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Trakya University
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TÜRKİYE
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Abstract

In this study, for the first time, a method is given for a developable ruled surface to be a

constant angle ruled surface. The general equations of constant angle surfaces have been

shown in the studies done so far. In this study, a new method is given on how to obtain a

constant angled surface when any constant direction is given in Minkowski 3−space.

1. Introduction

A constant angle surface is a surface whose tangent planes make a constant angle with a fixed vector field of space. In other

words, constant angle surfaces whose unit normal forms a constant angle with an assigned direction field in the Euclidean

3−space. This surface is a generalization of a helical curve. An interesting motivation to study helix surfaces or constant

angle surfaces arises from physics. The most basic known application areas of the constant angle surfaces are for light such as

crystal, liquid and shape from shading problems. In recent years, many authors have studied these special surfaces to take

advantage of their applications in mathematics and physics. Paolo and Scala discuss some properties of constant angel surfaces

in terms of the Hamilton-Jacobi equation. They investigate the properties of a constant angle surface when the direction field is

singular along a line or a point, [1]. Munteanu and Nistor obtain a classification for which the unit normal makes a constant

angle with a fixed vector direction being the tangent direction to R in Euclidean 3−space [2]. Many studies have been done

on constant angle surfaces and developable surfaces [3, 4]. In [5], the author investigates the constant angle ruled surfaces

generated by Frenet frame vectors. Recently the theory of constant angle surfaces is extended to other ambient spaces. For

example; in [6, 7], they study these surfaces in E
3
1. Also, in [8]- [11], the authors extend the concept of constant angle surfaces

to a Lorentzian ambient space. Also, in product spaces S2 ×R [12, 13], in H
2 ×R [14] and in Heisenberg group [15, 16].

On the other hand, an isophote curve is defined as the locus of the surface points whose normal vectors make a constant angle

with a given constant vector as seen in Figure 1.1. Therefore, we can say that the curves on the constant angle surface are

isophote curves. The isophote curve is a nice corollary to Lambert’s law of cosines in the optics branch of physics. This law

states that the illuminance intensity on a diffused surface is proportional to the cosine of the angle formed between the normal

vector of the surface and the light vector. So, we can say the geometric description of isophote curves on surfaces which are

the surface normal vectors in points of the curve make a constant angle with a fixed light direction [17]. In recent years, there

have been many applications of these curves in different branches. In [18], the authors developed a novel technique to detect

caries lesions using isophote concepts. Also, in [19], they present the implementation of a real-time eye detection method that

uses the properties of isophotes, to achieve robustness against changes in illumination, eye rotation and pupil size.
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Figure 1.1: An isophote on a surface

In this present paper, we investigate the spherical circles and constant angle surfaces in E
3
1. The difference of the present paper

is a fixed angle surface is obtained with respect to any direction and some characterizations are given in three-dimensional

Minkowski space. This constant angle surface is the developable ruled surface whose direction is the spherical circle in

Minkowski space. Also, by the definition of isophote curves, the curves on this surface are isophote curves. These curves have

applications in many fields. At the beginning of these is optics, which is its application in physics. There are many studies that

bring together the optics branch of physics and the geometry branch of mathematics [20–24]. This study is one of them. Based

on that, we can say that when we beam from a light source in a constant direction, the intensity of the light will be the same at

every point on this constant angle surface. On the other hand, the singularity of the ruled surfaces has been studied by many

authors. We also investigate the singularity types of this special surface. Finally, as an application, we give some illustrated

examples which support the theory of the paper.

2. Preliminaries

Let E3
1 = (R3,〈,〉L) be Minkowski 3−space which is given with the Lorentzian metric as follows

〈,〉L = R
3 ×R

3 → R

(u,v) → 〈u,v〉L = u1v1 +u2v2 −u3v3,

where u = (u1,u2,u3) and v = (v1,v2,v3) are general coordinates E3
1. In that case semi-Riemannian metric, an ordinary vector

u ∈ E
3
1 so-called spacelike if 〈u,u〉L > 0 or u = 0, timelike if 〈u,u〉L < 0 and null (lightlike) if 〈u,u〉L = 0 but u 6= 0. The norm

of a vector u is given by ‖u‖L =
√

|〈u,u〉L| [25]. Considering the concept of the Lorentz cross product × : E3
1 ×E

3
1 → E

3
1. For

u,v ∈ E
3
1 , the vector u× v is defined as

u× v = (u2v3 −u3v2,u3v1 −u1v3,u2v1 −u1v2).

Definition 2.1 ( [25]). Let u and v be two vectors in Minkowski 3-space.

a. Let u and v be two time-like vectors. If these vectors span a vector subspace, there is a unique real number θ ≥ 0 such

that

〈u,v〉L = ‖u‖L ‖v‖L coshθ .

b. Let u and v be vectors. If these two space-like vectors span a vector subspace, there is a unique real number θ ≥ 0 such

that

〈u,v〉L = ‖u‖L ‖v‖L cosθ .

Definition 2.2 ( [25]). Let u and v be space-like and time-like vectors in E
3
1, respectively. Then, there is a unique non-negative

real number θ ≥ 0 satisfying

〈u,v〉L = ‖u‖L ‖v‖L sinhθ .

Definition 2.3 ( [25]). Let u and v be in the same timecone of E3
1 . In this case, there is a unique non-negative real number

θ ≥ 0 as follows:

〈u,v〉L =−‖u‖L ‖v‖L coshθ .

Let timelike and spacelike curves be vectors with spacelike or timelike normal vectors, respectively. Such curves are called

Frenet curves. In this case, the Frenet equations are given by
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



T ′ (s)
N′ (s)
B′ (s)



=





0 κ (s) 0

−δκ (s) 0 τ (s)
0 ετ (s) 0









T (s)
N (s)
B(s)



 ,

where 〈T,T 〉L = ε and 〈N,N〉L = δ [27]. Let the position vector of the surface M in the standard form of Lorentz Minkowski

space E
3
1 is

Φ(u,v) = (Φ1(u,v),Φ2(u,v),Φ3(u,v)) .

Definition 2.4 ( [28]). Surfaces formed by the movement of a line along a curve in space are called ruled surfaces. The

parameterization of the ruled surface for any two differentiable curves α and γ is

Φ(u,v) = α(v)+uγ(v)

where α(v) is called base curve of the ruled surface and γ(v) is a unit direction vector of an oriented line in E
3
1.

Theorem 2.5 ( [29, 30]). Let M be a regular ruled surface with the parameterization Φ(u,v) = α(v)+uγ(v). If the Gaussian

curvature of the surface M is zero, the surface M is called a developable surface. Also, another characterization for developable

ruled surfaces is that det(α ′(v),γ(v),γ ′(v)) = 0.

Definition 2.6 ( [31]). For the surface Φ(u,v) = α(v)+uγ(v), line of striction is given by

ᾱ(v) = α(v)− 〈γ(v)× γ ′(v),γ(v)×α ′(v)〉
‖γ(v)× γ ′(v)‖2

γ(v).

3. Main Results

This section is based on the definition of a constant angle ruled surface in 3-dimensional Minkowski space. In this section,

constant angle ruled surfaces are studied with the help of any given direction and these surfaces are characterized. According

to the casual characters of the orthonormal vectors, the direction vectors of the constant angle ruled surface can be obtained in

different ways in the 3-dimensional Minkowski space.

Case 1. Let~e3 be a timelike vector. So, {~e1,~e2} are spacelike vectors. The Lorentz circle with the help of these orthonormal

vectors in this space is as follows

α(v) = coshθ(cosv~e1 + sinv~e2)+ sinhθ(~e1 ×~e2). (3.1)

Examining the casual character of the defined above curve α , provides

〈α,α〉= 1.

So, we can easily say that α is spacelike and α ∈ S2
1. We take the derivative of the equation (3.1) with respect to v

α
′
(v) = coshθ (−sinv~e1 + cosv~e2) . (3.2)

The norm of the equation (3.2) is

∥

∥

∥α
′
(v)
∥

∥

∥= coshθ .

Hence, the unit tangent vector of α(v) is obtained as follows

T (v) =
α

′
(v)

∥

∥α
′
(v)
∥

∥

=−sinv~e1 + cosv~e2.

Examining the casual character of the tangent vector, we can see that it is a spacelike vector as

〈T,T 〉= 1.

If we cross product the spacelike curve α(v) and the spacelike tangent vector T (v), we get

S(v) = α(v)×T (v) =−sinhθ(cosv~e1 + sinv~e2)− coshθ~e3

and we obtain the casual character of S is a timelike vector as

〈S,S〉=−1.
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Thus, the Sabban frame {α(v),T (v),S(v)} is obtained on S2
1. If the necessary calculations are made, the derivative change of

the frame is found

d

dv





α(v)
T (v)
S(v)



=





0 coshθ 0

−coshθ 0 −sinhθ
0 −sinhθ 0









α(v)
T (v)
S(v)



 .

In addition, the Darboux vector of the Lorenz circle α(v) is a vector that determines the constant direction as

ω = sinhθα(v)+ coshθS(v).

In fact, if the necessary calculations are made here, it is easily seen that

ω = (~e1 ×~e2) =−~e3.

Theorem 3.1. Let~e3 be timelike and {~e1,~e2} be spacelike vectors in 3−dimensional Minkowski space. The spacelike Lorentz

circle on S2
1 with the help of the orthonormal vectors in this space is

α(v) = coshθ(cosv~e1 + sinv~e2)+ sinhθ~e3, θ 6= 0.

The surface defined below is a spacelike ruled surface

Φ(u,v) → Φ(u,v) =
v
∫

0

[ f (v)α(v)+g(v)α ′(v)]dv+uα(v) (3.3)

and S(v) = α(v)×T (v) is the timelike unit normal to ruled surface where f and g are the differentiable functions.

Proof. Considering the definition of ruled surfaces,

v
∫

0

[

f (v)α(v)+g(v)α ′(v)
]

dv

is defined as the ruled surface directrix (also called the base curve) and the vector α(v) is defined as the direction vector of

the surface. So, we can easily see that the surface Φ(u,v) is a ruled surface in 3−dimensional Minkowski space. To find the

normal of the surface, we calculate the parameter curves of the surface

N =
Φu ×Φv

‖Φu ×Φv‖
.

If the derivatives of equation (3.3) are taken with respect to u and v, respectively, one immediately has

Φu = (coshθ cosv,coshθ sinv,sinhθ)

and

Φv = ( f (v)coshθ cosv− (g(v)+u)coshθ sinv, f (v)coshθ sinv+(g(v)+u)coshθ cosv, f (v)sinhθ).

If the following calculations are made to find the normal of the surface, we obtain

Φu ×Φv = (−(g(v)+u)coshθ sinhθ cosv,−(g(v)+u)coshθ sinhθ sinv,−(g(v)+u)cosh2 θ)

and

‖Φu ×Φv‖= (g(v)+u)coshθ .

Therefore, we can easily find the normal of the surface as follows:

N = (−sinhθ cosv,−sinhθ sinv,−coshθ). (3.4)

If necessary arrangements are made in equation (3.4), it can be seen that

N = −sinhθ (cosv~e1 + sinv~e2)− coshθ~e3,

N = S.

Thus, we can say that S(v) is the unit normal vector to the ruled surface Φ(u,v). If the casual character of the normal vector is

computed here, one has

〈N,N〉=−1.

Hence, the ruled surface Φ(u,v) is a spacelike surface.
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Corollary 3.2. Let ~e3 be timelike and {~e1,~e2} be spacelike vectors in 3−dimensional Minkowski space. Suppose that the

normal of the spacelike surface Φ(u,v) is N and ω = (~e1 ×~e2) =−~e3 is the axis of the constant direction. Then, the surface

Φ(u,v) is a spacelike constant angle ruled surface.

Proof. Let the normal of the spacelike surface Φ(u,v) be N and ω = (~e1 ×~e2) = −~e3 be the axis of the constant direction.

Considering equation (3.4) and ω axis of the constant direction, we can write that

〈N,ω〉=−coshθ = constant.

So, we can say that the surface Φ(u,v) is a spacelike constant angle ruled surface.

Corollary 3.3. The surface Φ(u,v) is a developable spacelike ruled surface.

Proof. If we restate the base curve of the surface Φ(u,v) as

ϕ =

v
∫

0

[

f (v)α(v)+g(v)α ′(v)
]

dv,

and use the developable ruled surface condition, we obtain that

det
(

ϕ
′
(v),α(v),α ′(v)

)

= det
(

f (v)α(v)+g(v)α ′(v),α(v),α ′(v)
)

.

If necessary calculations are made, it can be easily seen that this determinant value is zero. So, we can say that Φ(u,v) is a

spacelike developable ruled surface.

Corollary 3.4. The line of striction of the spacelike surface Φ(u,v) is

ϕ̄ = ϕ +g(v)α(v)

where ϕ =
v
∫

0

[ f (v)α(v)+g(v)α ′(v)]dv.

Proof. The line of striction of the surface is computed as follows

ϕ̄ = ϕ − 〈α(v)×α ′(v),α(v)×ϕ ′(v)〉
‖α(v)×α ′(v)‖2

α(v). (3.5)

If the necessary calculations are made in equation (3.5), we find

α(v)×α ′(v) =
(

−sinhθ coshθ cosv,−sinhθ coshθ sinv,cosh2 θ
)

,

α(v)×ϕ ′(v) =
(

−g(v)coshθ sinhθ cosv,−g(v)coshθ sinhθ sinv,g(v)cosh2 θ
)

.

If the above equations are substituted in equation (3.5), the line of striction is obtained as

ϕ̄ = ϕ +
g(v)cosh2 θ

cosh2 θ
α(v),

ϕ̄ = ϕ +g(v)α(v).

Corollary 3.5. Considering the theory in the study, we can say that when we are given any axis, we can create a constant

angle surface with the help of this axis. For example, we examine the problem of creating a constant angle ruled surface with

axis k =−~e3. To find the Lorentz circle α(v), the circle whose normal is k =−~e3 must be written. This is found by writing the

intersection curve of the light cone and the plane with −~e3 normal. Let the {~e1,~e2} be an orthonormal frame obtained in the

plane whose normal is −~e3. In this case, the intersection curve of the light cone and the plane is as follows

cosv~e1 + sinv~e2.

This curve is the Lorentz circle with radius r = coshθ given by

α(v) = coshθ cosv~e1 + coshθ sinv~e2 + sinhθ~e3.

The surface

Φ(u,v) =

v
∫

0

[

f (v)α(v)+g(v)α ′(v)
]

dv+uα(v)
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obtained by this circle α(v) is a constant hyperbolic angle ruled surface with the axis k =−~e3. The normal to this surface is

N = (−sinhθ cosv,−sinhθ sinv,−coshθ)

and 〈N,~e3〉 = −coshθ . According to the state of the θ hyperbolic angle, the angle that the surface makes with the axis is

determined. Also, when the functions f and g are changed, they change on the constant angle surfaces.

Theorem 3.6. Let Φ : I×J → E
3, Φ(u,v) =

v
∫

0

[ f (v)α(v)+g(v)α ′(v)]dv+uα(v) be a spacelike constant angle ruled surface

and f ,g : I → R be smooth functions with

d

dv





v
∫

0

[

f (v)α(v)+g(v)α ′(v)
]

dv



= f (v)α(v)+g(v)α ′(v).

Also, let (u0,v0) ∈ I × J be a singular point of Φ(u,v) and put

x0 =

v
∫

0

[

f (v0)α(v0)+g(v0)α
′(v0)

]

dv+u0α(v0) = Φ(u0,v0).

The germ of Φ(u,v) at x0 is locally diffeomorphic to C×R and SW. Also, the germ of Φ(u,v) at x0 isn’t locally diffeomorphic

to CCR.

Proof. Let Φ : I × J → E
3 be a spacelike constant angle ruled surface and f ,g : I → R be smooth functions. Considering the

theory in [32, 33], we calculated that

det
(

α(v),α ′(v),α ′′(v)
)

= sinhθ cosh2 θ .

1. For θ 6= 0 (θ 6= π
2
,π, . . .), det(α(v),α ′(v),α ′′(v)) 6= 0. Then,

a. Since u0 = g(v0) and f (v0) 6= g′(v0), the germ of Φ(u,v) at x0 is locally diffeomorphic to C×R.

b. Since u0 = g(v0), f (v0) = g′(v0) and f ′(v0) 6= g
′′
(v0) the germ of Φ(u,v) at x0 is locally diffeomorphic to SW .

2. For θ = 0
(

θ = π
2
,π, . . .

)

, det(α(v),α ′(v),α ′′(v)) = 0. Then, although u0 = g(v0), f (v0) 6= g′(v0),

det
(

α(v),α ′(v),α(3)(v)
)

= 0. Hence, the germ of Φ(u,v) at x0 isn’t locally diffeomorphic to CCR.

Case 2. Let~e3 be a timelike vector and {~e1,~e2} be spacelike vectors. The Lorentz circle with the help of these orthonormal

vectors in this space is

α(v) = sinhθ(cosv~e1 + sinv~e2)+ coshθ(~e1 ×~e2). (3.6)

If we examine the casual character of the defined above curve α , we get

〈α,α〉=−1.

So, we can easily say that α is a timelike vector and α ∈ H2
0 . If we take the derivative of the equation (3.6) with respect to v,

we have

α
′
(v) = sinhθ(−sinv~e1 + cosv~e2). (3.7)

The norm of the equation (3.7) is

∥

∥

∥α
′
(v)
∥

∥

∥= sinhθ .

Thus, the unit tangent vector of α(v) is obtained as follows

T (v) =
α

′
(v)

∥

∥α
′
(v)
∥

∥

=−sinv~e1 + cosv~e2.

Examining the casual character of the tangent vector, yields

〈T,T 〉= 1.
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Taking cross product the timelike curve α(v) and the spacelike tangent vector T (v), provides

S(v) = α(v)×T (v) = coshθ(cosv~e1 + sinv~e2)− sinhθ~e3

and we obtain the casual character of S is spacelike as

〈S,S〉= 1.

Hence, the Sabban frame {α(v),T (v),S(v)} is obtained on H2
0 . Moreover, the Darboux vector of the α(v) is the vector that

determines the constant direction as

ω = coshθα(v)+ sinhθS(v).

If the necessary calculations are made here, we can easily see the timelike Darboux vector as

〈ω,ω〉=−1.

With the same method as above, theorems and corollaries given in Case 1 can also be given for this case and other cases.

Case 3. Let~e3 and~e1 be a spacelike vectors and~e2 be timelike vector. With the help of these orthonormal vectors, we get the

Lorentz circle as

α(v) = cosθ(coshv~e1 + sinhv~e2)+ sinθ(~e1 ×~e2). (3.8)

Examining the casual character of the curve α , we get it as spacelike

〈α,α〉= 1.

Taking the derivative of the equation (3.8) with respect to v, gives

α
′
(v) = cosθ(sinhv~e1 + coshv~e2).

The unit tangent vector of α(v) is obtained

T (v) = sinhv~e1 + coshv~e2.

If we examine the casual character of the tangent vector, we have that it is a timelike vector. If we cross product the spacelike

curve α(v) and the timelike tangent vector T (v), one has

S(v) = sinθ(−coshv~e1 + sinhv~e2)− cosθ~e3

and we obtain the casual character of S vector is spacelike. Thus, the Sabban frame {α(v),T (v),S(v)} is obtained on S2
1. So,

from here we can say that if S and~e3 span the spacelike sub-vector space, there is a single non-negative real number θ ≥ 0

such that 〈S,~e3〉= cosθ .

Case 4. Let~e3 and~e2 be a spacelike vectors and~e1 be timelike vector. Then the Lorentz circle is

α(v) = cosθ(sinhv~e1 + coshv~e2)+ sinθ(~e1 ×~e2).

If we examine the casual character of the defined above α curve, we get it spacelike. The unit tangent vector of α(v) is

obtained as follows

T (v) = coshv~e1 + sinhv~e2.

If we cross product the spacelike curve α(v) and the timelike tangent vector T (v), we get

S(v) = sinθ(−sinhv~e1 + coshv~e2)− cosθ~e3

and we obtain the casual character of S vector is spacelike. Thus, the Sabban frame {α(v),T (v),S(v)} is obtained on S2
1. So,

from here we can say that if S and~e3 span the spacelike sub-vector space, there is a single non-negative real number θ ≥ 0

such that 〈S,~e3〉= cosθ .

Given any direction, the equations and figures of the associated constant angle surfaces are discussed in the examples below.
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Example 3.7. We consider the equation of the constant angle surface with the axis

k =~e3 =

(

1√
2
,

1√
2
,

2√
2

)

and draw its graph.

~e1 = (1,1,1) , ~e2 =

(

1√
2
,− 1√

2
,0

)

.

Note that~e3 is a timelike vector,~e1 is a spacelike vector, and~e2 is a spacelike vector and~e1,~e2,~e3 are the orthonormal vectors.

Then, for θ = ln2 the spherical circle α(v) is obtained as follows

α(v) =

(

5

4
cosv+

5

4
√

2
sinv− 3

4
√

2
,

5

4
cosv− 5

4
√

2
sinv− 3

4
√

2
,

5

4
cosv− 6

4
√

2

)

.

For the functions f (v) = sinv and g(v) = cosv, if the necessary calculations are made in equation (3.3), the equation of the

spacelike constant angle ruled surface can be easily written as

Φ(u,v) = (Φ1,Φ2,Φ3)

where

Φ1(u,v) =
5v+3cosv

4
√

2
+

5

4
ucosv+

5

4
√

2
usinv− 3

4
√

2
u,

Φ2(u,v) = −5v−3cosv

4
√

2
+

5

4
ucosv− 5

4
√

2
usinv− 3

4
√

2
u,

Φ3(u,v) =
3cosv

2
√

2
+

5

4
ucosv− 6

4
√

2
u.

If we calculate the singular points for this surface according to Theorem 3.6, we can write that

det
(

α(v),α ′(v),α ′′(v)
)

6= 0 for θ 6= 0
(

θ 6= π

2
,π, . . .

)

.

a. For f (v0) = sinv0, g′(v0) =−sinv0,

sinv0 6=−sinv0

and

v0 6= 0,π,2π,3π, . . . ,kπ for k ∈ Z.

Since u0 = g(v0), we can say that all points as (u0,v0) of Φ(u,v) satisfying the following condition are locally

diffeomorphic to C×R

u0 = cosv0 for v0 6= 0,π,2π,3π, . . . ,kπ for k ∈ Z.

b. For f ′(v) = cosv, g′(v) =−sinv, g
′′
(v) =−cosv,

f (v0) = sinv,

g′(v0) = −sinv.

From the equality of the above equations, we obtain that

v0 = 0,π,2π,3π, . . . ,kπ for k ∈ Z.

Considering the following equations,

f ′(v0) = cosv,

g
′′
(v0) = −cosv,

we have

f ′(v0) 6= g
′′
(v0) for v0 6=

π

2
,

3π

2
,

5π

2
, . . . ,

kπ

2
for k = 2n+1, n ∈ Z.

We obtain the other singular point as follows

u0 = g(v0) = g

(

kπ

2

)

= 0 for k = 2n+1, n ∈ Z.

So, the point Φ(u0,v0) = Φ
(

0, kπ
2

)

is locally diffeomorphic to SW. Also, according to Theorem 3.6, we know that the

germ of Φ(u,v) isn’t locally diffeomorphic to CCR. So, we give the figure of the spacelike constant angle ruled surface

in Figure 3.1 as,
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Figure 3.1: Spacelike constant angle ruled surface for ln2

Example 3.8. We consider the equation of the constant angle surface with the axis

k =~e3 =

(√
3

2
,

√
3

3
,

√
3

6

)

and

~e1 =

(

2√
131

,
3√
131

,
12√
131

)

, ~e2 =

(

− 7
√

3

2
√

131
,

17
√

3

3
√

131
,

5
√

3

6
√

131

)

.

Note that~e3 is a spacelike vector,~e1 is a timelike vector,~e2 is a spacelike vector and~e1,~e2,~e3 are the orthonormal vectors. In

this case, for θ = Π

4
the spherical circle α(v) is obtained as follows

α(v) =

(

2sinhv√
262

− 7
√

3coshv

2
√

262
+

√
3

2
√

2
,

3sinhv√
262

+
17

√
3coshv

3
√

262
+

√
3

3
√

2
,

12sinhv√
262

+
5
√

3coshv

6
√

262
+

√
3

6
√

2

)

.

For the functions f (v) = coshv and g(v) = sinhv, if the necessary calculations are made, the equation of the timelike constant

angle ruled surface can be written as

Φ(u,v) = (Φ1,Φ2,Φ3)

where

Φ1(u,v) =
1

524

(

2
√

262cosh2v+131
√

6sinhv−7

√

393

2
sinh2v

)

+
2usinhv√

262
− 7

√
3ucoshv

2
√

262
+

√
3u

2
√

2
,

Φ2(u,v) =
3cosh2v

2
√

262
+

sinhv√
6

+
17sinh2v

2
√

786
+

3usinhv√
262

+
17

√
3ucoshv

3
√

262
+

√
3u

3
√

2
,

Φ3(u,v) = 3

√

2

131
cosh2v+

sinhv

2
√

6
+

5sinh2v

4
√

786
+

12usinhv√
262

+
5
√

3ucoshv

6
√

262
+

√
3u

6
√

2
.

So, we give the figure of the timelike constant angle ruled surface for θ = Π

4
in Figure 3.2 as,
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Figure 3.2: Timelike constant angle ruled surface for θ = Π

4

4. Conclusion

In this paper, constant angle surfaces with respect to any direction are obtained and their characterizations are given in E
3
1. The

constant angle surface mentioned here is the developable ruled surface whose direction is the spherical circle in Minkowski

space. It is also clear that the curves on this surface are isophote curves. This curve has many applications in physics, especially

optics. Finally, the topics discussed in this article are expressed with some illustrated examples to support the theory of the

article.
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Abstract

In this paper, we define flux surface as surfaces in which its normal vector is orthogonal

to the vector corresponding to a flux with its associate scalar flux functions in ambient

manifold M. Next, we determine, in 3-dimensional homogenous Riemannian manifold Sol3,

the parametric flux surfaces according to the flux corresponding to the Killing magnetic

vectors and we calculate its associate scalar flux functions. Finally, examples of such

surfaces are presented with their graphical representation in Euclidean space.

1. Introduction

An effect, which passes or moves through a surface or substance, is called a flux or flow. It has many applications that we can

cited a fluid mechanics, thermodynamics, electromagnetism, radiation, energy and in particular particle flux. Surfaces that

do not disturb the flux are called flux surface, it plays an important role in physics, particulary the magnetism, and geometry

(see [1–5] and [6–10]).

Geometrically, let M be a smooth surface in Riemannian manifold (N,g) , −→n is the normal vector and
−→
V is a smooth vector

field on N. The flux F corresponding to the smooth vector
−→
V , (to simplify, we denote the vectors

−→
V ,

−→
n by V,n) passing

through the surface M is given by

F =
∫

M

g(V,n)ds.

The smooth surface M is called a flux surface of a smooth vector field V if

g(V,n) = 0

everywhere on M. We denoted M by V -flux surface (see Figure 1.1).
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Figure 1.1: Flux surface M for linear flux in (R3
,geuc)

When V is magnetic vector fields which is zero divergence according to Biot and Savart’s law ( [11]), V does not cross the

surface M anywhere, i.e. the magnetic flux traversing M is zero, then M is called flux surface corresponding to the magnetic

vector V. In this case M is denoted by Magnetic V-flux surface.

Hence, we can define a scalar flux function f according to the magnetic vector V, such that its value is constant on the surface

M, and

g(V,∇ f ) = 0

where ∇ f is Riemannian gradient on M.

Moreover, If V is a Killing i.e. magnetic vector fields satisfying the Killing equation

g(∇XV,Y )+g(∇YV,X) = 0 (1.1)

then M is called Killing magnetic V-flux surface, where ∇ is a connection and X ,Y are a vector fields on M.

The plasma is an example of flux surfaces. Considered as fourth state of matter, it is a hot ionized gas made up of approximately

equal numbers of positively charged ions and negatively charged electrons which makes it a good electrical conductor. The

electrical conductivity creates currents flowing in a plasma that interact with magnetic fields to produce the forces necessary

for containment. Ordinary matter ionizes and forms a plasma at temperatures above about 5000 K, and most of the visible

matter in the universe is in the plasma state (see for more detail [1, 5, 10–12]).

In magnetic confinement fusion, a flux surface is a surface on which magnetic field lines lie. Poincare-Hopf prove that such

surfaces must be either a torus, or a knot (see [13]). Another applications of a flux surfaces, in Minkowski context, on the

dynamics of solitons and dispersive effects can be found in ( [6–8]).

In [2] and [9], the Killing V -magnetic flux surfaces was determined in Heisenberg three group and in Euclidean space,

respectively. In our study, we determine all Killing V -magnetic flux surfaces and its associate Killing scalar flux functions in

three-dimensional Riemannian manifold Sol3 which is among the eight models of the geometry of Thurston ( [14]).

The paper is organized as follow. In Section 2, we present the geometry of Sol3 and its three Killing vectors representations.

We determine, in the Section 3, all parameterizations of Killing V -flux surfaces and its associate Killing V -magnetic scalar flux

functions with examples.

We use the computer software ”Wolfram Mathematica” to present the computer graphics in Euclidean 3-space.

2. Geometry of Riemannian Space Sol3

The Sol3 space is seen as R3 with the standard representation in SL(3,R) as

Sol3 =











e−z 0 x

0 ez y

0 0 1



 | (x,y,z) ∈ R
3







endowed with the multiplication

(x1,y1,z1)(x2,y2,z2) = (x1 + e−zx2,y1 + ezy2,z1 + z2).

The Riemannian metrics on the Sol3 is given by

gSol3 = e2zdx2 + e−2zdy2 +dz2
. (2.1)

We define an orthonormal basis (ei)i=1,3 as

e1 = e−z∂x, e2 = ez∂y, e3 = ∂ z, (2.2)

and its dual basis
(
ω i

)

i=1,3
by

ω1 = ezdx; ω2 = e−zdy; ω3 = dz.
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The Lie bracket of the basis (ei)i=1,3 are given by the following identities

[e1,e2] = 0; [e2,e3] =−e2, [e1,e3] = e1. (2.3)

The Levi-Civita connection ∇ of the metric gSol3 with respect to the orthonormal basis (ei)i=1,3 is







∇e1
e1 =−e3

∇e1
e2 = 0

∇e1
e3 = e1

;

∇e2
e1 = 0

∇e2
e2 = e3

∇e2
e3 =−e2

;

∇e3
e1 = 0

∇e3
e2 = 0

∇e3
e3 = 0

. (2.4)

The algebra of Killing vector field of Sol3 it is generated by the basis K= (Ki)i=1,3 , which are solutions of Eq. (1.1), where

the Killing vectors (Ki)i=1,3 are presented in the following

K1 = ∂x, K2 = ∂y and K3 = x∂x− y∂y−∂ z.

The Killing vectors, in the base (ei)i=1,3 from the Eq. (2.2), are

K1 = eze1, K2 = e−ze2 and K3 = xeze1 − ye−ze2 − e3, (2.5)

(for more detail see [3, 4, 15]).

3. Killing V -flux Surfaces in Sol3

Definition 3.1. Let M be a smooth surface in a Riemannian manifold (N,g) and n be its normal vector field. We call M a flux

surface of a smooth vector field V (denoted by V -flux surface) on (N,g) if

g(V,n) = 0

everywhere on M.

Moreover, if V is a Killing field then we call M flux surface according to the Killing vector V denoted by Killing V -flux surface.

Lemma 3.2. Let f be a scalar function in (N,g), then the Riemannian gradient of f is

∇ f = fx∂x+ fy∂y+ fz∂ z = ez fxe1 + e−z fye2 + fze3.

The determination of flux surfaces needs the resolution of partial differential equations denoted by PDE, therefore we use the

resolution method in the following proposition.

Proposition 3.3. Let P and Q two functions in real parameters s and t. The general solutions of the PDE

P(s, t)hs +Q(s, t)∂tht = R(s, t) (3.1)

are in the following form:

1. When the PDE (3.1) is homogeneous (i.e. R ≡ 0)

i. If P ≡ 0 (resp. Q ≡ 0) then h(s, t) = h(s) (resp. h(s, t) = h(t))

ii. If P and Q are non null functions, then

h(s, t) = ϕ (ψ(s, t))

where ψ(s, t) = c (c is a constant) is the solution of ODE

ds

P
=

dt

Q
(3.2)

and ϕ is arbitrary real function.

2. When the PDE (3.1) is nonhomogeneous (i.e. R 6= 0)

i. If P ≡ 0 (resp. Q ≡ 0) then h(s, t) =
∫

R
Q

dt (resp. h(s, t) =
∫

R
P

ds)

ii. If P and Q are non null functions, then the solution h is given implicitly from

ψ1(s, t,h) = ϕ (ψ2(s, t,h))

where ψ1,2(s, t) = c1,2 (c1,2 are a constants) are the choice of two functions among three functions solutions of three

ODEs

ds

P
=

dt

Q
=

dh

R

and ϕ is arbitrary function in R. (See the method to solve linear PDE in [16]).
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3.1. Killing K1-flux surfaces in Sol3

Let M be a surface in Sol3 and X(s, t) = (x(s, t),y(s, t),z(s, t)) its parametrization. The tangent vectors Xs and Xt are described

by

{
Xs = xs∂x+ ys∂y+ zs∂ z = ezxse1 + e−zyse2 + zse3

Xt = xt∂x+ yt∂y+ zt∂ z = ezxte1 + e−zyte2 + zte3.

Its normal vector n, in the base (ei)i=1,3 , is

n =
Xs ×Xt

‖Xs ×Xt‖
=

1

‖Xs ×Xt‖





(yszt − ytzs)e−z

(xtzs − xszt)ez

xsyt − xtys




. (3.3)

Now, we have the theorem.

Theorem 3.4. Let M be a surface in Sol3 and X(s, t) = (x(s, t),y(s, t),z(s, t)) its parametrization. Then M is a Killing K1-flux

surface if and only if

yszt − ytzs = 0 (3.4)

Proof. It’s a direct consequence by using the inner product given in Eq. (2.1), in the orthonormal base (ei)i=1,3 defined in the

Definition 3.1, of the normal vector n given from the Eq. (3.3) and the Killing vector K1.

Proposition 3.5. All Killing K1-flux surfaces in Sol3 are parameterized by

1. X(s, t) = (x(s, t),y(s, t),ϕ(ψ2(s, t))),

2. X(s, t) = (x(s, t),ϕ(ψ3(s, t)),z(s, t)),

3. X(s, t) = (x(s, t),ϕ1(s),ϕ2 (s)),

4. X(s, t) = (x(s, t),ϕ1(t),ϕ2 (t)),

where x,y,z and ϕ ,ϕ1,2 are arbitrary smooth functions in R
2 and R, respectively.

Proof. Using the Proposition 3.3(1-ii), the parameterizations X(s, t) are a general solution of the first order linear PDE given

in the Theorem 3.4 for arbitrary functions x,y and x,z for the assertions 1 and 2, respectively. For the assertions 3 and 4, it’s a

direct consequence from the Proposition 3.3(1-i).

Example 3.6. 1. Let y(s, t) = cosst, from the Proposition 3.5-1(ii) and substituting the value of y in the Eq. (3.4), we have

P = ys and Q = yt and

ds

ssinst
=

−dt

t sinst

its solution is

ψ2(s, t) = st = c, c is a constant

then the surface M1.1 parameterized by

X(s, t)=(x(s, t),cosst,ϕ (st))

is Killing K1-flux surface in Sol3, where ϕ and x are arbitrary smooth functions in R and R
2 respectively. We present the

surface M1.1 in the Figure 3.1 for (s, t) ∈ [−π,π]2 in Euclidean space
(
R

3
,geuc

)
.
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Figure 3.1: Killing K1-flux surface M1.1 =
(
(s+ t)2

,cosst,sinst
)

2. Let z(s, t) = est
, similarly the Eq. (3.4) turns to

sys − tyt = 0

we have P = s,Q = t and

ds

s
=

−dt

t

its solution is

ψ3(s, t) = st = c, c is a constant

Using the assertion 2 of Proposition 3.5, then the surface M1.2 parameterized by

X(s, t)=
(
x(s, t),ϕ (st) ,est

)

is Killing K1-flux surface in Sol3, where ϕ and x are arbitrary smooth functions in R and R
2 respectively.

3. Let z(s, t) = es+t
, we have

ds

es+t
=

−dt

es+t

its solution is

ψ3(s, t) = s+ t = c, c is a constant

By the assertion 2 of Proposition 3.5, the surface M1.3 parameterized by

X(s, t)=
(
x(s, t),ϕ (s+ t) ,es+t

)

is Killing K1-flux surface in Sol3, where ϕ and x are arbitrary smooth functions in R and R
2
, respectively.

3.1.1. Scalar flux functions

Definition 3.7. Let f be a function on (N,g) . Then f is called a scalar flux function corresponding to the magnetic vector

field V if its value is constant on the surface M, and

g(V,∇ f ) = 0

we denoted here f , to simplify, a V -magnetic scalar flux function. Moreover, if V is Killing, f is denoted Killing V -magnetic

scalar flux function.

Now, we can present the following theorem.

Theorem 3.8. Let M be a Killing magnetic K1-flux surface in Sol3. Then the function f given by

f (x,y,z) = f (y,z) ( f depend only on parameters y,z)

and constant on M is Killing K1-magnetic scalar flux function to M, where ψ is arbitrary smooth function in R.
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Proof. Using the Definition 3.7 and the Lemma 3.2, we have

gSol3 (K1,∇ f ) = e2z fx = 0

by solving the above first order PDE we get

f (x,y,z) = f (y,z)

and f must be also constant on M to be Killing K1-magnetic scalar flux function on M

Example 3.9. Using the Example 3.6(3), the surface M1.3 parameterized by

X(s, t)=
(

cosst,
√

es+t
,es+t

)

is Killing magnetic K1-flux surface. The Killing K1-magnetic scalar flux function f to M1.3, from the Theorem 3.7, is in the

form f (x,y,z) = f (y,z) and it must be constant on M, (i.e. f (X(s, t))≡C , C is a constant). Let

f (x,y,z) = y2 − z+a, a ∈ R

We have

f (X(s, t)) = a

then f (x,y,z)= y2−z+a is Killing K1-magnetic scalar flux function to the Killing magnetic K1-flux surface M1.3 parameterized

by X(s, t)=
(

cosst,
√

es+t
,es+t

)

.

3.2. Killing K2-flux surfaces in Sol3

Similar as Section 3.1, we characterise and present all Killing K2-flux surfaces given in the Eq. (2.52).

Theorem 3.10. Let M be a surface in Sol3 and X(s, t) = (x(s, t),y(s, t),z(s, t)) its parametrization. Then M is a Killing

K2-flux surface if and only if

xuzv − xvzu = 0.

Proof. The proof is similar as the proof of the Theorem 3.4 using the Killing vector K2 given in Eq. (2.52).

Proposition 3.11. All Killing K1-flux surfaces in Sol3 are parameterized by

1. X(s, t) = (x(s, t),y(s, t),ϕ(ψ1 (u,v))),

2. X(s, t) = (ϕ(ψ3(s, t)),y(s, t),z(s, t)),

3. X(s, t) = (ϕ1(s),y(s, t),ϕ2(s)),

4. X(s, t) = (ϕ1(t),y(s, t),ϕ2(t)),

where x,y,z and ϕ, ϕ1,2 are arbitrary smooth functions in R
2 and R, respectively.

Proof. The proof is similar as the proof of the Proposition 3.5.

Example 3.12. 1. Let x(s, t) = sin(s+ t) , from the assertion 1 of Proposition 3.5-1(ii) and same computations as the Example

3.6, we have

ψ1(s, t) = s+ t = c, c is a constant,

then the surface M2.1 parameterized by

X(s, t)=(sin(s+ t) ,y(s, t),ϕ (s+ t))

is Killing K2-flux surface in Sol3.

2. Similarly, from the assertion 2 of Proposition 3.5, let z(s, t) = (1+ cos t)sins, we have

ψ3(s, t) = (1+ cos t)sins = c, c is a constant,

then the Killing K2-flux surface M2.2 in Sol3 have the parametrization

X(s, t) = (ϕ((1+ cos t)sins),y(s, t),(1+ cos t)sins),

where ϕ and y are arbitrary smooth functions in R and R
2 respectively. The following Figure 3.2 presents the surface M2.2 in

(
R

3
,geuc

)
for parameters (s, t) ∈ [−π,2π]× [−π,π] .



Fundamental Journal of Mathematics and Applications 95

Figure 3.2: Killing K2-flux surface M2 = (((1+ cos t)sins)2
,s+ t,(1+ cos t)sins)

3. Similarly, from the assertion 4 of Proposition 3.5, the surface M2.3 parameterized by X(s, t) = (t cos t,s3+ t, t sin t) is Killing

K2-flux surface in Sol3. The Figure 3.3 presents M2.3 for (s, t) ∈ [−3,3]× [−2π,2π] ..

Figure 3.3: Killing K2-flux Surface M2.3

3.2.1. Killing K2-magnetic scalar flux functions

We present the Killing K2-magnetic scalar flux functions in the following theorem.

Theorem 3.13. Let M be a Killing magnetic K2-flux surface in Sol3. Then the function f given by

f (x,y,z) = f (x,z)

and constant on M is Killing K2-magnetic scalar flux function to M.

Proof. Using the Definition 3.7 and the Lemma 3.2, we have

g(K2,∇ f ) = e−2z fy = 0

we get Killing K2-magnetic scalar flux function f by solving the above linear first order PDE and f must be constant on M.

Example 3.14. From the Theorem 3.13, the Killing K2-magnetic scalar flux function corresponding to the M parameterized by

X(s, t)=
(
sin(s+ t) ,cos(s2 + t2),arcsin(s+ t)

)

given in Example 3.12 is in the form f (x,y,z) = f (x,z) = arcsinx− sinz+a; a ∈ R and f (X(s, t)) = a, i.e. f is constant on

M. See Figure 3.4 (here (s, t) ∈ [−π,π]2).
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Figure 3.4: Flux surface M of Killing K2-magnetic scalar flux function f

3.3. Killing K3-flux surfaces in Sol3

Following the above subsections, we have the following theorem.

Theorem 3.15. Let M be a surface in Sol3 and X(s, t) = (x(s, t),y(s, t),z(s, t)) its parametrization. Then M is a Killing

K3-flux surface if and only if

xtys − xsyt + xyszt − xytzs + yxszt − yxtzs = 0. (3.5)

Proof. The proof is similar as the Theorem 3.4 using the Killing vector K3 given in Eq. (2.53).

The surface M in Sol3 parameterized by X(s, t) = (x(s, t),y(s, t),z(s, t)) is Killing K3-flux surface if the Eq. (3.5) holds.

However, the Eq. (3.5) have three cases to solve. The first case is where we assume that x(s, t) and y(s, t) are arbitrary functions

and find the solution z(s, t) of the Eq. (3.5) in the form

[yxt + xyt ]zs − [xys + yxs]zt +[xsyt − xtys] = 0.

The second and the third cases are when we assume x(s, t), z(s, t) and y(s, t), z(s, t) to be arbitrary functions and find the

solutions y(s, t) and x(s, t), respectively. We present in the following proposition only the first case. A similar result, with a

similar method, can be obtained for the second and third cases which will not be presented in this paper.

Proposition 3.16. The parametric surfaces in Sol3 with the parametrization X(s, t) given by







1. X(s, t) = (x(s, t),ϕ1 (x(s, t)) ,ϕ4 (ψ(s, t))) ,

2. X(s, t) =
(

x(s, t), ϕ2(s)
x(s,t) ,z(s)

)

,

3. X(s, t) =
(

x(s, t), ϕ3(t)
x(s,t) ,z(t)

)

,

4. X(s, t) = (x(s, t),y(s, t),ψ(s, t)),

are Killing K3-flux surfaces, where x,y,z and ϕ1,4 are arbitrary smooth functions in R
2 and R, the functions ψ,ψ are given in

the Eqs. (3.7) and (3.8), respectively, and we assume that
∂ (x,y)
∂ (s,t) 6= 0.

Proof. (case 1). Let x(s, t) and y(s, t) be an arbitrary smooth functions then the Eq. (3.5) turns to the PDE



xyt + yxt
︸ ︷︷ ︸

P



zs +




−xys − yxs
︸ ︷︷ ︸

Q




zt +



xsyt − xtys
︸ ︷︷ ︸

R



= 0 (3.6)

in the form of the PDE in Eq. (3.1), with respect to z.

i. If R(s, t) = xtys − xsyt = 0 (i.e. the Eq. (3.6) is homogeneous PDE), using the assertion 1 of the Proposition 3.3, then y

must be

y(s, t) = ϕ1 (x(s, t))

With cases when y(s, t) = ϕ2(s)
x(s,t) (i.e. P ≡ 0) (resp. y(s, t) = ϕ3(t)

x(s,t) (i.e. Q ≡ 0), by using again the assertion 1(i) of the

Proposition 3.3, we obtain z = z(t) (resp. z = z(s)), which prove the assertions 2 and 3. If P,Q 6= 0 then

z(s, t) = ϕ4 (ψ(s, t)) (3.7)
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where ψ is solution of the OED

dt

xys + yxs

=− ds

xyt + yxt

and ϕ1,4 are arbitrary real smooth functions, then the assertion 1 is proved.

ii. If P = 0
(

i.e. y(s, t) = ϕ2(s)
x(s,t)

)

we obtain R = 0 as (i), and similarly when Q = 0 .

iii. If P,R,Q 6= 0 then the solution z(s, t) = ψ(s, t) of the nonhomogeneous PDE (3.6), using the assertion 2(ii) of the

Proposition 3.3, is given implicitly from the equation

ψ1(s, t,z) = ϕ (ψ2(s, t,z)) , (3.8)

which prove the assertion 4.

Example 3.17. We construct an example using the assertion 1 of the Proposition 3.16. Let x(s, t) = st and y(s, t) = (st)2
,

using the Proposition 3.3, we have

P = 3s3t2
, Q =−3s2t3 and R = 0

and the ODE

ds

P
=

dt

Q

with solution

ψ1(s, t) = s3t3 = c, c is a constant

then the surface M3.1 parameterized by X(s, t) =
(

st,(st)2
,ϕ(s3t3)

)

is Killing K3-flux surface in Sol3, where ϕ is arbitrary

real smooth function. We present, in (R3
,geuc), the Killing K3-flux surface X(s, t)=

(
st,(st)2

,sin(s3t3 +1)
)

in Sol3 in Figure

3.5, where (s, t) ∈
[
−π

2
,

π
2

]
× [−π,π]

Figure 3.5: Killing K3-flux surface M3.1

Example 3.18. We present an example, using the assertion 2 of the Proposition 3.16, of Killing K3-flux surface M3.2 in Sol3

parameterized by X(s, t) =
(
st, s

t
,coss

)
see Figure 3.6 (s, t) ∈ [−2π,2π]2.
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Figure 3.6: Killing K3-Flux surface M3.2

Example 3.19. Now, we consider the assertion 4 of the Proposition 3.16. Let x(s, t) = cos(s+ t) and y(s, t) = st2
, then the Eq.

(3.6) turns to an nonhomogeneous PDE given by

s [cos(s+ t)− t sin(s+ t)]zs + t [ssin(s+ t)− cos(s+ t)]zt − [ssin(s+ t)+ t sin(s+ t)] = 0 (3.9)

using the Proposition 3.3-2(ii), we must make a choice of two functions among three functions which are solutions of three

following ODEs

ds

s [cos(s+ t)− t sin(s+ t)]
︸ ︷︷ ︸

(1)

=
dt

t [ssin(s+ t)− cos(s+ t)]
︸ ︷︷ ︸

(2)

=
−dz

[ssin(s+ t)+ t sin(s+ t)]
︸ ︷︷ ︸

(3)

The ODE (1 = 2) has a solution ψ1(s, t,z) = −2st cos(s+ t) = c1 and the solution of the ODE (1 = 3) has a solution

ψ2(s, t,z) = (s+ t + tz)cos(s+ t)− (1+ stz)sin(s+ t) = c2, where c1,2 are a real constants.

Hence, the solution z of the Eq. (3.9) is given implicitly from the equation

ψ1(s, t,h) = ϕ (ψ2(s, t,h))

which turns, after substitution the values of ψ1,2, to

−2st cos(s+ t) = ϕ ((s+ t + tz)cos(s+ t)− (1+ stz)sin(s+ t))

where ϕ is arbitrary function in R. By taking ϕ = IdR, we get

z(s, t) =
sin(s+ t)− (s+ t +2st)cos(s+ t)

t cos(s+ t)+ st sin(s+ t)

and the surface M3.3 parameterized by

X(s, t) =

(

cos(s+ t) ,st2
,

sin(s+ t)− (s+ t +2st)cos(s+ t)

t cos(s+ t)+ st sin(s+ t)

)

is Killing K3-flux surface in Sol3. We present, in (R3
,geuc), the Killing K3-flux surface M3.3, in Sol3, in Figure 3.7 where

(s, t) ∈
[
−π

2
,−π

2

]2
.
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Figure 3.7: Killing K3-flux surface M3.3

3.3.1. Killing K3-magnetic scalar flux functions

For the Killing K2-magnetic Scalar flux functions, we have the following theorem.

Theorem 3.20. Let M be a Killing magnetic K3-flux surface in Sol3. Then the function f given by

f (x,y,z) = Ψ
(
2lnx+ e2z

,2lny− e−2z
)

and constant on M is Killing K3-magnetic scalar flux function to M.

Proof. Using the Definition 3.7 and the Lemma 3.2, we have

gSol3 (K3,∇ f ) = xe2z fx − ye−2z fy − fz = 0

solving the above linear first order PDE, we get

f (x,y,z) = Ψ
(
2lnx+ e2z

,2lny− e−2z
)

Killing magnetic K3-scalar flux function f and constant on M, where Ψ is arbitrary function.

Example 3.21. Using the the assertion 2 of the Proposition 3.16, let M be a Killing magnetic K3-flux surface in Sol3

parameterized by

X(s, t) =

(

st,
ϕ (s)

st
,z(s)

)

Next, the Killing K3-magnetic scalar flux function f is in the form

f (x,y,z) = Ψ
(
2lnx+ e2z

,2lny− e−2z
)

= Ψ

(

2ln(st)+ e2z(s)
,2ln

ϕ (s)

st
− e−2z(s)

)

and constant on M. By choosing

Ψ(u,v) = u+ v; ϕ (s) =−sinh2z(s)

we get

f (x,y,z) = 2(lnxy+ sinh2z) and f (X(s, t)) = Ψ(0)

then f is constant on M parameterized by X(s, t) =
(

st,
−sinh2z(s)

st
,z(s)

)

.
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Conclusion

The flux surface are surfaces that appear in many phenomena that we can cited, in Euclidean context, magnetic confinement

fusion, dynamics of solitons and dispersive effects and plasma state. These surfaces are characterized that its normal vector is

orthogonal to the vector corresponding to a flux in ambient spaces. Moreover, if the flux is magnetic (i.e. the associate vector to

the flux is magnetic vector), we can define flux functions is which its gradient is orthogonal to the magnetic vector and constant

on the associate flux surface. Inspired by the determination of the flux surfaces and associate flux function in Euclidean and

Heisenberg group as three-dimensional manifolds. We have extended this determination, in this paper, to three-dimensional

Riemannian space Sol3.
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Abstract

The classical SIRD model is extended to the conformable fractional stochastic SIRD model.

The differences between the fractional stochastic SIRD model and the integer stochastic

SIRD model are analyzed and compared using COVID-19 data from India. The results

show that when the order of the fractional stochastic SIRD model is between [0.93,0.99],
the root mean square error between the simulated value and the real value of the number of

infections is smaller than that of the integer stochastic SIRD model. Then, the maximum

likelihood estimation of the parameters of the conformable fractional stochastic SIRD

model is carried out, and compared with the maximum likelihood estimation results of the

parameters of the integer stochastic SIRD model, It can be seen that the root mean square

error of the fractional stochastic SIRD model is smaller when the fractional order is between

[0.93,0.99].

1. Introduction

In recent years, with the wide spread of COVID-19, the loss of individuals and society has gradually increased. And the

study of mathematical models of infectious diseases has become an increasingly important topic, which can be divided into

deterministic models and stochastic models [1]. Stochastic models have been studied mainly for models corresponding to

transitions of individuals into different epidemic regimes over time.

The SIR model was first proposed by Kermack and Mckendrick in 1927 [2], which laid the foundation for the study of

the dynamics of infectious diseases. Becker used the least square method and maximum likelihood method to estimate the

parameters of the model and defined the initial infection rate [3]. Timmer discussed the parameter estimation problem of

nonlinear stochastic differential equations based on the sampled time series [4]. Buckingham-Jeffery et al. considered the

Gaussian process approximation based on the approximation of random moment closure and the approximation based on the

approximation of linear time non-uniform SDE to infer the parameter characteristics of the random SEIR model [5]. Senel

proposed a single-parameter estimation method to avoid potential problems such as limited and noisy data when using SIR

Model to estimate COVID-19 [6]. Morato et al. formulated a nonlinear model predictive control scheme based on the SIRD

model with time-varying parameters, and they proposed an identification method consisting of analytical regression, least

squares optimization, and autoregressive model fitting, which can fully predict the infection curve in a large range [7].

In recent years, fractional infectious disease models have begun to attract a surge of research. Farman et al. applied the

Laplace Adomian decomposition method to give the approximate solution of the nonlinear system of the Caputo SEIR

model [8]. Rajagopal et al. compared the predictive ability of the fractional SEIRD model and the classical SEIRD model by

using Italian COVID-19 data [9]. Basti et al. proposed an improved mathematical model for fractional SIRD in the sense
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of Caputo-Katugampola fractional derivatives. The existence and uniqueness of the solution of the improved SIRD model

are studied by applying the properties of Schauder and Banach’s fixed point theorems [10]. Mohammadi et al. proposed a

SIRD model in the sense of Caputo fractional order, discussed the stability of the model and the existence and uniqueness of

nonnegative solutions, and obtained approximate responses by implementing the fractional Euler method [11]. Fouladi et al.

analyzed the identifiability and sensitivity of the integer and Caputo fractional SEIRD models and proved that the fractional

infectious disease model was more suitable for predicting the real situation by comparing the quality of fitting [12].

In 2014, Khalil et al. proposed Conformable fractional derivatives, which is a natural expansion of integer derivatives [13].

Several scholars have applied conformable fractional derivatives to models in mathematics, physics, transportation, and other

fields. In 2021, Akinyemi et al. established a time-varying nonlinear differential equation in the sense of conformable fractional

order and obtained the exact solution of the equation by using the sub-equation method [14]. In 2022, Ashraf et al. studied

the (2+1) dimensional Conformable fractional transmission line equation in a nonlinear system. By combining exponential,

polynomial, trigon, and hyperbolic functions, Multi-wave, M-shaped rational, and interaction solutions are obtained [15].

In 2022, Yuxiao Kang et al. established a conformable fractional time-varying gray Riccati traffic flow model based on

viscoelastic fluid and applied it to modeling traffic flow and traffic congestion degree in multiple scenarios [16]. The relevant

definitions and properties are introduced below.

Definition 1.1 ( [13]). Given the function f (t) : [0,∞) → R, for all t > 0, α ∈ (0,1], the α-order conformable fractional

derivative of f (t) is defined as

Tα f (t) = lim
ε→0

f
(

t + εt1−α
)

− f (t)

ε
,

when t = 0, Tα f (0) = lim
t→0+

Tα f (t).

Lemma 1.2 ( [13]). The relationship between the α-order conformable fractional derivative of f (t) and the first derivative of

f (t) can be represented as

Tα f (t) = t1−α d f (t)

dt
,

specifically, T1 f (t) = d f (t)
dt

.

In this paper, we propose a stochastic SIRD model in the sense of conformable fractional order and obtain maximum likelihood

estimates for the model parameters, taking into account the impact of various uncertainties on infectious diseases in real-world

situations. Finally, the COVID-19 data from April 1, 2020, to July 31, 2020, in India is used for example analysis to compare

the effect of fitting the raw data with a fractional stochastic SIRD model at different fractional orders. The parameter estimates

for the fractional stochastic SIRD model are computed using maximum likelihood estimation. The results show that when the

order of the fractional stochastic SIRD model is between [0.93,0.99], the root mean square error between the simulated value

and the real value of the number of infections is smaller than that of the integer stochastic SIRD model. Moreover, compared

with the maximum likelihood estimation of the parameters of the integer stochastic SIRD model, it can be seen that when the

fractional order is between [0.93,0.99], the root mean square error of the fractional stochastic SIRD model is smaller.

2. Model Introduction

The SIRD model divides the tested population into Susceptible(S), Infected(I), Recovered(R), and Dead(D) populations. A

susceptible person is a person who has not been infected, lacks immunity and is susceptible to infection after contact with an

infected person; An infected population is already infected; Recovered populations are those that have been cured of their

disease; Dead populations refers to a person who has died as a result of illness and is no longer involved in the process of

infection and contagion. The classical SIRD model can be expressed as the following system of differential equations [17]















































dS(t)

dt
=−

βS(t)I(t)

N
,

dI(t)

dt
=

βS(t)I(t)

N
− γI(t)−µI(t),

dR(t)

dt
= γI(t),

dD(t)

dt
= µI(t),

(2.1)

where t ≥ 0, S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, D(0) ≥ 0. Let the total population of the area be N, satisfying

S(t)+ I(t)+R(t)+D(t) = N. β is the infection rate, and it represents the probability of a susceptible person being in-

fected; γ is the recovery rate, and it indicates the likelihood of recovery of the infected person; µ is the mortality rate, all of

which are positive numbers.

The classical SIRD model has a stable and interference-resistant performance, and considering the advantage that the fractional

SIRD model can better fit the data by adjusting the order of the fractional derivatives in the model, in this paper we extend
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the classical SIRD model to the conformable fractional SIRD model by using the definition and properties of conformable

fractional derivatives.















































Tα S(t) = t1−α dS(t)

dt
=−

βS(t)I(t)

N
,

Tα I(t) = t1−α dI(t)

dt
=

βS(t)I(t)

N
− γI(t)−µI(t),

Tα R(t) = t1−α dR(t)

dt
= γI(t),

Tα D(t) = t1−α dD(t)

dt
= µI(t).

(2.2)

α is the order of the fractional order derivative of conformable, and α ∈ (0,1]. Since the parameters β , γ , and µ of the real-life

SIRD model are easily affected by the variable environment, and there is some randomness in the number of susceptibilities,

infections, recoveries, and deaths at the next moment, we give a conformable fractional stochastic SIRD model.

Let B1(t), B2(t), B3(t), B4(t) be a set of mutually independent standard Brownian motions, σi (i = 1,2,3,4) be a non-negative

white noise intensity, and build the following Conformable fractional stochastic SIRD model



































dS(t) =−tα−1 βS(t)I(t)

N
dt +σ1S(t)dB1(t),

dI(t) = tα−1

(

βS(t)I(t)

N
− γI(t)−µI(t)

)

dt +σ2I(t)dB2(t),

dR(t) = tα−1γI(t)dt +σ3R(t)dB3(t),

dD(t) = tα−1µI(t)dt +σ4D(t)dB4(t).

(2.3)

Parameter estimation is an extremely important ingredient in the study of infectious disease models. Considering that the

maximum likelihood estimator is widely used and converges well, the following discussion deals with the maximum likelihood

estimator for the parameters β , γ , and µ of the conformable fractional stochastic SIRD model.

3. Parameter Estimation

The discretization of equation (2.3) using Euler’s method gives



































S(t +1) = S(t)− tα−1 βS(t)I(t)

N
∆t +σ1S(t)∆B1(t),

I(t +1) = I(t)+ tα−1

(

βS(t)I(t)

N
− γI(t)−µI(t)

)

∆t +σ2I(t)∆B2(t),

R(t +1) = R(t)+ tα−1γI(t)∆t +σ3R(t)∆B3(t),

D(t +1) = D(t)+ tα−1µI(t)∆t +σ4D(t)∆B4(t),

(3.1)

where ∆Bi(t) = Bi(t +∆t)−Bi(t), i = 1,2,3,4. Taking into account the reasonableness of the division of time, let ∆t = 1.

Since B1(t), B2(t), B3(t), B4(t) are independent of each other. Based on the properties of the multidimensional normal

distribution [18], we can get the probability density function of the fractional stochastic SIRD model as

f (t) =
1

A
exp



















−
1

2











(

S(t+1)−S(t)+tα−1 βS(t)I(t)
N

σ1S(t)

)2

+

(

I(t+1)−I(t)−tα−1(
βS(t)I(t)

N −γI(t)−µI(t))

σ2I(t)

)2

+
(

R(t+1)−R(t)−tα−1γI(t)
σ3R(t)

)2

+
(

D(t+1)−D(t)−tα−1µI(t)
σ4D(t)

)2





























(3.2)

where A = 4π2σ1S(t)σ2I(t)σ3R(t)σ4D(t). The joint probability density function, the maximum likelihood function L(θ), is
computed from the above equations as follows.

L(θ) =
n−1

∏
t=1































1

A
exp

















−
1

2

















(

S(t +1)−S(t)+ tα−1 βS(t)I(t)
N

σ1S(t)

)2

+

(

D(t +1)−D(t)− tα−1µI(t)

σ4D(t)

)2

+





I(t +1)− I(t)− tα−1
(

βS(t)I(t)
N − γI(t)−µI(t)

)

σ2I(t)





2

+

(

R(t +1)−R(t)− tα−1γI(t)

σ3R(t)

)2































































, (3.3)
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Taking the logarithm of L(θ), this gives the log-likelihood function of the fractional stochastic SIRD model as

lnL(θ) =−

n−1

∑
t=1



























lnA−
1

2















(

S(t +1)−S(t)+ tα−1 βS(t)I(t)
N

σ1S(t)

)2

+





I(t +1)− I(t)− tα−1
(

βS(t)I(t)
N − γI(t)−µI(t)

)

σ2I(t)





2

+

(

R(t +1)−R(t)− tα−1γI(t)

σ3R(t)

)2

+

(

D(t +1)−D(t)− tα−1µI(t)

σ4D(t)

)2









































. (3.4)

The maximum likelihood estimates of the parameters β , γ and µ in the fractional stochastic SIRD model are thus obtained as





β̂

γ̂

µ̂



=





σ2
2 C2 +σ2

1 C1 −σ2
1 NC3 −σ2

1 NC3

−σ2
3 C3 σ2

3 NC4 +σ2
2 NC5 σ2

3 NC4

−σ2
4 C3 σ2

4 NC4 σ2
4 NC4 +σ2

2 NC6





−1



σ2
1 NA2 −σ2

2 NA1

σ2
2 NA4 −σ2

3 NA3

σ2
2 NA5 −σ2

4 NA3



 , (3.5)

where

A1 =
n−1

∑
t=1

tα−1(S(t +1)−S(t))I(t)

S(t)
, A2 =

n−1

∑
t=1

tα−1(I(t +1)− I(t))S(t)

I(t)
, A3 =

n−1

∑
t=1

tα−1 (I(t +1)− I(t))

I(t)
,

A4 =
n−1

∑
t=1

tα−1(R(t +1)−R(t))I(t)

R2(t)
, A5 =

n−1

∑
t=1

tα−1 (D(t +1)−D(t)) I(t)

D2(t)
,

C1 =
n−1

∑
t=1

t2α−2S2(t), C2 =
n−1

∑
t=1

t2α−2I2(t), C3 =
n−1

∑
t=1

t2α−2S(t), C4 =
n−1

∑
t=1

t2α−2
, C5 =

n−1

∑
t=1

t2α−2I2(t)

R2(t)
, C6 =

n−1

∑
t=1

t2α−2I2(t)

D2(t)
.

Maximum likelihood estimates of infection rate β , recovery rate γ , and mortality rate µ can are obtained by calculating equation (3.5) using

MATLAB software. The fractional stochastic SIRD model can have the lowest possible estimation error by finding a suitable value between

(0,1].

4. Example Analysis

Data for the COVID-19 epidemic in India from April 1, 2020, to July 31, 2020, are summarized from Worldometers and the WHO website,

and the raw data for the number of infections are plotted in MATLAB as shown in Figure 4.1.
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Figure 4.1: Graph of raw data on the number of infections

According to the parameter values of the SIRD model in reference [19], the initial parameters β = 0.0559, γ = 7.3594× 10−4 and

µ = 1.3030×10−5 of the fractional SIRD model are obtained by using the lsqcurvefit function in MATLAB software. Using the second-

order Adams-Bashforth method [20], numerical solutions of the number of infected people when α is 1,0.99, and 0.98 are obtained, as

shown in Figure 4.2. The three curves in Figure 4.2 are in good agreement with the true data curves in Figure 4.1, but there is a gap between

the simulated and true values for the number of infected people at the intermediate epoch. The fractional SIRD model can make the simulated

values of the number of infections as close as possible to the true values by a reasonable choice of the fractional order. The fractional order

was continuously adjusted to observe the effect of fitting the fractional SIRD model to the raw data, and the fit was found to be better when α

was equal to 0.99. Consider next the stochastic SIRD model. Here α = 1, the fractional SIRD model, is the integer SIRD model.



Fundamental Journal of Mathematics and Applications 105

04/01 04/12 04/23 05/04 05/15 05/26 06/06 06/17 06/28 07/09 07/20 07/31

Time/day

0

1

2

3

4

5

6

7

In
fe

ct
ed

 p
op

ul
at

io
n 

I(t
)

105

=1
=0.99
=0.98

Figure 4.2: Simulation of the number of infected people in the fractional SIRD model

A series of simulation values for the number of infected individuals can be obtained by adjusting the values of the fractional order α , and the

noise strength σ2, of the stochastic SIRD model of the infected population. It can be seen from Table 4.1 that under different noise intensities,

when α = 0.98, the root mean square error reaches the minimum. And α is between [0.93,0.99], the root mean square error of the fractional

stochastic SIRD model is smaller than that of the integer stochastic SIRD model. The smaller the value of the root mean square error, the

better the fit, so the fractional stochastic SIRD model has a better fit than the integer stochastic SIRD model when α ∈ [0.93,0.99], and the

best result is when α = 0.98, respectively.

σ2 = 0.0001 σ2 = 0.0002 σ2 = 0.0003 σ2 = 0.0004

α = 1 1.36×105 1.38×105 1.39×105 1.40×105

α = 0.99 8.04×104 8.10×104 8.16×104 8.19×104

α = 0.98 5.25×104 5.28×104 5.28×104 5.30×104

α = 0.97 5.91×104 5.88×104 5.85×104 5.81×104

α = 0.93 1.34×105 1.33×105 1.33×105 1.33×105

α = 0.92 1.46×105 1.46×105 1.46×105 1.45×105

Table 4.1: RMSE of the number of infected people in the stochastic SIRD model

The maximum likelihood estimates of the parameters β , γ , and µ of the integer and fractional stochastic SIRD models are carried out

respectively, the root mean square error between the simulation value and the true value of the number of infected people is calculated at the

same time. The parameter results and root mean square errors are shown in Table 4.2. It can be seen from Table 4.2 that when α = 0.98, the

root mean square error reaches the minimum 5.2452×104, and when α ∈ [0.93,0.99], the root mean square error of the fractional stochastic

SIRD model is smaller than that of the integer stochastic SIRD model. Thus, when α ∈ [0.93,0.99], the maximum likelihood estimator for

the fractional stochastic SIRD model yields better results than that for the integer stochastic SIRD model.

β̂ γ̂ µ̂ RMSE

α = 1 0.0559 7.3646×10−4 1.3046×10−5 1.3589×105

α = 0.99 0.0559 7.3647×10−4 1.3047×10−5 7.9728×104

α = 0.98 0.0559 7.3652×10−4 1.3048×10−5 5.2452×104

α = 0.97 0.0559 7.3660×10−4 1.3057×10−5 5.9574×104

α = 0.93 0.0559 7.3669×10−4 1.3069×10−5 1.3407×105

α = 0.92 0.0559 7.3678×10−4 1.3077×10−5 1.4668×105

Table 4.2: Maximum likelihood estimation results and RMSE of stochastic SIRD model parameters

This section analyzes the goodness-of-fit of the fractional stochastic SIRD model and the integer stochastic SIRD model to the raw data

and compares and analyzes the maximum likelihood estimation results for the parameters of the integer stochastic SIRD model and the

fractional stochastic SIRD model. The results show that when the value of α is between [0.97,0.99], the root mean square error estimated by

the fraction stochastic SIRD model is smaller than that of the integer stochastic SIRD model, indicating that the fraction stochastic SIRD

model has better estimation effect than the integer stochastic SIRD model, which also indicates that the fraction stochastic SIRD model is

more suitable for the actual situation.
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5. Conclusion

In this paper, we propose a conformable fractional stochastic SIRD model and perform maximum likelihood estimation of the parameters in

the model. Moreover, data from the COVID-19 outbreak in India is used for example analysis. By comparing the simulation graphs of the

number of infected persons between the integer stochastic SIRD model and the fractional stochastic SIRD model, the results show that the

fitting ability of the original data can be greatly improved by adjusting the order of the fractional stochastic SIRD model reasonably. Also,

maximum likelihood estimation results for the parameters of the integer and fractional stochastic SIRD models are compared. It is found

that the root mean square error of the fractional stochastic SIRD model is smaller than that of the integer stochastic SIRD model when the

fractional order number is between [0.97,0.99], and when the fractional order is 0.98, the fractional stochastic SIRD model has the best

parameter estimation effect. It has been shown that a reasonable choice of the fractional order has a certain effect on the correct understanding

and estimation of the model parameters of infectious diseases, and a positive effect on the prediction and prevention of infectious diseases.

In recent years, infectious diseases have been ravaging the globe. The study of infectious diseases has become a hot topic. With the deepening

of infectious disease models, the estimation of model parameters is becoming more and more important. In future studies, parameter

estimation of more complex fractional infectious disease models, such as the SEIRDV model, or models that take into account parameters

such as vaccine coverage and level of government intervention, should be considered. It can better adapt to the more complex situation in the

present era and optimize parameter estimation methods to reduce estimation errors, leading to more accurate predictions of infectious disease

trends and reasonable measures to control the epidemic situation promptly.
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Abstract

We investigate new upper bounds for the Berezin radius and Berezin norm of 2×2 operator

matrices using the Cauchy-Buzano inequality, and we propose a required condition for

the equality case in the triangle inequalities for the Berezin norms. We also show various

Berezin radius inequalities for matrices with 2×2 operators.

1. Introduction

Let L(H ) denote the C∗-algebra of all bounded linear operators defined on a complex Hilbert space (H ,〈., .〉). Throughout

the paper, we work on functional Hilbert space (FHS), which are complete inner product spaces made up of complex-valued

functions defined on a non-empty set ϒ with bounded point evaluation. If 〈Px,x〉> 0 for all x ∈H , then an operator P∈L(H )
is called positive. Recall that a functional Hilbert space H = H (ϒ) is a complex Hilbert space on a (nonempty) ϒ, which has

the property that point evaluations are continuous for each ω ∈ ϒ there is a unique element kω ∈ H such that f (ω) = 〈 f ,kω〉,
for all f ∈ H . The family {kω : ω ∈ ϒ} is called the reproducing kernel H . If {en}n≥0 is an orthonormal basis for FHS, the

reproducing kernel is shown by kω = ∑
∞
n=0 en (ω)en (z); (see, [1]). For ω ∈ ϒ, k̂ω = kω

‖kω‖ is called the normalized reproducing

kernel. For P ∈ L(H ), the function P̃ defined on ϒ by P̃(ω) =
〈

Pk̂ω , k̂ω

〉
is the Berezin symbol (or Berezin transform) of

P. The Berezin symbol firstly has been introduced by Berezin in [2]. The Berezin set and Berezin radius (or number) of the

operator P are defined by

Ber(P) =
{

P̃(ω) : ω ∈ ϒ

}
and ber(P) = sup

{∣∣∣P̃(ω)
∣∣∣ : ω ∈ ϒ

}
,

respectively. In some recent works, several Berezin radius inequalities have been examined by authors in [3–10].

We also define the so-called Berezin norm of operators P ∈ B (H ) as follows:

‖P‖Ber := sup
ε∈ϒ

∥∥∥Pk̂ω

∥∥∥ .

It is obvious that ‖P‖Ber determines a new operator norm in L(H (ϒ)). It is also obvious that ber(P)≤ ‖P‖Ber ≤ ‖P‖ .
A significant inequality for ber(P) is the power inequality stating that

ber(Pn)≤ bern (P)

Email addresses and ORCID numbers: 07hamdullahbasaran@gmail.com, 0000-0002-9864-9515 (H. Başaran), gurdalmehmet@sdu.edu.tr, 0000-
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for n = 1,2, . . .; more generally, if P is not nilpotent, then

C1bern (P)≤ ber(Pn)≤C2bern (P) ,

for some constant C1,C2 > 0. In a FHS, the Berezin range of an operator P is a subset of numerical range of P, i.e.,

Ber(P)⊆W (P) .

Hence ber(P)≤ w(P).
The numerical range and numerical radius of P ∈ L(H ) are denoted by

W (P) = {〈Px,x〉 : x ∈ H and ‖x‖= 1} and w(P) = sup{|〈Px,x〉| : x ∈ H and ‖x‖= 1} ,

respectively. The absolute value of positive operator is denoted by |P|= (P∗P)
1
2 . The numerical range has several intriguing

features. For example, it is usually assumed that an operator’s spectrum is confined in the closure of its numerical range.

For an illustration of how this and other numerical radius inequalities were addressed in those sources, we urge the reader

read [11–14].

It is well known that

‖P‖
2

≤ w(P)≤ ‖P‖

and

ber(P)≤ w(P)≤ ‖P‖
for any P ∈ L(H ). Also shown by Karaev in [15] are the Berezin range and Berezin radius of operators, which are numerical

features of operators on the FHS. In 2022, Huban et al. [16, 17] have proved the following results:

ber(P)≤ 1

2
‖|P|+ |P∗|‖ber ≤

1

2

(
‖P‖ber +‖P‖

1
2
ber

)
(1.1)

and

ber2r (P)≤ 1

2

∥∥∥|P|2r + |P∗|2r
∥∥∥

ber
where r ≥ 1.

Başaran et al. [18] have showed the following inequality:

ber2 (P)≤ 1

2

∥∥∥|P|2 + |P∗|2
∥∥∥

ber
. (1.2)

The direct sum of two copies of H is denoted by H 2 = H ⊕H . If P,R,S,T ∈ L(H ), then the operator matrix

A =

[
P R

S T

]
can be considered as an operator in L(H ⊕H ), which is defined by Ax =

(
Px1 +Rx2

Sx1 +T x2

)
for every vector

x =

(
x1

x2

)
∈ H ⊕H . In 2018, Bakherad, has proved Berezin radius inequalities of block matrix of the form

[
0 X

Y 0

]

(see, [19–21]). As one can see in [22, 23], where operator norm and numerical radius inequalities were researched and

implemented, operator matrices and their properties and inequalities have attracted a lot of attention in the literature.

In order to complete the inequalities for the Berezin number, the numerical radius, and the operator norm, we offer Berezin

number inequalities for operator matrices in this study. Our work consists of three sections. In the first section, It has been

given introduction. In the second section, it has been given known lemmas. In the third section, it has obtained new upper

bounds for the Berezin radius and Berezin norm of 2×2 operator matrices by Cauchy-Buzano inequality. Also, it has been

given a necessary condition for the equality case in the triangle inequalities for the Berezin norms. Finally, it has been proven

some Berezin radius inequalities for 2×2 operator matrices.

2. Main Results

2.1. Auxiliary theorems

To start our work, we need the following lemmas. The first lemma is found by Bakherad in [19].

Lemma 2.1. Let P ∈ L(H1 (ϒ)), R ∈ L(H2 (ϒ) ,H1 (ϒ)), S ∈ L(H1 (ϒ) ,H2 (ϒ)), T ∈ L(H2 (ϒ)). Then the following

statements holds:

ber

([
P 0

0 T

])
= max{ber(P) ,ber(T )} (2.1)

and

ber

([
0 R

S 0

])
=

1

2
(‖R‖+‖S‖) . (2.2)



Fundamental Journal of Mathematics and Applications 109

The second lemma arises from the spectral theorem for positive operators and Jensen inequality.

Lemma 2.2 ( [24]). Let P ∈ L(H ) be a positive operator, and u ∈ H is an unit vector. Then

〈Pu,u〉r ≤ 〈Pru,u〉 for all r ≥ 1. (2.3)

Aujla and Silva provide the third lemma, a norm inequality involving convex functions of positive operators (see [25]).

Lemma 2.3. let f be a non-negative convex function on [0,∞), and let P,R ∈ L(H ) be a positive operators. Then

∥∥∥∥ f

(
P+R

2

)∥∥∥∥≤
∥∥∥∥

f (P)+ f (R)

2

∥∥∥∥ . (2.4)

In particular, if r ≥ 1, then

∥∥∥∥
(

P+R

2

)r∥∥∥∥≤
∥∥∥∥

Pr +Rr

2

∥∥∥∥ . (2.5)

The fourth lemma is shown by Kittaneh (see [24]).

Lemma 2.4. Let P ∈ L(H ) and let u,v ∈ H be any vectors. Then

|〈Pu,v〉|2 ≤ 〈|P|u,v〉〈|P∗|v,v〉 . (2.6)

The fifth lemma may be found in [26, Lemma 2.2], and it is based on the corollary of Cauchy-Buzano inequality.

Lemma 2.5. Let u,v,e ∈ H and ‖e‖= 1. Then

|〈u,e〉〈e,v〉|2 ≤ 1

4

(
3‖u‖2 ‖v‖2 +‖u‖‖v‖+ |〈u,v〉|

)
. (2.7)

For any positive operators A,B, the classic Arithmetic Mean-Geometric Mean inequality, often known as AM-GM inequality,

states that
√

AB ≤ A+B
2

.

2.2. Some Berezin radius inequalities

Our findings are presented in this section. Now, we can the prove the first theorem.

Theorem 2.6. Let P,R ∈ L(H ). Then

ber

([
P R

R P

])
= max{ber(P+R) , ber(P−R)} (2.8)

In particular,

ber

([
0 R

R 0

])
= ber(R) .

Proof. Assume U = 1√
2

[
I I

−I I

]
and T =

[
P R

R P

]
. It can easy that

U∗TU =

[
P−R 0

0 P+R

]
.

Using the inequality (2.1) and ber(U∗TU) = ber(T ), we have

ber(T ) = max{ber(P+R) , ber(P−R)} .

For P = 0, we get

ber

([
0 R

R 0

])
= ber(R) .

Theorem 2.7. Let H = H (ϒ) be a FHS and P,R,S,T ∈ L(H ). Then

ber2

([
P R

S T

])
= max

{
ber2 (P) ,ber2 (T )

}
+ber2

([
0 R

S 0

])

+max{‖P‖Ber ,‖T‖Ber}max{‖R‖Ber ,‖S‖Ber}+ber

([
0 S∗T

R∗P 0

])
. (2.9)
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Proof. For every (ω1,ω2) ,(κ1,κ2) ∈ ϒ1 ×ϒ2, let k̂w = k̂(ω1,ω2) =

[
kω1

kω2

]
, k̂κ = k̂(κ1,κ2) =

[
kκ1

kκ2

]
be a normalized reproducing

kernel in H (ϒ1)⊕H (ϒ2). Then we have

∣∣∣∣
〈[

P R

S T

]
k̂w, k̂κ

〉∣∣∣∣
2

=

∣∣∣∣
〈([

P 0

0 T

]
+

[
0 R

S 0

])
k̂w, k̂κ

〉∣∣∣∣
2

≤
∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂κ

〉
+

〈[
0 R

S 0

]
k̂w, k̂κ

〉∣∣∣∣
2

≤
(∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂κ

〉∣∣∣∣+
∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂κ

〉∣∣∣∣
)2

=

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂κ

〉∣∣∣∣
2

+

∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂κ

〉∣∣∣∣
2

+2

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂κ

〉∣∣∣∣
∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂κ

〉∣∣∣∣

=

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
2

+

∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂w

〉∣∣∣∣
2

+2

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂κ

〉∣∣∣∣
∣∣∣∣
〈

k̂κ,

[
0 R

S 0

]
k̂w

〉∣∣∣∣

≤
∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂κ

〉∣∣∣∣
2

+

∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂κ

〉∣∣∣∣
2

+

∥∥∥∥
[

P 0

0 T

]
k̂w

∥∥∥∥
∥∥∥∥
[

0 R

S 0

]
k̂w

∥∥∥∥

+

∣∣∣∣
〈[

0 S∗T

R∗P 0

]
k̂w, k̂w

〉∣∣∣∣ .

where the sixth inequality follows from Buzano’s inequality (see [27]), i.e., if u,v,e ∈ H and ‖e‖= 1, then

|〈u,e〉〈e,v〉| ≤ 1

2
(‖u‖‖v‖+ |〈u,v〉|) . (2.10)

So, we get

∣∣∣∣
〈[

P R

S T

]
k̂w, k̂κ

〉∣∣∣∣
2

≤
∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂κ

〉∣∣∣∣
2

+

∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂κ

〉∣∣∣∣
2

+

∥∥∥∥
[

P 0

0 T

]
k̂w

∥∥∥∥
∥∥∥∥
[

0 R

S 0

]
k̂w

∥∥∥∥

+

∣∣∣∣
〈[

0 S∗T

R∗P 0

]
k̂w, k̂w

〉∣∣∣∣ .

Now, taking the supremum over (ω1,ω2) ,(κ1,κ2) ∈ ϒ1 ×ϒ2 with (ω1,ω2) = (κ1,κ2) and then applying inequality (2.1) in

the above inequality, we have

ber2

([
P R

S T

])
= max

{
ber2 (P) ,ber2 (T )

}
+ber2

([
0 R

S 0

])

+max{‖P‖Ber ,‖T‖Ber}max{‖R‖Ber ,‖S‖Ber}+ber

([
0 S∗T

R∗P 0

])
.

The proof is now complete.

Several inequalities for Berezin radius inequalities of operator matrices are included in the preceding theorem. The following

corollaries show these inequities.

Corollary 2.8. If (ω1,ω2) 6= (κ1,κ2), then we have

∥∥∥∥
[

P R

S T

]∥∥∥∥
2

= max
{
‖P‖2

,‖T‖2
}
+max

{
‖R‖2

,‖S‖2
}

+max{‖P‖Ber ,‖T‖Ber}max{‖R‖Ber ,‖S‖Ber}+ber

([
0 S∗T

R∗P 0

])
.

Corollary 2.9. If we apply the inequality (2.2) to inequality (2.9), we have

ber2

([
P R

S T

])
= max

{
ber2 (P) ,ber2 (T )

}
+

1

4
(‖R‖+‖S‖)2

+max{‖P‖Ber ,‖T‖Ber}max{‖R‖Ber ,‖SBer‖}+
1

4
(‖R∗P‖+‖S∗T‖) .

The following corollary follows easily from the inequality (2.8) in Theorem 2.6.

Corollary 2.10. If we take P = T and R = S in the Theorem 2.7 and Corollary 2.8, we get
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(i) ber2

([
P R

R P

])
= max

{
ber2 (P+R) ,ber2 (P−R)

}
≤ ber2 (P)+ber2 (R)+‖P‖‖R‖+ber(R∗P),

(ii)

∥∥∥∥
[

P R

R P

]∥∥∥∥
2

= max
{
‖P+R‖2

,‖P−R‖2
}
≤ ‖P‖2 +‖R‖2 +‖P‖‖R‖+ber(R∗P) .

After that, it is simple that to prove Corollary 2.10 may be used to provide a required condition for the equality case in the

triangle inequality for Berezin radius.

Proposition 2.11. Let H = H (ϒ) be a FHS and P,R ∈ L(H ).

(i) If ber(P+R) = ber(P)+ber(R), then we have 2ber(P)ber(R)−ber(R∗P) = ‖P‖Ber ‖R‖Ber .

(ii) If ‖P+R‖= ‖P‖+‖R‖, then we have ber(R∗P) = ‖P‖Ber ‖R‖Ber.

Proof. By using ber(P+R) = ber(P)+ber(R) and ‖P+R‖= ‖P‖+‖R‖ in Corollary 2.10, respectively, we get the required

inequalities.

Theorem 2.12. Let P,R,S,T ∈ L(H ). Then

ber2

([
P R

S T

])
= max

{
ber2 (P) ,ber2 (T )

}
+ber2

([
0 R

S 0

])

+
1

2
max

{∥∥∥|P|2 + |R∗|2
∥∥∥

ber
,

∥∥∥|T |2 + |S∗|2
∥∥∥

ber

}
+ber

([
0 RT

SP 0

])
. (2.11)

Proof. For every (ω1,ω2) ∈ ϒ1 ×ϒ2, let k̂w = k̂(ω1,ω2) =

[
kω1

kω2

]
be a normalized reproducing kernel in H (ϒ1)⊕H (ϒ2).

Using the AM-GM inequality and (2.10), we establish the following inequality using the same approach as in Theorem 2.7:

∣∣∣∣
〈[

P R

S T

]
k̂w, k̂w

〉∣∣∣∣
2

=

∣∣∣∣
〈([

P 0

0 T

]
+

[
0 R

S 0

])
k̂w, k̂w

〉∣∣∣∣
2

≤
∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉
+

〈[
0 R

S 0

]
k̂w, k̂w

〉∣∣∣∣
2

≤
(∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣+
∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂w

〉∣∣∣∣
)2

=

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
2

+

∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂w

〉∣∣∣∣
2

+2

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂w

〉∣∣∣∣

=

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
2

+

∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂w

〉∣∣∣∣
2

+2

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
∣∣∣∣
〈

k̂w,

[
0 R

S 0

]
k̂w

〉∣∣∣∣

≤
∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
2

+

∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂w

〉∣∣∣∣
2

+

∥∥∥∥
[

P 0

0 T

]
k̂w

∥∥∥∥
∥∥∥∥
[

0 R

S 0

]
k̂w

∥∥∥∥

+

∣∣∣∣
〈[

P 0

0 T

]
k̂w,

[
0 S∗

R∗ 0

]
k̂w

〉∣∣∣∣

≤
∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
2

+

∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂w

〉∣∣∣∣
2

+

√√√√
〈∣∣∣∣
[

P 0

0 T

]∣∣∣∣
2

k̂w, k̂w

〉〈∣∣∣∣
[

0 S∗

R∗ 0

]∣∣∣∣
2

k̂w, k̂w

〉

+

∣∣∣∣
〈[

0 RT

SP 0

]
k̂w, k̂w

〉∣∣∣∣

≤
∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
2

+

∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂w

〉∣∣∣∣
2

+
1

2

〈[
|P|2 + |R∗|2 0

0 |T |2 + |S∗|2
]

k̂w, k̂w

〉

+

∣∣∣∣
〈[

0 RT

SP 0

]
k̂w, k̂w

〉∣∣∣∣ .

By taking the supremum over (ω1,ω2) ∈ ϒ1 ×ϒ2 and applying the inequality (2.1) in the above inequality, we have

ber2

([
P R

S T

])
= max

{
ber2 (P) ,ber2 (T )

}
+ber2

([
0 R

S 0

])

+
1

2
max

{∥∥∥|P|2 + |R∗|2
∥∥∥

ber
,

∥∥∥|T |2 + |S∗|2
∥∥∥

ber

}
+ber

([
0 RT

SP 0

])
.

We have desired result.
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Several Berezin radius inequalities for operator matrices are contained in Theorem 2.12. The following corollaries demonstrate

some of these inequalities.

Corollary 2.13. If we apply the inequality (2.2) to inequality (2.11), then we have

ber2

([
P R

S T

])
= max

{
ber2 (P) ,ber2 (T )

}
+

1

4
(‖R‖+‖S‖)2

+
1

2
max

{∥∥∥|P|2 + |R∗|2
∥∥∥

ber
,

∥∥∥|T |2 + |S∗|2
∥∥∥

ber

}
+

1

2
(‖RT‖+‖SP‖) .

The inequality (2.8) in Theorem 2.6 simply leads to the following consequence.

Corollary 2.14. If we take P = T and R = S in Theorem 2.12, then we get

ber2

([
P R

R P

])
= max

{
ber2 (P+R) ,ber2 (P−R)

}
≤ ber2 (P)+ber2 (R)+

1

2

∥∥∥|P|2 + |R∗|2
∥∥∥

ber
+ber(RP) .

Corollary 2.15. If we take P = R in Corollary 2.14, then we have

ber2 (P)≤ 1

4

∥∥∥|P|2 + |P∗|2
∥∥∥

ber
+

1

2
ber
(
P2
)

,

(see, [28, Corollary 2.14]).

Theorem 2.16. Let P,R,S,T ∈ L(H ). Then

ber2

([
P R

S T

])
= max

{
ber2 (P) ,ber2 (T )

}
+

1

4
max

{∥∥∥|S|2 + |R∗|2
∥∥∥

ber
,

∥∥∥|R|2 + |S∗|2
∥∥∥

ber

}

+max{ber(P) ,ber(T )}max{‖|S|+ |R∗|‖ber ,‖|R|+ |S∗|‖ber}+
1

2
max{ber(SR) ,ber(RS)} .

Proof. For every (ω1,ω2) ∈ ϒ1 ×ϒ2, let k̂w = k̂(ω1,ω2) =

[
kω1

kω2

]
be a normalized reproducing kernel in H (ϒ1)⊕H (ϒ2).

Following the same procedure as in Theorem 2.7 and by using the AM-GM inequality, (2.6) and (2.10), the following inequality

is obtained:

∣∣∣∣
〈[

P R

S T

]
k̂w, k̂w

〉∣∣∣∣
2

=

∣∣∣∣
〈([

P 0

0 T

]
+

[
0 R

S 0

])
k̂w, k̂w

〉∣∣∣∣
2

≤
(∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉
+

〈[
0 R

S 0

]
k̂w, k̂w

〉∣∣∣∣
)2

≤
(∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣+
∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂w

〉∣∣∣∣
)2

=

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
2

+2

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂w

〉∣∣∣∣+
∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂w

〉∣∣∣∣
2

≤
∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
2

+2

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣

√〈∣∣∣∣
[

0 R

S 0

]∣∣∣∣ k̂w, k̂w

〉〈∣∣∣∣
[

0 S∗

R∗ 0

]∣∣∣∣ k̂w, k̂w

〉

+
1

2




√√√√
〈∣∣∣∣
[

0 R

S 0

]∣∣∣∣
2

k̂w, k̂w

〉〈∣∣∣∣
[

0 S∗

R∗ 0

]∣∣∣∣
2

k̂w, k̂w

〉
+

∣∣∣∣
〈[

0 R

S 0

]
k̂w,

[
0 S∗

R∗ 0

]
k̂w

〉∣∣∣∣
)

≤
∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
2

+

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
(〈∣∣∣∣

[
0 R

S 0

]∣∣∣∣ k̂w, k̂w

〉
+

〈∣∣∣∣
[

0 S∗

R∗ 0

]∣∣∣∣ k̂w, k̂w

〉)

+
1

4

(〈∣∣∣∣
[

0 R

S 0

]∣∣∣∣
2

k̂w, k̂w

〉
+

〈∣∣∣∣
[

0 S∗

R∗ 0

]∣∣∣∣
2

k̂w, k̂w

〉)
+

1

2

∣∣∣∣
〈[

RS 0

0 SR

]
k̂w, k̂w

〉∣∣∣∣

≤
∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
2

+

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
(〈[

|S|+ |R∗| 0

0 |R|+ |S∗|

]
k̂w, k̂w

〉)

+
1

4

(〈∣∣∣∣
[
|S|2 + |R∗|2 0

0 |R|2 + |S∗|2
]∣∣∣∣

2

k̂w, k̂w

〉)
+

1

2

∣∣∣∣
〈[

RS 0

0 SR

]
k̂w, k̂w

〉∣∣∣∣ ,
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and, so

∣∣∣∣
〈[

P R

S T

]
k̂w, k̂w

〉∣∣∣∣
2

≤
∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
2

+

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
(〈[

|S|+ |R∗| 0

0 |R|+ |S∗|

]
k̂w, k̂w

〉)

+
1

4

(〈∣∣∣∣
[
|S|2 + |R∗|2 0

0 |R|2 + |S∗|2
]∣∣∣∣

2

k̂w, k̂w

〉)
+

1

2

∣∣∣∣
〈[

RS 0

0 SR

]
k̂w, k̂w

〉∣∣∣∣ .

By taking the supremum over (ω1,ω2) ∈ ϒ1 ×ϒ2 and using inequality (2.1) in the above inequality, we have

ber2

([
P R

S T

])
= max

{
ber2 (P) ,ber2 (T )

}
+

1

4
max

{∥∥∥|S|2 + |R∗|2
∥∥∥

ber
,

∥∥∥|R|2 + |S∗|2
∥∥∥

ber

}

+max{ber(P) ,ber(T )}max{‖|S|+ |R∗|‖ber ,‖|R|+ |S∗|‖ber}

+
1

2
max{ber(RS) ,ber(SR)} .

The inequality (2.8) in Theorem 2.6 and a particular application of Theorem 2.16 lead to the following conclusion, which is

straightforward to deduce.

Corollary 2.17. If P = T and R = S, then it follows from Theorem 2.16 that

ber2

([
P R

R P

])
= max

{
ber2 (P+R) ,ber2 (P−R)

}
≤ ber2 (P)+

1

4

∥∥∥|R|2 + |R∗|2
∥∥∥

ber
+ber(P)‖|R|+ |R∗|‖ber +

1

2
ber
(
R2
)

.

Corollary 2.18. If we take P = R in Corollary 2.17, then we get the inequality (1.2)

ber2 (P)≤ 1

2

∥∥∥|P|2 + |P∗|2
∥∥∥

ber

(see, [18, Theorem 3.2]).

Proof. From Corollary 2.17, we reach

4ber2 (P)≤ ber2 (P)+
1

4

∥∥∥|P|2 + |P∗|2
∥∥∥

ber
+ber(P)‖|P|+ |P∗|‖ber +

1

2
ber
(
P2
)
.

Also, by using the inequality (1.1), we have

3ber2 (P)≤ 1

4

∥∥∥|P|2 + |P∗|2
∥∥∥

ber
+ber(P)‖|P|+ |P∗|‖ber +

1

2
ber2 (P) .

Then using the inequalities (1.1) and (2.5), we get

5

2
ber2 (P) ≤ 1

4

∥∥∥|P|2 + |P∗|2
∥∥∥

ber
+

1

2
‖|P|+ |P∗|‖2

ber

=
1

4

∥∥∥|P|2 + |P∗|2
∥∥∥

ber
+

∥∥∥∥
|P|+ |P∗|

2

∥∥∥∥
2

ber

≤ 1

4

∥∥∥|P|2 + |P∗|2
∥∥∥

ber
+

∥∥∥∥∥
|P|2 + |P∗|2

2

∥∥∥∥∥
ber

≤ 1

4

∥∥∥|P|2 + |P∗|2
∥∥∥

ber
+
∥∥∥|P|2 + |P∗|2

∥∥∥
ber

≤ 5

4

∥∥∥|P|2 + |P∗|2
∥∥∥

ber

and

ber2 (P)≤ 1

2

∥∥∥|P|2 + |P∗|2
∥∥∥

ber

as desired.

Taking P = 0 and P = T = 0 in Corollary 2.17 and Theorem 2.16, respectively, we obtain the following corollary.
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Remark 2.19. H = H (ϒ) be a FHS and R,S ∈ L(H ) . Then

ber2 (R)≤ 1

4

∥∥∥|R|2 + |R∗|2
∥∥∥

ber
+

1

2
ber
(
R2
)

(see, [28, Corollary 2.14]) and

ber2

([
0 R

S 0

])
=

1

4
max

{∥∥∥|S|2 + |R∗|2
∥∥∥

ber
,

∥∥∥|R|2 + |S∗|2
∥∥∥

ber

}
+

1

2
max{ber(RS) ,ber(SR)} .

Theorem 2.20. Let P,R,S,T ∈ L(H ). Then

ber4

([
P R

S T

])
≤ 8max

{
ber4 (P) ,ber4 (T )

}
+3max

{∥∥∥|S|4 + |R∗|4
∥∥∥

ber
,

∥∥∥|R|4 + |S∗|4
∥∥∥

ber

}

+max{ber(SR) ,ber(RS)}max
{∥∥∥|S|2 + |R∗|2

∥∥∥
ber

,

∥∥∥|R|2 + |S∗|2
∥∥∥

ber

}
.

Proof. For every (ω1,ω2) ∈ ϒ1 ×ϒ2, let k̂w = k̂(ω1,ω2) =

[
kω1

kω2

]
be a normalized reproducing kernel in H (ϒ1)⊕H (ϒ2).

Then
∣∣∣∣
〈[

P R

S T

]
k̂w, k̂w

〉∣∣∣∣
4

=

∣∣∣∣
〈([

P 0

0 T

]
+

[
0 R

S 0

])
k̂w, k̂w

〉∣∣∣∣
4

≤
(∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉
+

〈[
0 R

S 0

]
k̂w, k̂w

〉∣∣∣∣
)4

≤
(∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣+
∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂w

〉∣∣∣∣
)4

=




2

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣+2

∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂w

〉∣∣∣∣
2




4

.

By convexity of f (t) = t4, the inequality (2.7) with M =

[
0 R

S 0

]
, the AM-GM inequality and inequality (2.3), we get

∣∣∣∣
〈[

P R

S T

]
k̂w, k̂w

〉∣∣∣∣
4

≤ 8

(∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
4

+

∣∣∣∣
〈[

0 R

S 0

]
k̂w, k̂w

〉∣∣∣∣
4
)

≤ 8

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
4

+2

(
3

∥∥∥Mk̂w

∥∥∥
2∥∥∥M∗k̂w

∥∥∥
2

+
∥∥∥Mk̂w

∥∥∥
∥∥∥M∗k̂w

∥∥∥
∣∣∣
〈

Mk̂w,M
∗k̂w

〉∣∣∣
)

= 8

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
4

+2
(

3
〈
|M|2 k̂w, k̂w

〉〈
|M∗|2 k̂w, k̂w

〉

+

√〈
|M|2 k̂w, k̂w

〉〈
|M∗|2 k̂w, k̂w

〉∣∣∣
〈

Mk̂w,M
∗k̂w

〉∣∣∣
)

≤ 8

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
4

+3
〈(

|M|2 + |M∗|2
)

k̂w, k̂w

〉

+
〈(

|M|2 + |M∗|2
)

k̂w, k̂w

〉∣∣∣
〈

M2k̂w, k̂w

〉∣∣∣

= 8

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
4

+3

〈[
|S|4 + |R∗|4 0

0 |R|4 + |S∗|4
]

k̂w, k̂w

〉

+

〈[
|S|2 + |R∗|2 0

0 |R|2 + |S∗|2
]

k̂w, k̂w

〉∣∣∣∣
〈[

RS 0

0 SR

]
k̂w, k̂w

〉∣∣∣∣ .

and, so
∣∣∣∣
〈[

P R

S T

]
k̂w, k̂w

〉∣∣∣∣
4

≤ 8

∣∣∣∣
〈[

P 0

0 T

]
k̂w, k̂w

〉∣∣∣∣
4

+3

〈[
|S|4 + |R∗|4 0

0 |R|4 + |S∗|4
]

k̂w, k̂w

〉

+

〈[
|S|2 + |R∗|2 0

0 |R|2 + |S∗|2
]

k̂w, k̂w

〉∣∣∣∣
〈[

RS 0

0 SR

]
k̂w, k̂w

〉∣∣∣∣ .
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Taking the supremum over (ω1,ω2) ∈ ϒ1 ×ϒ2 and then applying the inequality (2.1) in the above inequality, we have

ber4

([
P R

S T

])
≤ 8max

{
ber4 (P) ,ber4 (T )

}
+3max

{∥∥∥|S|4 + |R∗|4
∥∥∥

ber
,

∥∥∥|R|4 + |S∗|4
∥∥∥

ber

}

+max{ber(SR) ,ber(RS)}max
{∥∥∥|S|2 + |R∗|2

∥∥∥
ber

,

∥∥∥|R|2 + |S∗|2
∥∥∥

ber

}
.

This completes the proof.

Now, considering P = T and R = S in Theorem 2.20, we obtain the following case.

Corollary 2.21. Let H = H (ϒ) be a FHS and P,R ∈ L(H ). Then we have

ber4

([
P R

R P

])
≤ max

{
ber4 (P+R) ,ber4 (P−R)

}
≤ 8ber4 (P)+3

∥∥∥|R|4 + |R∗|4
∥∥∥

ber
+
∥∥∥|R|2 + |R∗|2

∥∥∥
ber

ber
(
R2
)

.

It should be noted that the case P = R of Corollary 2.21 is same as the inequality

ber4 (P)≤ 3

8

∥∥∥|P|4 + |P∗|4
∥∥∥

ber
+

1

8

∥∥∥|P|2 + |P∗|2
∥∥∥

ber
ber
(
P2
)

obtained in [28, Theorem 2.5].

We give the following example which show that ber(T ) = max1≤ j≤n

∣∣t j j

∣∣ for any complex n× n matrix T =
(
t jk

)n

j,k=1

(see, [17, Example 2.17]). Let’s think about a situation with finite dimensions. T =
(
t jk

)n

j,k=1
be a n× n matrix. Let

ω = (ω1, . . . ,ωn) ∈ C
n and Y = {1, . . . ,n} . We can consider Cn as the set of all functions mapping Y → C by ω ( j) = ω j.

Letting z j be the jth standard basis vector for Cn under the standard inner product, we can view C
n as a FHS with kernel

k (i, j) =
〈
z j,zi

〉
.

Note that k j = k̂ j for each j = 1, . . . ,n. We get t j j =
〈
T z j,z j

〉
. So, the Berezin set of T is simply

Ber(T ) =
{

t j j : j = 1, . . . ,n
}
,

which is just the collection of diagonal elements of T . Hence ber(T ) = max1≤ j≤n

∣∣t j j

∣∣ .
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[9] M. B. Huban, H. Başaran, M. Gürdal, New upper bounds related to the Berezin number inequalities, J. Inequal. Spec. Funct., 12(3) (2021), 1-12.

[10] M. T. Karaev, Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory, 7 (2013),
983-1018.

[11] W. Bani-Domi, F. Kittaneh, Norm and numerical radius inequalities for Hilbert space operators, Linear Multilinear Algebra, 69(5) (2021), 934-945.
[12] S. S. Dragomir, Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math., 5 (2009), 269–278.
[13] F. Kittaneh, Norm inequalities for sums of positive operators, J. Operator Theory, 48 (2002), 95–103.
[14] F. Kittaneh, H. R. Moradi, Cauchy-Schwarz type inequalities and applications to numerical radius inequalities, Math. Inequal. Appl., 23(3) (2020),

1117-1125.
[15] M. T. Karaev, Berezin symbol and invertibility of operators on the functional Hilbert spaces, J. Funct. Anal., 238 (2006), 181-192.
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Abstract

The necessary requirements for half-lightlike and coisotropic lightlike submanifolds to be a

Ricci soliton are obtained. Some examples of Ricci soliton half-lightlike and Ricci soliton

coisotropic lightlike submanifolds are given. The Ricci soliton equation is investigated on

totally geodesic, totally umbilical, and irrotational lightlike submanifolds.

1. Introduction

The concept of Ricci solitons has become a fascinating issue in the differential geometry and this concept has been studied on

various submanifolds of Riemannian manifolds. For some applications on Ricci solitons, we touch on [1–8], etc. A (semi-)

Riemannian manifold (M,g) is said to be a Ricci soliton if

Lζ g(X1,X2)+2Ric(X1,X2) = 2κg(X1,X2) (1.1)

is satisfied for each tangent vector fields X1 and X2. In (1.1), Lζ indicates the Lie derivative, Ric denotes the Ricci tensor, κ is a

scalar and ζ is called the potential vector field. If κ is a function then (M,g) is said to be an almost Ricci soliton. Considering

the description of Ricci solitons, every Einstein manifold is a Ricci soliton. This issue is known as shrinking when κ > 0,

steady when κ = 0 and expanding when κ < 0.

In addition to this, concircular vector fields are one of the most utilized vector field to characterize a smooth manifold.

Concircular vector fields were initially observed in the definition of torse-forming vector field which was introduced by K.

Yano [9]. There exist remarkable applications of concircular vector fields in the literature (cf. [10–15]). A vector field ζ is said

to be concircular if there is a differentiable function ϕ such that

∇X ζ = ϕX

is satisfied for each tangent vector field X . If ϕ = 1, ζ becomes concurrent.

In the degenerate geometry, Ricci soliton lightlike hypersurfaces were studied in [16]. As a continuation of this study, we

examine Ricci soliton half-lightlike submanifolds and Ricci soliton coisotropic lightlike submanifolds admitting concircular

and concurrent potential vector fields in this paper.
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2. Half-Lightlike Submanifolds

Let (M̃, g̃) be a semi-Riemannian manifold equipped with a semi-Riemannian metric g̃. Presume that (M,g) to be a lightlike

submanifold (M̃, g̃) with the co-dimension 2. Then the radical distribution Rad(TpM) at p ∈ M is determined by

Rad(TpM) =
{

ξ ∈ TpM : g̃(ξ ,X) = 0,∀X ∈ TpM
}
.

Denote a complementary non-degenerate vector bundle of Rad(T M) by S(T M). We note that a lightlike submanifold is usually

indicated by the triple (M,g,S(T M)) [17]. Here, the distribution S(T M) is said to be a screen distribution and we put

T M = Rad(T M)⊕S(T M)

where ⊕orth indicates the orthogonal direct sum. If the dimension of Rad(T M) is equal to 1, then (M,g,S(T M)) is said to be a

half-lightlike submanifold [18].

For each half-lightlike submanifold, there are a 1−dimensional non-degenerate subbundle D and a 1−dimensional degenerate

subbundle ltr(T M) such that D= Span{U}, ltr(T M) = Span{N} and

g̃(ξ ,U) = g̃(N,U) = 0, g̃(U,U) 6= 0,

g̃(ξ ,N) = 1, g̃(N,U) = 0

are satisfied.

Let ∇̃ denotes the Levi-Civita connection on (M̃, g̃) and P denotes the projection from Γ(T M) to Γ(S(T M)). The Gauss and

Weingarten type formulas are formulated by

∇̃X1
X2 = ∇X1

X2 +B(X1,X2)N +D(X1,X2)U, (2.1)

∇̃X1
N = −ANX1 +ρ1(X1)N +ρ2(X1)U, (2.2)

∇̃X1
U = −AU X1 +µ1(X1)N +µ2(X1)U, (2.3)

and

∇X1
PX2 = ∇∗

X1
PX2 +C(X1,X2)ξ , (2.4)

∇X1
ξ = −A∗

ξ X1 −ρ1(X1)ξ , (2.5)

where ∇X1
X2,ANX1,AU X1 ∈ Γ(T M), ∇∗

X1
PX2,A

∗
ξ X1 ∈ Γ(S(T M)), AN and AU are the shape operators on Γ(T M), A∗

ξ is the

shape operator on Γ(S(T M)), B(X1,X2) and D(X1,X2) are ingredients of the second fundamental form, ρ1,ρ2, µ1,µ2 are 1−
forms. From (2.1)-(2.5), it is known that the relations

B(X1,X2) = g(A∗
ξ X1,X2),

C(X1,X2) = g(ANX1,X2),

D(X1,X2) = g(AU X1,X2)−µ1(X1)η(X2),

are satisfied. Here η(X2) = g̃(X2,N) [19].

We note that B and D are symmetric but C is not symmetric. Since the relation

(∇X3
g)(X1,X2) = B(X3,X2)η(X1)+B(X3,X1)η(X2) (2.6)

is satisfied, ∇ is not a metric connection. The Lie derivative of g is formulated by

(LX3
g)(X1,X2) = X3g(X1,X2)− g̃([X3,X1],X2)− g̃([X3,X2],X1)

= X3g(X1,X2)−g(∇X3
X1,X2)−g(∇X3

X2,X1)+g(∇X1
X3,X2)+g(∇X2

X3,X1). (2.7)

From (2.6) and (2.7), we also have

(LX3
g)(X1,X2) = B(X3,X2)η(X1)+B(X3,X1)η(X2)+g(∇X1

X3,X2)+g(∇X2
X3,X1) (2.8)

or we put

(LX3
g)(X1,X2) = (∇X3

g)(X1,X2)+g(∇X1
X3,X2)+g(∇X2

X3,X1).
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Indicate the Riemannian curvatures of (M,g,S(T M)) and its ambient manifold by R and R̃ respectively. Then the following

equality holds:

g̃(R̃(X1,X2)PX3,PX4) = g(R(X1,X2)PX3,PX4)+B(X1,PX3)C(X2,PX4)−B(X2,PX3)C(X1,PX4)

+D(X1,PX3)D(X2,PX4)−D(X2,PX3)D(X1,PX4). (2.9)

Let {Y1,Y2, . . . ,Yn} be a orthonormal frame field on Γ(S(T M)). Then the Ricci type tensor R(0,2) is determined by

R(0,2)(X1,X2) =
n

∑
j=1

g(R(Yj,X1)X2,Yj)+ g̃(R(ξ ,X1)X2,N). (2.10)

We note that R(0,2) is not symmetric. If S(T M) is integrable, then R(0,2) is symmetric [17].

A half-lightlike submanifold is called totally geodesic if B = D = 0 and it is said to be irrotational if B(X ,ξ ) = 0 for any

X ∈ Γ(T M) [20]. A half-lightlike submanifold is said to be totally umbilical if there exists a differentiable transversal vector

field H satisfying

B(X1,X2)N +D(X1,X2)U = g(X1,X2)H (2.11)

for any X1,X2 ∈ Γ(T M) [21]. In view of (2.11), it is clear that there exist two differentiable functions H1 and H2 satisfying

B(X1,X2) = H1g(X1,X2) and D(X1,X2) = H2g(X1,X2).

3. Ricci Soliton Half-Lightlike Submanifolds

Let (M,g,S(T M)) be a half-lighlike submanifold of (M̃, g̃) Assume that ζ ∈ Γ(T M̃). Hence one can put

ζ = ζ⊤+ f1N + f2U

where ζ⊤ ∈ Γ(T M), f1 and f2 are differentiable functions on Γ(T M̃). Thus, we get

f1 = g̃(ζ ,ξ ) and f2 = ε g̃(ζ ,U)

where ε = g̃(U,U) =∓1.

Proposition 3.1. If ζ is concircular, then the following equalities are satisfied for any X ∈ Γ(T M):

∇X ζ⊤ = ϕX + f1ANX + f2AU X , (3.1)

B(X ,ζ⊤) = −X [ f1]− f1ρ1(X)− f2µ1(X), (3.2)

D(X ,ζ⊤) = −X [ f2]− f1ρ2(X)− f2µ2(X). (3.3)

Proof. If ζ is concircular, then we put

∇̃X ζ = ϕX = ∇̃X ζ⊤+ ∇̃X ( f1N)+ ∇̃X ( f2U).

Using (2.1), (2.2) and (2.3) in the last formula, we get

ϕX = ∇X ζ +B(X ,ζ⊤)N +D(X ,ζ )U +X [ f1]N − f1ANX + f1ρ1(X)N + f1ρ2(X)U +X [ f2]U

− f2AU X + f2µ1(X)N + f2µ2(X)U.

Considering the tangential parts ltr(T M) and D, the proofs of (3.1), (3.2) and (3.3) are straightforward.

Putting ϕ = 1 in Proposition 3.1, we find

Proposition 3.2. For any half-lightlike submanifold admitting a concurrent vector field ζ , we have

∇X ζ⊤ = X + f1ANX + f2AU X .

As a special case for ζ = ζ⊤, we find:

Proposition 3.3. For any half-lightlike submanifold admitting a concircular vector field ζ = ζ⊤,

B(X ,ζ⊤) = D(X ,ζ⊤) = 0 (3.4)

is satisfied.
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As a result of Proposition 3.3, we find the following theorem:

Theorem 3.4. Let (M,g,S(T M)) be a half-lightlike submanifold. If there exists at least one concircular or concurrent vector

field ζ = ζ⊤ on Γ(T M), then ∇ζ⊤g = 0.

Definition 3.5. A lightlike submanifold (M,g,S(T M)) with a integrable screen distribution is called a Ricci soliton if the

relation

(Lζ g)(X1,X2)+2R(0,2)(X1,X2) = 2κg(X1,X2) (3.5)

holds for any X1,X2 ∈ Γ(T M). Here, κ is a constant and ζ is called the potential vector field of (M,g,S(T M)).

Remark 3.6. It is known that the Ricci tensor for any lightlike submanifold is not symmetric in general. Hence (3.5) loses

its geometrical meaning since the induced degenerate metric g is symmetric. Thus we investigate Ricci soliton lightlike

submanifolds whose screen distribution is integrable throughout the study.

We shall compute the Lie derivative for half-lightlike submanifolds.

From (2.8) and (3.1), we obtain

(Lζ⊤g)(X1,X2) = B(X1,ζ
⊤)η(X2)+B(X2,ζ

⊤)η(X1)+2ϕg(X1,X2)+2 f1g(ANX1,X2)+2 f2g(AU X1,X2). (3.6)

If ζ is concurrent, then we easily obtain

(Lζ⊤g)(X1,X2) = B(X1,ζ
⊤)η(X2)+B(X2,ζ

⊤)η(X1)+2g(X1,X2)+2 f1g(ANX1,X2)+2 f2g(AU X1,X2). (3.7)

As a special case for ζ = ζ⊤, we obtain from (3.4) and (3.6) that

(Lζ⊤g)(X1,X2) = 2ϕg(X1,X2).

If ζ is concurrent and ζ = ζ⊤, we obtain

(Lζ⊤g)(X1,X2) = 2g(X1,X2).

By (3.5) and (3.6), we have:

Theorem 3.7. Let (M,g,S(T M)) be a half-lightlike submanifold admitting a concircular vector field ζ . Then, (M,g,S(T M))
is a Ricci soliton such that ζ⊤ is the potential vector field if and only if the equation

R(0,2)(X1,X2) =−
1

2
B(X1,ζ

⊤)η(X2)−
1

2
B(ζ⊤

,X2)η(X1)− f1g(ANX1,X2)− f2g(AU X1,X2)+(κ −ϕ)g(X1,X2)

holds for any X1,X2 ∈ Γ(T M).

In view of (3.5) and (3.7), we have:

Theorem 3.8. Let (M,g,S(T M)) be a half-lightlike submanifold admitting a concurrent vector field ζ . Then, (M,g,S(T M))
is a Ricci soliton such that ζ⊤ is the potential vector field if and only if the equation

R(0,2)(X1,X2) =−
1

2
B(X1,ζ

⊤)η(X2)−
1

2
B(ζ⊤

,X2)η(X1)− f1g(ANX1,X2)− f2g(AU X1,X2)+(κ −1)g(X1,X2)

holds for any X1,X2 ∈ Γ(T M).

Theorem 3.9. Let (M,g,S(T M)) be a half-lightlike submanifold admitting a concircular vector field ζ = ζ⊤. Then, the

submanifold is a Ricci soliton such that ζ⊤ is the potential vector field if and only if the equation

R(0,2)(X1,X2) = (κ −ϕ)g(X1,X2) (3.8)

holds for any X1,X2 ∈ Γ(T M). It means that the submanifold is an Einstein manifold.

Theorem 3.10. Let (M,g,S(T M)) be a half-lightlike submanifold admitting a concurrent vector field ζ = ζ⊤. The submanifold

is a Ricci soliton if and only if the equation

R(0,2)(X1,X2) = (κ −1)g(X1,X2)

holds for any X1,X2 ∈ Γ(T M). In other words, the submanifold is an Einstein manifold. Furthermore if the soliton is steady,

then the Ricci curvature of (M,g,S(T M)) is negative defined.
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In view of Theorem 3.7 we find:

Corollary 3.11. Let (M,g,S(T M)) be a totally geodesic half-lightlike submanifold admitting a concircular vector field ζ . If

the submanifold is a Ricci soliton, then we find

R(0,2)(X1,X2) =− f1g(ANX1,X2)− f2g(AU X1,X2)+(κ −ϕ)g(X1,X2)

for any X1,X2 ∈ Γ(S(T M)).

In view of Theorem 3.8 we find:

Corollary 3.12. Let (M,g,S(T M)) be a totally geodesic half-lightlike submanifold admitting a concurrent vector field ζ . If

the submanifold is a Ricci soliton, then we find

R(0,2)(X1,X2) =− f1g(ANX1,X2)− f2g(AU X1,X2)+(κ −1)g(X1,X2)

for any X1,X2 ∈ Γ(S(T M)).

Corollary 3.13. Let (M,g,S(T M)) be an irrotational half-lightlike submanifold admitting a concircular vector field ζ = ξ . If

the submanifold is a Ricci soliton, then we find

R(0,2)(X1,X2) = (κ −ϕ)g(X1,X2)

for any X1,X2 ∈ Γ(S(T M)).

Corollary 3.14. Let (M,g,S(T M)) be an irrotational half-lightlike submanifold admitting a concurrent vector field ζ = ξ . If

the submanifold is a Ricci soliton, then we have

R(0,2)(X1,X2) = (κ −1)g(X1,X2)

for any X1,X2 ∈ Γ(S(T M)).

Example 3.15 ( [22]). Consider a submanifold in R
5
2 with the signature (−,−,+,+,+) and local coordinate system

{z1,z2,z3,z4,z5} given by

z4 = (z2
1 + z2

2)
1
2 , z3 = (1− z2

5)
1
2 , z5,z1,z2 > 0.

Thus we find

Rad(T M) = Span{ξ = z1∂1 + z2∂2 + z4∂4} ,

S(T M) = Span{X1 = z4∂1 + z1∂4,X2 =−z5∂3 + z3∂5} ,

ltr(T M) = Span

{
N =

1

2z2
3

(z1∂1 − z2∂2 + z4∂4)

}
,

and

D= Span{U = z3∂3 + z5∂5} .

Here {∂1,∂2,∂3,∂4,∂5} is the natural frame field on R
5
2. By a straightforward computation, we obtain that (M,g,S(T M)) is a

half-lightlike submanifold and

∇̃X1
ξ = X1, ∇̃X2

ξ = 0, ∇̃ξ ξ = ξ

which show that

B(X1,ξ ) = B(X2,ξ ) = B(X1,X2) = B(X2,X2) = 0, B(X1,X1) = z2
2,

C(X1,ξ ) = C(X2,ξ ) =C(X1,X2) =C(X2,X2) = 0, C(X1,X1) =−
1

2
,

D(X1,ξ ) = D(X2,ξ ) = D(X1,X2) = D(X1,X1) = 0, D(X2,X2) = 1.

From (2.9), we find

R(0,2)(X1,X1) = R(0,2)(X2,X2) = R(0,2)(X1,X2) = 0.

If we consider ζ = ϕ(ξ +U), where ϕ is a differentiable function on M and ζ T = ϕξ , then we obtain ζ is concircular and

(M,g,S(T M)) is a shrinking Ricci soliton such that ζ⊤ is the potential vector field and κ = 1.
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Theorem 3.16 (cf. Theorem 3.2 of [23]). Let M̃(c) be an indefinite space form with constant curvature c and (M,g,S(T M))
be a totally umbilical half-lightlike submanifold with the co-dimension 2. Then the following equality holds:

R(X1,X2)X3 = c{g(X2,X3)X1 −g(X1,X3)X2}+H1 {g(X2,X3)ANX1 −g(X1,X3)ANX2}

+H2 {g(X2,X3)AU X1 −g(X1,X3)AU X2} . (3.9)

Theorem 3.17. Let (M,g,S(T M)) be a totally umbilical half-lightlike submanifold of M̃(c) admitting a concircular vector

field ζ = ζ⊤. The submanifold is a Ricci soliton such that ζ⊤ is the potential vector field if and only if the equation

κ = c+ϕ +H1traceAN +H2traceAU (3.10)

is satisfied.

Proof. Let {Y1, . . . ,Yn} be an orthonormal frame field of Γ(S(T M)). In view of (2.10) and (3.9), it can be obtained

R(0,2)(Yi,Yi) = c+H1traceAN +H2traceAU (3.11)

for any i ∈ {1, . . . ,n}. In view of (3.8) and (3.11) we obtain (3.10). The converse part is straightforward.

As a result of Theorem 3.17, we obtain

Theorem 3.18. Let (M,g,S(T M)) be a totally umbilical half-lightlike submanifold of M̃(c) admitting a concurrent vector

field ζ = ζ⊤. The submanifold is a Ricci soliton such that ζ⊤ is the potential vector field if and only if the equation

κ = c+1+H1traceAN +H2traceAU

is satisfied.

4. Coisotropic Lightlike Submanifolds

Let (M,g,S(T M)) be a lightlike submanifold of (M̃, g̃) with co-dimension 2. If the dimension of Rad(T M) is 2, then the

submanifold is called a coisotropic lightlike submanifold [24]. For any coisotropic lightlike submanifold, there exists the

following quasi-orthonormal basis on Γ(T M̃):

{Y1,Y2, . . . ,Yn,ξ1,ξ2,N1,N2}

where S(T M) = Span{Y1,Y2, . . . ,Yn}, Rad(T M) = Span{ξ1,ξ2} and ltr(T M) = Span{N1,N2}. It is known that the relations

g̃(Ni,ξ j) = δi j, g̃(Ni,N j) = 0

are satisfied for i, j ∈ {1,2}. The Gauss and Weingarten formulas are formulated by

∇̃X1
X2 = ∇X1

X2 +
2

∑
k=1

Dk(X1,X2)Nk, (4.1)

∇̃X1
Nk = −ANk

X1 +
2

∑
l=1

ρkl(X1)Nl , (4.2)

∇X1
X2 = ∇∗

X1
PX2 +

2

∑
k=1

Ck(X1,X2)ξk, (4.3)

∇X1
ξk = −A∗

ξk
X1 −

2

∑
l=1

ρkl ,(X1)ξl , (4.4)

where ∇X1
X2, ANk

X1 ∈Γ(T M), ∇∗
X1

PX2, A∗
ξk

X1 ∈Γ(S(T M)), ANk
are the shape operators on Γ(T M), A∗

ξk
are the shape operators

on Γ(S(T M)), Dk(X1,X2), Ck(X1,X2) are ingredients of the second fundamental forms, ρkl are 1−forms for k, l ∈ {1,2}. In

view of (4.1)-(4.4), we have

Dk(X1,X2) = g(A∗
ξ X1,X2), Ck(X1,X2) = g(ANk

X1,X2)

for any k ∈ {1,2}. We note that Dk are symmetric but Ck are not symmetric. Using the fact that ∇̃ is a metric connection and

from (4.1), we find

(∇X3
g)(X1,X2) = D1(X3,X2)η1(X1)+D1(X3,X1)η1(X2)+D2(X3,X2)η2(X1)+D2(X3,X1)η2(X2)

which shows that ∇ is not a metric connection [24]. Here, η1(X1) = g(X1,ξ1) and η2(X1) = g(X1,ξ2).
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The Lie derivative is formulated by

(LX3
g)(X1,X2) = D1(X3,X2)η(X1)+D1(X3,X1)η(X2)+D2(X3,X2)η(X1)+D2(X3,X1)η(X2)

+g(∇X1
X3,X2)+g(∇X2

X3,X1) (4.5)

or, equivalently, we have

(LX3
g)(X1,X2) = (∇X3

g)(X1,X2)+g(∇X1
X3,X2)+g(∇X2

X3,X1).

Furthermore, the following equality

g̃(R̃(X1,X2)PX3,PX4) = g(R(X1,X2)PX3,PX4)+
2

∑
k=1

Dk(X1,PX3)Ck(X2,PX4)−
2

∑
k=1

Dk(X2,PX3)Ck(X1,PX4)

holds for any X1,X2,X3,X4 ∈ Γ(T M). The induced Ricci type tensor R(0,2) of M is formulated by

R(0,2)(X1,X2) =
n

∑
j=1

g(R(Yj,X1)X2,Yj)+
2

∑
k=1

g̃(R(X1,ξk)X2,Nk). (4.6)

We note that R(0,2) is not symmetric. If S(T M) is integrable, then R(0,2) is symmetric.

A coisotropic lightlike submanifold with co-dimension 2 is said to be totally geodesic if D1 = D2 = 0 and it is said to be

irrotational [20] if Dk = 0 on Rad(T M) for any k ∈ {1,2}. A coisotropic lightlike submanifold is known as totally umbilical if

there is a differentiable transversal vector field H such that

D1(X1,X2)N1 +D2(X1,X2)N2 = g(X1,X2)H

holds for any X1,X2 ∈ Γ(T M) [22]. In this case, there exist two differentiable functions H1 and H2 satisfying

Di(X1,X2) = Hig(X1,X2)

for any i ∈ {1,2}.

5. Ricci Soliton Coisotropic Lightlike Submanifolds

Assume that ζ is a vector field lying on Γ(T M̃). Hence one can put

ζ = ζ⊤+ f1N1 + f2N2

where ζ⊤ ∈ Γ(T M) and f1, f2 are differentiable functions on Γ(T M̃). Thus we find

f1 = g(ζ ,ξ1) and f2 = g(ζ ,ξ2).

Proposition 5.1. Let (M,g,S(T M)) be a coisotropic lightlike submanifold of (M̃, g̃). If ζ is concircular, then the following

equalities are satisfied for any X ∈ Γ(T M):

∇X ζ⊤ = ϕX + f1AN1
X + f2AN2

X , (5.1)

D1(X ,ζ⊤) = −X [ f1]− f1ρ11(X)− f2ρ21(X),

D2(X ,ζ⊤) = −X [ f2]− f1ρ12(X)− f2ρ22(X).

Proof. If ζ is concircular, we find

∇̃X ζ = ϕX = ∇̃X ζ⊤+ ∇̃X ( f1N1)+ ∇̃X ( f2N2).

In view of (4.1) and (4.2), we get

ϕX = ∇X ζ⊤+D1(X ,ζ⊤)N1 +D2(X ,ζ⊤)N2 +X [ f1]N1 − f1AN1
X + f1ρ11(X)N1 + f1ρ12(X)N2 +X [ f2]N2

− f2AN2
X + f2ρ21(X)N1 + f2ρ22(X)N2.

In view of the last equation, we obtain (3.1), (3.2) and (3.3) immediately.

Putting ϕ = 1 in Proposition 5.1, we have:
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Proposition 5.2. For any coisotropic lightlike submanifold admitting a concurrent vector field, we have

∇X ζ⊤ = X + f1AN1
X + f2AN2

X .

As a special case for ζ = ζ⊤, we have:

Proposition 5.3. For any coisotropic lightlike submanifold admitting a concircular (or concurrent) vector field ζ = ζ⊤, we

have

D1(X ,ζ⊤) = D2(X ,ζ⊤) = 0.

Theorem 5.4. Let (M,g,S(T M)) be a coisotropic lightlike submanifold. If there exists at least one concircular or concurrent

vector field ζ = ζ⊤ on Γ(T M), then ∇ζ⊤g = 0.

Using (4.5) and (5.1), we arrive at

(Lζ⊤g)(X1,X2) = D1(ζ
⊤
,X2)η1(X1)+D1(ζ

⊤
,X1)η1(X2)+D2(ζ

⊤
,X2)η2(X1)+D2(ζ

⊤
,X1)η2(X2)

+2g(ϕX1,X2)+2 f1g(AN1
X1,X2)+2 f2g(AN2

X1,X2) (5.2)

for any X1,X2 ∈ Γ(T M). If ζ is concurrent, then we obtain

(Lζ⊤g)(X1,X2) = D1(ζ
⊤
,X2)η1(X1)+D1(ζ

⊤
,X1)η1(X2)+D2(ζ

⊤
,X2)η2(X1)+D2(ζ

⊤
,X1)η2(X2)

+2g(X1,X2)+2 f1g(AN1
X1,X2)+2 f2g(AN2

X1,X2). (5.3)

As a special case for ζ = ζ⊤, we obtain

(Lζ⊤g)(X1,X2) = 2ϕg(X1,X2).

If ζ is concurrent and ζ = ζ⊤, we find

(Lζ⊤g)(X1,X2) = 2g(X1,X2).

From (3.5) and (5.2), we have

Theorem 5.5. Let (M,g,S(T M)) be a coisotropic lightlike submanifold admitting a concircular vector field ζ . Then,

(M,g,S(T M)) is a Ricci soliton such that ζ⊤ is the potential vector field if and only if the equation

R(0,2)(X1,X2) =
1

2

[
−D1(ζ

⊤
,X2)η1(X1)−D1(ζ

⊤
,X1)η1(X2)−D2(ζ

⊤
,X2)η2(X1)

−D2(ζ
⊤
,X1)η2(X2)−2 f1g(AN1

X1,X2)−2 f2g(AN2
X1,X2)

]
+(κ −ϕ)g(X1,X2)

holds for any X1,X2 ∈ Γ(T M).

From (3.5) and (5.3), we have:

Theorem 5.6. Let (M,g,S(T M)) be a coisotropic lightlike submanifold admitting a concurrent vector field ζ . Then,

(M,g,S(T M)) is a Ricci soliton such that ζ⊤ is the potential vector field if and only if the equation

R(0,2)(X1,X2) =
1

2

[
−D1(ζ

⊤,X2)η1(X1)−D1(ζ
⊤,X1)η1(X2)−D2(ζ

⊤,X2)η2(X1)
−D2(ζ

⊤,X1)η2(X2)−2 f1g(AN1
X1,X2)−2 f2g(AN2

X1,X2)

]
+(κ −1)g(X1,X2)

is satisfied for any X1,X2 ∈ Γ(T M).

Theorem 5.7. Let (M,g,S(T M)) be a coisotropic lightlike submanifold admitting a concircular vector field ζ = ζ⊤. Then,

the submanifold is a Ricci soliton such that ζ⊤ is the potential vector field if and only if the equation

R(0,2)(X1,X2) = (κ −ϕ)g(X1,X2) (5.4)

holds for any X1,X2 ∈ Γ(T M). It means that (M,g,S(T M)) is an Einstein manifold.

Theorem 5.8. Let (M,g,S(T M)) be a coisotropic lightlike submanifold admitting a concurrent vector field ζ = ζ⊤. Then, the

submanifold is a Ricci soliton with the potential vector field ζ⊤ if and only if the equation

R(0,2)(X1,X2) = (κ −1)g(X1,X2)

is satisfied for any X1,X2 ∈ Γ(T M). It means that the submanifold is an Einstein manifold. Furthermore if the soliton is steady,

then the Ricci curvature of (M,g,S(T M)) is negative defined.
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In view of Theorem 5.5 we find:

Corollary 5.9. Let (M,g,S(T M)) be a totally geodesic coisotropic lightlike submanifold admitting a concircular vector field

ζ . If the submanifold is a Ricci soliton, then the equation

R(0,2)(X1,X2) = (κ −ϕ)g(X1,X2)− f1g(AN1
X1,X2)− f2g(AN2

X1,X2)

is satisfied.

As a result of Theorem 5.6 we find:

Corollary 5.10. Let (M,g,S(T M)) be a totally geodesic coisotropic lightlike submanifold admitting a concurrent vector field

ζ . If the submanifold is a Ricci soliton, then the equation

R(0,2)(X1,X2) = (κ −1)g(X1,X2)− f1g(AN1
X1,X2)− f2g(AN2

X1,X2)

is satisfied.

Example 5.11. Consider a submanifold in R
6
3 given by

z4 = (z2
1 + z2

2)
1
2 , z3 = (z2

5 + z2
6)

1
2 , z1,z2,z3,z4 > 0.

Then we find

Rad(T M) = Span{ξ1 = z1∂1 + z2∂2 + z4∂4, ξ2 = z3∂3 + z5∂5 + z6∂6} ,

S(T M) = Span{X1 = z4∂1 + z1∂4,X2 = z3∂5 + z5∂3} ,

ltr(T M) = Span

{
N1 =

1

2z2
2

(z1∂1 − z2∂2 + z3∂3), N2 =
1

2z2
5

(z3∂3 − z5∂5 + z6∂6)

}
,

where {∂1,∂2,∂3,∂4,∂5,∂6} is the natural frame field on R
6
3. Therefore (M,g,S(T M)) is a coisotropic lightlike submanifold.

By a straightforward computation, we obtain

∇̃X1
ξ1 = X1, ∇̃X1

ξ2 = 0, ∇̃X2
ξ1 = 0, ∇̃X2

ξ2 = X2,

∇̃ξ1
ξ1 = ξ1, ∇̃ξ1

ξ2 = ∇̃ξ2
ξ1 = 0, ∇̃ξ2

ξ2 = ξ2, ∇̃ξ2
N2 = N2.

∇̃ξ1
N1 = N1, ∇̃ξ1

N2 = 0, ∇̃ξ2
N1 = 0,

In view of (4.1)-(4.4), we obtain

D1(ξ1,ξ1) = D2(ξ2,ξ2) = D1(ξ1,ξ2) = 0.

Therefore, we have R(0,2)(X1,X2) = 0. If we consider ζ = ϕ(ξ1 +ξ2), where ϕ is a differentiable function and ζ = ζ T , then we

find (M,g,S(T M)) is a Ricci soliton such that ζ⊤ is the potential vector field and κ = 1. Thus, the submanifold is a shrinking

Ricci soliton.

Example 5.12. Consider a submanifold in R
5
2 with the signature (−,−,+,+,+) given by

M =
{
(u2

,u2w,u2 cosv,u2 sinv,u2w) : v ∈ [0,2π),u,w ∈ R
}
.

Then we have

Rad(T M) = Span{ξ1 = 2u(∂1 +w∂2 + cosv∂3 + sinv∂4 +w∂5), ξ2 = u2(∂2 +∂5)},

S(T M) = Span{X1 = u2(−sinv∂3 + cosv∂4)},

ltr(T M) = Span

{
N1 =

1

2u
(−∂1 +w∂2 + cosv∂3 + sinv∂4 +w∂5), N2 =

1

2u2
(−∂2 +∂5)

}
,

where {∂1,∂2,∂3,∂4,∂5} is the natural frame field on R
5
2. Therefore, (M,g,S(T M)) is a coisotropic lightlike hypersurface of

R
5
2. By a straightforward computation, we find

∇̃X1
ξ1 =

2

u
X1, ∇̃ξ2

ξ1 =
2

u
ξ2, ∇̃ξ1

ξ1 =
2

u
ξ1,

which show that ξ1 is a concircular vector field on (M,g,S(T M)) and (Lξ1
g)(X1,X1) = 2u2. By a direct computation, we get

R(X1,ξ1)X1 = X1, R(X1,ξ2)X1 = 0

which shows that R(0,2)(X1,X1) = 0. This fact shows that (M,g,S(T M)) is almost Ricci soliton such that κ = 2
u2 .
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Theorem 5.13 (Theorem 3.1 in [24]). Let (M,g,S(T M)) be a totally umbilical lightlike submanifold of M̃(c). Then the

following equality holds

R(X1,X2)X3 = c{g(X2,X3)X1 −g(X1,X3)X2}+
2

∑
i=1

[Hi {g(X2,X3)ANi
X1 −g(X1,X3)ANi

X2}] , (5.5)

where the mean curvature vector field H = H1N +H2U.

Theorem 5.14. Let (M,g,S(T M)) be a totally umbilical lightlike submanifold of M̃(c) admitting a concircular vector field

ζ = ζ⊤. The submanifold is a Ricci soliton such that ζ⊤ is the potential vector field if and only if the equation

κ = c+ϕ +
2

∑
i=1

HitraceANi

is satisfied.

Proof. Let {Y1, . . . ,Yn} be an orthonormal frame field on the screen distribution. From (4.6) and (5.5), we find

R(0,2)(Yj,Yj) = c+
2

∑
i=1

H1traceANi
(5.6)

for any j ∈ {1, . . . ,n}. From (5.4) and (5.6), the proof is straightforward.

As a result of Theorem 5.14, we obtain:

Theorem 5.15. Let (M,g,S(T M)) be a totally umbilical lightlike submanifold of M̃(c) admitting a concurrent vector field

ζ = ζ⊤. The submanifold is a Ricci soliton with the potential vector field ζ⊤ if and only if the equation

κ = c+1+
2

∑
i=1

HitraceANi

is satisfied.
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Abstract

In this paper, we discuss some qualitative properties of the positive solutions to the fol-

lowing rational nonlinear difference equation xn+1 =
αxn−m+ηxn−k+σxn−l+δxn

β+γxn−kxn−l(xn−k+xn−l)
, n = 0,1,2, . . .

where the parameters α ,β ,γ,δ ,η ,σ ∈ (0,∞), while m,k, l are positive integers, such that

m < k < l. The initial conditions x−m, . . . ,x−k, . . . ,x−l , . . . ,x−1, . . . ,x0 are arbitrary positive

real numbers. We will give some numerical examples to illustrate our results.

1. Introduction

The study of solution of nonlinear rational recursive sequence of high order is quite challenging and rewarding. Every

dynamical system an+1 = f (an) determines a difference equation and vice versa. An interesting class of nonlinear difference

equations is the class of solvable difference equations, and one of the interesting problems is to find equations that belong to

this class and to solve them in closed form or in explicit form [1–25]. Note that most of these equation often show increasingly

complex behavior such as the existence of a bounded. The qualitative study of difference equations is a fertile research area

and increasingly attracts many mathematicians. This topic draws its importance from the fact that many real life phenomena

are modeled using difference equations. The applications of these difference equations can be found on the economy, biology

and so on. It is known that nonlinear difference equations are capable of producing a complicated behavior regardless its order.

The objective of this article is to investigate some qualitative behavior of the solutions of the nonlinear difference equation

xn+1 =
αxn−m +ηxn−k+σxn−l+δxn

β + γxn−kxn−l (xn−k + xn−l)
, n = 0,1,2, . . . (1.1)

where the parameters α,β ,γ,δ ,η ,σ ∈ (0,∞), while m,k, l are positive integers, such that m < k < l. The initial conditions

x−m, . . . ,x−k, . . . ,x−l , . . . ,x−1, . . . ,x0 are arbitrary positive real numbers equation (1.1) has been discussed in [26] when

m = 1,k = 2 and l = 4, and in [27] when δ = 0, where some global behavior of the more general nonlinear rational difference

equation (1.1), we need the following well-known definitions and results [28–34].

Definition 1.1. A difference equation of order (k+1) is of the form

xn+1 = F(xn,xn−1, . . . ,x−k), n = 0,1,2, . . . (1.2)

Email address and ORCID number: maliahmedibrahim@jazanu.edu.sa, 0000-0002-1676-2662
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where F is a continuous function which maps some set Jk+1 into J and J is a set of real numbers. An equilibrium point

x̃ of this equation is a point that satisfies the condition x̃ = F (x̃, x̃, . . . , x̃) . That is, the constant sequence {xn}
∞
n=−k with

xn = x̃ f or all n ≥−k is a solution of that equation.

Definition 1.2. Let x̃ ∈ (0,∞) be an equilibrium point of the difference equation (1.2). Then

(i) An equilibrium point x̃ of the difference equation (1.2) is called locally stable if for every ε > 0 there exists δ > 0 such

that, if x−k,. . . , x−1, x0 ∈ (0,∞) with |x−k − x̃|+ . . .+ |x−1 − x̃|+ |x0 − x̃|< δ , then |xn − x̃|< ε for all n ≥−k.

(ii) An equilibrium point x̃ of the difference equation (1.2) is called locally asymptotically stable if it is locally stable and

there exists γ > 0 such that, if x−k, . . . , x−1, x0 ∈ (0,∞) with |x−k − x̃|+ . . .+ |x−1 − x̃|+ |x0 − x̃|< γ , then

lim
n→∞

xn = x̃.

(iii) An equilibrium point x̃ of the difference equation (1.2) is called a global attractor if for every

x−k, . . . ,x−1, x0 ∈ (0,∞) we have

lim
n→∞

xn = x̃.

(iv) An equilibrium point x̃ of the equation (1.2) is called globally asymptotically stable if it is locally stable and a global

attractor.

(v) An equilibrium point x̃ of the difference equation (1.2) is called unstable if it is not locally stable.

Definition 1.3. A sequence {xn}
∞
n=−k is said to be periodic with period p if xn+p = xn for all n ≥−k. A sequence {xn}

∞
n=−k is

said to be periodic with prime period p if p is the smallest positive integer having this property.

Definition 1.4. We say that a sequence {xn}
∞
n=−l is bounded and persisting if there exists positive constants m and M such that

m ≤ xn ≤ M f or all n ≥−k.

Definition 1.5. A positive semicycle of {xn}
∞
n=−k consists of ”a string” of terms xl ,xl+1, . . . ,xm all greater than or equal to x̃,

with l ≥−k and m ≤ ∞ such that

either l =−k or l >−k and xl−1 < x̃,

and

either m = ∞ or m < ∞ and xm+1 < x̃.

A negative semicycle of {xn}
∞
n=−k consists of ”a string” of terms xl ,xl+1, . . . ,xm all less than x̃, with l ≥−k and m ≤ ∞ such

that

either l =−k or l >−k and xl−1 ≥ x̃,

and

either m = ∞ or m < ∞ and xm+1 ≥ x̃.

Definition 1.6. The linearized equation of equation (1.2) about the equilibrium point x̃ is the linear difference equation

yn+1 =
k

∑
i=0

∂F (x̃, x̃, . . . , x̃)

∂xn−i

yn−i. (1.3)

Now assume that the characteristic equation associated with equation (1.3) is

p(λ ) = p0λ k + p1λ k−1 + . . .+ pk−1λ + pk = 0 (1.4)

where

pi = ∂F (x̃, x̃, . . . , x̃)/∂xn−i.

Theorem 1.7. Assume that pi ∈ R, i = 1,2, . . . , and k ∈ {0,1,2, . . .}. Then

k

∑
i=1

|pi|< 1

is a sufficient condition for the asymptotic stability of the difference equation

xn+k + p1xn+k−1 + . . .+ pkxn = 0, n = 0,1,2, . . .

Theorem 1.8 (The Linearized Stability Theorem). Suppose F is a continuously differentiable function defined on an open

neighbourhood of the equilibrium x̃. Then the following statements are true.

(i) If all roots of the characteristic equation (1.4) of the linearized equation (1.3) have an absolute value less than one, then

the equilibrium point x̃ is locally asymptotically stable.

(ii) If at least one root of equation (1.4) has an absolute value greater than one, then the equilibrium point x̃ is unstable.
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2. Change of Variables

By using the change of variables xn =
(

β
γ

) 1
3
yn, the equation (1.1) reduces to the following difference equation

yn+1 =
ryn−m+tyn−k+uyn−l+syn

1+yn−kyn−l (yn−k + yn−l)
, n = 0,1,2, . . . (2.1)

where r = α
β
> 0, s = δ

β
> 0, u = σ

β
> 0, t = η

β
> 0 and the initial conditions y−l , . . . ,y−k, . . . ,y−m, . . . ,y−l ,y0 ∈ (0,∞). In

the next section, we shall study the global behavior of equation (2.1).

3. The Dynamics of Equation (2.1)

The equilibrium points ỹ of the equation (2.1) are the positive solutions of the equation

ỹ =
[r+s+t +u]ỹ

1+2ỹ3
. (3.1)

Thus ỹ1 = 0 is always an equilibrium point of the equation (2.1). If (r+s+t +u)> 1, then the only positive equilibrium point

ỹ2 of equation (2.1) is given by

ỹ2 =

(
[r+s+t +u]−1

2

) 1
3

. (3.2)

Let us introduce a continuous function F : (0,∞)4 → (0,∞) which is defined by

F(v0,v1,v2,v3) =
rv0+sv1+tv2+uv3

1+ v2
2v3 + v2v2

3

. (3.3)

Consequently, we get

∂F(v0,v1,v2,v3)

∂v0
=

r

1+ v2
2v3 + v2v2

3

,

∂F(v0,v1,v2,v3)

∂v1
=

s

1+ v2
2v3 + v2v2

3

,

∂F(v0,v1,v2,v3)

∂v2
=

t(1+ v2
2v3 + v2v2

3)−(rv0+sv1+tv2)(2v2v3 + v2
3)

(1+ v2
2v3 + v2v2

3)
2

,

∂F(v0,v1,v2,v3)

∂v3
=

u(1+ v2
2v3 + v2v2

3)−(rv0+sv1+tv2+uv3)(v
2
2 +2v2v3)

(1+ v2
2v3 + v2v2

3)
2

.

At ỹ1 = 0, we have
∂F(0,0,0,0)

∂v0
= r, ∂F(0,0,0,0)

∂v1
= s, ∂F(0,0,0,0)

∂v2
= t, ∂F(0,0,0,0)

∂v3
= u, and the linearized equation of equation (2.1)

about ỹ1 = 0, is the equation

zn+1 −ρ0zn −ρ1zn−m −ρ2zn−k −ρ3zn−l = 0 (3.4)

where ρ0 = s, ρ1 = r, ρ2 = t, ρ3 = u. At ỹ2 =
(
[r+s+t+u]−1

2

) 1
3
, we have

∂F(ỹ2, ỹ2, ỹ2, ỹ2)

∂v0
=

r

1+2ỹ3
2

=
r

1+([r+s+t +u]−1)
=

r

[r+s+t +u]
,

∂F(ỹ2, ỹ2, ỹ2, ỹ2)

∂v1
=

s

1+2ỹ3
2

=
s

1+([r+s+t +u]−1)
=

s

[r+s+t +u]
,

∂F(ỹ2, ỹ2, ỹ2, ỹ2)

∂v2
=

2t −3([r+s+t +u]−1)

2 [r+s+t +u]
,
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∂F(ỹ2, ỹ2, ỹ2, ỹ2)

∂v3
=

2u−3([r+s+t +u]−1)

2 [r+s+t +u]
.

And the linearized equation of equation (2.1) about ỹ2 =
(
[r+s+t+u]−1

2

) 1
3

is the equation

zn+1 −ρ0zn −ρ1zn−m −ρ2zn−k −ρ3zn−l = 0, (3.5)

where ρ0 =
s

[r+s+t+u] , ρ1 =
r

[r+s+t+u] , ρ2 =
2t−3([r+s+t+u]−1)

2[r+s+t+u] , ρ3 =
2u−3([r+s+t+u]−1)

2[r+s+t+u] .

Theorem 3.1. (i) If [r+s+t +u]< 1, then the equilibrium point ỹ1 = 0 is locally asymptotically stable.

(ii) If [r+s+t +u]> 1, then the equilibrium point ỹ1 = 0 is unstable.

(iii) If [r+s+t +u]> 1, 2t > 3([r+s+t +u]−1) , then the equilibrium point ỹ2 =
(
[r+s+t+u]−1

2

) 1
3

is unstable.

Proof. With reference to Theorem 1.7, we deduce from equation (3.5) that |ρ0|+ |ρ1|+ |ρ2|+ |ρ3|= [r+s+t +u]< 1, and

then the proof of parts (i), (ii) follow. Also, from equation (3.5) we deduce for [r+s+t +u]> 1 that |ρ0|+ |ρ1|+ |ρ2|+ |ρ3|=

1+ 3([r+s+t+u]−1)
[r+s+t+u] > 1, and hence the proof of part (iii) follows.

Theorem 3.2. Assume that [r+s+t +u]> 1, and let {yn}
∞
n=−l be a solution of equation (2.1) such that

y−l ,y−l+2, . . . ,y−l+2n, . . . ,y−k,y−k+2, . . . ,y−k+2n, . . . ,

y−m+1,y−m+3, . . . ,y−m+2n+1, . . . ,y0 ≥ ỹ2

and

y−l+1,y−l+3, . . . ,y−l+2n+1, . . . ,y−k+1,y−k+3, . . . ,

y−k+2n+1, . . . ,y−m,y−m+2, . . . ,y−m+2n, . . . ,y−1 < ỹ2.

(3.6)

Then {yn}
∞
n=−l oscillates about ỹ2 =

(
[r+s+t+u]−1

2

) 1
3

with a semicycle of length one.

Proof. Assume that (3.6) holds. Then

y1 =
ry−m+sy0+ty−k+uy−l

1+ y−ky−l(y−k + y−l)
<

ry−m+sy0+ty−k+uy−l

1+2ỹ3
2

<
[r+s+t +u] ỹ2

1+([r+s+t +u]−1)
= ỹ2

and

y2 =
ry−m+1+sy1+ty−k+1+uy−l+1

1+ y−k+1y−l+1(y−k+1 + y−l+1)
≥

ry−m+1+sy1+ty−k+1+uy−l+1

1+2ỹ3
2

≥
[r+s+t +u] ỹ2

1+([r+s+t +u]−1)
= ỹ2

and hence the proof follows by induction.

Theorem 3.3. Assume that [r+s+t +u]< 1, then the equilibrium point ỹ1 = 0 of equation (2.1) is globally asymptotically

stable.

Proof. We have shown in Theorem 3.3 that if [r+s+t +u] < 1 then the equilibrium point ỹ1 = 0 is locally asymptotically

stable. It remains to show that ỹ1 = 0 is a global attractor. To this end, let {yn}
∞
n=−l be a solution of equation (2.1). It suffics to

show that lim
n→∞

yn = 0. Since

0 ≤ yn+1 =
ryn−m+syn+tyn−k+uyn−l

1+ yn−kyn−l(yn−k + yn−l)
≤ ryn−m+syn+tyn−k+uyn−l < yn−k.

Then we have lim
n→∞

yn = 0. This completes the proof.

Theorem 3.4. Assume that [r+s+t +u]> 1, then equation (2.1) possesses an unbounded solution.

Proof. With the aid of Theorem 3.2, we have

y2n+2 =
ry−m+2n+1+sy2n+1+ty−k+2n+1+uy−l+2n+1

1+ y−k+2n+1 y−l+2n+1(y−k+2n+1 + y−l+2n+1)
>

ry−m+2n+1+sy2n+1+ty−k+2n+1+uy−l+2n+1

1+2ỹ3
2

>
ry−m+2n+1+sy2n+1+ty−k+2n+1+uy−l+2n+1

1+([r+s+t +u]−1)
=

ry−m+2n+1+sy2n+1+ty−k+2n+1+uy−l+2n+1

[r+s+t +u]
,
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and

y2n+3 =
ry−m+2n+2+sy2n+2+ty−k+2n+2+uy−l+2n+2

1+ y−k+2n+2 y−l+2n+2(y−k+2n+2 + y−l+2n+2)
≤

ry−m+2n+2+sy2n+2+ty−k+2n+2+uy−l+2n+2

1+2ỹ3
2

≤
ry−m+2n+2+sy2n+2+ty−k+2n+2+uy−l+2n+2

1+([r+s+t +u]−1)
=

ry−m+2n+2+sy2n+2+ty−k+2n+2+uy−l+2n+2

[r+s+t +u]
.

From which it follows that

lim
n→∞

y2n = ∞ and lim
n→∞

y2n+1 = 0.

Hence, the proof of Theorem 3.4 is now completed.

Theorem 3.5. (i) If m is odd, and k, l are even, equation (2.1) has prime period two solution if (r− [s+t +u])< 1 and has

not prime period two solution if (r− [s+t +u])≥ 1.
(ii) If m is even and k, l are odd, equation (2.1) has not prime period two solution.

(iii) If all m,k, l are even, equation (2.1) has prime period two solution.

(iv) If all m,k, l are odd, equation (2.1) has prime period two solution if (r− [s+t +u])> 1, and has not prime period two

solution if (r− [s+t +u])≤ 1.

(v) If m,k are even and l is odd, equation (2.1) has not prime period two solution if [r+s+t]+1 > u.

(vi) If m,k are odd and l is even, equation (2.1) has prime period two solution if ([r+t]− [s+u]) > 1, and has not prime

period two solution if ([r+t]− [s+u])≤ 1.
(vii) If m, l are odd and k is even, equation (2.1) has prime period two solution if ([r+u]− [s+t]) > 1, and has not prime

period two solution if ([r+u]− [s+t])≤ 1.
(viii) If m, l are even and k is odd, equation (2.1) has not prime period two solution.

Proof. Assume that there exists distinct positive solutions

. . . ,φ ,ψ,φ ,ψ, . . .

of prime period two of equation (2.1).

(i) If m is odd, and k, l are even, then yn+1 = yn−m and yn = yn−k = yn−l . It follows from equation (2.1) that

φ =
rφ +[s+t +u]ψ

1+2ψ3
, ψ =

rψ +[s+t +u]φ

1+2φ 3
.

Consequently, we have

0 < 2φψ(φ +ψ) = 1− (r− [s+t +u]) . (3.7)

We deduce that (3.7) is always true if (r− [s+t +u]) < 1 and hence equation (2.1) has prime period two solution. If

(r− [s+t +u])≥ 1, we have a contradiction, and hence equation (2.1) has not prime period two solution.

(ii) If m is even, and k, l are odd, then yn = yn−m,and yn+1 = yn−k = yn−l . It follows from equation (2.1) that

φ =
[t+u]φ +[r+s]ψ

1+2φ 3
, ψ =

[t+u]ψ +[r+s]φ

1+2ψ3
.

Consequently, we have

0 < 2(φ +ψ)(φ 2 +ψ2) =−([r+s+t+u]+1) . (3.8)

Since [r+s+t+u]> 0, we have a contradiction. Hence equation (2.1) has not prime period two solution.

(iii) If all m,k, l are even, then yn = yn−m = yn−k = yn−l . It follows from equation (2.1) that

φ =
[r+s+t+u]ψ

1+2ψ3
, ψ =

[r+s+t+u]φ

1+2φ 3
.

Consequently, we get

0 < 2φψ(φ +ψ) = [r+s+t+u]+1. (3.9)

Since [r+s+t+u]> 0, the formula (3.9) is always true. Hence equation (2.1) has prime period two solution.
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(iv) If all m,k, l are odd, then yn+1 = yn−m = yn−k = yn−l . It follows from equation (2.1) that

φ =
rψ +[s+t +u]φ

1+2φ 3
, ψ =

rφ +[s+t +u]ψ

1+2ψ3
.

Consequently, we get

0 < 2(φ +ψ)(φ 2 +ψ2) = (r− [s+t +u])−1. (3.10)

If (r− [s+t +u]) > 1, the formula (3.10) is always true, and hence equation (2.1) has prime period two solution. If

(r− [s+t +u])≤ 1, we have a contradiction and hence equation (2.1) has not prime period two solution.

(v) If m,k are even, and l is odd, then yn = yn−k = yn−m, and yn+1 = yn−l . It follows from equation (2.1) that

φ =
[r+s+t]ψ +uφ

1+ψ2φ +ψφ 2
, ψ =

[r+s+t]φ +uψ

1+φ 2ψ +φψ2
.

Consequently, we have

0 < φψ(φ +ψ) = u− ([r+s+t]+1). (3.11)

Since [r+s+t]+1 > u, we have a contradiction. Hence equation (2.1) has not a prime period two solution.

(vi) If m,k are odd, and l is even, then yn+1 = yn−m = yn−k, and yn = yn−l . It follows from equation (2.1) that

φ =
[r+t]φ +[s+u]ψ

1+φψ(φ +ψ)
, ψ =

[r+t]ψ +[s+u]φ

1+φψ(φ +ψ)
.

Consequently, we have

0 < φψ(φ +ψ) = ([r+t]− [s+u])−1. (3.12)

If ([r+t]− [s+u]) > 1,the formula (3.12) is always true, and hence equation (2.1) has prime period two solution. If

([r+t]− [s+u])≤ 1, we have a contradiction. Hence equation (2.1) has not a prime period two solution.

(vii) If m, l are odd, and k is even, then yn+1 = yn−m = yn−l , and yn = yn−k. It follows from equation (2.1) that

φ =
[r+u]φ +[s+t]ψ

1+φψ(φ +ψ)
, ψ =

[r+u]ψ +[s+t]φ

1+φψ(φ +ψ)
.

Consequently, we have

0 < φψ(φ +ψ) = ([r+u]− [s+t])−1. (3.13)

If ([r+u]− [s+t]) > 1, the formula (3.13) is always true, and hence equation (2.1) has prime period two solution. If

([r+u]− [s+t])≤ 1, we have a contradiction. Hence equation (2.1) has not a prime period two solution.

(viii) If m, l are even, and k is odd, then yn = yn−m = yn−l , and yn+1 = yn−k. It follows from equation (2.1) that

φ =
[r+ s+u]ψ + tφ

1+ψ2φ +ψφ 2
, ψ =

[r+ s+u]φ + tψ

1+φ 2ψ +φψ2
,

Consequently, we have

0 < φψ(φ +ψ) = t − ([r+s+u]+1). (3.14)

Since [r+s+u]+1 > t, we have a contradiction. Hence equation (2.1) has not a prime period two solution. Hence the

proof of Theorem (3.5) is now completed.

4. Numerical Examples

In order to illustrate the results of the previous section and to support our theoretical discussions, we consider some numerical

examples in this section. These examples represent different types of qualitative behavior of solutions of equation (2.1).
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Example 4.1. Figure 4.1 shows that the solution of equation (2.1) is bounded if x−3 = 1, x−2 = 2, x−1 = 3, x0 = 4, m = 1,
k = 2, l = 3, r = 0.1, s = 0.2, t = 0.3, u = 0.25, i.e. [r+s+t+u]< 1.

Figure 4.1: The solution of equation (2.1) is bounded.

.

Example 4.2. Figure 4.2 shows that the solution of equation (2.1) is unbounded if x−3 = 1, x−2 = 2, x−1 = 3, x0 = 4, m = 1,
k = 2, l = 3, r = 1, s = 2, t = 3, u = 4, i.e. [r+s+t+u]> 1.

Figure 4.2: The solution of equation (2.1) is unbounded.

Example 4.3. Figure 4.3 shows that equation (2.1) is globally asymptotically stable if x−4 = 1, x−3 = 2, x−2 = 3, x−1 = 4,
x0 = 5, m = 2, k = 3, l = 4, r = 0.1, s = 0.5, t = 0.2, u = 0.25, i.e. [r+s+t+u]< 1.

Figure 4.3: The solution of equation (2.1) is globally asymptotically stable.
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Example 4. Figure 4.4 shows that equation (2.1) has no positive prime period two solutions if x−3 = 1, x−2 = 2, x−1 = 3,
x0 = 4, m = 2, k = 1, l = 3, r = 100, s = 300, t = 400, u = 500.

Figure 4.4: The solution of equation (2.1) has no positive prime period two solutions.

5. Conclusions

In this article, we have shown that equation (2.1) has two equilibrium points ỹ1 = 0 and ỹ2 =
(
[r+s+t+u]−1

2

) 1
3
. If [r+s+t+u]< 1,

we have proved that ỹ1 = 0 is globally asymptotically stable, while if [r+s+t+u]> 1, the solution of equation (2.1) oscillates

about the point ỹ2 =
(
[r+s+t+u]−1

2

) 1
3

with a semicycle of length one. When [r+s+t+u]> 1, we have proved that the solution

of equation (2.1) is unbounded. The periodicity of the solution of equation (2.1) has been discussed in details in Theorem 3.5.
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