and ρ

Figure 3. Probability of ruin: Weibull distributed claims
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We were quite surprised to see that the behavior of the probability of ruin under Weibull dis-
tributed claims, part(a) and part(b) in Figure 3, with x-label ρ, mimics quite closely the behavior
of this probability for gamma distributed claims. So, then the natural question is: under a risk
model based on the Pólya-Aeppli process of order k, are the mean value and the variance of the
claim distribution what determines the probability of ruin, i.e., the actual form of the claim size
distribution does not have an effect on the probability of ruin. Interestingly, similar observations
were made in [4]. Again, observing these results is a good motivation for future research because
at this point we are not able to answer this question.

5.2. Comparison between M1 and M2
For brevity we will refer to the current model as M2 and to PAk(λ,ρ) from [4] as M1. Here we

provide a brief comparison between the probabilities of ruin for the two models.

(a) ρ= 0.7,0.9, u= 3 (b) ρ= 0.7,0.9, u= 3

Figure 4. Probability of ruin: comparison between M1 and M2

In part(a) and part(b) in Figure 4, we fix the value of the parameter u= 3, and illustrate the
dependence of the probability of ruin for M1 and M2 for two different values of ρ= 0.7,0.9. Again,
the probability of ruin for M1 and M2 is similar for the selected exponential and Weibull claim size
distributions. The probability of ruin is an increasing function of k and its value is shifted upwards
for higher values of parameter ρ. As expected, the probability of ruin for M2 is higher than for
M1 and this is exactly what we expect to observe as an outcome for the insurance company at the
time of severe natural disaster. Having model PAkII(λ,ρ) in place provides a reasonable theoretical
background for the company to plan accordingly for natural calamities. From the observations
above a natural question arises: are there any condition on the mean and the variance of the
claim size distribution that will guaranty the satisfaction of some inequalities on the related ruin
probabilities. These inequalities will be very useful in the sense that, even at the time of calamity,
the probability of ruin would not exceed a known value. Again, further numerical and theoretical
studies are needed to gain some insight on this question.

6. Conclusions
In the present study we have defined and studied the Pólya-Aeppli process of order k of second

type as a compound Poisson process with clumped geometric compounding distribution with suc-
cess probability equal to 1− ρ > 0. We have discussed some possible application of this process in
risk theory. We have studied the probability of ruin for the related risk model and have derived
an exact expression for the ruin probability in the particular case of zero initial capital. Also, we
have adopted a simulation approach, given in [6] for our particular model. Using this simulation
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approach we have provided results for general cases of the model, such as non-exponential claim
distribution and non-zero initial capital. The simulation results have opened for discussion several
very interesting questions related to the probability of ruin for Pólya-Aeppli of order k second
type risk model. Also, a motivation for PAk(λ,ρ) studied in [4] and PAkII(λ,ρ) is outlined and a
comparison between these two models is discussed.
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[4] Chukova, S. and Minkova, L.D. (2015). Pólya-Aeppli of order k risk model. Communications in Statistics
- Simulation and Computation, 44, 551-564.

[5] Chukova, S. and Minkova, L.D. (2013). Characterization of the Pólya-Aeppli process. Stochastic Analysis
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Abstract: Biometric recognition systems have been getting a lot of attention in both academia and the
industrial sector, one of such aspects of biometrics attracting interest is side-view face recognition, the
side-view of the face is known to hold unique biometric information of subjects. This study embarks on
contributing to the research of side-view face biometrics by proposing the fusion of geometric and texture
features of the side-view face. Local Binary Pattern (LBP) was used for the extraction of texture features
and the application of Laplacian filter was used for the extraction of geometric features, both features were
tested in side-view face recognition individually before fusion of the two features in order to observe and note
the effect of fusing the two features has on the performance of side-view face recognition, the experiments
carried out in the proposed recognition system utilized Support Vector Machine (SVM) for classification,
the training of the system was done using the histograms of the texture and geometric features extracted
and labelled for every individual subject in the dataset. All experiments were done on the National Cheng
Kung University (NCKU) faces dataset.

Key words : Side-view face recognition, Local binary pattern, Histogram fusion, SVM, Laplacian filter.

1. Introduction
It is clear that the processes of identification and verification has seen an evolution in the way

these processes are being carried out, the traditional methods of these processes are slowly being
replaced and being automated and integrated with biometric systems. As these systems grow
and become sophisticated so is the growing need of security, biometric systems are being used
in providing robust systems due to their growing sophistication and efficiency. Biometric systems
use a process known as pattern recognition to carry out authentication or identification processes,
biometric systems are mainly categorized based on the modalities used for the systems, which are
physiological and behavioural modalities [2]. One of the most popular and well accepted biometric
systems in both the research sector and the industrial sector is the face biometric systems, systems
based on the face biometric modality use the human face for the pattern recognition process. Most
facial biometric systems have been designed and developed for the frontal facial view, these kinds of
systems require a relatively controlled scenario for an efficient recognition or identification process
to be carried out, the control environment usually means a system is limited in its robustness, where
a factor such as the viewing angle may pose a challenge to a recognition or identification system
[12]. One of the most popular recognition systems for the human face recognition is the Viola-Jones
technique of facial recognition systems, this system uses a process which involves the extraction of
a specific feature from a detected facial image input which has to be a full-frontal view image, the
specified feature is extracted through what is known as a window which is automatically scaled
based on the size of the detected face, figure 1 below shows the steps of this algorithm through a
typical recognition system flow chart.

*Corresponding author. E-mail address: salman.m.jiddah@gmail.com
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İSTATİSTİK: Journal of the Turkish Statistical Association 13(3), pp. 108–119, 2021 İstatistik 109

Figure 1. Typical Facial Recognition Flowchart[2]

As most systems and algorithms of facial recognition are designed and built to work with full
frontal facial images, this makes the use of facial images with non-full-frontal pose images such as
facial side view images in such systems challenging for the systems to recognize sand authenticate
[1]. Both two dimensional (2D) and three dimensional (3D) facial images have been used in the field
of facial image recognition systems, and studies and reports have shown the use of 3D facial images
yielding more performing systems when compared to 2D facial recognition systems, however 2D
facial images recognition systems are also significantly well performing, and it is also noteworthy
that 3D systems require a lot more computing resources than their 2D systems counterpart which
require a lot less computing power to work efficiently [13]. There are several 2D face recognition
feature analysis systems that have been prominently used over the years and some of them are as
follows: eigenfaces approach and geometric features-based approach, this study attempts to utilize
two different approaches to facial features in side view, which are the texture based feature and
the geometric based feature, the two chosen features will be applied using Local Binary Patterns
(LBP) and Laplacian filters for texture and geometric features respectively.

2. Literature Review
Studies in facial recognition have been significantly pushed by the progress of computational

technology of the past few decades, these technological advancements have made it possible to
model mechanisms in such a way that they could possibly be as good or even more robust than
the human visual perception. Facial recognition has seen a huge rise in interest due to its efficiency
and non-invasive characteristics of the modality, this makes it suitable in many kinds of system
and even in systems which do not require the cooperation of a subject for a recognition or identi-
fication process to be performed on them. Facial recognition systems go as far back as 1964 where
Woodrow Wilson Bledsoe conducted computerized facial recognition experiments with an objec-
tive of simply identifying a specific image from a large number of images, in this study Bledsoe
reported challenges faced by the study which were as follows: variation in accuracy with respect
to variation in inclination and facial poses of the subjects, the intensity/angle of lighting, and the
variation in facial expressions of subjects [17]. In a study by [6], subject markers were utilized by
an operator which were measured and compared by the system to perform the facial recognition
in each input photograph image, despite the earlier start of studies on facial recognition systems,
automated facial recognition systems only really started in a 1971 [10], the study used an auto-
mated system to automatically extract and analyse facial features which included measurements
of the nose, chin, and eye region, the study used the Euclidean distance classifier [23]. Over the
years there have been proposal and utilization of several methods for facial recognition systems,
the classification of the existing methods of facial recognition systems is complex, however they
can still be categorized into three major categories which are: local based methods, holistic based
methods and hybrid-based methods of facial recognition.
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110 İSTATİSTİK: Journal of the Turkish Statistical Association 13(3), pp. 108–119, 2021 İstatistik

Holistic methods according to [11] are the systems which implement a method which uses the
entire facial regions in their recognition process, this method includes the eigenface and fisher facial
recognition techniques, local based facial recognition methods are the methods of facial recognition
which specify local characteristics from a facial image to analyse such as the region of the mouth,
eyes or nose.
local based methods have been very successful in facial recognition systems especially when com-

pared with holistic based methods of facial recognition systems because they have an advantage
whereby they are not as sensitive to variations in lamination and poses of the facial images been
analysed but its accuracy performance is highly dependent on the efficiency of the features extrac-
tion method applied. Hybrid based recognition methods are as the name implies, a combination of
both local based methods and holistic based methods in an attempt to use the best of what both
of them have to offer as a single method in a facial recognition system.

2.1. Side View Face Recognition
This reported side view face recognition was in the 1970s [18], where the study was carried out

by profiling side view facial images’ silhouettes and was used for recognition, the study reported
an impressive performance of up to 90 percent accuracy while auto correlations and K nearest
neighbour was used as the classification algorithm of the facial recognition system, the study used a
total of ten subjects. Another study [20] used facial labelling of facial landmarks on side view facial
images as shown in figure 2 below, they used this labelling to wrap and register the facial features
which they then applied Principal Component Analysis (PCA), Local Binary Pattern (LBP), and
Linear Discriminant Analysis (LDA), and compare them, the study showed LBP having the better
performance of the three applied methods with a performance accuracy of 91.1%.

Figure 2. Manually labelled facial landmarks

Another study [15] carried out an innovative technique whereby both left and right-side view
facial images of subjects were taken and used to detect and select the eye region of the subjects
using an algorithm to create a single facial image from the two-side view facial images of subjects,
the processed image is used to train the system after a median filter is applied to rid of possible
noise, this study concluded the region of interest in side view facial images are the nose and eye
regions of the facial images. [14] a study which successfully developed an algorithm to detect the eye
brow region of facial images for both right and left side view face images made it possible to identify
whether an input side view image was either left side or right side view face image, this enabled
their facial recognition system to specify which facial images and their features to analyse in the
automatic recognition process, the study also utilized local features for the recognition process of
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the side view facial images, and the vectors of LBP and Grey Level Co-occurrence Matrix (GLCM)
were formed. [16] carried out a study which investigated facial recognition with respect to facial
expressions in a multi view facial image which was a study motivated with handling non full frontal
face images in a face recognition system, the study utilized local descriptors in the face images
in the form of histograms, they used LBP for feature extraction in the form of grid set uniform
sampling which were a division of 46 sub blocks of the facial image, the multi pose variation of the
subjects was handled through the use of viola jones for facial regions extraction from the input
images, the pose variation were in 0 ,15 , 30 , 45 , 60 , 75 and 90 as can be seen for the
respective angle of pose respectively in figure 3 below.

Figure 3. Subject face image in multiple pose variation [16]

The dataset used for this study had 4200 images, and the classification method used for the
study in the experiments was Support Vector Machine (SVM).

2.2. Local Binary Pattern (LBP)
Local Binary Pattern (LBP) is an algorithm which is also an operator which is best described

as a texture descriptor, LBP is used to extract and provide the texture information from the
contours in an image of any kind of object. Unlike the visual perception of the human eye, LBP
can distinguish between colours from the contours of an image, LBP is a very powerful descriptor
because the texture information of an image is capable of giving information about the outline of
an image [4], LBP descriptor was developed with working with images that are monoscriptal in as
a feature, LBP uses eight closest pixel neighbours, where the LBP resulting pixel value depends on
the value of the neighbouring pixels surrounding it, LBP also works by highlighting the edges of
an image which in turn gives it a chance of obtaining better description of the texture of an image.
LBP as an operator uses the following steps to carry out its function: it first starts by dividing the
input image into n parts, however the most advised number of divisions of an image for an LBP
operator is 16 because it gives efficiency for both accuracy and time taken to carry out the LBP
operation on an image. LBP then uses a 3x3 mask with respect to the centre pixel of the mask,
and then proceeds to apply the following formula as seen in formula 2.1 below.

LB(pxt − pxc) =

{
1, pxt ≥ pxc

0, pxt < pxc
(2.1)

Where pxt is the pixel being analysed, and pxc is the centre pixel of the matrix, This is used
to calculate and obtain new pixel values for the matrix in a manner where all neighbouring pixels
are compared to the centre pixel, where the centre pixel is greater than the neighbouring pixel a
binary value of 0 is assigned to the pixel as its new value else it is assigned 1 and the new pixel
value [4], the new pixel value are then extracted as a vector of binary values which is then used
to generate an LBP histogram from the acquired binary values, the total histograms gotten for an
image are then concatenated into a spatially enhanced histogram as defined by formula 2.2 below.

Hij =
∑
x,y

I
{
fl(x, y) = i

}
I
{
(x, y) ε Rj

}
, i= 0, ..., n− 1, j = 0, ...,m− 1 (2.2)
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Figure 4. Basic LBP operator function on image

The entire LBP operator function on an image can be seen as described in figure 4 below
LBP as an operator has been used over the years in several studies and has also been proven

to be a very powerful texture feature extractor, the use of LBP in facial recognition system can
be seen in [4] where the authors achieved a performance rate of up to 90% accuracy in the facial
recognition system in which they applied LBP to the FERET facial dataset. Another study which
used LBP for side view face recognition is [21] where they applied LBP on the National Cheng
Kung University (NCKU) dataset, they applied LBP on both left and right side face images of
the dataset, after which they used a distance based classifier to gauge the performance of their
recognition system, they achieved different accuracy performance for the right side images and
left side images of the dataset, with 67% performance for the right side face images and 74.19%
accuracy performance for the left side view images.

2.3. Support Vector Machine (SVM)
Support vector machine is a classification algorithm which is discriminative, SVM as a classifier

has also seen applications in regression challenges, however the major function of the SVM classifier
lies in its used a function which performs classification using hyperplanes, using an N-dimensional
plane SVM is capable of distinctively identifying data, where the features of class type is denoted
by N, and every class type is situated on a different side of the hyperplane as can be seen in figure
5 below. SVM also has multidimensional hyperspace functions, SVM has kernel functions which
enables it to map classification regions within a space [5].

Figure 5. SVM hyperplane showing two distinct classes

2.3.1. SVM in Facial Recognition
Zhang et al. [22] carried out a facial expression recognition in which they applied SVM for classi-

fication in their experiments, they used a variation of SVM known as the fuzzy multi class SVM for
their classification phase of their study and achieved an accuracy performance of 96.77%. another
study which used SVM in their facial recognition system classification is a study by Richhariya
and Gupta [7], this study used a variation of SVM known as the iterative universum twin SVM
in which they used datapoints in their datasets which were not associated with any of the classes
being trained to supervise the training of the classes data. Another study which used the SVM
classifier in a facial recognition system study is study by Wang et al. [19] which they used in on
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extracted LBP features from a facial image dataset, their system was a facial recognition system
which operates in real-time which showed promising recognition accuracy performance. Julina and
Sharmila [9] used the SVM classification algorithm on Histogram of Gradients (HOG) features
which they extracted from the AT & T face dataset, this study took on the challenge of multi
variation in pose and lighting with their study to which they achieved an impressive accuracy
performance of up to 90.2 %.

2.4. Feature Fusion
There have been studies over the years which have carried on the researches to fuse multiple

features of a dataset in an attempt to gain better performance than otherwise using a single of the
multiple selected features in an experiment. A study by Santemiz et al. [18] carried out a study in
which they used HOG and LBP features together and classified them using SVM after they have
fused them using sum rule fusion, this study arrived at a performance accuracy of 89%. Another
similar study is that of Chen et al. [3] which used HOG-TOP fusion on geometric warp features
and acoustic features of a face image dataset. A study which used the same multiple feature fusion
as proposed by this study is that of Jiddah and Yurtkan [8], however they used the Euclidean
distance classifier on human ear dataset to which they also reported an improvement in accuracy
when compared to using any of the two features individually in the facial recognition system

3. Methodology
This study has been proposed to fuse two features; geometric and texture features of side view

face images, and using the SVM classifier for classification. Our methodology for this study seeks to
use LBP to extract the texture features from our sideview facial images, and use Laplacian filters
to extract the geometric features from the side view face images. The methodology of study follows
an outline as follows: the NCKU dataset images were pre-processed to rid the image of redundant
data, after which LBP and Laplacian filter were used to extract texture and geometric features of
the images respectively, the histogram of the images were then extracted and fused together using
histogram concatenation, the concatenated histograms were then classified using SVM and tested
for recognition accuracy. Figure 6 below shows a general outline of the methodology using a block
diagram.

Figure 6. Methodology block diagram

3.1. National Cheng Kung University (NCKU) dataset
The National Cheng Kung University (NCKU) dataset is a side view face dataset which is

publicly available to the research community courtesy of the National Cheng University, the dataset
contains images of a total of 90 subjects with 12 female subjects and 78 male subjects, with each
subject having a total of 37 images making a total of 6660 images for all subjects, with a 50:50
ratio for left side face and right side face images, a sample of the NCKU dataset can be seen
in figure 7 below. Each image is captured with a resolution of 640x480. For the purpose of the
experiments carried out in this study the images were pre-processed to rid the original images of
any redundant data in order to speed up the computational process and rid the images of noise,
during the pre-processing the images were resized to 128x128 pixels, a sample of a processed image



Jiddah et al.: Fusion of geometric and texture features for side-view face recognition using svm
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can be seen in figure 8 below. Also, only images of the right side with pose variations that are

actually side view face images were used for our experiments which are the 70 to 90 degrees pose

variations, which brings our experiment images to a total of 450 images.

Figure 7. NCKU dataset sample images

Figure 8. Original image (left), processed image (right)

3.2. Feature Extraction

This section explains the methodology used for the feature extraction procedure for both of our

geometric and texture feature in order to achieve the proposed fusion of geometric and texture

features in our side view facial image recognition system.

3.2.1. Texture Feature Extraction

The texture features used in the experiments of this study were extracted using the LBP algo-

rithm with the LBP procedure explained in section 2.2 of this paper as proposed by Ojala et al.

[16]. figure 9 below shows a sample image from our experiments after the LBP operator has been

applied on an image to highlight the texture features of the image.
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Figure 9. Greyscale Image (Left), Corresponding LBP (right)

3.2.2. Geometric Feature Extraction
The geometric features used in the course of the experiments of this study were extracted by

the utilization of the Laplacian filter, Laplacian filter is a known image filter which is known to
highlight and extract the geometric features of an image. Figure 10 below shows a sample image
from our experiments after a Laplacian filter has been applied on a side view facial image and the
geometric features of the image have been highlighted.

Figure 10. Greyscale image(left), Laplacian image (right)

3.3. Image Histograms
Part of the proposed methodology of this study is the use of image histograms of the extracted

features from the image, it has been identified as one the efficient ways for the fusion of features
and hence the choice to use the image histograms of the extracted features. These extracted image
histograms were concatenated for the purpose of the fusion of the features, figure 11 below shows
a sample image histogram from our study.

3.4. Classification
The classification phase of this study used SVM for its classification, the training and testing of

the classification process used a ratio of 80:20 for training and testing respectively, which brings
our training images to a total of 360 and testing images to 90. Also, k-fold cross validation was
used to obtain the average of the accuracy performance of our proposed facial recognition system.
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Figure 11. Sample Image Histogram

4. Results
The results of our experiments are reported in this section of this paper, the results are reported

to show experiments carried out on individual features before their fusion, doing so enabled us
to compare and contrast the performance of both geometric and texture features individually
and when combined as one in the side view facial recognition system. Table 1 below shows the
performance of the texture features when used alone in our proposed facial recognition system, as
can be seen in the table after the k-fold cross validation the texture features achieved a recognition
accuracy of 70%.

Table 1. Texture features accuracy performance

Iteration Training Images Testing Images Accuracy (%)
1 360 90 77
2 360 90 74
3 360 90 67
4 360 90 81
5 360 90 55
Average 70

Table 2 below shows the accuracy performance of the geometric features used alone in the
proposed side view face recognition system, the geometric feature significantly out performs the
texture features with an increase of 15% accuracy in the performance, as can be seen after the
k-fold cross validation the geometric feature achieved 85% accuracy performance in the proposed
recognition system
Table 3 as shown below shows the performance of our proposed side view facial recognition

system when both texture and geometric features are fused together and used as a single feature
in the recognition system. The fusion of the features has shown promising results as expected,
there was a significant increase in performance accuracy, the fusion of the features outperforms
both texture and geometric features when used individually, the fusion of both features achieved
an impressive 90% accuracy performance.
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Table 2. Geometric features accuracy performance

Iteration Training Images Testing Images Accuracy (%)
1 360 90 95
2 360 90 94
3 360 90 87
4 360 90 70
5 360 90 83
Average 85

Table 3. Geometric features accuracy performance

Iteration Training Images Testing Images Accuracy (%)
1 360 90 96
2 360 90 88
3 360 90 87
4 360 90 87
5 360 90 76
Average 90

5. Results Discussion
The aim of this paper is to propose a side-view facial recognition system based on the fusion

of both texture and geometric histograms rather than study they separately. Based on the results
of the study we can see that histogram fusion outperform if conducted separately both textural
and geometrical methods with an accuracy of around 90% noting that study utilized only 5 images
per subject using the SVM classifier. Authors in [24] ave used the NCKU dataset where they have
trained the first 37 images of all subjects where they have divided them into 3 subsets 2 for training
and 1 for testing. They have proposed the use of Improved Random Regression Forests classifier
with an optimal accuracy of 88.32% using the HOG method. Thus, even with a relatively smaller
training set conducted in this study histogram fusion yields better results by utilizing the use of
SVM classifier and would yield further greater results if trained with more images.

6. Conclusion and Recommendation
The experiments carried out to implement our proposed side view face recognition system have

shown promising results as we have hoped it will based on the literature review done prior to
the experiments carried out. This study paves a way for further studies with more comprehensive
experiments to be carried out in order to produce an increase in accuracy and robustness in side
view facial recognition systems, this study concludes by recommending this methodology to be car-
ried out on a much more larger scale as it is known that SVM classifier increases performance with
more data in its training phase, perhaps the use of other geometric and texture feature extractors
to compare and contrast the performance gotten from the feature extraction methods used in this
study.
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Abstract: In this paper, we suggest outer-product-of-gradient (OPG) variants of the Lagrange multiplier
(LM) test statistic for testing spatial dependence under the local parametric misspecification in spatial
models. Our OPG statistic for testing the presence of a spatial lag in the disturbance term remains valid
irrespective of whether or not there is spatial dependence in the dependent variable. Similarly, our suggested
OPG statistic for testing the presence of a spatial lag in the dependent variable is robust to the presence of
spatial dependence in the disturbance term. We also suggest the OPG variants that are robust to the presence
of an unknown form of heteroskedasticity in the disturbance terms. The computations of all suggested tests
only require the least squares estimates from a linear regression model. In a Monte Carlo simulation, we
investigate the finite sample properties of our tests and some alternative tests suggested in the literature.
The simulation results show that our tests work well in finite samples.

Key words : Spatial autoregressive models, SARAR, Heteroskedasticity, Testing, Robust tests, LM tests,
OPG tests, Inference.

1. Introduction
In this paper, we propose outer-product-of-gradient (OPG) variants of Lagrange multiplier (LM)

test statistic for testing spatial dependence in a spatial model that has spatial dependence in both
the dependent variable and the disturbance term. Our OPG test for testing one type of spatial
dependence (the spatial lag in the dependent variable or the spatial lag in the disturbance term)
is valid whether or not the other type of spatial dependence is present. We show how such robust
OPG tests can be systematically constructed in the quasi maximum likelihood (QML) framework
for spatial models that have homoskedastic or heteroskedastic disturbances. Importantly, the com-
putation of suggested tests only requires the ordinary least squares (OLS) estimates from a linear
regression model. Thus, our approach provides robust alternative tests that can be easily adopted
by applied researchers.
The OPG variants of LM tests for testing spatial dependence are based on the fact that the

score type-functions of a spatial model, which can be written in terms of linear and quadratic
forms of disturbance terms, form a martingale difference array. This inherent martingale structure
is explored in Kelejian and Prucha [13, 14] to develop a central limit theorem (CLT) for spatial
processes. Born and Breitung [7] show how the variance of linear and quadratic forms can be

*Corresponding author. E-mail: odogan@illinois.edu
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Doğan et al.: Robust Outer Product of Gradients Tests for Testing Spatial Dependence
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estimated by the OPG method, and suggest simple test statistics for testing the presence of a
spatial lag in the spatial auto-regressive (SAR) and spatial error (SE) models.1 Their test statistics
are robust to heteroskedasticity, and are equivalent to the one-directional LM tests derived in [8]
and [1] under the homoskedastic case. Following Born and Breitung [7], Baltagi and Yang [4, 5]
suggest the standardized OPG variants of one-directional LM tests that correct for both the mean
and variance of the standard LM test statistics for improving the finite sample properties of tests.
In the context of standard panel data models, there is evidence that standardizing an LM test
improves its performance, especially when the asymptotic critical values are used to implement the
test [3, 15, 20]. The simulation results in Baltagi and Yang [4, 5] show that the standardized OPG
variants for testing spatial dependence can also perform relatively better in finite sample.
The OPG variants suggested in [7, 4, 5] are one directional tests in the sense that they are

designed for testing one type of spatial dependence (spatial lag or spatial error dependence) in
the absence of the other type of spatial dependence. However, it is well known that the one direc-
tional LM test for one type of spatial dependence will be invalid in the presence of other type
of spatial dependence, i.e., under the local parametric misspecification [23, 9, 6, 2]. Anselin et
al. [2] study systematically the consequences of testing one type of spatial dependence at a time,
and use the approach suggested in [6] to develop adjusted one-directional LM test for testing the
presence of spatial dependence in the dependent variable (spatial dependence in the disturbance
term) in the possible presence of spatial dependence in the disturbance term (spatial dependence
in the dependent variable). Though the test suggested in [2] are valid under the local parametric
misspecification, they may not be valid under the heteroskedastic case, since the (quasi) likelihood
function is misspecified when the disturbance terms of the model are heteroskedastic. Recently,
following Born and Breitung [7], Jin and Lee [12] suggest the OPG variants of C(α)-type tests
in the ML and generalized method of moments (GMM) settings under both hemoskedastic and
heteroskedastic cases. In comparison with our suggested tests, the tests suggested in [12] are com-
putationally intensive as they require estimation of the respective null models by a

√
n-consistent

constrained estimator, and therefore they do not share the simplicity of tests based on the OLS
estimator.
The rest of this study is organized as follows. In Section 2, we state the spatial model and

derive its quasi-likelihood function. In Section 3, we show how the OPG variants of LM test
can be systematically derived under both homoskedastic and heteroskedastic cases. We provide
test statistics for detecting spatial error and spatial lag dependence in a SARAR (1,1) model. In
Section 4, we describe our Monte Carlo design and report the simulation results. In Section 5, we
provide an empirical illustration. In Section 6, we conclude. Some technical details and simulation
results are collected in an appendix.

2. Model Specification and ML Estimation Approach
We consider the following cross-sectional SARAR(1,1) specification

Y = λ0WY +Xβ0 +U, U = ρ0MU +V, (2.1)

where Y = (y1, . . . , yn)
′
is the n × 1 vector of a dependent variable, Xn is the n × kx matrix of

non-stochastic exogenous variables with a matching parameter vector β0. W and M are the n×n
spatial weights matrices of known constants with zero diagonal elements. The scalar parameters

λ0 and ρ0 are called the spatial autoregressive parameters. In (2.1), U = (u1, . . . , un)
′
is the n× 1

vector of regression disturbance terms and V = (v1, . . . , vn)
′
is the n×1 vector of disturbance terms

which are independent and identically distributed (iid) with mean zero and variance σ2
0.

1 On the taxonomy and estimation of spatial models, see [1, 17, 11].
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The model is stated with the true parameter vector θ0 = (β
′
0, σ

2
0, λ0, ρ0)

′
and we use θ =

(β
′
, σ2, λ, ρ, )

′
to denote any other arbitrary value in the parameter space. For notational simplicity,

let S(λ) = (In − λW ), R(ρ) = (In − ρM), S = S(λ0) and R = R(ρ0), where In denotes the n× n
identity matrix. Under the assumption that the disturbance terms are iid with mean zero and
variance σ2

0, the quasi log-likelihood function of the model can be written as

lnL(θ) =−n

2
ln(2π)− n

2
ln(σ2)+ ln |S(λ)|+ ln |R(ρ)|

− 1

2σ2
(S(λ)Y −Xβ)

′
R

′
(ρ)R(ρ) (S(λ)Y −Xβ) , (2.2)

where | · | denotes the determinant operator. The QMLE is the extremum estimator defined by θ̂=
argmaxθ∈Θ lnL(θ). Under some regularity conditions, it can be shown that the QMLE is consistent
and has asymptotic normal distribution [16].

3. Robust OPG Tests
In this section, we derive robust OPG tests for testing the null hypotheses Hρ

0 : ρ0 = 0 and
Hρ

0 : λ0 = 0 under both homekadastic and heteroskedastic cases. We also determine the asymptotic
distribution of tests under the local alternative hypotheses defined as Hρ

a : ρ0 = δρ/
√
n and Hλ

a :
λ0 = δλ/

√
n, where δρ and δλ are non-stochastic bounded constants. In testing Hρ

0 : ρ0 = 0, the
local alternative hypothesis Hλ

a : λ0 = δλ/
√
n also serves as the local parametric misspecification.

Similarly, in testing Hλ
0 : λ0 = 0, the local alternative hypothesis Hρ

a : ρ0 = δρ/
√
n represents the

local parametric misspecification in our setting.

3.1. Tests Under Homoskedasticity
Let Sa(θ) =

1
n

∂ lnL(θ0)

∂a
, where a ∈ {β,σ2, λ, ρ}. Our robust OPG tests are based on the score

functions of lnL(θ)/n derived as

Sβ(θ0) =
1

nσ2
0

X
′
R

′
V, Sσ2(θ0) =

1

2nσ4
0

V
′
V − 1

2σ2
0

, (3.1)

Sλ(θ0) =
1

nσ2
0

V
′
ḠV − 1

n
tr(G)+

1

nσ2
0

(RGXβ0)
′
V, Sρ(θ0) =

1

nσ2
0

V
′
HV − 1

n
tr(H),

where G=WS−1, Ḡ=RGR−1 and H =MR−1. Let γ = (β
′
, σ2)

′
. Then, the score functions can be

expressed as a vector of linear quadratic forms in the following way

S(θ0) = (S
′
γ(θ0), Sλ(θ0), Sρ(θ0))

′
=

1

n

⎛⎜⎜⎜⎜⎜⎜⎜⎝

V
′
A1V −σ2

0tr(A1)+ b
′
1V

...

V
′
AkxV −σ2

0tr(Akx)+ b
′
kx
V

V
′
Akx+1V −σ2

0tr(Akx+1)+ b
′
kx+1V

V
′
Akx+2V −σ2

0tr(Akx+2)+ b
′
kx+2V

V
′
Akx+3V −σ2

0tr(Akx+3)+ b
′
kx+3V

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (3.2)

where tr(·) is the trace operator, A1 = · · ·=Akx = 0, bj =RXj/σ
2
0 for j = 1,2, . . . , kx, Xj is the jth

column of X, Akx+1 = In/2σ
4
0, bkx+1 = 0, Akx+2 = Ḡ/σ2

0, bkx+2 = (RGXβ)/σ2
0, Akx+3 =H/σ2

0 and
bkx+3 = 0. We denote the (i,j)th element of Ak by ak,ij, and the ith element of bk by bki, where
k ∈ {1,2, . . . , kx+3}. Then, we can express S(θ0) as a sum of martingale differences in the following
way

S(θ0) =

n∑
i=1

Si(θ0), (3.3)
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where Si(θ0) =
(
S

′
iγ(θ0), Siλ(θ0), Siρ(θ0)

)′

with the kth element (k ∈ {1,2, . . . , kx +3})

Sik(θ0) =
1

n

(
ak,ii(v

2
i −σ2

0)+ vi

i−1∑
j=1

(ak,ij + ak,ji)vj + bkivi

)
.

To show that Si(θ0) is martingale difference sequence, consider the following σ−fields F0 = {∅,Ω}
and Fi = σ(v1, v2, . . . , vi) for 1≤ i≤ n. Then, it follows that Fi−1 ⊂ Fi and E(Si(θ0)|Fi−1) = 0. Thus
{Si(θ0),Fi, 1≤ i≤ n} forms a martingale difference array. We can thus express the variance of√
nS(θ0) in the following way

Var
(√

nS(θ0)
)
=K(θ0) =

n∑
i=1

E

(
nSi(θ0)S

′
i(θ0)

)
(3.4)

Under some regularity conditions, K(θ0) can be estimated by K(θ̂) = n
∑n

i=1 Si(θ̂)S
′
i(θ̂), where θ̂

is a consistent estimator of θ0.
To define our suggested robust OPG test, we assume the following assumptions.

Assumption 1. The innovation terms vis are iid with mean zero, variance σ2
0, and E |vi|4+η

<
∞ for some η > 0 for all i and n.

Assumption 2. (i) Let θ̃ be a constrained estimator under under the joint null hypothesis

H0 : λ0 = ρ0 = 0. Then,
√
n(θ̃− θ0) =Op(1) holds. (ii)

√
nS(θ0)

d−→N(0,K(θ0)), where K(θ0) is a

non-singular matrix. (iii) −∂S(θ̄)

∂θ
′ = J(θ0) + op(1), where θ̄ = θ0 + op(1) and J(θ0) = E

(
−∂S(θ0)

∂θ
′

)
is

a non-singular matrix.

Assumption 1 requires that the disturbance terms are homoskedastic, but allows for a non-normal
distribution. Assumption 2 is a high level assumption as our focus is on testing problem.2 The
first part of the assumption requires that the constrained estimator under the joint null hypothesis
H0 : λ0 = ρ0 = 0 is a

√
n-consistent estimator of θ0. Note that under H0 : λ0 = ρ0 = 0, our model

reduces to the linear regression model, which can be consistently estimated by the OLS estimator.
Assumption 2 (ii) is the CLT condition for the score functions, which can be ensured by the CLT
for linear-quadratic form in [13, 14]. Finally, Assumption 2 (iii) shows that the negative hessian
evaluated at a consistent estimator converges to the information matrix.
We assume that K(θ0) and J(θ0) are partitioned into sub-matrices Kab(θ0) and Jab(θ0) according

to the dimensions of a and b, where a, b∈ {λ,ρ, γ}. Then, it can be shown that

Jλλ(θ0) =
1

nσ2
0

(RGXβ0)
′
RGXβ0 +

1

n
tr(Ḡ(s)Ḡ), Jλρ(θ0) =

1

n
tr
(
H(s)Ḡ

)
,

Jλγ(θ0) =

(
1

nσ2
0

X
′
R

′
RGXβ0,

1

nσ2
0

tr(G)

)
, Jρρ(θ0) =

1

n
tr
(
H(s)H

)
,

Jργ(θ0) =

(
0,

1

nσ2
0

tr(H)

)
, Jγγ(θ0) =Diag

(
1

nσ2
X

′
R

′
RX,

1

2σ4
0

)
, (3.5)

where A(s) =A+A
′
for any n×n matrix A.

Before we introduce our suggested tests, we introduce the following notations. We define Jλ·γ(θ) =
Jλλ(θ) − Jλγ(θ)J

−1
γγ (θ)Jγλ(θ) and Jλρ·γ(θ) = Jλρ(θ) − Jλγ(θ)J

−1
γγ (θ)Jγρ(θ). Similarly, Jρ·γ(θ) =

Jρρ(θ)− Jργ(θ)J
−1
γγ (θ)Jγρ(θ) and Jρλ·γ(θ) = Jρλ(θ)− Jργ(θ)J

−1
γγ (θ)Jγλ(θ). Under Assumption 2, it

2 The primitive conditions ensuring this assumption are provided in [16]. For the sake of brevity, we do not provide
these primitive conditions.
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can be shown that the mean value expansions of
√
nSλ(θ̃) and

√
nSγ(θ̃) around θ0, when both Hλ

a

and Hρ
a hold, yield the following result (see proof of Theorem 1)

√
nSλ(θ̃)

d−→N [Jλ·γ(θ0)δλ + Jλρ·γ(θ0)δρ, Bλ·γ(θ0)] , (3.6)

where

Bλ·γ(θ0) =Kλλ(θ0)+ Jλγ(θ0)J
−1
γγ (θ0)Kγγ(θ0)J

−1
γγ (θ0)J

′
λγ(θ0)

−Kλγ(θ0)J
−1
γγ (θ0)J

′
λγ(θ0)− Jλγ(θ0)J

−1
γγ (θ0)Kγλ(θ0). (3.7)

Hence, under Hλ
0 and Hρ

a , it follows that
√
nSλ(θ̃)− Jλρ·γ(θ0)δρ

d−→ N (0, Bλ·γ(θ0)). The non-zero
asymptotic mean term Jλρ·γ(θ0)δρ indicates that the null asymptotic distribution of the OPG test
based on the

√
nSλ(θ̃) will has a non-central chi-squared distribution in the local presence of ρ0.

We show that δρ is the asymptotic mean of J−1
ρ·γ

√
nSρ(θ̃) (see the proof of Theorem 1). This result

suggests that we can formulate a OPG test that is valid in the local presence of ρ0 based on the
following adjusted score function.

√
nS∗

λ(θ̃) =
√
n
(
Sλ(θ̃)− Jλρ·γ(θ̃)J

−1
ρ·γ(θ̃)Sρ(θ̃)

)
. (3.8)

Then, our suggested robust OPG test is given by

LMλ = nS∗2
λ (θ̃)/Dλ·γ(θ̃), (3.9)

where

Dλ·γ(θ̃) =Bλ·γ(θ̃)+ Jλρ·γ(θ̃)J
−1
ρ·γ(θ̃)Bρ·γ(θ̃)J

−1
ρ·γ(θ̃)Jρλ·γ(θ̃)

− Jλρ·γ(θ̃)J
−1
ρ·γ(θ̃)Bρλ·γ(θ̃)−Bλρ·γ(θ̃)J

−1
ρ·γ(θ̃)Jρλ·γ(θ̃), (3.10)

with

Bλ·γ(θ̃) =Kλλ(θ̃)+ Jλγ(θ̃)J
−1
γ (θ̃)Kγγ(θ̃)J

−1
γγ (θ̃)Jγλ(θ̃)

−Kλγ(θ̃)J
−1
γγ (θ̃)Jγλ(θ̃)− Jλγ(θ̃)J

−1
γγ (θ̃)Kγλ(θ̃), (3.11)

Bλρ·γ(θ̃) =Kλρ(θ̃)− Jλγ(θ̃)J
−1
γγ (θ̃)Kγρ(θ̃)−Kλγ(θ̃)J

−1
γγ (θ̃)Jγρ(θ̃)

+ Jλγ(θ̃)J
−1
γγ (θ̃)Kγγ(θ̃)J

−1
γγ (θ̃)Jγρ(θ̃), (3.12)

Bρ·γ(θ̃) =Kρρ(θ̃)+ Jργ(θ̃)J
−1
γγ (θ̃)Kγγ(θ̃)J

−1
γγ (θ̃)Jγρ(θ̃)

−Kργ(θ̃)J
−1
γγ (θ̃)Jγρ(θ̃)− Jργ(θ̃)J

−1
γγ (θ̃)Kγρ(θ̃), (3.13)

Bρλ·γ(θ̃) =Kρλ(θ̃)− Jργ(θ̃)J
−1
γγ (θ̃)Kγλ(θ̃)−Kργ(θ̃)J

−1
γγ (θ̃)Jγλ(θ̃)

+ Jργ(θ̃)J
−1
γγ (θ̃)Kγγ(θ̃)J

−1
γγ (θ̃)Jγλ(θ̃). (3.14)

Theorem 1. Assume that Assumptions 1-2 hold. Then, under Hλ
a , it follows that

LMλ
d−→ χ2

1(ϑ1), (3.15)

where

ϑ1 = δ2λ
(
Jλ·γ(θ0)− Jλρ·γ(θ0)J

−1
ρ·γ(θ0)Jρλ·γ(θ0)

)2
/Dλ·γ(θ0). (3.16)
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Proof. See Appendix 6.

Theorem 1 indicates that LMλ
d−→ χ2

1 under Hλ
0 in the local presence of ρ0, i.e., LMλ is a valid

test statistic irrespective of whether Hρ
0 or Hρ

a holds. Though our suggested test statistic has
a lengthy expression, its calculation only requires θ̃. Test statistic simplify significantly when
Jλρ·γ(θ̃) = 0 holds. In that case, we have LMλ = nS2

λ(θ̃)/Dλ·γ(θ̃), where Dλ·γ(θ̃) = Bλ·γ(θ̃) −
Bλρ·γ(θ̃)J−1

ρ·γ(θ̃)Jρλ·γ(θ̃).
We can similarly determine the test statistic for testing Hρ

a in the local presence of λ0. The
robust OGP test statistic is given by

LMρ = nS∗2
ρ (θ̃)/Dρ·γ(θ̃), (3.17)

where S∗
ρ(θ̃) =

(
Sρ(θ̃)− Jρλ·γ(θ̃)J

−1
λ·γ(θ̃)Sλ(θ̃)

)
is the adjusted score function and

Dρ·γ(θ̃) =Bρ·γ(θ̃)+ Jρλ·γ(θ̃)J
−1
λ·γ(θ̃)Bλ·γ(θ̃)J

−1
λ·γ(θ̃)Jλρ·γ(θ̃)

− Jρλ·γ(θ̃)J
−1
λ·γ(θ̃)Bλρ·γ(θ̃)−Bρλ·γ(θ̃)J

−1
λ·γ(θ̃)Jλρ·γ(θ̃). (3.18)

The asymptotic null distribution of LMρ is a central chi-squared distribution in the local presence
of λ0 as shown in the following theorem.

Theorem 2. Assume that Assumptions 1-2 hold. Then, under Hρ
a , it follows that

LMρ
d−→ χ2

1(ϑ2), (3.19)

where

ϑ2 = δ2ρ
(
Jρ·γ(θ0)− Jρλ·γ(θ0)J

−1
λ·γ(θ0)Jλρ·γ(θ0)

)2
/Dρ·γ(θ0). (3.20)

Proof. See Appendix 6.

Theorem 2 indicates that the asymptotic null distribution of LMρ is χ2
1, i.e., LMρ

d−→ χ2
1 under Hρ

0 .
Remark 1. In terms of our notation, the OPG variants of LM test suggested in [7] for Hρ

0 can
be expressed as

LM s
ρ = nS2

ρ(θ̃)/Kρρ(θ̃) (3.21)

Under the null hypothesis, this test statistic is asymptotically equivalent to the LM test statistic
suggested in [8] and the standardized OPG-based LM test suggested in [5, Theorem 2.2]. Here,
we show that this test statistic is invalid under the local parametric misspecification of the form
λ0 = δλ/

√
n. Using the asymptotic argument given in the proof of Theorem 1, it can be shown that

the asymptotic distribution of
√
nSρ(θ̃) under H

λ
a and Hρ

a is given by

√
nSρ(θ̃)

d−→N [Jρ·γ(θ0)δρ + Jρλ·γ(θ0)δλ, Bρ·γ(θ0)] , (3.22)

where

Bρ·γ(θ0) =Kρρ(θ0)+ Jργ(θ0)J
−1
γγ (θ0)Kγγ(θ0)J

−1
γγ (θ0)J

′
λγ(θ0)

−Kργ(θ0)J
−1
γγ (θ0)J

′
ργ(θ0)− Jργ(θ0)J

−1
γγ (θ0)Kγρ(θ0). (3.23)

Our results in (3.5) indicate that Jργ(θ0) = 0 under the joint null hypothesis H0 : λ0 = ρ0 = 0.
Moreover, our Assumption 2 ensures that a consistent estimator of Bρ·γ(θ0) is Bρ·γ(θ̃) =Kρρ(θ̃).
Then, under Hλ

a and Hρ
a , using Theorem 8.6 of White [24] on the asymptotic distribution of

quadratic forms, we obtain

LM s
ρ

d−→ χ2
1(ϕ1), (3.24)
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where ϕ1 = (Jρ·γ(θ0)δρ + Jρλ·γ(θ0)δλ)
2
/Kρρ(θ0). In the local presence of λ0, the result in (3.24)

indicates that the asymptotic null distribution of LM s
ρ is χ2

1(ϕ2), where ϕ2 = (Jρλ·γ(θ0)δλ)
2
/Kρρ(θ0).

That is, in the presence of local parametric misspecification of the form λ0 = δλ/
√
n, LMa

ρ will over
reject Hρ

0 due to the non-centrality parameter ϕ2.
Remark 2. For testing Hλ

0 , our result in (3.6) suggests the following non-robust test statistic

LM s
λ = nS2

λ(θ̃)/Bλ·γ(θ̃), (3.25)

In contrast to LM s
ρ , our result on the elements of 3.5 indicates that Bλ·γ(θ̃) is not equal to Kλλ(θ̃)

since Jλρ(θ̃) =
1
n
tr
(
M (s)W

)
=O(1). Then, under Hλ

a and Hρ
a , it follows that

LM s
λ

d−→ χ2
1(ϕ3), (3.26)

where ϕ3 = (Jλ·γ(θ0)δλ + Jλρ·γ(θ0)δρ)
2
/Bλ·γ(θ0) is the non-centrality parameter. Thus, in the local

presence of ρ0, the asymptotic null distribution of LMλ is a non-central chi-squared distribution
with the non-centrality parameter of ϕ4 = (Jλρ·γ(θ0)δρ)

2
/Bλ·γ(θ0). The test statistic suggested in

[7] for testing Hλ
0 is different from the one in (3.26). Their test statistic is equivalent to the LM

test statistics derived in [1] for the SAR model Y = λ0WY +Xβ0 +U [7, Proposition 4.1]. Since
the LM statistic in [1] for the SAR model is invalid in the local presence of ρ0 [2], it follows that
the OPG variant in [7] for testing Hλ

0 is also invalid in the local presence of ρ0.

3.2. Tests Under Heteroskedasticity
In this section, we assume that the disturbance terms v′is are independent, but heteroskedastic

with variances σ2
i . In this case, it is known that the score function derived from the quasi likelihood

function in (2.2) do not have zero expected values [18, 10]. This result indicates that the QMLE
defined by θ̂ = argmaxθ∈Θ lnL(θ) may not be a consistent estimator of θ0. Liu and Yang [19] and
Yang [25] modify the score functions such that they have zero means, and define a consistent
estimator as a root of adjusted score functions. We follow the same approach to formulate score-
based OPG tests under heteroskedastic case. Since the modified scores can be considered as proper
moment functions, our suggested tests can also be called the m-tests [24].
Let θ0 = (β

′
0, λ0, ρ0)

′
. We use Diag(Ak) to denote the diagonal matrix whose diagonal elements are

the (i, i)th elements ak,ii’s, i.e., Diag(Ak) =Diag(ak,11, ak,22, . . . , ak,nn). Following [19], we consider
the following modified score functions that have zero means.

Cβ(θ0) =
1

n
X

′
R

′
V, Cλ(θ0) =

1

n
V

′ (
Ḡ−Diag(Ḡ)

)
V +

1

n
(RGXβ0)

′
V, (3.27)

Cρ(θ0) =
1

n
V

′
(H −Diag(H))V, (3.28)

where V =R(SY −Xβ0). In terms of linear quadratic forms, these score functions can be expressed
as

C(θ0) = (C
′
β(θ0),Cλ(θ0),Cρ(θ0))

′
=

1

n

⎛⎜⎜⎜⎜⎜⎝
V

′
A1V + b

′
1V

...

V
′
AkxV + b

′
kx
V

V
′
Akx+1V + b

′
kx+1V

V
′
Akx+2V + b

′
kx+2V

⎞⎟⎟⎟⎟⎟⎠ , (3.29)

where A1 = · · · = Akx = 0, bj = RXj for j = 1,2, . . . , kx, Akx+1 = Ḡ − Diag(Ḡ), bkx+1 = RGXβ,
Akx+2 = H − Diag(H) and bkx+2 = 0. As before, we can express S(θ0) as a sum of martingale
differences in the following way

C(θ0) =

n∑
i=1

Ci(θ0), (3.30)
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where Ci(θ0) =
(
C

′
iβ(θ0),Ciλ(θ0),Ciρ(θ0)

)′

with the kth element (k ∈ {1,2, . . . , kx +2}), Cik(θ0) =

vi
∑i−1

j=1(ak,ij + ak,ji)vj + bkivi. As before, the variance of
√
nC(θ0) takes the following form

Var
(√

nC(θ0)
)
=K(θ0) = n

n∑
i=1

E

(
Ci(θ0)C

′
i(θ0)

)
. (3.31)

Under some regularity condition, K(θ0) can be estimated by K(θ̂) = n
∑n

i=1Ci(θ̂)C
′
i(θ̂), where θ̂ is

a consistent estimator of θ0.
To define our suggested robust OGP test, we assume the following assumptions.

Assumption 3. The innovation terms vis are independent with mean zero, variance σ2
i and

E |vi|4+η
<∞ for some η > 0 for all i and n.

Assumption 4. (i) Let θ̃ be a constrained estimator under under the joint null hypothesis

H0 : λ0 = ρ0 = 0. Then,
√
n(θ̃− θ0) =Op(1) holds. (ii)

√
nC(θ0)

d−→N(0,K(θ0)), where K(θ0) is a

non-singular matrix. (iii) −∂C(θ̄)

∂θ
′ = J(θ0)+ op(1), where θ̄= θ0 + op(1) and J(θ0) = E

(
−∂C(θ0)

∂θ
′

)
is

a non-singular matrix.

Assumption 3 specifies heteroskedastic disturbance terms [14, 18]. As in the homoskedastic case,
Assumption 4 is a high level assumption and provides conditions that are counterparts of those
stated in Assumption 2.3

Under Assumption 3, the elements of J(θ0) can be derived as

Jλλ(θ0) =
1

n
tr
((

Ḡ−Diag(Ḡ)
)(s)

ḠΣ
)
+

1

n
(RGXβ0)

′
RGXβ0

Jλρ(θ0) = Jρλ(θ0) =
1

n
tr
(
(H −Diag(H))

(s)
ḠΣ

)
,

Jλβ(θ0) = J
′
βλ(θ0) =

1

n
β

′
0X

′
G

′
R

′
RX,

Jρρ(θ0) =
1

n
tr
(
(H −Diag(H))(s)HΣ

)
, Jρβ(θ0) = 0, Jβρ(θ0) = 0,

Jββ(θ0) =
1

n
X

′
R

′
RX,

where Σ = Diag(σ2
1, σ

2
2, . . . , σ

2
n). These expressions show that we can use a plug-in estimator to

estimate J(θ0) (here, we can use Σ̃ =Diag(v̂21, v̂
2
2, . . . , v̂

2
n) for Σ.

4)
Under heteroskedastic disturbances, our suggested test statistics for Hλ

0 and Hρ
0 are respectively

given by

LMh
λ = nC∗2

λ (θ̃)/Dλ·β(θ̃), (3.32)

LMh
ρ = nC∗2

ρ (θ̃)/Dρ·β(θ̃) (3.33)

where C∗
λ(θ̃) =

(
Cλ(θ̃)− Jλρ·β(θ̃)J

−1
ρ·β(θ̃)Cρ(θ̃)

)
and C∗

ρ(θ̃) =
(
Cρ(θ̃)− Jρλ·β(θ̃)J

−1
λ·β(θ̃)Cλ(θ̃)

)
are the

adjusted score functions and

Dλ·β(θ̃) =Bλ·β(θ̃)+ Jλρ·β(θ̃)J
−1
ρ·β(θ̃)Bρ·β(θ̃)J

−1
ρ·β(θ̃)Jρλ·β(θ̃)

− Jλρ·β(θ̃)J
−1
ρ·β(θ̃)Bρλ·β(θ̃)−Bλρ·β(θ̃)J

−1
ρ·β(θ̃)Jρλ·β(θ̃), (3.34)

3 The primitive conditions ensuring this assumption are provided in [14, 18]. For the sake of brevity, we do not repeat
these primitive conditions.

4 The the asymptotic argument is provided in [18].
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Dρ·β(θ̃) =Bρ·β(θ̃)+ Jρλ·β(θ̃)J
−1
λ·β(θ̃)Bλ·β(θ̃)J

−1
λ·β(θ̃)Jλρ·β(θ̃)

− Jρλ·β(θ̃)J
−1
λ·β(θ̃)Bλρ·β(θ̃)−Bρλ·β(θ̃)J

−1
λ·β(θ̃)Jλρ·β(θ̃), (3.35)

with

Bλ·β(θ̃) =Kλλ(θ̃)+ Jλβ(θ̃)J
−1
ββ (θ̃)Kββ(θ̃)J

−1
ββ (θ̃)Jβλ(θ̃)

−Kλβ(θ̃)J
−1
ββ (θ̃)Jβλ(θ̃)− Jλβ(θ̃)J

−1
ββ (θ̃)Kβλ(θ̃), (3.36)

Bλρ·β(θ̃) =Kλρ(θ̃)− Jλβ(θ̃)J
−1
ββ (θ̃)Kβρ(θ̃)−Kλβ(θ̃)J

−1
ββ (θ̃)Jβρ(θ̃)

+ Jλβ(θ̃)J
−1
ββ (θ̃)Kββ(θ̃)J

−1
ββ (θ̃)Jβρ(θ̃), (3.37)

Bρ·β(θ̃) =Kρρ(θ̃)+ Jρβ(θ̃)J
−1
ββ (θ̃)Kββ(θ̃)J

−1
ββ (θ̃)Jβρ(θ̃)

−Kρβ(θ̃)J
−1
ββ (θ̃)Jβρ(θ̃)− Jρβ(θ̃)J

−1
ββ (θ̃)Kβρ(θ̃), (3.38)

Bρλ·β(θ̃) =Kρλ(θ̃)− Jρβ(θ̃)J
−1
ββ (θ̃)Kβλ(θ̃)−Kρβ(θ̃)J

−1
ββ (θ̃)Jβλ(θ̃)

+ Jρβ(θ̃)J
−1
ββ (θ̃)Kββ(θ̃)J

−1
ββ (θ̃)Jβλ(θ̃). (3.39)

The next theorem provides the asymptotic distributions of these tests.

Theorem 3. Assume that Assumptions 3-4 hold.
1. Under Hλ

a , it follows that

LMh
λ

d−→ χ2
1(ϑ3), (3.40)

where

ϑ3 = δ2λ
(
Jλ·β(θ0)− Jλρ·β(θ0)J

−1
ρ·β(θ0)Jρλ·β(θ0)

)2
/Dλ·β(θ0). (3.41)

2. Under Hρ
a , it follows that

LMh
ρ

d−→ χ2
1(ϑ4), (3.42)

where

ϑ4 = δ2ρ
(
Jρ·β(θ0)− Jρλ·β(θ0)J

−1
λ·β(θ0)Jλρ·β(θ0)

)2
/Dρ·β(θ0). (3.43)

Proof. See Appendix 6.
Theorem 3 shows that LMλ and LMλ are valid test statistics in the presence of parametric mis-

specification. That is, LMh
λ

d−→ χ2
1 under Hλ

0 , and LMh
ρ

d−→ χ2
1 under Hρ

0 .
Remark 3. The non-robust versions stated in Remarks 1 and 2 take the following forms

LM c
ρ = nC2

ρ(θ̃)/Bρ·γ(θ̃), (3.44)

LM c
λ = nC2

λ(θ̃)/Bλ·γ(θ̃), (3.45)

These variants are invalid under local parametric misspecification. Under the heteroskedastic case,
we also have Jρβ(θ̃) = 0, implying that Bρ·γ(θ̃) =Kρρ(θ̃).Thus, LM

c
ρ can also be formulated with

Kρρ(θ̃).
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4. Monte Carlo Simulations

4.1. Design
In order to study the finite sample properties of the suggested tests, we design a Monte Carlo

study. For the specification in (2.1), we consider two regressors X = (X1, X2) with the parameter

vector (β01, β02)
′
= (1 ,1)

′
. For X1 and X2, we use the U.S. county-level data set of [21] on the

1980 presidential election: X1 is the standardized value of log income per-capita and X2 is the
standardized value of log homeownership. This data set describes 3107 U.S. counties, and we use the
first n observations in our Monte Carlo study. We consider the three specifications for the weights
matrix considered by [22]: (i) the 49× 49 contiguity based weights matrix generated for 48 US
states and the District of Columbia, (ii) the 98×98 contiguity based weights matrix corresponding
to five nearest neighbors of each of the 98 census tracts in Toledo, Ohio, and (iii) the 361× 361
contiguity based weights matrix corresponding to whether the school districts are in the same
county in Iowa in 2009. In our simulation, we set W =M . The spatial autoregressive parameters,
λ0 and ρ0, take values from {0,0.1,0.2,0.3,0.4,0.5,0.6}.

In generating disturbance terms, we consider two cases: (i) a homoskedastic case and (ii) a
heteroskedastic case based on a skedastic function. In the homoskedastic case, we generate distur-
bance terms that have standard normal and chi-squared distributions: (i) vi ∼N(0,1) and (ii) vi ∼
(χ2

2 − 2)/2. In the skedastic case, we generate the disturbance terms according to vi = σiξi, where
σ2
i = exp(0.1 + 0.35 ·Xi,1), and the innovation term ξi is generated according to (i) ξi ∼ N(0,1),

and (ii) vi ∼ (χ2
2− 2)/2. We set the nominal size set to 0.05 and the number of repetitions is 1000.

In our simulation, we will also consider the test statistics suggested in [7] and [4]. More specifically,
we consider the tests in the equations (3.2) and (3.4) of [7], and the tests in the equations (16)
and (17) of [4]. Moreover, we also consider the robust test statistics that are derived in the LM
framework in [2] under the assumption that the disturbance terms are homoskedastic.

4.2. Simulation Results
The simulation results are presented in Tables 1 through 6 for the normal distribution case.5 In

these tables, (i) LMλ is the test statistic in Theorem 1, (ii) LMρ is the test statistic in Theorem 2,
(iii) LMh

λ and LMh
ρ are the test statistics given in Theorem 3, (iv) LMB

ρ and LMB
λ are the test

statistics suggested in [7], (v) LMZ
λ and LMZ

ρ are the tests statistics suggested in [4], and (vi) LMA
λ

and LMA
ρ are the test statistics suggested in [2]. The salient features of the results in Tables 1-6

are as follows.
1. The first row in each table shows the empirical size of the tests when there is no parametric

misspecification. Our suggested tests, i.e., LMρ, LMλ, LM
h
ρ and LMh

λ, and those suggested in [2],
i.e., LMA

ρ and LMA
λ , report size values that are close to the nominal value of 0.05 under both

homoskedasticity and heteroskedasticity. The test statistics LMB
ρ , LM

Z
ρ , LM

B
λ and LMZ

λ are over-
sized, especially LMB

ρ and LMZ
ρ .

2. The empirical size properties of tests for testing Hλ
0 under parametric misspecification can be

examined through the first panel of each table. In the local presence of ρ0, our suggested tests and
those suggested in [2] perform better than other tests. As expected, LMZ

λ and LMB
λ are not robust

to the local presence of ρ0.
3. The empirical size properties of tests for testing Hρ

0 under parametric misspecification can be
examined under the cases where ρ0 = 0 and λ0 
= 0. Both LMh

ρ and LMA
ρ perform relatively better

than other tests in all cases. LMZ
ρ and LMB

ρ are over-sized in all cases as these tests are not robust
to local parametric misspecification.

5 We do not present the simulation results for the chi-squared distribution case, since they are similar to the normal
distribution case. These results are available from the authors upon request.
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4. The simulation results in Tables 1-6 indicates that heteroskedasticity specified in the form of
a skedastic function may not affect the performance of the robust tests suggested in [2].
5. The empirical power properties of test statistics for testing Hλ

0 can be examined when λ0

deviates from zero. When λ0 is near zero, LMB
λ and LMZ

λ report relatively large empirical powers
under both homoskedastic and heteroskedastic cases. As λ0 gets larger, our suggested tests and
those in [2] get larger empirical powers, and perform similar to LMB

λ and LMZ
λ . Similarly, the

empirical power properties of test statistics for testing Hρ
0 can be examined when ρ0 deviates from

zero. Here, we also observe a similar pattern. That is, LMB
λ and LMZ

λ perform better than other
tests under both homoskedastic and heteroskedastic cases only when ρ0 is near to zero.
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Table 1. Empirical size and power of tests: Homoskedastic disturbances and n= 49

λ0 ρ0 LMρ LMA
ρ LMB

ρ LMZ
ρ LMh

ρ LMλ LMA
λ LMB

λ LMZ
λ LMh

λ

0.0 0.0 0.049 0.044 0.168 0.171 0.051 0.050 0.052 0.075 0.081 0.050

0.0 0.1 0.048 0.061 0.190 0.211 0.051 0.057 0.060 0.092 0.096 0.057

0.0 0.2 0.056 0.113 0.312 0.342 0.091 0.060 0.059 0.137 0.149 0.060

0.0 0.3 0.055 0.197 0.460 0.486 0.150 0.058 0.057 0.205 0.215 0.058

0.0 0.4 0.063 0.335 0.656 0.688 0.258 0.082 0.086 0.337 0.349 0.082

0.0 0.5 0.079 0.496 0.805 0.835 0.397 0.100 0.108 0.525 0.541 0.100

0.0 0.6 0.133 0.655 0.915 0.928 0.531 0.124 0.137 0.705 0.717 0.124

0.1 0.0 0.075 0.051 0.185 0.207 0.052 0.098 0.104 0.157 0.162 0.098

0.1 0.1 0.061 0.068 0.261 0.302 0.054 0.095 0.105 0.206 0.220 0.095

0.1 0.2 0.057 0.126 0.477 0.513 0.086 0.093 0.102 0.340 0.354 0.093

0.1 0.3 0.063 0.211 0.638 0.670 0.152 0.116 0.121 0.457 0.478 0.116

0.1 0.4 0.064 0.342 0.780 0.806 0.242 0.134 0.146 0.607 0.630 0.134

0.1 0.5 0.105 0.483 0.891 0.909 0.356 0.174 0.184 0.772 0.783 0.174

0.1 0.6 0.192 0.644 0.957 0.966 0.493 0.175 0.185 0.858 0.872 0.175

0.2 0.0 0.119 0.048 0.295 0.331 0.042 0.238 0.248 0.389 0.405 0.238

0.2 0.1 0.108 0.079 0.430 0.488 0.056 0.251 0.278 0.502 0.517 0.251

0.2 0.2 0.084 0.123 0.611 0.661 0.083 0.262 0.277 0.628 0.645 0.262

0.2 0.3 0.090 0.209 0.760 0.796 0.139 0.264 0.278 0.706 0.718 0.264

0.2 0.4 0.100 0.328 0.872 0.893 0.226 0.270 0.287 0.815 0.822 0.270

0.2 0.5 0.167 0.485 0.937 0.949 0.330 0.264 0.281 0.893 0.898 0.264

0.2 0.6 0.304 0.622 0.973 0.983 0.444 0.276 0.297 0.937 0.942 0.276

0.3 0.0 0.230 0.053 0.451 0.523 0.048 0.505 0.533 0.733 0.745 0.505

0.3 0.1 0.191 0.067 0.597 0.657 0.045 0.488 0.509 0.776 0.787 0.488

0.3 0.2 0.148 0.124 0.760 0.798 0.075 0.471 0.498 0.852 0.858 0.471

0.3 0.3 0.167 0.192 0.852 0.886 0.124 0.478 0.492 0.904 0.908 0.478

0.3 0.4 0.220 0.302 0.918 0.946 0.185 0.451 0.475 0.943 0.949 0.451

0.3 0.5 0.306 0.456 0.972 0.983 0.300 0.425 0.447 0.961 0.964 0.425

0.3 0.6 0.469 0.570 0.986 0.991 0.386 0.401 0.421 0.983 0.984 0.401

0.4 0.0 0.343 0.049 0.632 0.695 0.041 0.781 0.801 0.928 0.932 0.781

0.4 0.1 0.324 0.061 0.758 0.826 0.043 0.782 0.801 0.957 0.959 0.782

0.4 0.2 0.297 0.117 0.855 0.898 0.060 0.716 0.749 0.965 0.970 0.716

0.4 0.3 0.308 0.189 0.922 0.950 0.112 0.673 0.698 0.981 0.982 0.673

0.4 0.4 0.388 0.282 0.961 0.986 0.160 0.644 0.658 0.987 0.988 0.644

0.4 0.5 0.487 0.409 0.985 0.992 0.234 0.604 0.627 0.988 0.989 0.604

0.4 0.6 0.657 0.509 0.994 0.998 0.329 0.534 0.553 0.996 0.997 0.534

0.5 0.0 0.509 0.043 0.756 0.843 0.038 0.932 0.945 0.992 0.993 0.932

0.5 0.1 0.495 0.050 0.853 0.904 0.029 0.921 0.931 0.996 0.996 0.921

0.5 0.2 0.475 0.088 0.905 0.946 0.049 0.892 0.903 0.994 0.994 0.892

0.5 0.3 0.510 0.138 0.951 0.977 0.074 0.851 0.866 0.997 0.997 0.851

0.5 0.4 0.600 0.217 0.972 0.989 0.110 0.808 0.822 0.996 0.997 0.808

0.5 0.5 0.680 0.333 0.989 0.994 0.185 0.737 0.760 0.997 0.998 0.737

0.5 0.6 0.830 0.423 0.992 0.997 0.243 0.663 0.682 0.998 0.999 0.663

0.6 0.0 0.712 0.034 0.873 0.943 0.029 0.989 0.992 1.000 1.000 0.989

0.6 0.1 0.723 0.038 0.929 0.974 0.022 0.980 0.985 1.000 1.000 0.980

0.6 0.2 0.741 0.060 0.949 0.982 0.033 0.963 0.965 1.000 1.000 0.963

0.6 0.3 0.753 0.104 0.975 0.993 0.045 0.939 0.952 1.000 1.000 0.939

0.6 0.4 0.803 0.172 0.989 0.995 0.076 0.912 0.922 1.000 1.000 0.912

0.6 0.5 0.872 0.248 0.989 0.997 0.113 0.849 0.869 1.000 1.000 0.849

0.6 0.6 0.934 0.312 0.995 0.999 0.155 0.781 0.801 1.000 1.000 0.781
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Table 2. Empirical size and power of tests: Heteroskedastic disturbances and n= 49

λ0 ρ0 LMρ LMA
ρ LMB

ρ LMZ
ρ LMh

ρ LMλ LMA
λ LMB

λ LMZ
λ LMh

λ

0.0 0.0 0.045 0.046 0.176 0.188 0.046 0.051 0.061 0.074 0.079 0.051

0.0 0.1 0.056 0.066 0.211 0.223 0.052 0.053 0.071 0.089 0.093 0.053

0.0 0.2 0.058 0.121 0.338 0.349 0.090 0.059 0.072 0.129 0.134 0.059

0.0 0.3 0.058 0.213 0.485 0.496 0.150 0.054 0.065 0.193 0.196 0.054

0.0 0.4 0.082 0.350 0.673 0.698 0.257 0.076 0.092 0.320 0.328 0.076

0.0 0.5 0.090 0.519 0.828 0.835 0.411 0.093 0.119 0.500 0.506 0.093

0.0 0.6 0.116 0.671 0.926 0.934 0.531 0.114 0.137 0.673 0.685 0.114

0.1 0.0 0.067 0.052 0.206 0.219 0.044 0.102 0.117 0.150 0.153 0.102

0.1 0.1 0.052 0.074 0.296 0.313 0.053 0.096 0.120 0.202 0.207 0.096

0.1 0.2 0.053 0.134 0.491 0.510 0.087 0.095 0.111 0.325 0.334 0.095

0.1 0.3 0.058 0.225 0.666 0.688 0.161 0.113 0.131 0.448 0.453 0.113

0.1 0.4 0.064 0.356 0.797 0.817 0.247 0.128 0.154 0.589 0.599 0.128

0.1 0.5 0.089 0.502 0.903 0.916 0.356 0.168 0.194 0.757 0.761 0.168

0.1 0.6 0.147 0.653 0.964 0.969 0.500 0.162 0.184 0.847 0.856 0.162

0.2 0.0 0.108 0.045 0.324 0.341 0.043 0.229 0.276 0.386 0.392 0.229

0.2 0.1 0.098 0.091 0.476 0.502 0.057 0.258 0.297 0.508 0.514 0.258

0.2 0.2 0.075 0.137 0.639 0.664 0.083 0.260 0.303 0.612 0.624 0.260

0.2 0.3 0.075 0.215 0.789 0.807 0.137 0.255 0.291 0.701 0.705 0.255

0.2 0.4 0.087 0.341 0.883 0.898 0.229 0.271 0.303 0.802 0.807 0.271

0.2 0.5 0.135 0.501 0.950 0.960 0.322 0.267 0.299 0.887 0.891 0.267

0.2 0.6 0.247 0.646 0.979 0.984 0.441 0.271 0.302 0.935 0.940 0.271

0.3 0.0 0.210 0.053 0.489 0.523 0.045 0.509 0.568 0.730 0.736 0.509

0.3 0.1 0.168 0.070 0.635 0.670 0.044 0.494 0.545 0.778 0.783 0.494

0.3 0.2 0.113 0.128 0.787 0.807 0.067 0.482 0.531 0.851 0.851 0.482

0.3 0.3 0.128 0.203 0.864 0.890 0.126 0.476 0.526 0.904 0.905 0.476

0.3 0.4 0.167 0.315 0.936 0.951 0.187 0.462 0.503 0.942 0.943 0.462

0.3 0.5 0.232 0.465 0.975 0.981 0.303 0.426 0.463 0.962 0.963 0.426

0.3 0.6 0.396 0.585 0.986 0.988 0.384 0.406 0.439 0.982 0.983 0.406

0.4 0.0 0.313 0.050 0.661 0.700 0.041 0.779 0.821 0.933 0.935 0.779

0.4 0.1 0.284 0.060 0.789 0.828 0.039 0.791 0.824 0.964 0.964 0.791

0.4 0.2 0.259 0.114 0.865 0.899 0.059 0.728 0.773 0.963 0.967 0.728

0.4 0.3 0.254 0.191 0.928 0.947 0.108 0.688 0.730 0.980 0.980 0.688

0.4 0.4 0.339 0.293 0.973 0.985 0.158 0.662 0.700 0.987 0.988 0.662

0.4 0.5 0.399 0.420 0.987 0.991 0.234 0.617 0.657 0.989 0.990 0.617

0.4 0.6 0.594 0.520 0.996 0.998 0.323 0.545 0.582 0.996 0.998 0.545

0.5 0.0 0.475 0.038 0.790 0.845 0.036 0.943 0.958 0.995 0.995 0.943

0.5 0.1 0.446 0.048 0.879 0.914 0.028 0.927 0.939 0.996 0.997 0.927

0.5 0.2 0.417 0.089 0.919 0.949 0.041 0.906 0.924 0.994 0.995 0.906

0.5 0.3 0.444 0.142 0.962 0.981 0.067 0.864 0.888 0.997 0.997 0.864

0.5 0.4 0.525 0.213 0.981 0.991 0.110 0.830 0.854 0.998 0.998 0.830

0.5 0.5 0.613 0.340 0.991 0.995 0.178 0.762 0.785 0.998 0.999 0.762

0.5 0.6 0.769 0.430 0.996 0.998 0.234 0.680 0.711 0.999 0.999 0.680

0.6 0.0 0.667 0.031 0.899 0.948 0.025 0.992 0.994 1.000 1.000 0.992

0.6 0.1 0.668 0.035 0.941 0.979 0.021 0.984 0.991 1.000 1.000 0.984

0.6 0.2 0.686 0.059 0.960 0.984 0.028 0.971 0.976 1.000 1.000 0.971

0.6 0.3 0.700 0.100 0.979 0.992 0.041 0.951 0.963 1.000 1.000 0.951

0.6 0.4 0.729 0.166 0.993 0.996 0.070 0.922 0.935 1.000 1.000 0.922

0.6 0.5 0.828 0.251 0.990 0.997 0.104 0.868 0.884 1.000 1.000 0.868

0.6 0.6 0.904 0.312 0.997 1.000 0.160 0.791 0.822 1.000 1.000 0.791
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Table 3. Empirical size and power of tests: Homoskedastic disturbances and n= 98

λ0 ρ0 LMρ LMA
ρ LMB

ρ LMZ
ρ LMh

ρ LMλ LMA
λ LMB

λ LMZ
λ LMh

λ

0.0 0.0 0.052 0.046 0.158 0.153 0.049 0.058 0.053 0.077 0.074 0.058

0.0 0.1 0.061 0.086 0.208 0.226 0.064 0.060 0.062 0.099 0.104 0.060

0.0 0.2 0.071 0.172 0.379 0.412 0.137 0.061 0.063 0.172 0.179 0.061

0.0 0.3 0.115 0.325 0.622 0.649 0.285 0.099 0.100 0.310 0.321 0.099

0.0 0.4 0.129 0.561 0.844 0.862 0.500 0.101 0.102 0.506 0.523 0.101

0.0 0.5 0.141 0.745 0.957 0.961 0.694 0.143 0.149 0.733 0.743 0.143

0.0 0.6 0.184 0.908 0.990 0.992 0.877 0.208 0.214 0.890 0.896 0.208

0.1 0.0 0.073 0.046 0.198 0.223 0.050 0.119 0.130 0.194 0.205 0.119

0.1 0.1 0.075 0.099 0.380 0.410 0.082 0.142 0.146 0.316 0.331 0.142

0.1 0.2 0.068 0.205 0.614 0.647 0.173 0.139 0.148 0.459 0.476 0.139

0.1 0.3 0.085 0.363 0.814 0.836 0.300 0.183 0.196 0.623 0.637 0.183

0.1 0.4 0.106 0.611 0.925 0.936 0.539 0.183 0.188 0.778 0.786 0.183

0.1 0.5 0.129 0.789 0.985 0.986 0.716 0.225 0.238 0.896 0.903 0.225

0.1 0.6 0.213 0.919 0.998 0.998 0.883 0.270 0.273 0.973 0.975 0.270

0.2 0.0 0.164 0.065 0.406 0.450 0.056 0.374 0.389 0.569 0.586 0.374

0.2 0.1 0.119 0.118 0.630 0.665 0.095 0.378 0.400 0.700 0.709 0.378

0.2 0.2 0.103 0.240 0.821 0.842 0.201 0.365 0.388 0.804 0.813 0.365

0.2 0.3 0.092 0.435 0.927 0.940 0.371 0.378 0.384 0.870 0.875 0.378

0.2 0.4 0.118 0.642 0.981 0.984 0.567 0.365 0.388 0.935 0.942 0.365

0.2 0.5 0.167 0.822 0.996 0.997 0.767 0.385 0.395 0.979 0.982 0.385

0.2 0.6 0.300 0.932 1.000 1.000 0.897 0.383 0.390 0.989 0.991 0.383

0.3 0.0 0.258 0.070 0.696 0.739 0.062 0.718 0.732 0.893 0.898 0.718

0.3 0.1 0.197 0.131 0.858 0.876 0.102 0.716 0.734 0.944 0.946 0.716

0.3 0.2 0.149 0.281 0.931 0.943 0.212 0.670 0.688 0.958 0.963 0.670

0.3 0.3 0.147 0.492 0.973 0.981 0.412 0.635 0.655 0.978 0.980 0.635

0.3 0.4 0.174 0.693 0.995 0.998 0.606 0.611 0.620 0.988 0.990 0.611

0.3 0.5 0.257 0.848 1.000 1.000 0.786 0.583 0.588 0.997 0.998 0.583

0.3 0.6 0.449 0.956 1.000 1.000 0.917 0.544 0.556 0.998 0.998 0.544

0.4 0.0 0.339 0.095 0.925 0.945 0.066 0.933 0.943 0.993 0.994 0.933

0.4 0.1 0.302 0.185 0.971 0.982 0.141 0.917 0.928 0.995 0.996 0.917

0.4 0.2 0.245 0.371 0.992 0.996 0.284 0.892 0.904 0.996 0.996 0.892

0.4 0.3 0.246 0.524 0.996 0.998 0.428 0.863 0.871 0.998 0.998 0.863

0.4 0.4 0.305 0.735 1.000 1.000 0.655 0.803 0.807 0.998 0.998 0.803

0.4 0.5 0.426 0.874 1.000 1.000 0.799 0.763 0.770 1.000 1.000 0.763

0.4 0.6 0.620 0.955 1.000 1.000 0.914 0.679 0.691 1.000 1.000 0.679

0.5 0.0 0.480 0.135 0.993 0.996 0.102 0.993 0.994 1.000 1.000 0.993

0.5 0.1 0.450 0.274 0.996 0.997 0.188 0.990 0.993 1.000 1.000 0.990

0.5 0.2 0.427 0.438 0.999 1.000 0.341 0.980 0.981 1.000 1.000 0.980

0.5 0.3 0.443 0.613 0.999 0.999 0.516 0.966 0.969 1.000 1.000 0.966

0.5 0.4 0.495 0.773 1.000 1.000 0.665 0.936 0.938 1.000 1.000 0.936

0.5 0.5 0.623 0.881 1.000 1.000 0.802 0.886 0.890 1.000 1.000 0.886

0.5 0.6 0.814 0.951 1.000 1.000 0.896 0.804 0.809 1.000 1.000 0.804

0.6 0.0 0.690 0.216 1.000 1.000 0.150 1.000 1.000 1.000 1.000 1.000

0.6 0.1 0.670 0.319 1.000 1.000 0.225 1.000 1.000 1.000 1.000 1.000

0.6 0.2 0.674 0.482 1.000 1.000 0.349 0.997 0.998 1.000 1.000 0.997

0.6 0.3 0.724 0.623 1.000 1.000 0.498 0.994 0.995 1.000 1.000 0.994

0.6 0.4 0.762 0.785 1.000 1.000 0.666 0.970 0.973 1.000 1.000 0.970

0.6 0.5 0.852 0.869 1.000 1.000 0.772 0.945 0.951 1.000 1.000 0.945

0.6 0.6 0.935 0.934 1.000 1.000 0.852 0.886 0.887 1.000 1.000 0.886
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Table 4. Empirical size and power of tests: Heteroskedastic disturbances and n= 98

λ0 ρ0 LMρ LMA
ρ LMB

ρ LMZ
ρ LMh

ρ LMλ LMA
λ LMB

λ LMZ
λ LMh

λ

0.0 0.0 0.054 0.057 0.158 0.161 0.052 0.058 0.086 0.073 0.071 0.058

0.0 0.1 0.063 0.090 0.220 0.230 0.062 0.063 0.080 0.092 0.092 0.063

0.0 0.2 0.073 0.182 0.391 0.403 0.131 0.061 0.081 0.163 0.168 0.061

0.0 0.3 0.120 0.331 0.630 0.645 0.283 0.096 0.122 0.284 0.288 0.096

0.0 0.4 0.148 0.566 0.847 0.858 0.487 0.093 0.127 0.460 0.469 0.093

0.0 0.5 0.160 0.758 0.960 0.964 0.686 0.134 0.169 0.691 0.701 0.134

0.0 0.6 0.183 0.911 0.990 0.990 0.872 0.186 0.223 0.867 0.871 0.186

0.1 0.0 0.071 0.054 0.207 0.215 0.050 0.117 0.154 0.190 0.193 0.117

0.1 0.1 0.072 0.102 0.382 0.402 0.079 0.129 0.173 0.301 0.306 0.129

0.1 0.2 0.072 0.220 0.624 0.635 0.172 0.132 0.169 0.419 0.425 0.132

0.1 0.3 0.093 0.362 0.818 0.831 0.293 0.183 0.227 0.591 0.601 0.183

0.1 0.4 0.113 0.612 0.930 0.934 0.532 0.164 0.209 0.749 0.753 0.164

0.1 0.5 0.128 0.778 0.982 0.983 0.709 0.222 0.255 0.882 0.885 0.222

0.1 0.6 0.171 0.923 0.998 0.998 0.879 0.254 0.287 0.965 0.966 0.254

0.2 0.0 0.143 0.066 0.421 0.442 0.057 0.350 0.413 0.539 0.546 0.350

0.2 0.1 0.110 0.124 0.642 0.659 0.098 0.357 0.433 0.670 0.675 0.357

0.2 0.2 0.089 0.244 0.823 0.836 0.198 0.344 0.401 0.770 0.777 0.344

0.2 0.3 0.087 0.430 0.927 0.936 0.364 0.362 0.412 0.849 0.852 0.362

0.2 0.4 0.107 0.640 0.981 0.983 0.557 0.352 0.405 0.919 0.920 0.352

0.2 0.5 0.136 0.814 0.997 0.997 0.758 0.370 0.414 0.971 0.974 0.370

0.2 0.6 0.233 0.930 1.000 1.000 0.895 0.368 0.404 0.988 0.988 0.368

0.3 0.0 0.224 0.071 0.707 0.735 0.060 0.683 0.741 0.875 0.879 0.683

0.3 0.1 0.163 0.134 0.855 0.869 0.102 0.693 0.754 0.934 0.936 0.693

0.3 0.2 0.125 0.283 0.939 0.948 0.220 0.652 0.707 0.946 0.949 0.652

0.3 0.3 0.129 0.486 0.973 0.978 0.410 0.611 0.669 0.975 0.975 0.611

0.3 0.4 0.130 0.691 0.995 0.996 0.597 0.600 0.644 0.984 0.985 0.600

0.3 0.5 0.204 0.847 1.000 1.000 0.785 0.565 0.598 0.994 0.993 0.565

0.3 0.6 0.369 0.950 1.000 1.000 0.915 0.534 0.564 0.998 0.998 0.534

0.4 0.0 0.302 0.101 0.937 0.947 0.074 0.925 0.943 0.991 0.992 0.925

0.4 0.1 0.240 0.184 0.977 0.982 0.150 0.907 0.931 0.994 0.994 0.907

0.4 0.2 0.197 0.381 0.995 0.996 0.306 0.886 0.914 0.995 0.995 0.886

0.4 0.3 0.200 0.521 0.997 0.998 0.441 0.857 0.881 0.998 0.998 0.857

0.4 0.4 0.239 0.732 1.000 1.000 0.663 0.799 0.828 0.998 0.998 0.799

0.4 0.5 0.342 0.865 1.000 1.000 0.803 0.765 0.782 0.999 1.000 0.765

0.4 0.6 0.526 0.951 1.000 1.000 0.912 0.685 0.711 1.000 1.000 0.685

0.5 0.0 0.417 0.137 0.994 0.996 0.108 0.991 0.995 1.000 1.000 0.991

0.5 0.1 0.385 0.267 0.996 0.997 0.198 0.990 0.995 1.000 1.000 0.990

0.5 0.2 0.353 0.429 0.999 0.999 0.356 0.977 0.985 1.000 1.000 0.977

0.5 0.3 0.364 0.608 1.000 1.000 0.523 0.968 0.974 1.000 1.000 0.968

0.5 0.4 0.420 0.769 1.000 1.000 0.669 0.935 0.944 1.000 1.000 0.935

0.5 0.5 0.540 0.877 1.000 1.000 0.803 0.890 0.904 1.000 1.000 0.890

0.5 0.6 0.745 0.948 1.000 1.000 0.896 0.807 0.826 1.000 1.000 0.807

0.6 0.0 0.646 0.212 1.000 1.000 0.178 1.000 1.000 1.000 1.000 1.000

0.6 0.1 0.606 0.314 1.000 1.000 0.247 1.000 1.000 1.000 1.000 1.000

0.6 0.2 0.599 0.479 1.000 1.000 0.372 0.998 0.999 1.000 1.000 0.998

0.6 0.3 0.643 0.620 1.000 1.000 0.526 0.995 0.998 1.000 1.000 0.995

0.6 0.4 0.688 0.773 1.000 1.000 0.672 0.975 0.979 1.000 1.000 0.975

0.6 0.5 0.793 0.861 1.000 1.000 0.769 0.955 0.960 1.000 1.000 0.955

0.6 0.6 0.895 0.927 1.000 1.000 0.844 0.897 0.904 1.000 1.000 0.897
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Table 5. Empirical size and power of tests: Homoskedastic disturbances and n= 361

λ0 ρ0 LMρ LMA
ρ LMB

ρ LMZ
ρ LMh

ρ LMλ LMA
λ LMB

λ LMZ
λ LMh

λ

0.0 0.0 0.059 0.043 0.173 0.172 0.043 0.061 0.061 0.092 0.091 0.061

0.0 0.1 0.060 0.148 0.417 0.416 0.135 0.061 0.059 0.211 0.211 0.061

0.0 0.2 0.071 0.456 0.847 0.848 0.424 0.069 0.072 0.518 0.518 0.069

0.0 0.3 0.098 0.780 0.985 0.985 0.753 0.096 0.102 0.846 0.847 0.096

0.0 0.4 0.144 0.957 1.000 1.000 0.944 0.110 0.108 0.979 0.979 0.110

0.0 0.5 0.311 0.996 1.000 1.000 0.995 0.145 0.144 0.999 0.999 0.145

0.0 0.6 0.707 1.000 1.000 1.000 1.000 0.189 0.188 1.000 1.000 0.189

0.1 0.0 0.240 0.055 0.431 0.431 0.054 0.252 0.259 0.495 0.491 0.252

0.1 0.1 0.238 0.171 0.860 0.860 0.148 0.249 0.257 0.794 0.794 0.249

0.1 0.2 0.278 0.497 0.984 0.984 0.472 0.254 0.253 0.951 0.951 0.254

0.1 0.3 0.390 0.815 0.999 0.999 0.788 0.288 0.291 0.994 0.994 0.288

0.1 0.4 0.533 0.970 1.000 1.000 0.960 0.279 0.283 1.000 1.000 0.279

0.1 0.5 0.791 0.997 1.000 1.000 0.995 0.294 0.293 1.000 1.000 0.294

0.1 0.6 0.963 1.000 1.000 1.000 1.000 0.311 0.311 1.000 1.000 0.311

0.2 0.0 0.693 0.061 0.873 0.874 0.054 0.702 0.708 0.958 0.959 0.702

0.2 0.1 0.699 0.206 0.991 0.991 0.182 0.697 0.704 0.997 0.997 0.697

0.2 0.2 0.731 0.543 1.000 1.000 0.509 0.653 0.658 0.999 0.999 0.653

0.2 0.3 0.829 0.851 1.000 1.000 0.819 0.656 0.664 1.000 1.000 0.656

0.2 0.4 0.908 0.976 1.000 1.000 0.966 0.597 0.608 1.000 1.000 0.597

0.2 0.5 0.982 0.999 1.000 1.000 0.996 0.585 0.594 1.000 1.000 0.585

0.2 0.6 0.997 1.000 1.000 1.000 1.000 0.522 0.523 1.000 1.000 0.522

0.3 0.0 0.961 0.073 0.997 0.997 0.059 0.960 0.960 1.000 1.000 0.960

0.3 0.1 0.962 0.259 1.000 1.000 0.231 0.943 0.946 1.000 1.000 0.943

0.3 0.2 0.977 0.607 1.000 1.000 0.550 0.932 0.941 1.000 1.000 0.932

0.3 0.3 0.989 0.868 1.000 1.000 0.839 0.916 0.919 1.000 1.000 0.916

0.3 0.4 0.996 0.986 1.000 1.000 0.967 0.852 0.855 1.000 1.000 0.852

0.3 0.5 1.000 1.000 1.000 1.000 0.998 0.818 0.825 1.000 1.000 0.818

0.3 0.6 1.000 1.000 1.000 1.000 1.000 0.760 0.765 1.000 1.000 0.760

0.4 0.0 1.000 0.093 1.000 1.000 0.076 0.998 0.999 1.000 1.000 0.998

0.4 0.1 1.000 0.337 1.000 1.000 0.281 0.999 1.000 1.000 1.000 0.999

0.4 0.2 1.000 0.673 1.000 1.000 0.590 0.997 0.998 1.000 1.000 0.997

0.4 0.3 1.000 0.898 1.000 1.000 0.842 0.986 0.988 1.000 1.000 0.986

0.4 0.4 1.000 0.988 1.000 1.000 0.968 0.968 0.971 1.000 1.000 0.968

0.4 0.5 1.000 0.999 1.000 1.000 0.992 0.949 0.954 1.000 1.000 0.949

0.4 0.6 1.000 1.000 1.000 1.000 0.999 0.875 0.883 1.000 1.000 0.875

0.5 0.0 1.000 0.167 1.000 1.000 0.120 1.000 1.000 1.000 1.000 1.000

0.5 0.1 1.000 0.419 1.000 1.000 0.315 1.000 1.000 1.000 1.000 1.000

0.5 0.2 1.000 0.725 1.000 1.000 0.613 0.999 1.000 1.000 1.000 0.999

0.5 0.3 1.000 0.927 1.000 1.000 0.852 0.999 0.999 1.000 1.000 0.999

0.5 0.4 1.000 0.983 1.000 1.000 0.957 0.996 0.995 1.000 1.000 0.996

0.5 0.5 1.000 0.997 1.000 1.000 0.984 0.983 0.984 1.000 1.000 0.983

0.5 0.6 1.000 1.000 1.000 1.000 0.995 0.962 0.966 1.000 1.000 0.962

0.6 0.0 1.000 0.232 1.000 1.000 0.150 1.000 1.000 1.000 1.000 1.000

0.6 0.1 1.000 0.484 1.000 1.000 0.339 1.000 1.000 1.000 1.000 1.000

0.6 0.2 1.000 0.727 1.000 1.000 0.566 1.000 1.000 1.000 1.000 1.000

0.6 0.3 1.000 0.895 1.000 1.000 0.783 1.000 1.000 1.000 1.000 1.000

0.6 0.4 1.000 0.971 1.000 1.000 0.917 0.999 0.999 1.000 1.000 0.999

0.6 0.5 1.000 0.991 1.000 1.000 0.952 0.998 0.998 1.000 1.000 0.998

0.6 0.6 1.000 0.997 1.000 1.000 0.976 0.985 0.985 1.000 1.000 0.985
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Table 6. Empirical size and power of tests: Heteroskedastic disturbances and n= 361

λ0 ρ0 LMρ LMA
ρ LMB

ρ LMZ
ρ LMh

ρ LMλ LMA
λ LMB

λ LMZ
λ LMh

λ

0.0 0.0 0.059 0.044 0.172 0.174 0.049 0.059 0.055 0.099 0.098 0.059

0.0 0.1 0.059 0.139 0.418 0.415 0.131 0.058 0.058 0.224 0.222 0.058

0.0 0.2 0.091 0.419 0.853 0.851 0.398 0.073 0.073 0.558 0.555 0.073

0.0 0.3 0.165 0.742 0.988 0.988 0.732 0.099 0.090 0.873 0.871 0.099

0.0 0.4 0.313 0.939 1.000 1.000 0.929 0.108 0.102 0.986 0.986 0.108

0.0 0.5 0.611 0.993 1.000 1.000 0.991 0.148 0.141 1.000 1.000 0.148

0.0 0.6 0.915 1.000 1.000 1.000 1.000 0.187 0.186 1.000 1.000 0.187

0.1 0.0 0.278 0.051 0.432 0.432 0.054 0.231 0.228 0.483 0.482 0.231

0.1 0.1 0.332 0.163 0.859 0.860 0.151 0.225 0.223 0.804 0.803 0.225

0.1 0.2 0.420 0.462 0.984 0.984 0.450 0.237 0.230 0.958 0.957 0.237

0.1 0.3 0.609 0.782 0.998 0.998 0.771 0.268 0.259 0.995 0.995 0.268

0.1 0.4 0.790 0.953 1.000 1.000 0.950 0.261 0.263 1.000 1.000 0.261

0.1 0.5 0.933 0.994 1.000 1.000 0.992 0.273 0.271 1.000 1.000 0.273

0.1 0.6 0.997 1.000 1.000 1.000 1.000 0.304 0.294 1.000 1.000 0.304

0.2 0.0 0.751 0.054 0.876 0.876 0.053 0.645 0.652 0.956 0.955 0.645

0.2 0.1 0.820 0.192 0.990 0.991 0.185 0.642 0.639 0.994 0.993 0.642

0.2 0.2 0.855 0.500 1.000 1.000 0.483 0.611 0.601 0.999 0.999 0.611

0.2 0.3 0.943 0.812 1.000 1.000 0.790 0.596 0.604 1.000 1.000 0.596

0.2 0.4 0.978 0.964 1.000 1.000 0.961 0.558 0.558 1.000 1.000 0.558

0.2 0.5 0.999 0.998 1.000 1.000 0.994 0.548 0.554 1.000 1.000 0.548

0.2 0.6 1.000 1.000 1.000 1.000 1.000 0.491 0.494 1.000 1.000 0.491

0.3 0.0 0.979 0.061 0.997 0.997 0.057 0.942 0.937 1.000 0.999 0.942

0.3 0.1 0.987 0.234 1.000 1.000 0.218 0.916 0.918 1.000 1.000 0.916

0.3 0.2 0.992 0.548 1.000 1.000 0.520 0.904 0.906 1.000 1.000 0.904

0.3 0.3 0.997 0.839 1.000 1.000 0.815 0.875 0.877 1.000 1.000 0.875

0.3 0.4 0.999 0.972 1.000 1.000 0.958 0.828 0.821 1.000 1.000 0.828

0.3 0.5 1.000 0.999 1.000 1.000 0.997 0.781 0.787 1.000 1.000 0.781

0.3 0.6 1.000 1.000 1.000 1.000 1.000 0.721 0.719 1.000 1.000 0.721

0.4 0.0 1.000 0.086 1.000 1.000 0.075 0.995 0.995 1.000 1.000 0.995

0.4 0.1 1.000 0.291 1.000 1.000 0.260 0.997 0.997 1.000 1.000 0.997

0.4 0.2 1.000 0.619 1.000 1.000 0.560 0.991 0.991 1.000 1.000 0.991

0.4 0.3 1.000 0.856 1.000 1.000 0.823 0.976 0.976 1.000 1.000 0.976

0.4 0.4 1.000 0.975 1.000 1.000 0.956 0.951 0.956 1.000 1.000 0.951

0.4 0.5 1.000 0.994 1.000 1.000 0.987 0.923 0.922 1.000 1.000 0.923

0.4 0.6 1.000 0.999 1.000 1.000 0.999 0.837 0.843 1.000 1.000 0.837

0.5 0.0 1.000 0.136 1.000 1.000 0.112 1.000 1.000 1.000 1.000 1.000

0.5 0.1 1.000 0.358 1.000 1.000 0.288 1.000 1.000 1.000 1.000 1.000

0.5 0.2 1.000 0.659 1.000 1.000 0.582 0.999 0.999 1.000 1.000 0.999

0.5 0.3 1.000 0.884 1.000 1.000 0.829 0.998 0.998 1.000 1.000 0.998

0.5 0.4 1.000 0.975 1.000 1.000 0.945 0.991 0.990 1.000 1.000 0.991

0.5 0.5 1.000 0.993 1.000 1.000 0.978 0.971 0.972 1.000 1.000 0.971

0.5 0.6 1.000 0.999 1.000 1.000 0.994 0.934 0.940 1.000 1.000 0.934

0.6 0.0 1.000 0.172 1.000 1.000 0.132 1.000 1.000 1.000 1.000 1.000

0.6 0.1 1.000 0.407 1.000 1.000 0.318 1.000 1.000 1.000 1.000 1.000

0.6 0.2 1.000 0.657 1.000 1.000 0.534 1.000 1.000 1.000 1.000 1.000

0.6 0.3 1.000 0.846 1.000 1.000 0.753 1.000 1.000 1.000 1.000 1.000

0.6 0.4 1.000 0.953 1.000 1.000 0.898 0.998 0.998 1.000 1.000 0.998

0.6 0.5 1.000 0.985 1.000 1.000 0.945 0.992 0.992 1.000 1.000 0.992

0.6 0.6 1.000 0.992 1.000 1.000 0.968 0.972 0.973 1.000 1.000 0.972
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İSTATİSTİK: Journal of the Turkish Statistical Association 13(3), pp. 120–141, � 2021 İstatistik 137

5. An Empirical Illustration
In this section, we illustrate the use of our proposed test statistic. To this end, we use an example

from [21] on the US presidential election in 1980. The dataset contains variables on the election
results and county characteristics for 3107 US counties. We consider the following regression model

ln(PR VOTES) = β0 +λW ln(PR VOTES)+β1 ln(POP)+β2 ln(EDUC)
+β3 ln(HOUSE)+β4 ln(INC)+U, U = ρWU +V. (5.1)

The outcome variable is the natural log of the proportion of votes cast for both candidates in
the 1980 presidential election (PR VOTES). The explanatory variables are the natural log of the
population in each county of eighteen years of age or older (POP), the natural log of the population
in each county with a 12th grade or higher education (EDUC), number of owner-occupied housing
units (HOUSE), and the aggregate income (INC). The spatial weights matrix W is the delaunay
contiguity based weights matrix constructed using the latitudes and longitudes of the counties (see
[17] for the details).

Table 7. The tests results

LMρ LMh
ρ LMB

ρ LMZ
ρ LMA

ρ LMλ LMh
λ LMB

λ LMZ
λ LMA

λ

198.766 5.598 27.740 27.767 530.488 19.036 0.168 25.301 25.279 26.831

Our goal is to test the presence of λ and ρ in (5.1). The test statistics’ values are presented in
Table 7. In this table, (i) LMλ is the test statistic in Theorem 1, (ii) LMρ is the test statistic in
Theorem 2, (iii) LMh

λ and LMh
ρ are the test statistics given in Theorem 3, (iv) LMB

ρ and LMB
λ are

the test statistics suggested in [7], (v) LMZ
λ and LMZ

ρ are the tests statistics suggested in [4], and
(vi) LMA

λ and LMA
ρ are the test statistics suggested in [2].

We observe that all tests show strong statistical evidence for the existence of spatial dependence
in the error term.6 The lowest value is observed for LMh

ρ which still rejects the null hypothesis of
no spatial dependence at the 0.05 significance level. Similarly, all tests, except LMh

λ, show strong
statistical evidence for the existence of spatial dependence in the outcome variable at the 0.05
significance level. The lowest value is observed for LMh

λ which fails to reject the null hypothesis
of no spatial dependence at the conventional significance level of 0.05. Given that an unknown
form of heteroskedasticity is likely to be present in the observational cross-sectional dataset, the
dichotomy between LMh

λ and the rest of the test statistics is important, and the empirical modeling
accounting for spatial dependence needs to consider estimating the nested null specification as a
robustness check.

6. Conclusion
In this paper, we proposed the OPG variants of the LM test statistic for testing spatial depen-

dence in spatial models with homoskedastic disturbance terms and in spatial models with het-
eroskedastic disturbance terms. Our OPG tests for testing one type of spatial dependence (the
spatial lag in the dependent variable or the spatial lag in the disturbance term) are valid whether
or not the other type of spatial dependence is present. We showed how such robust OPG tests can
be systematically constructed in the quasi maximum likelihood (QML) framework. We derived the
asymptotic distributions of the suggested tests under the null and local alternative hypotheses.

6 Note that our suggested test statistics and those suggested by [2] have asymptotic χ2
1 distribution. The critical value

based on χ2
1 at the 0.05 significance level is 3.841. The other tests, those suggested by [7] and [4], have asymptotic

N(0,1) distribution. The critical value based on N(0,1) at the 0.05 significance level is 1.96.
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Our suggested tests are simple to compute, since they only require the OLS estimates from a linear
regression model.
In a Monte Carlo study, we investigated the finite sample properties of our tests along with

some alternative tests suggested in the literature. For testing the presence of spatial lag term,
our simulation results showed that the suggested test statistic (LMλ and LMh

λ) has good size
and power properties under both homoskedasticity and heteroskedasticity. Our results showed
that LMh

ρ has a satisfactory performance in finite samples. The results also indicated that the
robust test statistics suggested in [2] may perform well under local parametric misspecification.
Moreover, heteroskedasticity specified in the form of a skedastic function seems to be not affecting
the performance of these tests. The simulation results also showed that the test statistics suggested
in [7] and [4] can be over-sized under local parametric misspecification.
In future studies, our testing approach can be extended to other variants of spatial models. First,

our approach can be easily extended to the cross-sectional spatial models that have higher order
spatial lags in the dependent and the disturbance terms. Second, our approach can be used to
develop similar tests for testing the presence of spatial dependence in the static and dynamic spa-
tial panel data models. Finally, our testing approach can be considered for the matrix exponential
spatial models suggested in the literature. All of these extensions can be explored in future studies.

Appendix
In this section, we provide only the proof of Theorem 1. Other theorems can be proved similarly,
so we omit their proofs. Consider the mean value expansions of

√
nSλ(θ̃),

√
nSρ(θ̃) and

√
nSγ(θ̃)

around θ0 when both Hλ
a and Hρ

a hold:

√
nSλ(θ̃) =

√
nSλ(θ0)− ∂Sλ(θ̄)

∂λ
δλ − ∂Sλ(θ̄)

∂ρ
δρ +

∂Sλ(θ̄)

∂γ′
√
n(γ̃− γ0), (6.1)

√
nSρ(θ̃) =

√
nSρ(θ0)− ∂Sρ(θ̄)

∂λ
δλ − ∂Sρ(θ̄)

∂ρ
δρ +

∂Sρ(θ̄)

∂γ′
√
n(γ̃− γ0), (6.2)

√
nSγ(θ̃) =

√
nSγ(θ0)− ∂Sγ(θ̄)

∂λ
δλ − ∂Sγ(θ̄)

∂ρ
δρ +

∂Sγ(θ̄)

∂γ′
√
n(γ̃− γ0). (6.3)

Our Assumption 2 ensures that

√
nSλ(θ̃) =

√
nSλ(θ0)+ Jλλ(θ0)δλ + Jλρ(θ0)δρ − Jλγ(θ0)

√
n(γ̃− γ0)+ op(1), (6.4)√

nSρ(θ̃) =
√
nSρ(θ0)+ Jρλ(θ0)δλ + Jρρ(θ0)δρ − Jργ(θ0)

√
n(γ̃− γ0)+ op(1), (6.5)√

nSγ(θ̃) =
√
nSγ(θ0)+ Jγλ(θ0)δλ + Jγρ(θ0)δρ − Jγγ(θ0)

√
n(γ̃− γ0)+ op(1), (6.6)

Note that
√
nSγ(θ̃) = 0 holds in (6.6) by definition. Then, solving (6.6) for

√
n(γ̃− γ0) and substi-

tuting the resulting equation into (6.4) and (6.5), we obtain

√
nSλ(θ̃) =

(
1, −Jλγ(θ0)J

−1
γγ (θ0)

)(√nSλ(θ0)√
nSγ(θ0)

)
+ Jλ·γ(θ0)δλ + Jλρ·γ(θ0)δρ + op(1), (6.7)

√
nSρ(θ̃) =

(
1, −Jργ(θ0)J

−1
γγ (θ0)

)(√
nSρ(θ0)√
nSγ(θ0)

)
+ Jρ·γ(θ0)δρ + Jρλ·γ(θ0)δλ + op(1). (6.8)

We first show how the adjusted score function that has a zero asymptotic mean can be derived.
We then determine the asymptotic distribution of the adjusted score function. The asymptotic
distribution of

√
nSλ(θ̃) can be determined from (6.7) by using the asymptotic normality of score

functions given in Assumption 2. Thus, it follows that

√
nSλ(θ̃)

d−→N [Jλ·γ(θ0)δλ + Jλρ·γ(θ0)δρ, Bλ·γ(θ0)] , (6.9)
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where

Bλ·γ(θ0) =Kλλ(θ0)+ Jλγ(θ0)J
−1
γγ (θ0)Kγγ(θ0)J

−1
γγ (θ0)J

′
λγ(θ0)

−Kλγ(θ0)J
−1
γγ (θ0)J

′
λγ(θ0)− Jλγ(θ0)J

−1
γγ (θ0)Kγλ(θ0). (6.10)

Similarly, from (6.8), we obtain

√
nSρ(θ̃)

d−→N [Jρ·γ(θ0)δρ + Jρλ·γ(θ0)δλ, Bρ·γ(θ0)] , (6.11)

where

Bρ·γ(θ0) =Kρρ(θ0)+ Jργ(θ0)J
−1
γγ (θ0)Kγγ(θ0)J

−1
γγ (θ0)J

′
ργ(θ0)

−Kργ(θ0)J
−1
γγ (θ0)J

′
ργ(θ0)− Jργ(θ0)J

−1
γγ (θ0)Kγρ(θ0). (6.12)

Under Hλ
0 , the result in (6.11) shows that J−1

ρ·γ(θ0)
√
nSρ(θ̃)

d−→ N [δρ, Bρ·γ(θ0)]. Then, using (6.9)
and this last result, an adjusted score function that has zero asymptotic mean in the local presence
of ρ0 can be derived as

√
nS∗

λ(θ̃) =
√
n
(
Sλ(θ̃)− Jλρ·γ(θ̃)J

−1
ρ·γ(θ̃)Sρ(θ̃)

)
. (6.13)

Next we show how to determine the asymptotic distribution of
√
nS∗

λ(θ̃). For this purpose, we
consider (6.7) and (6.8) as a combined system(√

nSλ(θ̃)√
nSρ(θ̃)

)
=

(−Jλγ(θ0)J
−1
γγ (θ0) 1 0

−Jργ(θ0)J
−1
γγ (θ0) 0 1

)⎛⎝√
nSγ(θ0)√
nSλ(θ0)√
nSρ(θ0)

⎞⎠ (6.14)

+

(
Jλ·γ(θ0)δλ + Jλρ·γ(θ0)δρ
Jρ·γ(θ0)δρ + Jρλ·γ(θ0)δλ

)
+ op(1).

The joint asymptotic distribution of
√
nSλ(θ̃) and

√
nSρ(θ̃) can now be determined from (6.14) by

using the asymptotic normality of score functions in Assumption 2. Thus, we have(√
nSλ(θ̃)√
nSρ(θ̃)

)
d−→N

[(
Jλ·γ(θ0)δλ + Jλρ·γ(θ0)δρ
Jρ·γ(θ0)δρ + Jρλ·γ(θ0)δλ

)
,

(
Bλ·γ(θ0) Bλρ·γ(θ0)
Bρλ·γ(θ0) Bρ·γ(θ0)

)]
, (6.15)

where

Bλ·γ(θ0) =Kλλ(θ0)+ Jλγ(θ0)J
−1
γ (θ0)Kγγ(θ0)J

−1
γγ (θ0)J

′
λγ(θ0)

−Kλγ(θ0)J
−1
γγ (θ0)J

′
λγ(θ0)− Jλγ(θ0)J

−1
γγ (θ0)Kγλ(θ0). (6.16)

Bλρ·γ(θ0) =Kλρ(θ0)− Jλγ(θ0)J
−1
γγ (θ0)Kγρ(θ0)−Kλγ(θ0)J

−1
γγ (θ0)Jγρ(θ0)

+ Jλγ(θ0)J
−1
γγ (θ0)Kγγ(θ0)J

−1
γγ (θ0)Jγρ(θ0), (6.17)

Bρ·γ(θ0) and Bρλ·γ(θ0) are defined similarly. Under our assumptions, we have

√
nS∗

λ(θ̃) =
(
1, −Jλρ·γ(θ0)J−1

ρ·γ(θ0)
)(√nSλ(θ̃)√

nSρ(θ̃)

)
+ op(1). (6.18)

Then, using (6.15), under Hλ
0 and Hρ

a , we obtain

√
nS∗

λ(θ̃)
d−→N [0, Dλ·γ(θ0)] , (6.19)
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where

Dλ·γ(θ0) =Bλ·γ(θ0)+ Jλρ·γ(θ0)J
−1
ρ·γ(θ0)Bρ·γ(θ0)J

−1
ρ·γ(θ0)Jρλ·γ(θ0)

− Jλρ·γ(θ0)J
−1
ρ·γ(θ0)Bρλ·γ(θ0)−Bλρ·γ(θ0)J

−1
ρ·γ(θ0)Jρλ·γ(θ0). (6.20)

Now, consider the asymptotic distribution of
√
nS∗

λ(θ̃) under H
λ
a and Hρ

0 . Using (6.15) and (6.18),
we can derive that

√
nS∗

λ(θ̃)
d−→N

[(
Jλ·γ(θ0)− Jλρ·γ(θ0)J

−1
ρ·γ(θ0)Jρλ·γ(θ0)

)
δλ, Dλ·γ(θ0)

]
, (6.21)

Thus, LMλ
A∼ χ2

1(ϑ1) by Theorem 8.6 of White [24] on the asymptotic distribution of quadratic

forms, where ϑ1 = δ2λ
(
Jλ·γ(θ0)− Jλρ·γ(θ0)J−1

ρ·γ(θ0)Jρλ·γ(θ0)
)2

/Dλ·γ(θ0) is the non-centrality parame-
ter.
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[10] Doğan, O. (2015). Heteroskedasticity of unknown form in spatial autoregressive models with a moving
average disturbance term. Econometrics, 3(1), 101-127.

[11] Elhorst, J.P. (2014). Spatial Econometrics: From Cross-Sectional Data to Spatial Panels. Springer,
Berlin.

[12] Jin, F. and Lee, L. (2018). Outer-product-of-gradients tests for spatial autoregressive models. Regional
Science and Urban Economics, 72, 35-57.

[13] Kelejian, H.H. and Prucha, I.R. (2001). On the asymptotic distribution of the Moran I test statistic
with applications. Journal of Econometrics, 104(2), 219-257.

[14] Kelejian, H.H. and Prucha, I.R. (2010). Specification and estimation of spatial autoregressive models
with autoregressive and heteroskedastic disturbances. Journal of Econometrics, 157, 53-67.

[15] Koenker, R. (1981). A note on studentizing a test for heteroscedasticity. Journal of Econometrics, 17(1),
107-112.

[16] Lee, L. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregres-
sive models. Econometrica, 72(6), 1899-1925.

[17] LeSage, L. and Pace, R.K. (2009). Introduction to Spatial Econometrics. Chapman and Hall/CRC,
London.



Doğan et al.: Robust Outer Product of Gradients Tests for Testing Spatial Dependence
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