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Euler—Maclaurin-type Inequalities for 7—convex
Functions via Riemann-Liouville Fractional Integrals

Fatih Hezenci'®*, Hiiseyin Budak?

Abstract

In this paper, some Euler-Maclaurin-type inequalities are established by using 2—convex functions involving
Riemann-Liouville fractional integrals. In precisely, using the properties of 4-convex functions, we prove new
Euler-Maclaurin-type inequalities. In addition, we present some Euler-Maclaurin-type inequalities for Riemann-
Liouville fractional integrals by using Hélder inequality. Moreover, some Euler-Maclaurin-type inequalities are
established by using power-mean inequality. Finally, by using the special choices of the obtained results, we
obtain some Euler-Maclaurin-type inequalities.

Keywords: Convex functions, Fractional calculus, Maclaurin’s formula, Quadrature formula
2020 AMS: 26D07, 26D10, 26D15, 65D32

1. Introduction

Inequality theory is a well-established and still fascinating field of research, with a wide range of applications across various
areas of mathematics. In mathematical analysis, convex functions play a crucial role in the study of inequalities due to their
distinct geometric and analytical properties.

The author of [1] introduces a novel class of functions called ~-convex functions.

Definition 1.1. Ler i : (0,1) — R be a non-negative function, h # 0. We say that f : I C R — R is an h-convex function, if f is
non-negative and for all x,y € I, t € (0,1) we have

flax+(1=1)y) <h(0)f(x) +h(1 =) f()- (1.1)
If the inequality (1.1) is reversed, then f is said to be h-concave.
By setting
* h(t) =t, Definition 1.1 becomes to convex function [2].
* h(t) =1, Definition 1.1 reduces to s-convex functions [3].

* h(t) =1, Definition 1.1 equals to P-functions [4].
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Theorem 1.2. (Holder inequality). Let p, g > 1 with % + é = 1. If f and g are real functions defined on |a,b] and if | f|", |g|?
are integrable functions on [a,b], then

/abmt)g(t)'dt = </ab|f(t)|pdt>; (/h g(t)|th>;

The power-mean integral inequality, derived from the Holder inequality, can be expressed as follows:

Theorem 1.3. (Power mean integral inequality). Let p > 1 and f, g be two real functions defined on [a,b). If |f|, |f]|g|? are
integrable functions on |a,b) then

[ irwswiars ([1rwlar) - ([0 |g<r>|"dz)’l’

For further information and clarification of the power-mean integral inequality, go to references [5].
Subsequently, mathematicians have become increasingly interested in fractional calculus due to its fundamental properties
and wide-ranging applications. The Riemann—Liouville integrals J¢, f and J* f of order @ > 0 with a > 0 are given by

10 = gy [ =0 0, x> a
and

! /b (t—x)*"' f(r)dt, x<b,

Ty f(x) = m 8

respectively [6,7]. Here, f belongs to L;[a,b] and I'(a) denotes the Gamma function defining as
o) := / e "u®du.
0

The fractional integral coincides with the classical integral for the case of o0 = 1.
The formula for Simpson’s quadrature, commonly referred as Simpson’s 1/3 rule, is as follows:

[t @ (50) <)

Theorem 1.4. Let f : [a,b] — R be a four times differentiable and continuous function on (a,b), and let H f(4)H =

oo

sup ‘ f ’ < oo. Then, the following inequality holds:

x€(a,b)

s lr@rar (“30) v rw)] - L [ reas

In the paper [8], Dragomir provided an estimate for the remainder in Simpson’s formula for functions of bounded variation,
with applications in the theory of special means. For further details on Simpson-type inequalities and other related topics
involving Riemann-Liouville fractional integrals, readers are referred to [9, 10] and its references.

The Newton-Cotes quadrature formula, frequently referred as Simpson’s second formula (also known as Simpson’s 3/8
rule; see [11]), is defined as follows:

[ rwaes "{f() 3f(2““’) 3f(“+2b)+f<b)]

Theorem 1.5. If f : [a,b] — R is a four times differentiable and continuous function on (a,b) , and H @ H sup ’ £ ’
*  x€(ab)

(b—a)*.

< L

oo, then one has the inequality

‘é [f( )+ 3f<2a+b> +3f(a+32b> +f(b)} _bia/abf(x)dx

< gl oo
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In the literature, evaluations for three-step quadrature kernels are frequently referred to as Newton-type results because
the three-point Newton-Cotes quadrature is a rule of Simpson’s second rule. Newton-type inequalities have been extensively
studied by a number of mathematicians. For instance, in paper [12], Erden et al. investigated several Newton-type integral
inequalities for functions whose first derivative is arithmetically-harmonically convex in absolute value at a given power. Please
refer to [13—15] and its references for more details on Newton-type inequality, which includes convex differentiable functions.

The Maclaurin rule, which is derived from the Maclaurin formula (see to [11]), is equivalent to the corresponding dual
Simpson’s 3/8 formula:

/abf(x)dx% {3f<5a+b) 2f<a+b> 3f<a+5b>}

The Maclaurin rule, which is derived from the Maclaurin inequality, is equivalent to the corresponding dual Simpson’s 3/8
formula:

Theorem 1.6. If f : [a,b] — R is a four times differentiable and continuous function on (a,b) , and Hf(“) H = sup ’f '
*  x€(ab)
oo, then the following inequality holds:

’ [3f<5a+b> 2f<a+b> 3f(a+5b>} blalbf(x)dx

Dedic et al. [16] are constructed a set of inequalities using Euler-Maclaurin-type inequalities, and the results were utilized
to derive specific error estimates in the case of the Maclaurin quadrature rules. In the paper [17], these results are applied to
provide error estimates for the Simpson 3/8 quadrature rules. In [18], several Euler-Maclaurin-type inequalities are considered
for differentiable convex functions. Additionally, in [19], several corrected Euler-Maclaurin-type inequalities are established
using Riemann-Liouville fractional integrals. For further information on such types of inequalities, the reader is referred
to [20-22] and the references therein.

_51840Hf H (b—a)*.

2. A Crucial Equality
In this section, we express integral equality in order to demonstrate the main results of the study.

Lemma 2.1. [23]If f : [a,b] — R is an absolutely continuous function (a,b) such that f' € Ly |a,b), then the equality

{3f<5““’>+2f<“;b>+3f(“+65b>]Za;ll,r_(ff)il) T fl@)+T% £ ()]
_b-a

4

[[1 +[2].

is valid. Here,

3. Euler-Maclaurin-type Inequalities for 7-Convex Functions

In this section, we obtain several Euler-Maclaurin-type inequalities for differentiable 4-convex functions by using the
Riemann-Liouville fractional integrals.

Theorem 3.1. Suppose that Lemma 2.1 holds and the function |f’| is h-convex on the interval [a,b]. Then, one can prove
fractional Euler-Maclaurin-type inequality

’é[3f(5a6+b> zf(zH—b) 3f<a+5b>}_2“(;r_(26)1-1) s, ()+Ja+b+f(b)H

<b (1 (azh) + @ (c:1)) [| £ (@) + | (8]
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Here,

S ol

Qi (a;h) :b/t“ {h (%) +h(2;ﬂ dt,

and

1
3 2—
%21 | ( ) h dt.
IG5
Proof. By taking into account the absolute value of Lemma 2.1, one may directly obtain

’ [3f(5a+b> 2f(a+b) 3f<a+5b>}_2a(;l“(2‘);“1) [JM ()+Ja+,,+f(b)H 3.1)
/|fa|{ ( b+l>’+ ’(;a+22_tb)udt
3

Since |f’] is h-convex, it yields

’ {3f(5“+b) 2f(“+b>+3f<“+65b)} za(;r_(j)“) vz (a>+12%,,+f(b>]’

gb;“ /ét“{h(;)|f'(b)|+h<22t)] |+h( )|f )|+h(22t>{f’(b)|]dt
0
t“—ZHh(;) |f’(b)|+h(22t>| |+h( >|f )|+ (22t>|f’(b)|}dr

= 2= (@i (@) + 2 (a) [|f @] +|F )]
which complete the proof of Theorem 3.1. O

Remark 3.2. If we choose h(t) =t in Theorem 3.1, then the following inequality holds:

’; [3f (5“6“’> +of (“;b) 3 (“*65”)} - za(;r(j‘)i D, s+ 1) ’

i@+ v (@) [|f @] +]F )]

3 1 1\ %+
= [t%tr=— |
vi (@) 0/ o <3> ,

and
1 1\o+1 1 ]n(i)
I aTl( -(3) ) 2 0<a<iny,
1//2(05):/ t*—=|dt=
2 3 1+a 1 1y a+1 1 ln(é)
5 e (D) e (3 L w(l) <@

which is established by Gumus et al. in paper [23, Theorem 4].
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Corollary 3.3. Let us consider h(t) = t* in Theorem 3.1. Then, the following Euler-Maclaurin-type inequality for s-convex
functions by using the Riemann-Liouville fractional integrals

’ {3f(5“+”) 2f(“+”)+3f<“+65b)}—za(;r_(:)il) v, (>+J(,+b+f(b)]'

<P r @) +oa(os)) | @) + |7 0]

Here,

and

Corollary 3.4. If we assign h(t) = 1 in Theorem 3.1, then we get the following Euler-Maclaurin-type inequality for P—
functions by using the Riemann-Liouville fractional integrals

’ {3f(5“”’>+zf(“;b)+3f<“+65bﬂ—Za(;r(j)il) e f@+a, f(b)H
b

<= (v (@) + v (@) [|f @]+ )]

Corollary 3.5. If we assign o = 1 in Theorem 3.1, then we can obtain Euler-Maclaurin-type inequality for h-convex functions

[W(”“’)“f(““’)“f(“”b)] S

2@ () + 0 (R) [|F @]+ ®)|],

where

Qi (1:h) = jt {h (%) +h (2;)} dr,
and

Qz(l;/’l) =

z—i‘ [h(;)+h<22 t)]dt.

Remark 3.6. If we choose h(t) =t in Corollary 3.5, then we have the following Euler-Maclaurin-type inequality for h-convex
Sfunctions functions

b
{3f(5a+b> Zf(a+b)+3f<a—:)5bﬂ _bia/f(’)dt
25(b—a)
- 576

u\.—-\_

" @[+ @]

This is established by Hezenci and Budak in paper [18, Corollary 1].
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Corollary 3.7. Let us consider h(t) = t* in Corollary 3.5. Then, we obtain the following Euler-Maclaurin-type inequality for
s-convex functions

[3f(5a+b>+2f(a;b)+3f<a+5b>} ! a/f

L)+ () [|F @]+ ®B)]] -

Here,

0= 0+ (5o st 1+

M )25 o

Corollary 3.8. If we assign h(t) =1 in Corollary 3.5, then we get the following Euler-Maclaurin-type inequality for
P—functions

Elg{3f(5a6+b>+2f(a—2kb>+3f<a+5b)} ! a/f

25(b—a) ,
< BO=9 1)1 | 6]

Theorem 3.9. Let us consider the assumptions in Lemma 2.1 and the function
following Euler-Maclaurin-type inequality holds:

[3f(5a+b>+2f(a42—b>+3f<a+5b)} 2 (e 12, fla >+Ja+b+f(b)]’

6 (b—a)
b—a 1 1\ %7t 7
=73 <<ap+1>(3> )

- 1

A (Fe@mra )i

and

"1, g > 1 is h—convex on [a,b]. Then, the

_ =

QI
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Proof. If we apply Holder’s inequality to (3.1), then we get

’ {3f(5““’> 2f(“+b)+3f<“+65b)}za_(;r_(:)il) T fla)+I%, f(b)H

1
1 1

b 3 3
—a
< t*Pdt /
<1/

0

=
l
==

. 2_ q
dt 7 (tb+ ta) dt

+
»\—‘\. -
NQ
|
|
=
W

==

+

] 317 / o 2—t \|?
o_ 2 A B
/t 1 dt /f<2a+ 5 b) dt
1
3

Taking advantage of the h—convexity | f’

7 we can easily get

' {3f(5““’> 2f(““’) 3f<“+5b)}2a_(;r(2‘)il) e, f@ -+, f(b)H

gb;“ /3t°‘1’dt /(h(; ]"+h< )yf y)
0 0

| 1
7
q

19y /(h(;) |f’(a)]q+h<22_’) 7 (b)\‘f> di

0

+
S —

1 1
P

(rmra(5) )
n /lla—ipdt j<h<;)|f/(a)|q+h<22_t>|f’(b)|">dt

1
3

@)
(h )17 @)+ <22_t) 7 (a)\‘f) dr

3
——| dt
4

+
w\—‘\ -
NQ
=
u\—\ =

==
_=

X
o\w\»—

+ j <h (%) |7 (@)]?+h <22_’) I/ (b)\q) dt
0

q
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Q—

j(h(é)b‘ |"+h< )If I)

1
1 q

|/ (h ()17 @+ (2;) 7 (b)\") dr

1
3

This ends the proof of Theorem 3.9. O

Remark 3.10. If we choose h(t) =t in Theorem 3.9, then the Theorem 3.9 reduces to the result in paper [23, Theorem 5].

Corollary 3.11. Let us consider h(t) = t* in Theorem 3.9. Then, the following Euler-Maclaurin-type inequality for s-convex
functions by using the Riemann-Liouville fractional integrals

' [3f(5“+”)+2f(“;b)+3f<“+65bﬂ—Za(;fj)i”[JM (>+Ja+b+f(b)]‘

< @6

y <f’(b)|q+(65+l—5s+l)|f/(a)q>{1]_1_ <|f/(a)|q+(6s+l—53+l)|f’(b)|q>‘1’
3-65(s+1) 3-6°(s+1)

1

tOC

3-6°(s+1)

1

+ /
1
3

(G @ (5 =3 P G
3-65(s+1)

((3s+1 _ 1) |f/ (b)|q+ (5s+1 733+1) |f’ (a)|Q><11

Corollary 3.12. If we assign h(t) = 1 in Theorem 3.9, then we get the following Euler-Maclaurin-type inequality for
P—functions by using the Riemann-Liouville fractional integrals

Sa+b a+b a+5b 20°10 (@ +1)
’ [3f( ) +2f( - ) +3f< - )} S el AP >+Ja+b+f<b>}'
_b-a 1 (1)“!’“ ;(If’(b)|"+|f’(a)q);
- 2 (ap+1)\3 3
. Y / / 7
fle-3a) (20021
/ 4
Corollary 3.13. Ifwe assign o =1 in Theorem 3.9, then we can obtain Euler-Maclaurin-type inequality
b
Sa+b a+b a+5b 1
o (55) e (52) (5]t from

3
<7 <@im<;yva
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S

Remark 3.14. If we choose h(t) =t in Corollary 3.13, then the following inequality holds:
1 b b b
L5y Sa—+ vy a+ ey a+5 _
8 6
b—a 1 1 p+1 5 p+1 %
< — (= +(=
66 ()
1 1
. [<4|f'<b>‘f+2|f'<a>|‘f>q+ <4|f’(a)l"+2|f’(b)l">"]
9 9

(,:H (;)pH)é [(11|f,(b);]6+|f/(a)q)é+<11|f’(“):6+|f'(b)")"11}7

which is established by Gumus et al. in paper [23, Corollary 1].

+

Corollary 3.15. Let us consider h(t) =t* in Corollary 3.13. Then, the following inequality

;[3f(5a+b> 2 (a+b)+3f<a+65b)} _biaa/bf(t)dt

1 1\ 7! ’
: {<<p+1> (3) )
HE =)@ (@I (6 -5 )l
3 65(s+1) 3-65(s+1)
N 1 17+1 ( 3 >p+l % (35+1 _ 1) |f’ (b)|q+(5s+173s+1) \f’(a)|q é
p+1 12 3.6 (s+1)
. 3s+1 |f/ (5s+1 3S+1) Vi (b)|q>cl1] }
3 6S(s+1) '




Euler—Maclaurin-type Inequalities for 7—convex Functions via Riemann-Liouville Fractional Integrals — 66/69

Corollary 3.16. If we assign h(t) = 1 in Corollary 3.13, then we get the following inequality

{3f<5a+b>+2f(a;b>+3f<a+5b)} ! a/f
< b;“{((pil) (;)) (If’( >|q;f/<a>|q>q
(el @) eremsereny}

Theorem 3.17. Assume that the assumptions of Lemma 2.1 satisfy and the function |f'|?, ¢ > 1 is h—convex on [a,b]. Then, we
obtain the following Euler-Maclaurin-type inequality

’ {3f(5““’> 2f(“”’) 3f<“+5b>}2a_(;r_(:);kl) e f@ -+, f(b)H
b—a

< {(qn(a))l—i[[q»a(a;h)|f’<b>|q+<p4<a;h>|f'<a>|"}
T s (h) | (@] + g (ch) | <b>|q]5]

Q=

+ (@ () [[% (a;h)\f’<b>|"+<p6(a;h>lf’(a)\"ﬁ

T [ps(eh) | (@] + g5 ()| £ (5)]] 5} } |

Here,

1
3
a) = 1% — = |dt
(o) = [lio—3
3
1 1\ a+1 1 ln(i)
Tﬂ(l_(§> )—57 0<a<iny,
2 3,1—0—l 1 1ya+1 1 In(3
an(3) e (G HEm L mg;gﬂx

and

Proof. When we apply (3.1) to the power-mean inequality, we have

’ {3f(5“+b> 2f(““’) 3f<“+5b)}—2a_(;r_(2‘)31) e, f@+a, f(b)H
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1— 1

3
b— f t \1|?
< 4a /\t“|dr /\t“| ( b+) dt
0
1 1
J iy 7
+ /|t°‘|dt /|t°‘| (Las 22l "
2 2
0 0
1 1
l‘ 3 1 3 t 2—t \|? '
t%— \dt % — b+ dt
- / 4 / 4 f(z T “)
%
1 1
] 3 T l 3 2 gl
¢ —t
1% —Z\dt 1% — " —a+=—0>b)| dt
* / 4 / 4 f(z“ 2 )
1 1
1 1

19 it follows

’ [3f(5a+b) 2f(“+b)+3f(“+65b)}—Za(;F_<Z‘)Il)[JM (>+Ja+b+f(b)]‘

1 -5 !
Sb;a O/z“dt O/t“[h(; |q+h< )|f w

1—1
q

q

+ jt“dr jt"‘ [h (%) |/ (a)|* 4+ <22_t) f (b)ﬂ dt 5
0 0

_1
=2

-

dt

:h(;)|f yuh( );f |:dt

+
w\—\’_
~
R
IR
w\-—\H
~
S}
\
AW

1 1 _
3 3 t )|
+ /t“—z dt /t“—z _h(§>]f a)| +h( >|f | dt
! !
This finishes the proof of Theorem 3.17. O

4. Summary and Concluding Remarks

In this paper, several Euler-Maclaurin-type inequalities are investigated for differentiable 2—convex functions by using the
Riemann-Liouville fractional integrals. Moreover, by using Holder inequality, we give some Euler-Maclaurin-type inequalities
for Riemann-Liouville fractional integrals. Furthermore, by using the special choices of the obtained results, we obtain the
some Euler-Maclaurin-type inequalities.

In future papers, the ideas and strategies behind our results on Euler-Maclaurin-type inequalities using Riemann-Liouville
fractional integrals may pave the way for new avenues of research in this field. Improvements or generalizations of our results
can be explored by considering different classes of convex functions or other types of fractional integral operators. Additionally,
one could derive Euler-Maclaurin-type inequalities for various function classes with the aid of quantum calculus.
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Abstract

This study investigates the impact of measurement error on variable sampling schemes indexed by Acceptance
Quality Limit (AQL) and Average Outgoing Quality Level (AOQL) while considering a known Coefficient of
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conforming items. The operating characteristic (OC) function is analyzed for various CV values, highlighting how
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1. Introduction

The primary objective of quality control is to ensure that a product or service meets the required standards and satisfies
customer expectations. This involves maintaining consistency in production processes and ensuring product reliability. To
achieve this, the acceptance of an application is recognized as part of a process that involves detecting and analyzing product
quality, implementing quality control measures, and making necessary improvements, particularly in identifying and managing
defective components.Replacement plan is one of the classifications of warranty that requires fewer instances but provides
the same protection to manufacturers and consumers [1]. To check the stability of the product. CV is defined as the ratio of
the standard deviation to the mean; This is better than the overall effect. It is considered an important metric to identify and
compare changes. It is more important to use CV to describe variance than standard deviation. CV allows investors to determine
how unpredictable or risky the assumption is compared to the expected return on investment. In recent years, a lot of work
has been done on different models for different situations. [2] proposed a two-stage regression model based on the dependent
variable. [3] investigated the robustness of one-shot methods measured by AQL and AOQL. [4] and [5] investigated that CV
can be used as a negative factor. Obtaining a high level of final product while controlling the production cost is a challenge in
the production process. Analytical techniques have been used effectively to solve this problem; For this purpose, the product is
analysed. All audits have the potential for errors, such as accepting the wrong product and rejecting the appropriate product.
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These errors are called observational errors, are mostly due to chance and can be predicted. The requirement that a product
measure be within certain limits is often more important than the requirement that the product mean and variance be at or near a
decision. Many authors have proposed acceptance criteria as a measure of error. [6] proposed acceptance through change as
a measure of uncertainty. [7] presents a model based on measurement error for variables. [8] proposed a two-stage variable
sampling plan to compare its performance with the single sampling plan by minimizing the ASN using the two-point approach
on the OC curve. [9] have used three forms of acceptance criteria(c-method, s-method and R-method) for the selection of
single sampling plan for variables. [10] introduced a new variable sampling plan based on the process capability index to deal
with product acceptance determination. [11] studied the impact of the coefficient of variation (CV) on single-sampling plans,
highlighting its role in improving quality control under normality assumptions. [12] determines plan parameters using the
classical two-point condition on the operating characteristic curve to meet both producer and consumer risk requirements.
The proposed sampling plan achieves the same protection with a smaller sample size, particularly for high-quality lots. [13]
investigates the performance of the coefficient of variation chart in the presence of measurement errors for a finite production
horizon. Also, studies a two-sided Shewhart coefficient of variation chart with measurement errors for detecting both increases
and decreases in the coefficient of variation for short run processes using an error model with a linear covariate. [14] considered
a generalized multiple dependent state (GMDS) sampling plan for accepting a lot based on the coefficient of variation when a
quality characteristic comes from a normal distribution. [15] aimed to develop a coefficient of variation (CV) control chart
utilizing the generalized multiple dependent state (GMDS) sampling approach for CV monitoring. [16] developed some novel
calibration-based coefficient of variation estimators for the study variable under double-stratified random sampling (DSRS)
using the robust features of linear (L and TL) moments, which offer appropriate coefficient of variation estimates.

The remaining article is structured as follows: Section 2 discusses the methodology of the sampling plan. Section 3 presents
the numerical tables, calculations, and results. Section 4 provides a discussion on the effect of CV on AQL, AOQL, and
measurement error. Finally, the conclusion of this study is presented in Section 5.

2. Variable Sampling with Known Coefficient of Variation Under Measurement Error
In connection with the variable sampling plan when o is known, the density function is given by:

Ye ]

O(ye) = v

where Z ~ N(0, 1). The acceptance criterion for the inspection plan with upper specification limit, U, is:

e%ZZdZ

accept the lot if X+kg, < U,
where kg, is the acceptance parameter. Now, the acceptance criterion for the lower specification limit, L,, is:
accept the lotif x¥+ks, > L.
The fraction non-conformities in a lot given will be:
¢(—Ve) = pe @.1)

with

U,—u
c.

Ve =

If the proportion defective in the lot is p,, then V.0, 4+ 1 = U, and its probability of acceptance will be:

Pu(pe) = §(we) (2.2

where
We = (Ve _ng) \/ nGepez =+ V%
Pe

whenever p, is the measurement error, given by the equation (‘;p = \/172) and v, is the coefficient of variation.
¢ —Pé
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If all the fallacies originated in the rejected lots are reinstated by the conformities in a rectifying inspection plan. The
determination of AOQ is approximated by:

AOQ = peFu(pe)-

If pep, is the proportion non-conformity at the maximum value of AOQ, then AOQL is given by:

AOQ = pemby (pem)~ 2.3)

If AQL(p.1 ) is specified, then the corresponding value of v4or or V. will be fixed and if P,(p.) is fixed at 95%, then
waor = w1 = 1.645. Hence, we have:

1.645 = (Vo1 — ko, )1/ 16, P2 + V2. 2.4)

So that for a given AQL, k¢, is determined by the sample ng,. For calculating the optimal value of ng, and kg, , a trial value is
assumed and the probability of acceptance at p,,, is found from equation (2.3) as:

AOQL

Pa(pem) = D . (2.5)

The auxiliary variables V,,, and w,,, corresponding to the values of p,,, and P,(p.) respectively, can be obtained using the
equation (2.1) and (2.2). The values of V,; and w,; = 1.645 are known for a given value of p,;. By using values of V., w,1,
Vem and w,,,, we can calculate ng, by the following equation given by Wallis (1948):

hg, = (Wel - Wem)2 )

¢ (Vel - Vem)2 (26)

By using the value of ng, given in equation (2.6), it is observed whether or not the trial value of p,,, satisfies the following
equation:

AOQL — P?m \/n(fe exp [_ (W%m - vezm)] =0. 2.7

The equation (2.7) can be obtained by following the formula:

dAOQ dF, (pe)
=P =0 2.8
dp, a(pe) + Pe dp, (2.8)
where
dr, (Pe) - ) 2
7% = =g, expl (w3~ Vi)

If the trial value of p,,, would not satisfy equation (2.8), then another value will be obtained from the same equation, and the
method of successive substitution is often found for the optimal result, and equation (2.8) can be rewritten as:

AOQL

Pem \/”lae €Xp [7(ng - vezm)] .

Pem

This iterative process continues till the convergence of p,,, is achieved. Furthermore, the value of kg, can be calculated using
equation (2.4).

3. Numerical lllustration and Result

For illustrating the calculation numerically, we have considered a single sampling plan for variables under measurement
error with the effect of the coefficient of variation. For examining the sampling scheme following values are considered:
pPe=oo(error free),2,4,6, v,=0,1,4,8,16.

Furthermore, Table 4.1, Table 4.2, Table 4.3, Table 4.4 is used for the selection of o-method single sampling plan. For
example, if we fix the AQL=1% and AOQL=1.25% then Table 4.1 provides ns, = 23 and ks, = 1.984 when v, = 0. Suppose
that it is decided to use the -method acceptance criterion when 6, = 2.0, there is an upper specification limit U, = 10 exists,
and a unit for which the quality characteristic x > U, is considered as non-conforming. In such a case, Table 4.5, Table 4.6,



Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error —
73/85

Table 4.7, Table 4.8 shows the performance characteristics of the plan with ns, = 23 and ks, = 2 under a rectifying inspection
scheme. If the true process average quality is operating at AQL(¢=3.82) then 95% of the submitted lots will be accepted and
5% of the rejected lots will be rectified by replacing non-conforming units with conforming units. In that case, the AOQ will be
only 0.95%. If the submitted lot quality deteriorates to 0.19%, only about 67% of the lots will be accepted by the sampling plan,
and one out of every three lots will be rejected and rectified. The AOQ in such a case does not exceed the AOQL=1.25%, which
means, irrespective of the product quality submitted by the producer, the consumer will receive an average quality not worse
than 1.25% under the rectification scheme.

The user of Table 4.1, Table 4.2, Table 4.3, Table 4.4 given here should understand the limitations of plans indexed by
AOQL. Sampling with rectification of rejected lots on the one hand reduces the average percentage of nonconforming items in
the lots, but on the other hand, introduces non-homogeneity in the series of lots finally accepted. That is, any lot will have a
quality of p,% or 0% nonconforming, depending on whether the lot is accepted or rectified. Thus, the assumption underlying
the AOQL principle is that the homogeneity in the qualities of individual lots is unimportant and only the average quality
matters. For plans listed in Table 4.1 if the individual lot quality happens to be the product quality p., at which AOQL occurs,
then the associated probability of acceptance will be poor. For example, at an AQL=0.25% and an AOQL=1.25% Table 4.9
gives py(pem) = 0.32, then, from equation (2.5), pem = 3.90%, then on an average of every three lots passed on to the customer,
two will be free from non-conforming items, the third lot will contain 3.90% non-conforming items, which is 16 times the
AQL specified for v, = 0. In a similar way, we can interpret the results for other values of v,. Furthermore, if we consider the
plan given in Table 4.2, the AQL is set at 0.15%, which means, a lot must produce no more than 0.15% defective items during
the production process to be acceptable. AOQL of 0.5% means the average proportion of defective products after inspection
shall not rise above 0.5%. The acceptance probability is comparatively low p;(pem) = 0.414 i.e. 41.4% given in Table 4.10,
this low likelihood indicates that the lot will probably be rejected more than half the time, then equation (2.5) gives lot quality
Pem = 1.208%, a substantial increase over the AQL of 0.15%. This indicates that the lot’s defect rate is significantly higher
(almost 8 times) than what is adequate. In addition to, The sample plan given in Table 4.3 may be sufficiently tolerant to accept
lots with defect rates higher than the acceptable threshold, as indicated by the high likelihood of acceptance 80.3% given in
Table 4.11, due to the lot quality of 0.0996%, obtained by using equation (2.5), being greater than the permissible limit of both
AQL=0.065% and AOQL=0.08%. This implies that even if the lot frequently passes inspection, there are still more defects than
is ideal. The high CV of 8 indicates a high degree of process variability, which raises the risk of variable product quality and
adds to greater failure rates. Table 4.12 provides values of the probability of acceptance for different values of v, when p, = co.

To avoid such inconvenience, the producer should maintain the process quality more or less at the AQL. The high rate of
rejection of lots at p, = p.,, will also indirectly put pressure on the producer to improve the submitted quality.

4. Discussion
In addition to, CV plays a significant role in variable sampling scheme indexing in terms of AQL and AOQL, especially in
the presence of measurement error. Here’s how it affects these parameters:
1. AQL:

* In variable sampling schemes, AQL represents the maximum acceptable level of non-conforming items in a batch or lot.

* The impact of CV on AQL is primarily through its influence on measurement error. A higher CV can lead to increased
measurement variability, which may affect the determination of whether a batch meets the AQL criteria.

* When there’s measurement error, a higher CV can result in wider variability in measured values, potentially leading to
misclassification of batches as conforming or non-conforming.

2. AOQL:
* AOQL represents the average quality level of outgoing lots over time when the process is operating at its AQL.
* Measurement error, influenced by the CV, can affect the AOQL by introducing variability in the measurement process.

* A higher CV can lead to increased uncertainty in measuring the quality of outgoing lots, potentially impacting the AOQL
calculations.

¢ In variable sampling schemes, where measurement error is considered, adjustments may need to be made to the AOQL
calculations to account for the variability introduced by the CV.
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cv AQL%
AOQL% 0.04 0.065 0.1 0.15 025 04 0.65 1 L5 2.5 4 6.5
0.05 443.105
0.08 162935 43,2.965
0.125 9,2.800 152794 382.823
02 6.2.666 8.2.644 132,638 29.2.660
032 42533 5.2.502 7.2.482 112475 292504
ve=0 05 3.2.404 42367 5.2.339 6.2.319 112311 292346
038 2,2.260 32219 3,2.186 4,2.159 6.2.134 102129 27.2.169
125 2,2.070 2,2.033 3,2.002 4,1.968 5.1.947 9,1.945 23,1.984
2 2.1.967 2,1.825 3.1.786 3,1.756 51735 8.1.733 17.1.766
32 2,1.587 2,1.552 3.1.522 41504 6.1.502 16.1.548
5 2,1301 2,1.276 3.1.261 6.1.263 14,1319
8 2,1.004 2,0.983 3.0.968 50975 12,1.045
0.05 45,3.107
0.08 172948 442968
0.125 102.829  162.808  39.2.827
0.2 72719 9.2.676 142.655 302666
032 52619 6,2.561 82519 122495 302509
ve=l 05 42,529 5,2.460 6,2.406 7,2.364 122333 302351
0.8 32439 42361 42296 52241 7.2.184 112,154 282175
125 32271 3.2.198 42.133 5.2.059 6.2.004 10,1971 12,1.867
2 3.2.099 3,2.025 41937 4,1.864 6.1.802 24,1991 18,1778
32 3,1.822 3,1.734 4,1.651 9,1.769 7,1551 17.1.561
5 3,1.519 5,1.590 4,1373 71318 16,1.333
8 3.1.438 3.1.203 4,1.108 5.1.049 13,1.064
0.05 59.3.139
0.08 313.055  59.3.001
0.125 243015 302917 53.2.865
02 212990 232874 282780  44,2.720
032 192975 202849 222740 262.645  45.2.684
Vo= 0.5 182965 192835 202719 212611  262.645 442528
0.8 172958 182.825 182705 192500  21.2.627 252487 432358
125 172819 17,2697 182579 192617 202469 242316 382193
2 172691 172571 182611 182460 202298 222153  31,1.877
32 172607 172454 182289 192137 211809  24,1.719
5 172285 172129 18,1784 191.677  29,1.447
8 171924 171771 17,1658 191370 27,1197
0.05 103,3.190
0.08 743.162  101,3.052
0.125 693.154 743025 962922
02 663.151 683017 722806  87..791
032 653.149 663014  67.2.889 702771  87.2.631
ve=8 05 653.148 653012 662887 672766 702610 87,2475
038 653.148 653011 652886 652764  662.605 692454 852305
125 653011 652886 652763  652.603 662450 69,2285
2 642.885 642763  652.602 652448 662281 672126 74,1979
32 642.602 652447 652279  652.123 66,1968 74,1768
5 642381 642.121 651966 661757  72,1.557
8 642.121 641965 651755 661547 70,1317
0.05 275.3.25
0.08 259325 2733.12
0.125 257325 2593.1 2702990
0.2 257325 257311  2582.988  264,2.866
032 256325 256311 2572988 2572865  264,2.706
ve=16 0.5 256325  2563.01 2562987  257.2.865  257.2.704  263.2.551
0.8 256325  2563.1 2562987 2562865  256.2.704  257.2.549 2622382
125 256311  2562.987  2562.865 2562704  2562.549  257.2.381  260.2.224
2 2562987  2562.865  2562.704 2562549  2562.381  2562.224  258,2.068
32 2562704 2562.549 2562381 2562224  2562.067  257,1.857
5 2562381 2562224 2562067  2561.857  257.1.648
8 2562224 2562.067  256,1.857 2561648 2561411

Table 4.1. Values of ng, and kg, for different values of v, when p, =4
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cv AOQL%
AOQL(%) 0.04 0.065 0.1 0.15 0.25 04 0.65 1 15 25 4 6.5
0.05 45,3108
0.08 162,942 432.966
0.125 9,2.810 16,2.802 39.2.827
0.2 6,2.678 9,2.654 14,2.646 30,2.666
0.32 4,2.547 52514 8,2.492 12,2.483 30,2.509
Vo= 05 3,2.420 42381 5.2.351 7,2330 11,2.320 30,2.351
0.8 22278 32236 3,2.201 42172 6.2.145 10.2.138 28,2.174
125 2,2.089 3,2.051 32018 4,1.982 6,1.959 10,1954 24,1.990
2 2,1.990 2.1.844 3,1.803 3,1.771 5,1.747 8,1.743 17,1773
32 2,1.607 2,1.570 3,1.538 4,1518 6,1.513 17,1.555
5 2,1.321 3,1.294 3,1.276 6,1.274 15,1.326
8 2,1.026 2,1.003 3,0.984 5,0.988 13,1.053
0.05 463.111
0.08 172954 462972
0.125 10,2.837 17,2814 402831
02 7.2.728 10,2.684 15,2.661 31,2671
0.32 52628 6.2.569 9.2.527 13.2.502 312514
ve=1 0.5 42539 5,2.470 6,2.415 82372 12,2.340 31,2.356
0.8 3,2.449 42371 4,2.306 5,2.250 7,2.193 11,2.161 29.2.180
1.25 32,81 3,2.208 42143 5,2.068 7,2.013 11,1.979
2 3.2.109 32,035 4,1.947 4,1.873 6,1.811 25,1.997 18,1.784
32 3,1.832 3,1.744 4,1.661 9,1.777 7,1.560 18,1.567
5 3,1.529 5,1.599 4,1383 7,1.326 16,1339
8 4,1.448 3,1.213 4,1.118 6,1.058 14,1.070
0.05 61,3.142
0.08 31,3.057 60,3.004
0.125 243017 31,2919 55,2.867
0.2 21.2.991 23,2.875 292782 452722
0.32 192,975 20,2.851 222742 262647  46,2.685
V=4 05 18,2.966 19.2.836 202720 212612 262646 452.529
0.8 17,2.958 18.2.826 18,2.706 19,2.591 212,627 252.487 432359
125 17.2.820 18.2.697 18.2.579 19.2.617 20,2470 242317 39,2.194
17.2.691 17,2.571 18,2.611 18,2.460 20,2.299 232.153 32,1.879
32 17,2.608 17,2.455 18,2290 192,137 21,1.811 24,1721
5 17,2285 18,2.130 18,1.785 19,1.678 30,1.449
8 17,1.925 17,1772 17,1.659 19,1.376 27,1.199
0.05 103,3.191
0.08 75,3.162 102,3.053
0.125 69,3.155 74,3.025 97,2.923
02 66.3.151 68,3.017 72,2.897 87,2.792
0.32 65,3.149 66,3.014 67,2890 702772 88,2.632
ve=8 05 65.3.149 65,3.012 66,2.888 67.2.766 70,2.611 87,2.476
0.8 65,3.148 65,3.012 652.886 652764 67,2.605 69,2.454 85,2.306
1.25 653.011 652.886 652763 65,2.603 66,2.450 69,2.285
2 64,2.885 64,2.763 65,2.602 65,2.448 66,2.281 672126 75,1.980
32 64,2.602 64,2.447 65,2.279 65.2.123 66,1.968 74,1768
5 64,2.381 64,2.122 65,1.966 66,1.757 72,1557
8 64,2.121 64,1.965 65,1.755 65,1.547 70,1.317
0.05 275,3.254
0.08 2603251  2743.117
0.125 2573250  2593.114  270,2.990
0.2 2573250  2573.113  259,2.988  264,2.867
0.32 2563250  2563.113  257,2.988  258,2.865  264,2.706
ve=16 0.5 2563250  2563.113 2562987  257,2.865  257,2.704  2632.551
0.8 2563250  2563.113 2562987  2562.865  2562.704  257,2.549  2622.382
1.25 2563.113 2562987  2562.865 2562704  2562.549 2572381  260,2.224
2 256,2.987  2562.865 2562704 2562549 2562381  2562.224  2582.068
32 2562704 2562549 2562381 2562224  2562.067  257,1.857
5 2562381 2562224 2562067  256,1.857  257,1.648
8 2562224 2562.067  256,1.857  256,1.648  256,1.411

Table 4.2. Values of ng, and kg, for different values of v, when p, =6



Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error —

76/85
cv AQL %
AOQL(%) 0.04 0.065 0.1 0.15 0.25 04 0.65 1 15 25 4 6.5
0.05 37,3.082
0.08 13,2.898 36,2.943
0.125 7,2.751 13,2757 32,2799
02 5,2.606 7,2.593 11,2.598 242,633
0.32 3.2.461 42438 6.2.427 9,2.431 252477
ve=0 05 32,320 32292 42272 52261 92,267 242319
0.8 2,2.164 22.131 3,2.106 3,2.087 52,074 8,2.082 232.141
1.25 2,1.969 2,1.941 2,1.917 3,1.894 5,1.885 8,1.897 19,1.953
2 2,1.835 2,1.725 2,1.696 3,1.677 4,1.669 6,1.681 14,1730
32 2,1.480 2,1.455 2,1.437 3,1.432 5,1.443 13,1.511
5 2,1.198 2,1.184 3,1.181 5,1.201 12,1.280
8 1,0.889 2,0.879 2,0.880 4,0.907 10,1.003
0.05 53,3.127
0.08 29,3.045 53,2.989
0.125 23,3.007 542992 482.853
02 20,2.984 22,2.866 272771 40,2.708
V=4 0.32 19.2.971 20,2.844 21,2734 252636 41,2678
05 18,2.963 18,2.831 19,2714 21,2.604 252,641 40,2.522
0.8 17,2.958 17,2.823 18,2.702 19,2.586 202,624 232482 39,2.352
1.25 17.2.817 17,2.694 18.2.576 182,615 20,2.466 232312 36,2.188
2 17,2.689 17,2.569 17,2.610 18,2.458 19,2.296 21,2.149 30,1.867
32 17,2.607 17,2.453 18,2.288 18,2.135 20,1.804 23,1711
5 17,2284 17,2.128 18,1.781 19,1.673 27,1.437
8 17,1.923 17,1770 17,1.656 19,1.371 26,1.188
0.05 97,3.186
0.08 74,3.161 96,3.048
0.125 68,3.153 72,3.023 92,2918
02 66,3.150 67,3.015 71,2.895 84,2788
0.32 65,3.149 66,3.013 67,2.889 70,2.770 87,2.630
V=8 05 65.3.148 65.3.012 66,2.887 66,2.766 69,2.609 85,2.473
0.8 64,3.148 65,3.011 652.886 652764 66,2.605 69,2.453 82,2.302
125 65,3.011 65,2.885 65,2.763 65,2.603 66,2.449 68,2284 782.140
2 64,2.885 64,2.763 65,2.602 65,2.448 652280 672125 73,1.977
32 64,2.602 64,2.447 64,2.278 65.2.122 66,1.967 72,1.766
5 64,2.381 64,2.121 65,1.966 66,1.757 71,1.555
8 64,2.121 64,1.965 64,1.755 65.1.547 69,1.316
0.05 272,3.253
0.08 2503251  2713.116
0.125 2573250  2593.114  268,2.990
02 2573250  257.3.113 2582988  263.2.866
ve=16 032 2563250  2563.113  257,2.988  257.2.865  263.2.706
05 256,3.250  2563.113 2562987  256,2.865  257,2.704  2622.550
0.8 2563250  2563.113 2562987  256,2.865 2562704  257,2.549  261,2.382
1.25 2563.113 2562987  2562.865 2562704  256,2.549 2572381  259,2.224
2 2562987  2562.865 2562704 2562549 2562381  2562.224  2582.068
32 2562704 2562549 2562381 2562224 2562067  257,1.857
5 2562381 2562224 2562067  257,1.857  257,1.648
8 2562224 2562.067  256,1.857  256,1.648  256,1.411

Table 4.3. Values of ng, and kg, for different values of v, when p, =2



Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error —

77/85
cv AQLY%
AOQL% 0.04 0.065 0.1 0.15 0.25 04 0.65 1 15 25 4 65
0.05 473112
0.08 172900  462.972
0.125 9,2.754 162.807  40.2.831
0.2 6.2.608 9,2.661 142652 30.2.670
0.32 42,464 6.2.523 8,2.500 122489 312513
ve=0 05 3,2.324 4239 5,2.361 7,2.338 12,2327 31,2355
0.8 2,2.168 3,2.249 42213 4,2.183 6,2.154 112,145 292178
125 22,104 3,2.065 3,2.031 4,1.994 6,1.968 10,1.961  25,1.994
2 22,006 2,1.860 3,1.817 4,1.783 5,1.748 8,1.741 18,1.788
32 2,1.623 2,1.585 3,1.551 4,1529 6,1.522 17,1.561
5 2,1.337 3,1.308 3,1.288 6,1.284 15,1.332
8 2,1.044 2,1.019 3,1.998 5,0.999 13,1.060
0.05 45,3.142
0.08 16,3.061 45,3.006
0.125 83.019 15.2.922 39,2.869
0.2 5,2.994 8.2.877 13,2785 30,2726
0.32 3,2.978 4,2.852 6,2.743 112649 30,2.686
ve=4 05 2,2.969 3,2.838 42721 6.2.614 112647 30,2531
08 2.2.962 2,2.829 3.2.710 32592 52,628 9.2.488 30,2.358
1.25 2,2.823 22703 22614 32618 5.2.470 92313 242.197
2 1,1.697 22612 22614 3.2.463 42294 7,2.154 17,1.882
32 2,2.612 2,2.458 2,2.286 3,2.138 5,1.813 9,1.723
5 22283 22,131 3,790 4,1.683 14,1.452
8 1,1.931 2,1.778 2,1.669 3,1.378 12,1.203
0.05 109,3.195
0.08 78,3.166 105,3.055
0.125 71,3.157 77,3.029 342.924
0.2 683.154  713.021 9,2.897 24,2792
0.32 67.3.152 68,3.017 5.2.891 6.2.771 252,632
ve=8 0.5 66,3.151 67,3.015 32889 42768 6.2.611 242476
0.8 663.150  663.014 2,2.888 2,2.765 3,2.606 7,2.457 22,2.306
1.25 66,3.013 2,2.887 2,2.765 2,2.605 4,2.452 7,2.288 19,2.145
2 1.2.887 1.2.764 2,2.604 3,451 42284 5.2.128 11,1.980
32 22,604 2.2.449 22282 32.125 4,1.970 12,1772
5 22382 22,123 2,1.968 4,1.760 8,1.557
8 12,123 1,1.966 2,1.758 3,1.550 6,1.318
0.05 43,3232
0.08 12,3.221 39,3.004
0.125 73219 21,3.097 27,2.964
02 43218 53.081 82,957 19,2.839
0.32 33217 4,3.081 4,2.955 6,2.883 19,2.678
ve=12 05 2,3217 3,3.080 3,2.954 3,2.832 6,2.673 192,523
0.8 23216 2,3.080 2.2.954 2,2.832 32,671 52517 17,2413
1.25 2,3.080 22,954 2.2.831 22,671 42517 7.2.411 12,2.199
2 1.2.954 12831 22,671 22517 42411 1.2.190 6.2.036
32 1,2.671 22516 32342 1,2.258 1,2.034 2,1918
5 22342 1,2.258 1,2.034 2,1.918 4,1.616
8 1.2.190 1.2.033 12917 3,1.615 4,1379
0.05 28,3.255
0.08 6,3.251 223.117
0.125 5,3.251 73115 222,991
0.2 3,3.251 53.114 8,2.989 18,2.868
0.32 2,3.250 43.114 4,2.988 5,2.866 9,2.706
ve=16 05 2,3.250 33.114 22,988 3.2.866 5.2.705 9.2.551
08 2,3.250 23.114 22,988 2.2.865 3.2.705 32,550 72382
1.25 23.113 1,2.988 1,2.865 2,2.705 3,2.550 62382 42224
2 1,2.988 1,2.865 2,2.705 22550 42382 42224 2,2.068
32 1,2.705 2,2.550 2,2.381 22224 1.2.067 7,1.858
5 22381 22204 1.2.067 1,1.857 2,1.648
8 12224 1.2.067 1,1.857 2,1.648 3,1.412

Table 4.4. Values of ng, and kg, for different values of v, when p, = oo



Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error —

78/85
cv u Ve p(%) W Pa  AOQ
3.82  3.09 0.1 1.6381  0.9493 0.095
4.2 29 0.19 0.4364 0.6687 0.1248
45 275 0.3 -0.5123  0.3042  0.0907
ve=0 5 25 062 -2.0934 0.0182 0.0113
53 235 09 -3.0421  0.0012  0.0011
5.6 22 139 -3.9908 0 0
3.82  3.09 0.1 1.639  0.9494 0.095
42 29 019 0.2299  0.5909 0.1103
45 275 0.3 -0.8825  0.1887 0.0562
Ve= 5 25 062 -2.7366  0.0031  0.0019
53 235 0% -3.849  0.0001  0.0001
5.6 22 139 -4.9614 0 0
3.82  3.09 0.1 1.6433  0.9498  0.0951
4.2 29 0.19 -0.2376  0.4061  0.0758
45 275 0.3 -1.7225  0.0425 0.0127
Ve=8 5 25 062 -4.1974 0 0
53 235 094 -5.6823 0 0
5.6 22 139 -7.1672 0 0
3.82  3.09 0.1 1.6477 0.9503  0.0951
42 29 019 -0.8369 0.2013  0.0376
45 275 0.3 -2.7984  0.0026  0.0008
Ve=12 5 25 062 -6.0676 0 0
53 235 09% -8.0291 0 0
5.6 22 139 -9.9906 0 0
3.82  3.09 0.1 1.6387  0.9494 0.095
4.2 29 0.19 -1.5063 0.066 0.0123
45 275 0.3 -3.9893 0 0
V=16 5 25 062 -8.1275 0 0
53 235 094 -10.6104 0 0
5.6 22 139 -13.0934 0 0
Table 4.5. Performance characteristic for variable plan under known CV under measurement error when p, = 4

cv n Ve p(%) W Pa  AOQ
382 309 0.1 16381 09493  0.095
42 29 019 04364 06687 0.1248
45 275 03 -05123 03042 0.0907
Vo= 5 25 062 -2.0934 00182 00113
53 235 094 -3.0421 0.0012 0.0011
56 22 139 -3.9908 0 0
382 309 0.1 1.639  0.9494  0.095
42 29 019 0229 05909 0.1103
45 275 03 -0.8825 0.1887 0.0562
ve=4 5 25 062 -27366 00031 0.0019
53 235 094  -3849 0.0001 0.0001
56 22 139  -49614 0 0
382 309 0.1 16433 09498 0.0951
42 29 019 -02376 04061 0.0758
45 275 03 -1.7225 00425 0.0127
ve=8 5 25 062 -4.1974 0 0
53 235 094  -5.6823 0 0
56 22 139 71672 0 0
382 309 01 16477 09503 0.0951
42 29 019 -0.8369 02013 0.0376
45 275 03 -27984 0.0026 0.0008
ve=12 5 25 062 -6.0676 0 0
53 235 094  -8.0291 0 0
56 22 139 -9.9906 0 0
382 309 0.1 16387 09494  0.095
42 29 019 -1.5063  0.066 0.0123
45 275 03 -3.9893 0 0
ve=16 5 25 062 -8.1275 0 0
53 235 094 -10.6104 0 0
56 22 139 -13.0934 0 0

—

Table 4.6. Performance characteristic for variable plan under known CV under measurement error when p, = 6



Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error —

79/85

cv n Ve  p(%) W Pa AOQ
38196 3.0902 0.1 14711 09294 0.0929

4.2 29 019 05102 06951 0.1297

45 275 03 02475 04022 0.1199

Ve=0 5 25 062 -1.5105 00655 0.0406
53 235 094 22682 00117 0.0109

56 22 139 3026 0.0012 0.0017

38196 3.0902 0.1 14977 09329 0.0933

42 29 0.9 05024 0.6923 0.1292

45 275 03  -02826 0.3887 0.1158

Vo= 5 25 062 -1.5908 0.0558 0.0347
53 235 094  -2.3758 0.0088 0.0082

56 22 139  -3.1607 0.0008 0.0011

3.82 309 0.1  1.7484 09598 0.0961

4.2 29 019 03467 06356 0.1186

45 275 03 -07599 02237 0.0666

V=4 5 25 062  -2.6042 00046 0.0029
53 235 094  -3.7108 0.0001  0.0001

56 22 139 48174 0 0

3.82 309 0.1 20151 09781 0.0979

4.2 29 0.9 -02109 04165 0.0777

45 275 03 -1.9683 0.0245 0.0073

Ve=8 5 25 062 -4.8973 0 0
53 235 094  -6.6547 0 0

5.6 22 139 84121 0 0

3.82 309 0.1 21682 09849 0.0986

4.2 29 019 -1.9514 0.0255 0.0048

45 275 03 -5.2036 0 0

ve=16 5 25 062 -10.624 0 0
53 235 094 -13.8763 0 0

56 22 139 -17.1285 0 0

Table 4.7. Performance Characteristic for Variable plan under Known CV under Measurement Error when p, = 2

Ccv u Ve  p(%) w Pa AOQ
3.82  3.09 0.1 1.6381 0.9493  0.095
42 29 0.19 0.4364 0.6687 0.1248
45 275 0.3  -0.5123 0.3042 0.0907
ve=0 5 25 062 -2.0934 0.0182 0.0113
53 235 094 -3.0421 0.0012 0.0011
5.6 22 139 -3.9908 0 0
3.82  3.09 0.1 1.639 0.9494  0.095
42 29 0.19 0.2299  0.5909 0.1103
45 275 03  -0.8825 0.1887 0.0562
ve=4 5 25 062 -2.7366 0.0031 0.0019
53 235 094 -3.849  0.0001 0.0001
5.6 22 139  -49614 0 0
3.82  3.09 0.1 1.6433  0.9498 0.0951
42 29 019 -0.2376 0.4061 0.0758
45 275 03  -1.7225 0.0425 0.0127
Ve=8 5 25 062 -4.1974 0 0
53 235 094  -5.6823 0 0
5.6 22 139 -7.1672 0 0
3.82  3.09 0.1 1.6477 0.9503 0.0951
42 29 0.19 -0.8369 0.2013 0.0376
45 275 0.3  -2.7984 0.0026 0.0008
ve=12 5 25 062 -6.0676 0 0
53 235 094 -8.0291 0 0
5.6 22 139 -9.9906 0 0
3.82  3.09 0.1 1.6387 0.9494  0.095
42 29 019 -1.5063  0.066 0.0123
45 275 03  -3.9893 0 0
ve=16 5 25 062  -8.1275 0 0
53 235 094 -10.6104 0 0
5.6 22 139 -13.0934 0 0

o
—

Table 4.8. Performance characteristic for variable plan under known CV under measurement error when p, = oo



Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error —

80/85
cv AQL%
AOQL(%) 0.04 0.065 0.1 0.15 0.25 0.4 0.65 1 15 25 4 6.5
0.05  0.68462
0.08 048678  0.6899
0.125 037398  0.5014  0.67466
02 029645 038101 049125  0.65077
032 024546 030439 037744 047488  0.67303
V=0 0.5 021404 025693 030818 037456 049724  0.68675
0.8 0.19258 022477 026136 030783 0.38869 050119  0.69534
1.25 020694 023425 026838 032534 040026 05173  0.68964
2 0.1003  0.24467 028546 033675 041206 051112  0.68165
32 026547 030185 035283 04161 050142 0.68164
5 032483 036793 042307 0.52727  0.69684
8 034829 038443 04484 053969  0.70863
0.05 0.68
0.08 050133  0.71161
0.125 039951 0.51594  0.68322
02 033297 040798 0.50786  0.65699
032 029212 034321 040728 04945  0.67753
Ve= 0.5 026937 030617 035042 040758  0.5165  0.69107
0.8 025792 028473 031583 03544 042336 052198  0.70293
1.25 027702 029985 032729 037423 043717  0.53889
2 029692 031654 0.34888 039009 045203 0.69616  0.66956
32 03435 03713 041098 053672 053237  0.69074
5 039997 046154 04746 055902  0.7065
8 043228 045784  0.50469 0.57584  0.71918
0.05  0.73071
0.08 0.62803  0.74037
0.125 059635 0.64404  0.73587
02 058582 060883  0.6465 0.71357
032 058969  0.60239 0.62031  0.64894  0.73526
Ve=4 0.5 05999 060744 061737  0.6328 0.66659  0.7485
0.8 0.61693 062091 0.62626 063389 0.65032 0.68018  0.7613
1.25 0.63889  0.64175 0.64601  0.65744  0.6676  0.69247  0.76246
2 0.65998  0.66431  0.66561  0.67561  0.68326  0.70747  0.75713
32 0.69041  0.69312  0.69519 0.70777 072198  0.74111
5 072061 072411  0.72712  0.73639  0.7896
8 075019 075309  0.75577  0.80709  0.80716
0.05  0.79835
008 07729  0.80981
0.125 0.77208  0.78092  0.81269
02 07783 078313  0.78856  0.80966
032 07794 079105 0.80421 079575  0.82136
Ve=8 0.5 079929 0.78443 0.80158  0.79802  0.80837  0.82893
0.8 0.80177 080842 0.79893 081456 0.81615 0.81486  0.83862
1.25 0.80621  0.82423 0.82141  0.8249  0.8198  0.82848
2 0.83556  0.83815 0.83407 0.83822 0.83843  0.84074  0.84955
32 0.84571  0.84147 0.84725 0.85269 0.85205 0.86114
5 0.86579  0.86572  0.8208  0.86607  0.87407
8 0.88105 0.87949  0.87999  0.86502  0.88712
0.05  0.88906
0.08 0.88521  0.89379
0.125 0.88223 0.89252  0.89739
02 0.89558 0.88861 0.89561  0.90112
032 0.89634  0.89851 090249 091397  0.90623
ve=16 0.5 090596 090412 090585 0.90882  0.90806 091121
0.8 090802 091078 091484 090974 091091 090926  0.91585
1.25 091638 09184 091651 09187 091936 091965 091745
2 092472 092605 0.92469  0.92549 092502  0.92538  0.92698
32 093171 093337 093299 093216 093082  0.93224
5 093835 093635 093904 0.93642  0.93732
8 094472 094488 094531 0.94667  0.94633

Table 4.9. Values of probability of acceptance for different values of v, when p, =4



Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error —

81/85
AQL%
cv AOQL% 0.04  0.065 0.1 0.15 0.25 0.4 0.65 1 15 25 4 6.5
0.05  0.657
0.08 04946  0.6368
0125 0382 05091  0.6608
02 0304 0389 04989 0.6549
032 02524 0312 03853 04826 0.6618
V=0 0.5 02199 02637 03159 03823 05047 0.6788
0.8 01982 02309 0268 0315 03963 05078  0.7007
1.25 02124 02409 02749 03324 04077 0.5244  0.6938
2 0.1038 02507 02919 03436 04193 05146  0.6637
32 02712 0308 03595 0423 0.5085 0.6868
5 03307 03742 04296 0534 0.7022
8 0353 03903 04546 05459  0.713
0.05 0.6911
0.08 0.5084  0.6929
0.125 04065 05229 0.6895
02 03394 04149 05147  0.662
032 02978 03495 0414 05011  0.6809
Vo= 0.5 02744 03117 03564 0414 05231 0.6918
0.8 02623 02895 03211 03601 04296 0.5285 0.7017
1.25 02812 03044 03323 03798 04432  0.5449
2 0.3008  0.3208 0.3536 03953 04577 07016 0.6744
32 03474 03757 04158 05426 0.5379  0.6965
5 0404 04668 04796 05643 0.7118
8 04367 04616 05091 05806  0.7241
0.05 0.7345
0.08 0633 0.7293
0.125 0.5985 0.6461 0.7395
02 0588 06106 0.6491  0.723
032 05909 0.6037 0.6223 0.6495 0.7414
V=4 0.5 0601 0.6084 06187 06331 06688 0.7534
0.8 06174 0.6216 0.6272 0.6347 06513 0.6814 0.7637
1.25 0.6394 0.6424 0.6466 0.6548 0.6688 0.6975 0.7655
2 0.6628  0.6658 0.6701  0.6766  0.6883 071 0.7582
32 06922  0.695 07004 07087 0.7238  0.7438
5 07214 0.7248 07317 07366  0.7927
8 07516 07537 0.7557 0.7693  0.8087
0.05  0.8042
0.08 07722 0.8103
0.125 07729 0.7832  0.8075
02 07767 07854 0.7791 0.8113
032 0789 07901 0.7903 0.7977  0.822
V=8 0.5 07989 07856 0.7934 0.8031 0.8083 0.8305
0.8 08024 0.8093 0811 0.8064 08085 08173 0.8397
1.25 0.8069 07935 0.8227 0.8179 0.8261  0.828  0.8454
2 0.8323  0.8344 0.8354  0.832 08386 0.8409 0.8505
32 0.8467  0.849 0.8493 0.8516  0.852 0.8624
5 0.8655  0.866 0.8662  0.867 0.8741
8 0.8772 08813 0.8815 0.8816 0.8872
0.05 0.8893
0.08 0.8749  0.8923
0.125 0.8844 0.8934 0.8974
02 08967 0.8907  0.888 0.9011
032 0.897 0.8995 09043 0.8988  0.9063
ve=16 0.5 09064 09047 09068 09029 0909 09112
0.8 09083 09111 09153 09105 09123 09126 0915
1.25 09166 09187 09169 09193 09205 09177 0.9179
2 0.9249 09263 09267 09268 09269 09271 0.9273
32 09318 09299 09333 09327 09319 0.9328
5 09384 09365 09393 0937 09377
8 09444 09449 09453  0.9441  0.9459

Table 4.10. Values of probability of acceptance for different values of v, when p, = 6



Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error —

82/85
AQL%
CV  AOQL% 004 0065 01 0.15 025 0.4 0.65 T 5 25 7 65
005  0.6533
0.08 04465 0.6618
0.125  0.3298 04618 0.6543
0.2 0259 0341 04518 0.6174
032 02119 02674 03382 04356 0.6416
V=0 0.5 0.1837 02236 02723 03361 04588  0.6574
0.8 0.1659  0.195 02295 02727 03508 04634  0.6672
1.25 0.1803 02058 02369 02906 03632 04805 0.6589
2 0.0795 02168 02545 03031 03761 04751  0.6285
32 02382 02721 03204 03816 04666 0.6525
5 02963 03371 03904 04941  0.6694
8 03218 0356 04178 05083  0.6821
005 07167
008 06167 0.7154
0.125  0.5876 0.6289 0.7236
0.2 0.5802 0.5983  0.629 0.6912
032 05753 05963 06116 0.6404 07157
V=4 0.5 05748  0.6033 06119 0.6254 0.6578  0.7378
0.8 0.5605 06174 06219 0.6299  0.644 0.6717 0.7458
1.25 0.6375 0.6388 0.6435 0.6504  0.6624 0.6978 0.7227
2 0.6657 0.6556 0.6665 0.6723  0.6895 0.7117  0.7388
32 0.6885 0.6918  0.651 07044 07142 07373
5 0.5324 072 07274 07319  0.7831
8 07493 0751 07542 0.7646  0.8015
005  0.7976
0.08 07453  0.803
0.125 07737 07803 0.8075
0.2 07709 07725 07791  0.8021
032 07666 07884 07903 0.7889  0.7815
Ve=8 0.5 07921 07792 07934 07972 0.8047  0.811
0.8 07988 0.8044  0.811 0.8066 0.8015 0.8113  0.833
1.25 07688 07935 0.8159 0.8161  0.8259 0.8236 0.8414
2 0.8323  0.834 0.8344 08373 08359 0.8398  0.8469
32 0.8263  0.8356 09076  0.844 0.8524  0.8604
5 0.8394 0.8553 0.8615 0.8658 0.8724
8 0.8755 0844 0.8762 0.8766 0.8852
005  0.8887
0.08  0.8835 0.8915
0125  0.8771 0.88  0.8969
0.2 0.8906 0.8913  0.8988  0.8977
032 09026 0.8939 0.8945 0.8971  0.906
ve=16 0.5 0.9041 09098 09099 09099 09027 0911
0.8 09068 09092 09126 09124 09108 09125 0.9155
1.25 0.9203 09209 09197 09159 09192 09162 0.9197
2 0924 09251 09233 09234 09211 09248 0.9231
32 09311 09325 09316 09298 09333 0.9316
5 09379 09391 0938 09371 0.9374
8 09447 09448 09452 09463  0.9461

Table 4.11. Values of probability of acceptance for different values of v, when p, =2



Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error —

83/85
AQL(%)
CV_ AOQL(%) 004 0.065 01 015 025 04 0.65 I 5 25 7 65
0.05 0.7
0.08 0.501  0.727
0.125 0.389  0.515 0.7
0.2 0311 0395 0505 0.663
0.32 0.258 0318 0392 0489 0.696
V=0 0.5 0226 027 0322 038 051 0714
0.8 0203 0236 0274 0321 0402 0514 0.719
1.25 0.227 0246 0281 0338 0413 0.53  0.702
2 0.104 0255 0297 0.349 0425 0524 0.672
32 0.276 0313 0365 0428 0514 0.696
5 0336 0379 0435 054 0714
8 0358 0395 046 0553 0.72
0.05 0.618
0.08 0.613  0.739
0.125 059 0633 0.743
0.2 0571 061 0644  0.66
0.32 0.565 0597 0623 0.645 0.741
V=4 0.5 0.556 0556 0616  0.63 0.666 0.744
0.8 0.533 0485 0571 0635 0.65 0.684 0.746
1.25 0446 0521 0568 0.635 0.667 0.698  0.715
2 0.509 0513 0559 0.581 0.680 071 0.748
32 0439  0.559 0.651 0709 0.718 0.738
5 0532 0679 0665 0.698 0.786
8 0.606 0639 0576 0.767 0.801
0.05 0.76
0.08 0.704  0.802
0.125 0689 0716 0814
0.2 0.656 0.626 0784 0811
0.32 0.617 0601 0747 0.806 0.821
ve=8 0.5 0.566 0589 0732 0.764 0.808 0.831
0.8 0552 0521 0672 0756 0799 0.779 0.84
1.25 0478 0629 0713 0.755 0.717 0.779  0.835
2 0.548 0651 0.661 0.606 0.694 0798  0.847
32 0.532  0.574 0.666 0739  0.79 0.837
5 0579 0702 0.751 0.793 0.874
8 0625 072 0718 0.798 0.887
0.05 0.782
0.08 0.754  0.813
0.125 0.693 0.785 0.851
0.2 0.662 0745 0.795 0.848
0.32 062 0675 0759 082 0.861
Ve=12 0.5 0575 0613 074 0784 0819 0.861
0.8 0.567 0548 0689 0.764 0.807 0.824 0.879
1.25 0493 0.645 0719 0.757 0.743 0.78  0.883
2 0.551 0661 0.678 0.675 0.696 0.901 0.894
32 0.571  0.584 0.605 0.899 0.886 0.894
5 0498 0877 084 0.832 0.909
8 0.813 0815 0814 0818 0.909
0.05 0.865
0.08 0.849  0.883
0.125 0784 084 0873
0.2 0.748 0756  0.806  0.855
0.32 0.683 068 0773 0.828 0.904
ve=16 0.5 0.638 065 0753 0791 0832 0.904
0.8 0.612 0584 0708 0.776 0.812 0.865 0.912
1.25 0.531 0.661 0726 0762 0.779 0.808 0.921
2 0.573 0674 0.686 0.678 0715 0.821 0.924
32 0.583  0.607 0632 0769 0907 0974
5 0.55 0.625 0883 0882 0.923
8 0518 0.868 0.865 0.866 0.913

Table 4.12. Values of probability of acceptance for different values of v, when p, = o

5. Conclusion

The difference between parameters significantly impacts the variation in measurement parameters, specifically in Acceptance
Quality Limit (AQL) and Average Outgoing Quality Level (AOQL), by influencing the measurement error and subsequently
the measurement process. Measurement errors introduce biases that can lead to overestimation or underestimation of the
Coefficient of Variation (CV), which can severely affect the reliability of AQL and AOQL determinations, leading to erroneous
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acceptance or rejection decisions in quality control. CV plays an essential role in variable sampling schemes indexed by AQL
and AOQL, as higher CV values introduce greater variability, leading to batch misclassification and significantly impacting
AOQL assessments. Addressing and mitigating the effects of high CV values are crucial to ensure consistent quality control
outcomes, and modifications to quality control methods can improve the accuracy of AQL and AOQL assessments while
optimizing inspection resources. Reducing variability not only enhances product quality but also ensures the robustness and
reliability of the entire quality control process. This paper explores how CV affects variable sampling plans under AQL
and AOQL, examining how measurement errors influence the performance of these plans, and provides valuable insights
into designing sampling plans that maintain specific quality levels despite inherent measurement errors, which is critical for
balancing quality assurance with operational efficiency in production.
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Abstract

This investigation analyzes the physical properties of blood flow via a catheter in a damaged, curved artery while
taking mass and heat transfer in a magnetic field. In order to get analytical answers for axial velocity, temperature,
and concentration, this study models and solves the set of equations for the incompressible, non-Newtonian
Jeffrey fluid under the mild stenosis approximation. The findings show that while there is less barrier to blood flow
and concentration, an increase in the parameter of curvature raises shear stress of the artery wall, blood velocity,
and temperature. The effect on key factors such as axial velocity, flow rate, resistance impedance, and wall
shear stress of arterial geometrical variables such as stenosis, slip parameter, Hartmann number, and catheter
parameter is thoroughly and quantitatively analyzed. Moreover, in trapping phenomena, the artery’s curvature

throws off the symmetry of the trapped bolus.
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1. Introduction

These days, no general analytic approaches are accessible for the integration of the Navier-Stokes equations. Moreover,
solutions are applicable to all viscosity values, although they are only known for special cases [1]. The cardiovascular system
maintains blood flowing convectively through the body’s many organs. A serious condition known as atherosclerosis, sometimes
referred to as artery stenosis, is brought on by the blood flow’s deviation from its typical state [2], [3]. A number of arterial
illnesses, including myocardial infarction, artery disease, renal disease, thrombosis, high blood pressure, and strokes, can be
brought on by stenosis at one or more key places [4]. When a catheter is placed inside an artery, it modifies the hemodynamic
properties and flow pattern. A few theoretical and experimental works examined blood circulation in curved arteries with
stenosis. Via mathematical research, Dash et al. (1999) [5] investigated the flow of fluid theory through an intravenous bend
an artery stenotic. Blood is modeled as an incompressible Newtonian fluid with a laminar propagation that is supposed to be
constant. In his work, the problem-solving analytical method where the resulting boundary conditions were used to solve the
governing equations for the predicted model, and the analytic method yielded closed-form solutions for temperature, velocity,
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and slip velocity.

These days, it is generally accepted that magnetic fields can be used in physiotherapy. With the use of magnetic force, many
people are being healed by regulating blood flow and temperature. This model took into account the axis-symmetric blood flow
in a bending channel with aberrant growth of stenosis. The moderate stenosis situation has been used to simulate the constitutive
equations for an incompressible and steady non-Newtonian tangent hyperbolic fluid. The combined outcome of variable and
constant Cu-blood transportation with shape factor was investigated by Ayub et al. (2019) [6]. In this scenario, the blood flow
in a bend stenotic artery with balloon is mathematically studied by gathering its behavior as a viscous fluid. Additionally, the
Cu-blood medicated form in a bend artery with overlapping stenosis was examined. Using the numerical method, Zaman and
Khan (2021) [7] investigated the combined effects of curvature and non-Newtonian flow on unstable nanofluid flow in a curved,
overlapping stenosed link. The outcome of the study may serve as a single guideline for a pressure equation that yields a robust
solution to blood flow issues. Analytical investigations pertaining to blood flow have been conducted. In the presence of a
uniform magnetic field, this study investigates the irregular blood flow via a catheterized artery with overlapping stenosis while
taking mass and heat transfer into account.

The comprehension and progression of vascular disorders in general depend heavily on the heat effect phenomena on blood,
and the growth and development of atherogenetic processes are more strongly influenced by heat flow in conjunction with
the movement of large molecules containing dissolved gases to and through the arterial wall. Research indicates that over 80
percent of deaths from heart disease are related to abnormal blood flow to and from the heart. Thin catheter tubes used in
medicine that are constructed of materials of the highest caliber and have a variety of uses [8].

2016, Zaman et al. [9] investigated the unsteady flow of non-Newtonian blood through an inclined and catheterized artery
with overlapping stenosis. The results reveal that both slip and inclination angle significantly affect axial velocity, flow rate,
wall shear stress, and impedance. Except for wall shear stress, all parameters increase with higher slip or inclination. Hayat et
al.(2007) [10] conducted a theoretical study on the peristaltic motion of a Jeffrey fluid within a circular tube, accounting for
fluid compressibility and viscoelastic properties. The results reveal that backflow occurs mainly at high relaxation times and
low retardation times, and the net flow oscillations in Jeffrey fluid are milder than those in Maxwell fluid.

Chakravarty and Mandal(1996) [11] developed a nonlinear two-dimensional model to study unsteady blood flow through an
artery with overlapping stenosis under whole-body acceleration. The artery is modeled as an elastic tube, and blood is treated
as a Newtonian fluid influenced by a pulsatile pressure gradient and arterial wall motion. Their findings highlight how body
acceleration, stenosis severity, and wall elasticity affect velocity profiles and overall flow behavior during a cardiac cycle. In
2024, M. A. El Kot [12] conducts a theoretical investigation on the behavior of non-Newtonian Jeffrey fluid flowing through a
curved, diseased, and catheter-inserted artery, considering the effects of heat and mass transfer. The results indicate that higher
arterial curvature leads to an increase in flow velocity, wall shear stress, and temperature, while simultaneously lowering the
resistance to flow and solute concentration.

The aforementioned discussions highlight the paucity of research on the mechanics of non-Newtonian blood flow and the
dearth of research that considers the impact of magnetic particles, body force, and electrical force on the flow of Jeffrey fluid
via a tapering artery that has stenosis in the presence of a magnetic field and wall slip condition. A mathematical model is
offered here to study the combined effects of slip velocity, magnetic field, and electrical field on pertinent flow properties for
non-Newtonian blood flow in a tapering stenosed artery. The governing equations of motion and energy for the nanofluid model
have been determined and simplified, assuming a low Reynolds number and mild stenosis.

2. Problem Formulation

Let us assume that an incompressible non-Newtonian Jeffrey fluid is flowing in a cylindrically curved arterial portion of
measure L, with a moderate cramping and radius D,, wrapped inside a circle with a radius of D* and centered at the origin o.
Also consider another solid circular cylindrical flexible tube (catheter) with a radius of (<< 1) is inserted into the artery. y
stands for an axial direction and x for a radial direction in the coordinate system. During the heat and mass transfer process,
it is assumed that the artery wall experiences temperature 7; and concentration X, while the catheter surface experiences
temperature Ty and concentration Xy, where 7; > 7y and X; > Xp.

The restricted curved region’s geometric shape is taken as

o(z—s)
3Dolg

31
D) |1- 3313 — 94(z — $) 12 +96(z — 5) g — 32(z—5)}], fors<z<s+ 7"

Dy

1 otherwise.

)

The length of the conflicting stenosis is % where d is the position of the stenosis and Dy is the normal blood vessel’s cross

sectional radius. In this case, 0 represents the critical height of the stenosis, so that at z = s+ %‘) and z = s + [y, the ratio D%

<< 1, appears. % is the stenosis thickness at a range from the origin of z = s+ 3‘%.
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Overlapping stenosis

T- Xy

The governing equations stated here may be applied to present the problem’s mathematical representation
Continuity Equation

1o, . ok

Momentum Equation:

dy . dy D*i dy 21 oIl 1 9 .
p[aé—k 7+x+D*<9iz x+D*| g+x+D*$[(x+D Sl 2.2)
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x+D* dz  Jd(x+D¥)
Momentum Equation
dx dx D'x dx Xy | D* 0Il 1 d 2 D* 9S8, 5.
p[&&er&ijx—l—D*&erx—i—D*}x+D*8z+(x—|—D*) a [()C+D)sz] +D* 97 — O0Byx 2.3)
Energy Equation
P98 "V ox Tx¥D 9z " x+D" |ox 9x ) "oz \GFp oz
24
izi -
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Concentration Equation
@+,@+ D'x dn] My [0 (+D*)8n +a D*? on
¢ Yox Tx+D 9z x+D* |ox dx dz \x+D* 9z 25)

MK; 1 d 20 8 D* 00

+ — [ x+D")— _

T, x+D*|dx ox 8z x+D* 9z
where X is the fluid concentration, 7 is the temperature, K signifies the thermal conductivity, ¢, is the specific heat at constant
pressure, T,, is the temperature of the medium, M,; is the coefficients of mass diffusivity, and K is the thermal-diffusion ratio.
where y and X are the velocity components in radial and axial directions, respectively, and IT is the fluid pressure, p is the fluid

density, and p is the fluid viscosity.
The constitutive equations for the Jeffery fluid are

u dA,
S=1+7 (AHFM )
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where S is the additional stress tensor and The first Rivilin Ericksen tensor is A; = VV + (VV)T the transpose is indicated by T
and the Jeffrey fluid parameters are A (relaxation time) and A; (retardation time).

y=x=0, 7=17, X=Xy at x=a 2.6)

y=x%=0, 7=1, X=X, a x=D(z) 2.7
Using the following non-dimensional variable:

. ./ ! .l I—I/
OO popp x=st, =15 p= bl

lo %o D} ' (2.8)
T=7+(11—17)0, X=Xo+ (X —Xo)n.

x:DOxla Z:lozla y:

When the dashes are removed from the equations (2.1)-(2.5) using (2.6)-(2.8), the results are:

. 9 . 9% _
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where P, = % is Prandtl number R, = %DO is Reynolds number, E, = C(Tfi‘)) is Eckert number, D, = g—* is the curvature
14
parameter, S, = W is Soret number, B, = P,E,. is Brickmann number, S, = £~ is Schmidt number, M = Bng( )

is Hartmann number, where By is the external constant magnetic field in the radial dlrectlon A* = ll(f" Now, we make the

equations simpler for low grade by deducing the two requirements, stenosis §* = Do <<land €= —0 ~ o(1). For a low
Reynolds number flow, in the annulus with mild stenosis, the radial velocity is negligibly tiny and can be disregarded. With
these assumptions, equations (2.9)-(2.13) become

dx
7-=0 (2.14)
o1l

onn ,0%% X .
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2.17
1D, (2.17)
d an d a0
— D =-S5 D.)— 2.1
J <(x+ 5 ) SSCar<(x+ c) ax) @18)
The boundary conditions are
x=0, ®=0, n=0 on x=g¢, (2.19)
x=0, ©=1, n=1 on x=D(z) (2.20)
0% (z—s* 3
14 9= [32(z—5*)3 —96(z—s*)2+94(z—s") —33], 5" <z<s +2
D(z) = 3 2
1, otherwise
wheres*zi, e=2
0 Do

Applying the boundary conditions (2.19)-(2.20) for the expressions of axial velocity, temperature, and concentration (2.14)-
(2.18) to get

1
¥=F(x+D)M+F(x+D;) ™+

— {Dc(l +7L)(x+Dc)ddl;[}

(2.21)
)2 2
®=-B, [%Ff(x—i—Dc)le + me(xJFDC)“M —2(M? — 1)F1F2(x+Dc)l]

(M- 1)

_ M+1)?
F2 D, 2M—1 (
7(2M—])2 1(.X+ ) +

n=—B,SS, { mﬁ} (x+Dc)* M —2(M? — 1)F1Fz(x+Dc)_l]

where the functions Fi (z), F>(z)are given by

(D+D)M(e+D. M { 1
1

' (e 1DV = (D+ D)™ | 1- M {D"(l ”)iTz ((+De)(D+Dc)" — (e + Do) (D+ D)) H

B (e+DI)M(D+D )M 1
* T (DD (e + D) [

i e e+ po 000 - a0+ }].

Here, the wall shear stress distribution can be expressed using equation (2.21)

W= |FIM(x+D )M ' —BM(x+D.) ™M+

1 dIl
— {Dc(lm)dz}

Fi(x+Do)M +Fy(x+De) ™+ = {D.(1+ A1) (x+D,)

2)
x+D, '
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The stream function is

Fl M+1 M+1 F2 1-M 1-M
v=—|3 (x+D )M + (e+D )M )+m((x+Dc) +(e+Dc)' ™)
1 dll ((x+D.)> (e+D.)?
—{D.(1 = )
+1M2{c( +l)dz< TR
The fluid flow rate is
D
V:/ xdx
€
F M+1 M+1 F 1-M 1-M
V:M_H [(D+D)M*! — (e +D.) ]+m[(D+Dc) —(e+D.)' ]
1 dll ((D+D.)*> (e+D.)?
t1oe {DC(1+A)dZ( 5 - .

The arterial pressure drop is given in the form of

L*
All = / (_dH) dz.
0 dz

The resistance impedance expression

A=A
\%
2(1*M)2 V-h M+1 M+1 @) 1-M 1-M
A= D+D )M _ (4D, - D4+D)'"™ _(e+D, L
Dc(l+A)V[(D+Dc)2—(8+Dc)2][M-i—](( +De) (e+Dc)") 1—M(( +D.) (e+Do)' ™M)
whereL*zé.
lo

3. Results

This section shows the graphical outcomes for the different parameter, so here we study the many characteristics of blood
flow across overlapping stenosed arteries with heat, mass transport, and magnetic field by charting the figures of axial velocity
X, wall shear stress W;, flow rate V, impedance resistance A, temperature profile ® and concentration n. Various graphs are
drawn for the different possible values of the parameters like - height of the stenosis, Hartmann number, Brickmann number,
Soret number, and Schmidt number, etc.
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Figure 3.1. Axial velocity with different Jeffery parameter
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Figure 3.10. Flow rate for different values of critical height
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Figure 3.11. Graph of impedance for different Jeffery parameters
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We have generated figures to illustrate the effects of the Jeffrey parameter, curvature parameter, and Hartmann number on
axial velocity. The results indicate that an increase in both the curvature and Jeffrey parameters leads to an enhancement in axial
velocity. This rise in axial velocity suggests that higher viscoelasticity contributes positively to blood flow, potentially reducing
the risk of thrombosis. Conversely, an increase in the Hartmann number results in a decrease in axial velocity, implying that the
applied magnetic field impedes blood flow.

The plotted figures also depict the distribution of wall shear stress in the region of a bent stenosed artery. It is observed that
wall shear stress increases with rising values of the Jeffrey and curvature parameters. However, an inverse relationship is noted
with the Hartmann number, and critical height both contribute to a reduction in wall shear stress.

Regarding flow rate, variations with the curvature parameter for different values of critical height, Hartmann number, and
Jeffrey parameter reveal that flow rate increases with higher Jeffrey parameter and critical height. In contrast, an increase in
the Hartmann number leads to a decline in flow rate. Since an adequate flow rate helps prevent blood pooling, this finding
highlights the significance of parameter tuning in maintaining healthy circulation.

The figures also demonstrate how impedance varies in this context. Impedance is found to decrease with increasing
curvature parameter but increases with a higher Jeffrey parameter.

Temperature distribution with respect to radial distance is also analyzed for various values of the curvature parameter,
Jeffrey parameter, Hartmann number, and Brinkman number. The results show that temperature increases with higher curvature
parameter, Jeffrey parameter, and Brinkman number, whereas an increase in the Hartmann number leads to a decrease in
temperature.

Finally, concentration profiles are shown for varying values of the Hartmann number, Brinkman number, and curvature
parameter. The concentration decreases with increases in the curvature parameter and Brinkman number, while a higher
Hartmann number corresponds to an increase in concentration.

4. Conclusion

Jeffrey fluid is a type of non-Newtonian fluid that is significantly used in certain applications as it involves viscous and
elastic behaviors, contrary to the Newtonian model, this model considers the relaxation and retardation times, therefore the fluid
has a slow response to changes. Thus, Jeffery’s model examines the mass and heat transfer in blood flow that is catalyzed by a
magnetic field. The trapping phenomenon occurs when an accumulation of blood is caught inside a closed loop of flow, moving
along with the main blood, but staying separate. We talk about how different parameters affect temperature, concentration, flow
rate, wall shear stress, axial velocity, and resistance to flow.

The main observations are as follows.

1. As aresult of the successive increase in Jeffery parameter the axial velocity, wall shear stress, flow rate, and temperature
increase.

2. The values of axial velocity, temperature, and wall shear stress increase with increasing curvature parameter, while the
inverse effect is observed in concentration.

3. The increase in magnetic field parameter, i.e., Hartmann number, escalates the concentration, whereas flow rate, wall
shear stress, axial velocity, and temperature decline.

4. As the critical height increases, both the flow rate and the shear stress decrease.

5. As the Brickmann number increases, the flow rate increases, while the concentration reduces.
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Abstract

This article establishes new general two- and three-dimensional integral inequalities. The first result involves
four functions: two main functions defined on the positive real line and two auxiliary functions defined on the
unit interval. As a significant contribution, the upper bound obtained is quite simple; it is expressed only as the
product of the unweighted integral norms of these functions. The main ingredient of the proof is an original
change of variables methodology. The article also presents a three-dimensional extension of this result. This
higher-dimensional version uses a similar structure but with nine functions: three main functions defined on the
positive real line and six auxiliary functions defined on the unit interval. It retains the simplicity and sharpness of
the upper bound. Both results open up new directions for applications in analysis. This claim is supported by
various examples, including some based on power, logarithmic, trigonometric, and exponential functions, as well
as some secondary but still general integral inequalities.
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1. Introduction

Multi-dimensional integral inequalities, especially those in two and three dimensions, are fundamental tools in mathematical
analysis. In particular, they are essential for understanding the behavior of integral operators and for estimating their bounds.
See [1-4]. Among the classical results in two dimensions, the Hardy-Hilbert integral inequality occupies a prominent
place. A precise statement is given below. Let p > 1, ¢ = p/(p — 1) satisfying the Ho6lder condition 1/p+1/g =1, and
f,8:(0,400) — (0,4-o0) be two functions; they are thus defined on the positive real line, i.e., (0,+o0), and are positive. Then
the Hardy-Hilbert integral inequality states that

e ﬁf(x)g(y)dxdy < T { :wf”(X)dx] v [ [~ g‘f(y)dy} " (L.1)

provided that the integrals involved converge, i.e., [, f”(x)dx < +eo and [;"™ g?(y)dy < 4-eo. This result features a sharp
constant factor, i.e., /sin(n/p), and the product of two unweighted integral norms of f and g with parameters p and ¢,
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respectively. For the basic details, see the classic work by G.H. Hardy in [1]. Over the years, this inequality has inspired
extensive research, including numerous extensions and generalizations in higher dimensions. Notable contributions to the
development of such extensions include [5-9]. Further generalizations in higher dimensions have been explored in works such
as [10-14].

Despite this extensive literature, the derivation of sharp and tractable upper bounds for multidimensional integral inequalities,
particularly in two and three dimensions, remains a significant challenge. Many existing results involve sophisticated constants
or rely on restrictive assumptions that limit their scope. This motivates the search for new inequalities that offer both structural
clarity and wide applicability.

The first inequality established in this article addresses part of this challenge. It gives a sharp and simple upper bound for a
two-dimensional integral involving four functions: two main functions defined on (0, +o0) and two auxiliary functions defined
on the unit interval, i.e., (0,1). In a similar framework to that of the Hardy-Hilbert integral inequality, this integral is

oo ptoo l/pyl/q X y
L () () rwstiasay

where ¢ and m are the auxiliary functions. The upper bound obtained is quite manageable. It depends only on the unweighted
integral norms of f, g, ¢, and m. Explicitly, it is given by

[ A eﬂ(r)m] " [ A m"(t)dt] " [ - fl’(x)dx} . { n g"(y)dy] "

with a constant factor exactly equal to one. The proof strategy differs from the traditional approaches used in the study of
Hardy-Hilbert-type inequalities. It is based on an appropriate factorization of the integrand, the Holder integral inequality, and
a special change of variables that transforms the expression into a simpler form. This change of variables methodology is the
main originality of the proof.

In addition to the two-dimensional result, the article introduces a natural extension to three dimensions. This generalized
inequality involves a three-dimensional integral that depends on nine functions: three main functions defined on (0, +occ) and
six auxiliary functions defined on (0, 1). It has the following general form:

~too oo oo 1 X 1/p y 1/q z 1/r
/0 /0 /0 (x+y+z)2(x+y> (HZ) (x+2>

. X . y Z x+y y+z X+z
“ <X+y> ! (HZ) ¢ (HZ) ! <X+y+z> " (X+y+z> " <x+y+z) Fx)g0)h(z)dxdydz,

where i, j, k, £, m and n are the auxiliary functions, and r is an additional norm parameter. This extended version retains the
simplicity of the two-dimensional case, still with a tractable upper bound depending only on the unweighted integral norms of
the functions involved. Explicitly, it is given by

Uoli”(t)dt} v [/Olé”(t)dt} v [/)qu(t)dt} /a Mlm"(t)dz] 1/q
o ol [ o oo ]

The proof strategy is based on a suitable factorization of the integrand, the generalized Holder integral inequality (see [15, 16]),
and an adapted change of variables that transforms the expression into a simpler form. Again, this change of variables
methodology remains the main originality of the proof. The structure of the inequality allows considerable flexibility in the
choice of auxiliary functions, providing a unified framework for bounding a large class of complex three-dimensional integrals.

To illustrate the scope and applicability of the results, several concrete examples are given. These include functions of the
power, logarithmic, trigonometric, and exponential types. Other new secondary general inequalities are also derived. These
highlight the versatility of the proposed inequalities and demonstrate their potential for further applications in analysis.

The rest of the article is as follows: Section 2 is devoted to our main two-dimensional integral result with examples and
secondary results. A natural extension to three dimensions is studied in Section 3, again illustrated with examples. Section 4
concludes the article.
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2. Two-Dimensional Integral Inequality Results

2.1 Main result
The theorem below gives our general two-dimensional integral inequality result. It is followed by the detailed proof and
some discussion.

Theorem 2.1. Let p> 1, g=p/(p—1), and f,g: (0,400) — (0,40) and £,m : (0,1) — (0,+o0) be four functions. Then, we

have
oo ptoo l/pyl/q X y +oo Up 1 oo 1/q
Lt () m (2 ) rwstiasar < | [ o] | [T era]
(x+y)? \x+y x+y 0 0

where

- {/Olép(t)dt} . {/Olmq(z)dt} l/q, @1

provided that the integrals involved converge.

Proof. By a well-chosen decomposition of the integrand as the product of two main terms using 1/p+ 1/g = 1 and the Holder
integral inequality applied to those terms at the parameters p and ¢ = p/(p — 1), we get

Foo oo l/pyl/q X y
/ / x+y (x+y>m(x+y>f(x)g(y)dXdy

— oo e xl/p X yl/‘I y
_\/0 /0 (x+y)2/P£<x+y)f(x)x (x+y)2/qm(x+y>g(y)dXdy

<Al/rpl/a, (2.2)

where

L e (s

B:/+m/+w Y m"( > >gq(y)dxdy
0 0 (x+y)2 xX+y '

We can now find the exact expressions for A and B, starting with A. Using the Fubini-Tonelli integral theorem to permutate the
two integral signs and changing the variables as u = x/(x +), so du = [—x/(x +y)?]dy,y=0=u=1and y — 4o = u =0,
we obtain

A= O+wf”(x) V;w (xfy)zﬂ (Hy) a’y] dx = /Oerf”(x) [/01 E”(u)du] dx
- [ /0 lép(t)dt} [ /0 - fp(x)dx} . 2.3)

In a similar way, but with the change of variables v = y/(x+y) with dv = [—y/(x+y)?|dx,x=0=v= 1 and x — +oo = v =0,
we get

B= O+wgq(y) U;w e jy)z mf (xiy) dX] dy= 0+°°gq(y) [/01 mq(V)dV} dy
- [ / 1m‘%r)dt] { 0+°°gq(y)dy} . (2.4)

and
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Combining Equations (2.2), (2.3) and (2.4), and using 1/p+1/g =1, we get

[ (s () s
(L)l (o] [ ]}
- [[wa] [ wsa]" [ ] [ 0]
¥[[Coree] [ ee]

where Y is indicated in Equation (2.1). This concludes the proof of Theorem 2.1. O

IN

The main interest of this theorem is the generality of the two-dimensional integral. It includes two auxiliary functions, ¢
and m, which provide additional flexibility. Another major strength is the simplicity of the upper bound. It depends only on the
integral norms of the functions involved. Given the wide variety of known integral formulas (see [17]), the structure of this
upper bound allows for easy adaptation. In particular, it allows the derivation of tractable two-dimensional integral inequalities.
These may have useful applications in operator theory and related areas.

In the rest of this section, we support these claims with several examples considering different types of auxiliary functions,
and with established secondary results derived more or less directly from Theorem 2.1.

2.2 Examples
Some specific examples of applications of Theorem 2.1 are given below. They deal with different functions ¢ and m.
Example 1. Applying Theorem 2.1 with £(r) =%, a > 0, and m(t) =15, B > 0, we get

oo pben yO+1/pyBl/q $)dxd Foo  potoo l/l’yl/’i X y dud
[ sty = [ [T <x+y)m<x+y)f(x)g(y)xy

o /p 1 rtoe 1/q
<r[0 f”(x)dX] [0 g%y)dy} 7

where

Y= Volfﬁ(z)dt} v Uolmq(t)dt} v = (/0] ,apd;) v </01 ;ﬁ‘ldt)l/q = apt 1)1/1’1(561+ i

This upper bound is thus determined in a straightforward manner, despite the relative complexity of the two main two-
dimensional integrals. In summary, thanks to Theorem 2.1, we have established that

oo poo a+1/pyﬁ+1/q 1 oo , 1p T ptoo \ 1/q
< .
/ / x+y a+ﬁ+2f(x)g(y)dXdy— (Olp-i-l)l/p(ﬁq—l—l)l/q { 0 f (x)dx:| |:/0 8 (Y)d)’:|

This inequality can also be manipulated to derive other integral inequality results. For example, if we take p =2, a = /2,
vy >0, and B = y/2 = a, it simplifies to

e (,/j)z (fy)yf() ) dxdy<y+1\//+°°f2 dx\//+°°g

This result has the advantage of being tractable with a simple constant factor. For example, considering Y as a variable and
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integrating both sides for y € (0, 7) with T > 0, and using the Fubini-Tonelli integral theorem, we get

/(:m /om (ﬁ)z " Tog[(x +1y)/ NG [1 - (ﬂ)r} Fx)ab)dsty
1L () @] sy
AT ()@yﬂ”g@“x@} o

= { 0 7/+1 ]\//+wf2 dx\//m

— log(t+ 1)\/ /0 +°° fz(x)dx\/ /0 " )y

More directly, we have

/0+oo./0+w (x+y)210g\/[(?+y)/\/fy] [1_ (;Cy) }f( )g(y)dxdy < log(t+1 \// 2x dx\//m

To the best of our knowledge, this is a new two-dimensional integral inequality in the literature.
Example 2. Applying Theorem 2.1 with £(¢) = [—log(¢)]%, & > 0, and m(r) = [~ log(t)]?, B > 0, we get

/+°°/+°° ;lc/iyy]/q { log (xiyﬂa [—log (xiy)]ﬁf(ﬂg(y)dxdy
/+N /+°° ;/:yyl/q <xiy) m <x1y>f(X)g(y)dxdy

oo Upr e 1/q
SY[O f”(x)dX} {0 g"(y)dy] ;

where, using the formula of the gamma function in [17, Entry 4.2726], i.e., I'(x) = fol [—log(¢)]* tdt, x > 0,
1 Up 1/q 1 Up 1/q
Y= { / E”(t)dt} { / m"(t)dt} - { / [—log(t)]o"’dt} { / [—log(t)]ﬁth}
0 0 0 0
= TP (ap+ Iy -+ 1).

As a more direct presentation, we have

/+°°/+°° ;/iyy‘/q { log (x:iyﬂa [—log (xiy)]ﬁf(ﬂg(y)dxdy

<TVP(ap+ IY4(Bg+1) [ / +°°ff’<x>dx] " [ 0+°°gq<y>dy} "

We emphasize again the originality of the main two-dimensional integral and the simplicity of the constant factor.

Example 3. Trigonometric functions can also be used as auxiliary functions in Theorem 2.1. In particular, applying this
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theorem with p =2, £(¢) = sin[0(x/2)t], O € [0, 1], and m(z) = sin[0(7/2)t] = £(z), 6 € [0, 1], we obtain

./o% /0+°° (x\gy)z sin ["g (xiyﬂ sin [97; (xiy)} f(x)g(y)dxdy
/+W /+°° ;/iyyl/q <xiy> m (xiy>f(X)g(y)dxdy

oo Upr e 1/q
ST[O f”(X)dx} {0 g"(y)dy]

r\/ O+m fz(x)dx\/ /0 +mgz(y)dy,

where

T= { O+mfp(x)dx} . [/Omgq(y)dy} v = \//01 sin’ (9%1‘) dt\//o1 sin’ <9gt) dt

h .
B (T _ L[, sin(6x)
7/0 sin (92t)dtf 5 [1 on .

Therefore, we have
sin [97; <x—)|c—y>] sin {97; <xy+y>} F(x)g(y)dxdy

Ll w5
< % [1 - Sinéin)} \/ 0+wf2(X)dx\//0+mg2(y)dy

We can also express the constant factor in terms of the sine cardinal function, as (1/2)[1 — sinc(67)], with sinc(a) = sin(a)/a
for a # 0, and sinc(0) = 1.

Example 4. Complementing the logarithmic functions considered in the second example, exponential functions can be
investigated. Applying Theorem 2.1 with £(r) = e*, ot > 0, and m(r) = P, B > 0, we get

Foo pfoo 1/pyl/q Foo oo 1/p l/q
XY (ot By) /() / / y X y
/ / x+y f dxdy x+y xX+y " xX+y f(x)g(y)dxdy

oo 1/p [ oo 1/q
ST{O f”(x)dX] [0 g"(y)dy} :

where

_ Volfp(t)dt}]/p Uolm‘f(t)dt}l/q: </Ole“’”dt)]/p (/Oleﬁ‘”dz)]/q= W(eapil)l/ll (egqil)l/q.

Thus, we have

too oo l/py /q (@t B)/(x) 1 . p a 1 oo 1pT 4o 1/q
/ / 4y)? TPV f(x) g (v)dxdy < W(‘? P—1)77 (e 1) q{/o f”(x)dx} UO gq()’)d)’] .

2.3 Secondary results

We can use Theorem 2.1 to establish other new general two-dimensional integral inequality results. Three such results are
presented and proved below.

The proposition below can be viewed as a variant of Theorem 2.1.
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Proposition 2.2. Letp > 1, g=p/(p—1), and f,g: (0,40) — (0,40) and £,m : (0,1) — (0,+o0) be four functions. Then,
we have

/OM ‘/0% (Hly)ze (xiy) m (xiy) F(0)g(y)dxdy <Y {/O‘M )lcfl’(x)dx} 1/,, V;w )I)gq(y)dy] "

where Y is given by Equation (2.1), provided that the integrals involved converge.

Proof. We can express the main two-dimensional integral as follows:

Feo pe ] X y Foo ffoo l/pyl/q X
/0 /0 (x‘f‘y)Ze(x-H’)m(x-i-y)f O)dudy = / / (x+y)? (x—l—y)m(x-i-y)ﬁ() +(v)dxdy,

where

Al = @ 810) = 780)

Applying Theorem 2.1 to these functions, we get

A ;/fyl/q (5 )m(2 ) s ()dxdygr[o”"ff(x)dx]”” [ /()”gg@)dy}”"

= [/(:m )lcf”(x)dX} v [/(:w ig"(y)dy} v :

where 1 is given by Equation (2.1). So we have

/0+°°/0+°° (x_:y)zg (xj_y) m (xj—y) f(x)g(y)dxdy <Y [/0+°° ifp(x)dx} v [/;m igq(y)dy] 1/!1.

This ends the proof of Proposition 2.2. O

This result thus relativizes the importance of the power functions x'/P and y'/ 9 in Theorem 2.1; they can be transposed to
the integral norms of f and g, leading to appropriate weighted integral norms with suitable definitions of the weight functions.
The proposition below gives a framework that unifies the Hardy-Hilbert integral inequality and Theorem 2.1.

Proposition 2.3. Let p > 1, g=p/(p—1), o €[0,1], and f,g: (0,40) — (0,4) and {,m: (0,1) — (0,4oc0) be four
functions. Then, we have

Hoo oo ((1=0)/p,(1-0)/q
Y l-c d l-c Y
/ / ! (Hy)m (22 ) soelasdy

1/q

where Y is given by Equation (2.1), provided that the integrals involved converge.

Proof. The case o = 0 corresponds to Theorem 2.1, and the case o = 1 corresponds to the Hardy-Hilbert integral inequality as
recalled in Equation (1.1). So let us assume ¢ € (0,1). We can express the main two-dimensional integral as follows:

Foo oo ((1=0)/p,(1-0)/q
Y l-o [ X -0 Y
/ / (x+y)*o° T (x+y> " (x+y> f(x)g(y)dxdy

_ /:m /:m [xiyf(x)g(y)} " )E;/:yyl)/zé (xiy> m (xiy> f(x)g(y)] I_dedy.
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Using the Holder integral inequality applied to the two main terms at the parameters 1/0 and 1/(1 — o), the Hardy-Hilbert
integral inequality and Theorem 2.1, we get
I-o

/O+m /0+«> [xiy f(X)g(y)} ° )E;/:yyl)/z ¢ (;ﬂ) m (x i y> f(x)g(y)] dxdy
: U*“’/*“’xﬂ dxdy} /*“’/*“’ ;/iyyl/q (xiy>m (nyry> f(X)g(y)dxdy] -
< {Sm(;/p) [ ;wf”(x)dx} v { 0+wgq(y)dy] l/q}" {T[ O+wf”(x)dx} v { 0+wgq(y)dy] 1/4}

l-o

So we have
/+°° /+°° - G/py; o (i) m' o (i) Fg(y)dxdy < - 7”6 Y!-o {/erf‘”(x)dx} v [/ng(,V)dy} v
(x+y)*-° Xty x+y n®(7/p) Jo Jo
This concludes the proof of Proposition 2.3. O

As indicated in the proof, the case o = 0 corresponds to Theorem 2.1, and the case ¢ = 1 corresponds to the Hardy-Hilbert
integral inequality. To the best of our knowledge, all intermediate cases lead to new two-dimensional integral inequalities.
The proposition below presents a different formulation of Theorem 2.1, dealing with only one main function.

Proposition2.4. Letp>1,qg=p/(p—1), 0 €0,1], and f : (0,400) = (0,4c0) and £,m : (0,1) — (0, +o0) be three functions.
Then the inequality in Theorem 2.1 is equivalent to the following inequality:

oo | oo x1/pyl/g X y p e
) M (x+y)2€<x+y>m(x—i—y)f(x)dx] ay <7 [ g

where Y is given by Equation (2.1), provided that the integrals involved converge.

Proof. We start by proving that Theorem 2.1 implies the stated inequality. We can write the main two-dimensional integral
term as follows:

rtoo P00 xl/pyl/q X y p
/0 M <X+y>2£(x+y>m(x+y>f(x)dx] “
oo +oo l/pyl/q x y R e y
/0 [ (x+y)? (x+y>m(x+y>f(x)dx] 8 [/0 (x-i—y)zz(x—i—y)m(x—i—y)f(x)dx dy

Hoo oo l/pyl/q X y

where

&) = V:m )(C;/iyyl)/zg (xiy> " (nyry> f(x)dx] p

Applying Theorem 2.1 to the functions f and g,, we obtain

foo oo l/pyl/q X y . A Up T rtoo . 1/q
/ / CERSE <x+y>m<x+y>f(X)g*(y)dxdy_ {0 f (x)dx} {0 g*(y)dy} : (2.6)

—1
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Let us now investigate the second integral term of this upper bound. Since g(p — 1)

oo too [ peo y1/pyl/g a(p=1)
y x y
[ sty = / [/ T €<x+y)m<x+y)f(x)dx] dy
B +oo +oo xl/pyl/q X y P
*/0 [/0 (Hy)zg(Hy)m(xﬂ)f(x)dX] dy. Q2.7)

Combining Equations (2.5), (2.6) and (2.7), we get
oo | koo x1/pyl/g X y b
14 dx| d
/0 [/0 (x+y)? <x+y>m<x+y>f(x) e
+oo 1/p +oo +eo 1/py1/q X p 1/q
<Y P(x)d / / Y e( ) ( Y ) dx| dys .
- [/0 &) x} { o b G2 \ary )"y f@dx| dy

Simplifying both sides and using 1/p+ 1/q = 1, we have

T e e R e

which implies that

oo | oo x1/pyl/q X y p e
/0 [/0 (X+y)zg(x+y>m(x+y>f(x)dx] dy <XV [ fPx)dx

This is the desired inequality.

= p, we get

Let us now assume that this inequality holds and implies Theorem 2.1.
We can express the main two-dimensional integral inequality of Theorem 2.1 as follows:

L o o )5

xX+y X+y

Applying the Holder integral inequality to the two main terms with respect to y at the parameters p and ¢, and using the
supposed inequality, we get

/0+°° M*“’ )E;/iyyl)/zg (x—T— y> " ( xi y> f (X)] g(y)dxdy
{1 s )n ()] o) [ o0]”
!

So we have

Foo oo l/pyl/q X y ey < T o 1/p 1 rtoo ‘o 1/q
/ / (x+)? <x+y>m<x+y)f(x)g(y)xy [0 f(x)dx] {0 g'0) y] ’

which is the inequality in Theorem 2.1. The equivalence is shown, which concludes the proof of Proposition 2.4
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This result is of particular interest in operator theory, as it gives a guarantee of continuity in the sense of the integral norm
for operators of the following form:

7(H0) = [ [ () () f<x>dx] ;

where ¢ and m can be adapted to different mathematical scenarios.

The rest of the article is devoted to a new three-dimensional perspective of integral inequality, inspired by our two-
dimensional results.

3. Three-Dimensional Integral Inequality Results

3.1 Main result

The theorem below can be seen as a natural three-dimensional extension of Theorem 2.1. The addition of one dimension
also allows for the use of more auxiliary functions while still having a manageable upper bound. The detailed proof, a
complementary version of the theorem, and some discussion follow.

Theorem 3.1. Let p > 1, g > landr = pq/(pg—p —q), and f,g,h: (0,4o0) — (0,40) and i, j,k,€,m,n: (0,1) — (0,+o0)
be nine functions. Then, we have

400 pfoo  poo 1 X 1/p y 1/q z 1/r
/0 /0 /0 (x+y+2z)? (X+y> (y+1) (X+Z>
. X . y z x+y y+z x+z
k ‘ h(z)dxdyd
X’(x+y>’(y+z> <x+z) (x+y+z>m<x+y+z)"<x+y+z)f(x)g(y) @)z

<z[[" ] h [ el " ey "

where

E= Uol ip(t)dt} v Uolep(t)dt} v {/oqu(t)dt} . Uolmq(t)dt} . Uolk’(t)dt] v Uoln’(t)dt} l/r, (3.1)

provided that the integrals involved converge.

Proof. By a well-chosen decomposition of the integrand as the product of three main terms using 1/p+1/¢+1/r =1, and the
generalized Holder integral inequality applied to those terms at the parameters p, ¢, and r = pq/(pg— p — q), we get

4oo pdoo ptoo 1 X 1/p y 1/q z 1/r
/0 /0 /o (x+y+z)2(x+y) (y+2) (X+Z>

X . y Z x+y y+z xX+2z

Xl(x+y>] (y+z)k<x+z)£(x+y+z)m<x+y+z>n <x+y+z) S8 (v)h(z)dxdydz
oo oo oo 1 x \"? [/ x x+y

_/0 /0 /0 (x+y-+z)2/r (Hy) Z(X+y>€<x+y+2)f(x)

e ) G (e

v+ \y+z) T \z xyre) 8

1 z \ V" Z x+z
k h(z)dxdyd
X (x4y+4z)2/" <x+z> <x+z>n<x+y+z) (c)dxdydz

<cYrp'ag!/r, (3.2)
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where

o0 ~+oo ~+oo 1
cz/ / / S x— i”( al )121’( Xy )f(x)dxdydz,
o Jo Jo (x4+y+z)? x+y \x+y x+y+z

4oo oo ptoo 1
D :/ / / 5 X Y j? < 4 >mq <y+z> g(y)dxdydz
o Jo Jo (x+y+z? y+z' \y+z x+y+z

and

4oo pteo oo 1
E:/ / / 5 X ¢ k’( < >n’( Xtz )h(z)dxdydz.
o Jo Jo (x+y+z)? x+z \x+z x+y+z

For more details on the generalized Holder integral inequality, we refer to [15, 16].

We can now find the exact expressions for C, D, and E, starting with C. Applying the Fubini-Tonelli integral theorem to
permutate the three integral signs, introducing the term 1 = (x+y)/(x+y) and changing the variables as u = (x+y)/(x+y+2z),
sodu=[—(x+y)/(x+y+2)*dz,z=0=u=1and z — 400 = u = 0, followed by the change of variables v = x/(x +y), so
dv=[-x/(x+y)*]dy,y=0=v=1andy — +o0 = v =0, we get

€= /(:wf(x) {./o+m (x+xy)2ip <xiy) [/()er (xj:;_jz)%[) (xjcr—;iz) dz} dy}dx
[l e ) o

_ :/Oléf’(u)du} 0+wf(x) [/;w (xjy)zip (xiy) dy} dx

_ /0 1 Ep(u)du} 0+°° £(0) [ /O 1 ip(v)dv} dx

- /0 lep(;)dt} [ /0 lip(t)dt} 0+°° F(x)dx. (3.3)

In a similar way, but with the introduction of the term 1 = (y+z)/(y + z), the change of variables u = (y+z)/(x+y+2)
with du = [—(y+2)/(x+y+2)*dx, x=0=u =1 and x — +o0 = u = 0, and the change of variables v = y/(y +z) with
dv=[-y/(y+2)?|dz,z=0=v=1and z — +o0 = v =0, we get

o= ol e G U w () o e
({52 () [ el
(o] o[ 2 )

_ / lm"(u)du] [0 { / 1 jq(v)dv} dy

= | [ | [ o] [ et G4

Adopting a similar approach, but with the introduction of the term 1 = (x+z)/(x+ z), the change of variables u = (x+2z)/(x+
y+z) withdu = [~ (x+2)/(x +y+2)?]dy,y=0=u=1and y — +o0 = u = 0, and the change of variables v = z/(x + z)
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with dv = [—z/(x+2)%]dx, x =0=v =1 and x — +o0 = v =0, we get

s= ol e G e () o e
Bl w (G L s e

- [ [ i ()

[[rad] [ o[ [ ora]

_ /0 ln’(t)dt] { /0 lk’(t)dt} 0+wh(z)dz. (3.5)

Combining Equations (3.2), (3.3), (3.4) and (3.5), and using 1 /p+1/q+ 1/r =1, we get

foo ptoo oo 1 x \ /P y AN
/0 /0 /0 (x+y+2)2(x+y) (yﬂ) (x+2>

. X . y Z x+y y+z xX+z
o (x—I—Y> ! (y+z) k (x+z) ¢ <x+y+z) " (x+y+z> " <x+y+z) Fx)g(y)h(z)dxdydz

X

o] [ )
Uol ip(t)dt] . [/01 é”(t)dt} v [/01 jq(t)dt] . Uol m"(t)dz] 1/q

[ /0 1 k*(t)dt} " { /0 1 nr(t)dt] . [ 0+°° f”(x)dx} v { 0+°° g"(y)dy] v { 0+°° hf(z)dz] v

_z [ / - fp(x)dx} . [ / +°° gq(y)dy] v [ 0+wh’(z)dz} "

where Z is indicated in Equation (3.1). This concludes the proof of Theorem 3.1. ([

X

Another version of Theorem 3.1 can be presented by thoroughly changing the order of the variables x, y, and z. It is given
below.

Theorem 3.2. Letp > 1, g> 1l andr = pq/(pg—p —q), and f,g,h: (0,4o0) — (0,4) and i, j,k,,m,n: (0,1) — (0,+o0)
be nine functions. Then, we have

/0 /0 /0 (x+y+Z)2(x+Z) <X+y) (y+Z)

. X . y d xX+z x+y y+z
! (x+z> / (X+Y> ¢ (Y+Z) ! (x+y+z> " (x+y+z> " <x+y+z) Fx)gb)h(e)dxdydz

< :[ 0+mf”(x)dX} h { /O +mgq(y)dy] Uq [ O+mh’(1)d2} l/r,
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where Z is given by Equation (3.1), provided that the integrals involved converge.

Proof. The proof is almost identical to that of Theorem 3.1. There are only slight modifications in the management of the
variables x, y, and z. For the sake of redundancy, we omit the full development. O

The main interest of Theorems 3.1 and 3.2 is the generality of the three-dimensional integral. They include six auxiliary
functions, i, j, k, £, m and n, which provide additional flexibility. Another major strength is the simplicity of the upper bound.
It depends only on the unweighted integral norms of the functions involved, allowing tractable three-dimensional integral
inequalities to be derived. These can have useful applications in operator theory dealing with three-dimensional operators and
related areas.

In the rest of this section, several examples are given involving different types of auxiliary functions.

3.2 Examples

Some specific examples of applications of Theorem 3.1 are given below. They deal with different functions i, j, k, £, m and
n. Similar examples can be given for Theorem 3.2. We omit them for the sake of redundancy.

Example 1. We start with the use of standard power functions. Applying Theorem 3.1 with i(f) =%, a > 0, j(t) =15,
B>0,k(t)=t",y>0,0() =t k>0,m(t)=1% 6 >0,and n(t) =%, v > 0, we get

f(x)g(y)h(z)dxdydz

doo  pdoo ptoo xl/pyl/qzl/r(x+y)'<fa71/p(y+Z)971371/q(x+Z)vﬂ/fl/r
A /0 /0 (x+y_|_z)2+l<+9+‘l)

:A /0 /0 (x+y+z)2 (x—l—y) <y+z) (X+Z>
X Y z x+y y+z x+z
k / h(z)dxdyd
XZ(X+Y>J()’+Z) (x+z) (x+y+z>m(x+y+z>n(x+y+z) F(x)g(y)h(z)dxdydz

< :[ wap(x)d)ﬂ v U;mgq(y)dy] v [ +mh’(1)d1} 1/r7

0

where

= {/01 i”(t)dt} v Uolgp(t)dt} . UOI jq(t)dt} v Uolmq(r)dt} v [/Olk’(t)dz] v {/Ulnr(t)d[} v
= ([ a) ([ ) ([ ) ([ ) () ([ )

1
(ap+D)'r(kp+1)1/r(Bg+1)14(0g+1)Va(yr+ 1)1/ (or+ 1)1

As a result, we have

f(x)g(y)h(z)dxdydz

foo  pfoo  pfoo xl/pyl/qzl/r(x+y)v<fa71/p(y+Z)07ﬁ71/q(x+Z)vﬂ/fl/r
A /0 /0 (x+y+z)2+l('+9+‘l)

1
<
= (ap+1)e(kp+ 1)V (Bg+1)19(0g+1)Va(yr+ 1)V (vr+ 1)1

x { 0+°° f”(x)dx] " [ /0 +°° gq(y)dy} v { 0+°° h’(z)dz] "

This provides a new manageable three-dimensional integral inequality, with numerous adjustable parameters, which can be
adapted to different contexts.
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Example 2. Applying Theorem 3.1 with i(¢) = 1, j(r) = 1, k(t) = 1, £(t) = [~ log(t)]%, a > 0, m(r) = [ log(¢)]®, B > 0,
and n(t) = [—log(#)]?, y > 0, we get

L e (5) () ()
: [‘1"% <x$iz)]a {“‘)g (Hm)r [ lo <xfyriz>]Yf(X)g(Y)h(Z)dxdydz
RN e ICONCOREOR

il G ) G () r (e ) rstmciasasa:

o0 1/p o0 1/q o0 1/r
<E[O f”(X)dX} [0 gq(y)dy] [0 h’(Z)dZ} ,

- ([ riral v [ o] v [ e : [ e " [l " [ o) "
— U()l[—log(t)]o‘f’dt} v Uol[— log(t)]Bth] . Uol[— log(t)]yrdt} v

=TP(ap+ 1)IY9(Bg+ )TV (yr+1).

More directly, we have

400 pfoo oo 1 X 1/p y 1/q z 1/r
/o /o /0 (x+y+z)2<X+)’> (Y+Z) (X+Z)

()] () () romommons

oo 1/r
h’(z)dz} )

We emphasize the crucial role of the gamma function in the constant factor and the relative complexity of the integrand.
Example 3. Theorem 3.1 can involve trigonometric functions. For example, applying it with p=3,¢=3,i(t) =1, j(r) =1,

k(t)=1,£(¢) =sin[0(m/2)t], 0 €[0,1],m(t) =sin[0 (7 /2)t] = £(t), O € [0, 1], and n(¢) = sin[0 (7 /2)1] = £(¢) = m(¢), 6 € [0, 1],
we get

Joo pdos pdoo | x Ny By o\
/0 /0 /0 (x+y+2)2<X+y> <y+2> <x+2)

x sin [97; (xi‘;izﬂ i [9” (xfyriz)} sin {e’; <x$iz)] F(x)g(y)h(z)dxdydz

L e () ) )
)

X (x-T—y) / <y+z> (x+z (xj——;—ykz) (x—};—;—zkz) 8 (x—)::—zkz) S8 y)h(z)dxdyd

where

(x]

- 1/p o 1/q
<TYP(ap+ 1TV9(Bg+ )TV (yr+1) { 0+ fp(x)dx} [0+ g"(y)dy} {0
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<z[ [ e h [ e0a] " [l "

0

_z [ 0+°° 7 (x)dx] . [ /'+°° & <y)dy:| " [ /0 e (z)dz} v :

JO

1/3

— [/01 sin’ (637) dr} " [/01 sin® (621) dt] a [/01 sin’ (057) dr}
= [sin (0%4) ar = 53 int (07 [2+cos (07)].

Therefore, we have

Heo pdoo pos | x Ny By oo\
/0 /0 /0 (x+y+2)? <X+y> <y+Z> <X+Z)
. T x+y . T y+z . T x+2z
X sin [92 (x+y+z>} sin [92 <x+y+z>} sin {62 <x+y+z)] F(x)g(y)h(z)dxdydz

< 3gr o0 (07) Preos(0)] | [0 ’ [ 0] " [ "

Example 4. As a last simple example, applying Theorem 3.1 with i(r) = e, o0 > 0, j(t) = P!, B > 0, k(t) = ", y> 0,
0(t) =€, k> 0,m(t) = e%, 6 >0,and n(t) = e, v > 0, we get

400 oo oo 1 X 1/p y l/q z ]/r
/o /o /o (x+y+Z)2<x+y> (HZ) (xﬂ)

x %%/ () HBy/ () v/ (et ) H (kb v)et (k4 0)y+(0+0)3l /0y 42) £ () o (y)h(2) dxdydz
4oo oo oo 1 X 1/p y 1/q z 1/r
_/0 ./0 /0 (x+y+2)? (x+y> (y+Z) (X+Z>

. X . y z x+y y+z x+z
< (ery) ! (y+z) k (x+z) ¢ (x+y+z> m (x+y+z> " <x+y+z) f(x)g(y)h(z)dxdydz

~+oo
<E
0

== [ rwa " [ ol " [ oal " [ ma] " [ wwal " [ "
= (/01 ea’”dt) v (/01 e'fﬂldt> v (/01 eﬁqfdt> v (/01 eeqtdl‘> e (/Ol e"”dt) v (/01 evrtdt) i

1
(ap)!/r(xp)/P(Bq)"/1(0g)" /4 (yr)!/r (vr)!/

oo oo

f”(x)dxr/p{o gq(y)dy]l/q[ h’(Z)dzr/r,

0

where

1/q

% (eap_ l)l/P (er _ 1)1/[’ (eOCq_ 1)1/(] (eeq_ 1) (e'yr_ l)l/r (eUr_ 1)1/;'-



General Two- and Three-Dimensional Integral Inequalities Based a Change of Variables Methodology — 115/116

More directly, we have

4oo pfoo oo 1 X 1/p y 1/q z 1/r
/o /o /o (x+y+z)2(X+Y> <Y+Z) (X+Z)

x @@/ y) 4By (v a)+ye/ (xt2) (K 0)x (i O)y+(0+0)dl/ (ty+2) () g (y) i (2) dxdydz

1
= (ap) /7 (xp) 77 (Bg) V(8g) V4 (yr) r (wr) /7

1
% (eap_ 1)l/p (eK‘p _ 1)l/p (eaq_ 1)1/q (eeq_ 1) /a (eyr_ l)l/r (evr_ 1)1/r

x { 0+°° f”(x)dx] " [ /0 +°° gq(y)dy} v { 0+°° h’(z)dz] "

To the best of our knowledge, this is again a new three-dimensional integral inequality in the literature. We can also think of
using the exponential function to establish various inequalities of the Laplace transform of three-dimensional functions.

4. Conclusion

In conclusion, this article offers new tools to the theory of two- and three-dimensional integral inequalities by establishing
two general theorems. This is characterized by the presence of several auxiliary functions. The first theorem focuses on the
two-dimensional case and gives a simple upper bound for two-dimensional integrals of a certain form. This upper bound is
based on the integral norms of the function involved. The second theorem can be seen as a natural extension of the first to three
dimensions. It still provides tractable, sharp, and general upper bounds. They may lead to further developments in mathematical
analysis in three dimensions. The theory has been illustrated by several examples dealing with specific auxiliary functions.
Some complementary results beyond the standard framework have also been established.

Future work may explore refined inequalities under additional structural conditions. Applications to operator theory,
functional analysis, and partial differential equations are also anticipated. Furthermore, the flexibility of the approach suggests
possible generalizations to higher dimensions. We will explore these perspectives in future articles.
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Abstract

This paper introduces results for characteristically proximal vector fields that are stable or non-stable in the polar
complex plane C. All characteristic vectors (aka eigenvectors) emanate from the same fixed point in C, namely,
0. Stable characteristic vector fields satisfy an extension of the Krantz stability condition, namely, the maximal
eigenvalue of a stable system lies within or on the boundary of the unit circle in C. An application is given for
stable vector fields detected in motion waveforms in infrared video frames. Al is used to separate the changing
from the unchanging parts of each video frame.

Keywords: Characteristic, Complex Plane, Eigenvalue, Eigenvector, Proximity, Stability
2020 AMS: 32Q26, 15A18, 54E05

1. Introduction

This paper introduces proximities of characteristic vector fields that are stable in the polar complex plane. A dynamical
system is a 1-1 mapping from a set of points M to itself [1, §9.1.1], which describes the time-dependence of a point in a complex
ambient system. In its earliest incarnation by Poincaré, the focus was on the stability of the solar system [2]. More recently,
dynamical system behaviour is in the form of varying oscillations in motion waveforms [3,4]. Typically, vector fields are used
to construct dynamical systems (see, e.g., [5, §4], [6]).

The focus here is on dynamical systems generated by stable characteristic vector fields (cVfs) in C and their corresponding
semigroups. Comparison of cVf characteristics leads to the detection of proximal cVf semigroups. In general, a characteristic
of an object X is a mapping ¢ : X — C with values @(x € X) that provide an object profile. Proximal objects X,Y require
|o(x € X)— @(y € Y)| = 0. All characteristic vectors (aka eigenvectors) emanate from the same fixed point in C, namely, 0.
Stable characteristic vector fields satisfy the Krantz stability condition, namely, all eigenvalues lie inside the unit circle in C.

An application of the proposed approach is given in measuring system stability in terms of vector fields emanating from
oscillatory waveforms derived from the up-and-down movements of a walker, runner, or biker recorded in a sequence of infrared
video frames. We prove that system stability occurs when its maximum eigenvalue occurs within or on the boundary of the unit
circle in the complex plane (See Theorem 2.11). This result extends results in [7, 8]) as well as in [9-11].
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Vf1:te ¥ max 1=-97.47, unstable Vi2:t/11e 2 max A=0.74, stable V3:/13e 21 max 1=-0.35, stable
90° 90° 80°
120° 10 60° 120° 0.03 60° 120° 0.06 60°

150° 150° 150° 30°

180° 180° 180°

210° 210° 210° 330°

240° 300
270°

240° 300°
270°

Figure 1.1. Three vector fields in polar complex plane: (leftmost,unstable) 1% f1, (middle,stable) 1% fo, (rightmost,stable) 1% f3

Symbol Meaning

C Complex plane

J Imaginary unit, defined by j> = —1

0 Center of the unit circle in the complex polar plane

z A complex number: z = a+ jb = e/®, where a, jb e C
2% Collection of subsets in set X

A gq;. B A is characteristically near B

¢(a€A) e C Characteristic value of element a € A

D(A) {o(ar),...,0(a,) :a,...,a, €A} €2

d®(A,B) Characteristic distance between sets A and B

Table 1.1. Principal symbols used in this study

2. Preliminaries

Detected affinities between vector fields for stable systems result from determining the infimum of the distances between
pairs of system characteristics.

Definition 2.1. (Vector)
A vector v (denoted by V) is a quantity that has magnitude and direction in the complex plane C.

Definition 2.2. (Vector Field in the Complex Plane)
Let U = {p € C} be a bounded region in the complex plane containing points p(x, jy) € U. A vector field is a mapping
F : U — 2C defined by

F(p(x, jy)) = {¥} € 2C denoted by V f.
Remark 2.3. A complex number z in polar form (discovered by Euler [12]) is written z = rel®.
Example 2.4. Three examples of vector fields in polar form are given in Figure 1.1.

Definition 2.5. (Vector Field in the Complex Plane)
Let U = {z € C} be a bounded region in the complex plane containing points z(x, jy) € U C C. A vector field is a mapping
F : U — 2C defined by

F(z(x,y))) = {17 € 2(C} denoted by V f.
Definition 2.6. (Eigenvalue A(aka Characteristic value))

The eigenvalues (characteristic values) of a matrix A are solutions to the determinant det(A — A1), I = {(1) (1)] identity matrix.

Example 2.7. (Sample Eigenvalues)

AE 286},1{(1) ?]:det(A)LI)‘ 421 e ’(4/1)(26&)(8)(6)0

104 — 304 + A2 —48 = 12— 304 + 56 = (A —28)(A —2) =0
A1 = 28,4, =2 (eigenvaluesof) A
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Definition 2.8. (Eigenvector)
Given a matrix A, then V is an eigenvector, provided AV — AV =0 € C.

1*" C quadrant 1*" C quadrant 3 C quadrant

Z11 =0.150040.0498; zi» =0.010640.0035; zi3 = —0.0754 —0.0250
221 =0.158640.0471; z30 =0.0333+0.0091; z33 =—0.0418—0.0124;

Table 2.1. Eigenvectors derived from {—leﬂ’ Vf

Example 2.9. (Sample eigenvectors in center {—le/ 2 Vfin Figure 1.1)
A selection of eigenvectors from the first and third quadrants in the polar complex plane in the center vector field in Figure 1.1
are given in Table 2.1.

Definition 2.10. (Krantz Vector Field Stability Condition [1])

A vector field 1% f in the complex plane is stable, provided all of the eigenvalues of 1% f are either within or on the boundary of
the unit circle centered 0 in C.

Theorem 2.11. (Vector Field Stability Condition)

A vector field V f in the complex plane is stable, provided the maximal eigenvalue of V f lies within or on the boundary of the
unit circle in C.

Proof. From Definition 2.10, all eigenvalues D = {A} for a stable vector field lie either within or on the boundary of the unit
circle in C. Hence, max(A) € D lies either within or on the boundary of the unit circle in C. O

)vmax ?Lmaxf 1 )vmax72 A'mavch 2vmaxf4
-0.7384  -0.2328 -0.0823 -0.0488 -0.0298

Table 2.2. Eigenvalues derived from lt—leﬂ’Vf

Example 2.12. (Largest A values for the center l’—leﬂ’ vector field in Figure 1.1)
The 5 bigest eigenvalues derived from the center vector field V f in Figure 1.1 are given in Table 2.2. From Theorem 2.11,V f is
stable, since Apay=-0.7384 in Table 2.2 lies within the unit circle in the complex plane C.

Definition 2.13. A characteristic of an object (aka sets, systems) X is a mapping @:
¢ : X — Cdefined by p(x € X) € C.

Definition 2.14. (Characteristic Distance)

Let X,Y be nonempty sets and a € A € 2% b € B € 2¥ and let ¢(a), ¢ (b) be numerical characteristics inherent in A and B. The
nearness mapping d® : 2X x 2¥ — R is defined by

d®(A,B) = inf  {|o(a)—o(b)|} =€e€0,1] €C.
¢(a) € P(A)
¢(b) € (B)

In effect, A and B are characteristically near, provided 0 < d®(A,B) < 1 in the first quadrant of the unit circle in the complex
plane C.

Definition 2.15. (Characteristic Nearness of Systems [13])

Let X,Y be a pair of systems. For nonempty subsets A € 2X B € 2, the characteristic nearness of A, B (denoted by A gq; B)is
defined by

AdeBed®(AB)=c€c0,1].
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Theorem 2.16. (Fundamental Theorem of Near Systems)
Let X,Y be a pair of systems with A € 2X B € 2.

AbpB<JacA beB:|p(a)— o) =¢cc0,1]
Proof. =: From Definition 2.14, A 85 B implies that there is at least one pair a € A, b € B such that d® (A,B)=|p(a)—o(b)| =
€€ [0,1]..
«: Given d®(A,B) = ¢ € [0, 1], we know that inf,c4 sup |@(a) — ¢(b)| = € € [0, 1] € C. Hence, from Definition 2.15, A ¢ B,
beB
also. That is, sufficient nearness of at least one pair characteristics ¢(a € A), (b € B) € [0,1] € C indicates the characteristic

nearness of the sets, i.e., we conclude A J¢ B. O

Theorem 2.17. (Characteristically Close Systems)
Systems X,Y are characteristically near if and only XY contain subsystems that are characteristically near.

Proof. Immediate from Theorem 2.16. 0

Theorem 2.18. (Stable Systems Extreme Closeness Condition)
Let V{1,V f2 be vector fields representing a pair of stable systems and let maxAvecy f1,maxAyecy 2 be the maximum A

(eigenvalues) for the pair of systems. If ‘max Asp1 — maxlgf2| €[0,0.5]., then V f1 8o V12
Proof. From Theorem 2.11, for the vector field 1% f for a stable system, maxAyecy f € [0,+£1]. For a pair of system vector fields
Vf1,V f2, assume that |max Ajp1 —max Mﬁ‘ € [0,0.5] € [0, 1].. Hence, from Theorem 2.16, we have V£l 6o V2. O

Remark 2.19. (Magiros Stable System Motions Condition) N
Let the extreme closeness stability condition Theorem 2.18 corresponds to a pair of vector fields 1% f 1,V fl: % f1 8¢ 1% fl
derived from motion waveforms of a pair of physical systems. In that case, the maximal A different requirement would represent

a pair of motion waveforms that are very stable. That is, any small disturbance results in a small variation in the original
waveform [14].

Remark 2.20. (Vector Field Characteristics)
We have the followig characteristics for a vector field (V f,+) to work with. Let Vf = vector field in C. Sg= (Vf,+)
Surface group in C.

01(Sg) = (max @(A)) & unit circle = unstable vector field.
0 (S,) = (max @(A)) € unit circle = stable vector field.

93(5) = [0() — 0 (7,)
D(Sg) = {P1(Sg), 92(Sg), @3(Sg) } -

€10,0.5] = Vi 8oV fo.

Vi1:te ™ max A=-97.47, unstable Vi2:t111e 7% max A=0.74, stable
90°
120° 120° 0.03 60°
150° 150°
180° 180°
210° 210°
240° 300° 240° 300°
270° 270°

Figure 2.1. Case 1: Characteristically non-near vector fields
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Vi2:t111e 72 max A=0.74, stable Vi3:t/13e 12" max A=-0.35, stable

90° 90°
120°

1207 0.03 60° 0.06 60°

150° 150° 30°
180° 180° 0°
210° 210° 330°

300°

270°

270°

Figure 2.2. Case 2: Characteristically near vector fields

Example 2.21. (Characteristically Non-Near Vector Fields)
In Figure 2.1, (not)(V f1 8¢ V f2), since

0s(Sgv r1)(max)A = —97.47 = unstable vector field
06 (Sgv r2)(max)A = 0.74 = stable vector field.

Example 2.22. (Characteristically Near Vector Fields)
In Figure 2.2, V{2 8¢ V f3, since

0s(Sgvsovsa) = H(p((max)lv 1, =0.74) — p(Ay, = —0.035) H € [0,0.5] = stable vector field.

06 (Sgv r2) (max
®6(Sgv f3) (max

)A = 0.74 = stable vector field.
)JA = —0.35 = stable vector field.

IR Frame#77 h=17 Motion waveforms on 2 frames

Frame#77 Max, A=0.66667, Stable
50

AV +
200 i A \ 120 60
1 / 0.8 N
400 \

600

200 400 600 B00 1000 1200

=3
=
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Intensity Level
o
w
2
\
Q
i |
. -
=)

y G
0.2 | p %E‘f
\‘ 210 \ /3a;
| S et
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L) | 240 ——— 300
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200 400 60O B00 1000 1200 Dg 200 400 ] 600 800
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-100 T T Frame#94 Max. A=0.91146, Stable
80
LN B ,34_7 ﬁ_;f, frm%q ol ad 120 _— 80
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Figure 2.3. Case 1: Characteristically near stable vector fields
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Theorem 2.23. (Characteristically Close Systems Are Proximally Close)
Characteristic close systems are proximal.

Proof. This is an immediate consequence of the fundamental near systems Theorem 2.16. O

3. Application: Detection of Characteristically Near Stable Vector Fields
on Motion Waveforms in Infrared Video Frames

This section illustrates how to identify characteristically near motion waveforms in stable or unstable vector fields recorded
in sequences of infrared video frames. This application presents an advance over the method of evaluating motion waveforms
in video frames that was introduced in [16]. In the following example, the vector fields emanate from seqiences of runner
waveforms is recorded in frame sequences in infrared videos. Be comparing the stability characteristics of the runner vector
fields in pairs of video frames, we can then determine the overall stability of the runner. This approach carries over in assessing
the characteristic closeness of the overall stability of the vector fields emanating from any vibrating system at different times.
For simplicity, we consider only the maximum eigenvalues of the vector field in each video frame.

Example 3.1. (Case 1: Pair of Characteristically Close Stable Vector Fields)
In Figure 2.3, contains a pair of characteristically near stable vector fields'V 77,V frroa in frames 77 and 94. Observe

maxlfr77 = 0.67,

maxlf,94 = 0.91,
10.67) —| —0.91]| = 0.24 € [0,0.5]; Hence, from characteristic ¢3(S,),

V7 80 V frroa.

IR Frame#71 h=17 & Motion waveforms on 2 frames

0 Yy Frame#71 Max. A=1.0865, Unstable
=" %
200 05 Y PN e L %
Y Y\ e —
400 | ! b / \ 1
» / b \
600 ‘ /
/ )
- o |
i
‘F& &

200 400 600 800 1000 1200

IR Frame#88 h=17

-~
200
400 04
800

200 400 600 800 1000 1200 Du 200 400 600 800
" Complete Voxel Vf via -sin(k),cos(k), k = Frame €4itipaH8 8ifto m(t)

Intensity Level
@

o

0 7&4__,&_%7 ? J}_’Af;’faﬂﬂ

wol df A A =Y J
?°’§J-§{§Z':;p M%
| G

0 200 400 600 BOO 1000 1200 1400

Figure 3.1. Case 2: Pair of Characteristically near unstable vector fields

Example 3.2. (Case 2: Pair of Characteristically Close Unstable Vector Fields)
In Figure 3.1, contains a pair of unstable vector fields 'V f,71,V frisg in frames 71 and 88. Observe

maxAys71 = 1.09,

max?Lfrgg = 1.44,
I1.09] — |1.44|| = 0.35 € [0,0.5]; Hence, from characteristic 3(Sg),

Vi 8oV frss.
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Figure 3.2. Case 3: Pair of Clﬁracteristically near stable and unstable vector fields

Example 3.3. (Case 3: Characteristically Close Stable and Unstable Vector Fields)
In Figure 3.2, contains a stable vector field V ff.51 and unstable V fr,¢g in frames 51 and 68. Observe

maxAy,s; = 0.67,

maxlfﬁl = 067,
max),fr(,g = 1.36,
10.67] —|1.36]| = 0.69 £]0,0.5]; Hence, from characteristic @3(Sg),

V frrs1 (n0t)3 V frre8-

Remark 3.4. (Significance of Characteristically Non-Close Stable and Unstable Vector Fields in Case 3)

Stable vector fields characteristically non-close to unstable vector fields are represented in Case 3 in Figure 3.2. The vector
fields in Example 3.3 have underlying systems that have the potential to be modulated to obtain a pair of characteristically
close stable systems, since

[10.67] —|1.36|] = 0.69 € [0, 1] (satisfies T heorem 2.16).

That is, even though the vector field V frr68 is unstable in Case 3, it is characteristically close to the stable vector field
1% Srs1 in Figure 3.2. That characteristic closeness suggests the possibility of modulating the waveform slightly to change the
vector field V f, ‘rr68 from unstable to unstable.

Unlike the temporal proximities of systems in the study in [8], the characteristically close systems in Figure 3.2 are
within the same video, but are separated by 10 frames and, hence, are not temporally close. The form of characteristic
closeness introduced in this paper corroborates the results in [13]. Cases I and 2 illustrate the result in Theorem 2.23, namely,
characteristically close systems are proximal.

Acknowledgements

Acknowledgements: We extend our thanks to Tane Vergili for sharing her profound insights concerning the proximity
space theory in this paper. In addition, we extend our thanks to Andrzej Skowron, Mirostaw Pawlak, Divagar Vakeesan, William
Hankley, Brent Clark and Sheela Ramanna for sharing their insights concerning time-constrained dynamical systems. In some
ways, this paper is a partial answer to the question "How [temporally] Near?’ put forward in 2002 [15].



Characteristically Near Stable Vector Fields in the Polar Complex Plane — 124/124

This research has been supported by the Natural Sciences & Engineering Research Council of Canada (NSERC) dis-
covery grant 185986 and Instituto Nazionale di Alta Matematica (INdAAM) Francesco Severi, Gruppo Nazionale per le
Strutture Algebriche, Geometriche e Loro Applicazioni grant 9 920160 000362, n.prot U 2016/000036 and Scientific and
Technological Research Council of Turkey (TUBITAK) Scientific Human Resources Development (BIDEB) under grant no:
2221-1059B211301223.

Author’s Contributions: The Abstract and Introduction were written by J. F. Peters and edited by E. Cui. The definitions,
remarks, examples and theorems that appear in Section 2 were introduced by J.F. Peters and edited by E. Cui. The examples in
Section 3 were introduced by E. Cui and edited by J.F. Peters. All authors read and approved the final manuscript.

Artificial Intelligence Statement: Al is used to separate the changing from the unchanging parts of each video frame.
Conflict of Interest Disclosure: No potential conflict of interest was declared by the authors.

Plagiarism Statement: This article was scanned by the plagiarism program.

References

11 S. G. Krantz, Essentials of topology with applications, CRC Press, New York, 2009. http://dx.doi.org/10.1201/b12333
(21 H. Poincaré, Sur les équations de la dynamique et le probléme des trois corps, Acta Math., 13 (1890), 1-272.

[31 R. De Leo, J. A. Yorke, Streams and graphs of dynamical systems, Qual. Theory Dyn. Syst., 24 (2024), Article ID 1, 53
pages. https://doi.org/10.1007/s12346-024-01112-x

(41 M. Feldman, Hilbert Transform Applications in Mechanical Vibration, John Wiley and Sons, 2011. http://doi.org/10.1002/
9781119991656

I51P. Pokorny, A. Klic, Dynamical systems generated by two alternating vector fields, Eur. Phys. J. Special Top., 165 (2008),
61-71. https://doi.org/10.1140/epjst/e2008-00849-9

61 R. Forman, Combinatorial vector fields and dynamical systems, Mathematische Zeitschrift, 228 (1998), 629-681. https:
//doi.org/10.1007/PL00004638

[71'S. Tiwari, J. F. Peters, Proximal groups: Extension of topological groups. Application in the concise representation of
Hilbert envelopes on oscillatory motion waveforms, Comm. Algebra, 52(9) (2024), 3904—3914. https://doi.org/10.1080/
00927872.2024.2334895

81 M. S. Haider, J. F. Peters, Temporal proximities: Self-similar temporally close shapes, Chaos Solitons Fractals, 151 (2021),
Article ID 111237, 10 pages. https://doi.org/10.1016/j.chaos.2021.111237

1 J. F. Peters, T. Vergili, Good coverings of proximal Alexandrov spaces. Path cycles in the extension of the Mitsuishi-
Yamaguchi good covering and Jordan curve theorems, Appl. Gen. Topol., 24(1) (2023), 25-45. https://doi.org/10.4995/agt.
2023.17046

E. Ozkan, B. Kuloglu, J. F. Peters, k-Narayana sequence self-similarity. Flip graph views of k-Narayana self-similarity,
Chaos Solitons Fractals, 153(2) (2021), Article ID 111473. https://doi.org/10.1016/j.chaos.2021.111473

E. Erdag, J. F. Peters, O. Deveci, The Jacobsthal-Padovan-Fibonacci p-sequence and its application in the concise
representation of vibrating systems with dual proximal groups, J. Supercomput., 81 (2025), Article ID 197. https:
//doi.org/10.1007/s11227-024-06608-6

L. Euler, Introductio in Analysin Infinitorum. (Latin), Sociedad Andaluza de Educacion Matematica Thales, Springer, New
York, 1748.

J. E. Peters, T. Vergili, F. Ucan, D. Vakeesan, Indefinite descriptive proximities inherent in dynamical systems. An Axiomatic
Approach, arXiv, (2025). https://doi.org/10.48550/arXiv.2501.02585

41 D, G. Magiros, On stability definitions of dynamical systems, Proc. Nat. Acad. Sci. U.S.A., 53(6) (1965), 1288-1294,

51 7 Pawlak, J. F. Peters, Jak bliski? [Polish] (How near?). In: Systemy Wspomagania Decyzji, vol. 1, 2007, pp. 57-109,
University of Silesia, Katowice, ISBN 83-920730-4-5.

J. F. Peters, T. U. Liyanage, Energy Dissipation in Hilbert Envelopes on Motion Waveforms Detected in Vibrating Systems:
An Axiomatic Approach, Commun. Adv. Math. Sci., 7(4) (2024), 178-186. https://doi.org/10.33434/cams.1549815

[10]

[11]

[12]

[13]

[16]


http://dx.doi.org/10.1201/b12333
https://doi.org/10.1007/s12346-024-01112-x
http://doi.org/10.1002/9781119991656
http://doi.org/10.1002/9781119991656
https://doi.org/10.1140/epjst/e2008-00849-9
https://doi.org/10.1007/PL00004638
https://doi.org/10.1007/PL00004638
https://doi.org/10.1080/00927872.2024.2334895
https://doi.org/10.1080/00927872.2024.2334895
https://doi.org/10.1016/j.chaos.2021.111237
https://doi.org/10.4995/agt.2023.17046
https://doi.org/10.4995/agt.2023.17046
https://doi.org/10.1016/j.chaos.2021.111473
https://doi.org/10.1007/s11227-024-06608-6
https://doi.org/10.1007/s11227-024-06608-6
https://doi.org/10.48550/arXiv.2501.02585
https://doi.org/10.33434/cams.1549815

	1.pdf
	Introduction
	A Crucial Equality
	Euler-Maclaurin-type Inequalities for h-Convex Functions
	Summary and Concluding Remarks
	Article Information
	References

	2.pdf
	Introduction
	Variable Sampling with Known Coefficient of Variation Under Measurement Error
	Numerical Illustration and Result
	Discussion
	Conclusion
	References

	3.pdf
	Introduction
	Problem Formulation
	Results
	Conclusion
	Article Information
	References

	4.pdf
	Introduction
	Two-Dimensional Integral Inequality Results
	Main result
	Examples
	Secondary results

	Three-Dimensional Integral Inequality Results
	Main result
	Examples

	Conclusion
	References

	5.pdf
	Introduction
	Preliminaries
	Application: Detection of Characteristically Near Stable Vector Fields on Motion Waveforms in Infrared Video Frames
	References


