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Introduction to Soft Metric Preserving Functions
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Abstract: In this study, we aim to present the notion of soft metric preserving functions (SMPFs) which

allows us to transform a soft metric into another one. We study some properties of SMPFs and investigate

some characterizations to decide whether a soft function is soft metric preserving or not. Then, we show

that the soft topology induced by soft metric was not preserved under SMPFs, present the stronger concept

for these functions and also research the relationships of this concept with continuity.

Keywords: Soft function, soft metric, completeness, metric preserving function.

1. Introduction
In mathematical analysis and topology, metric spaces are fundamental structures that provide a

rigorous way to measure distances between elements. A metric space is defined by a set paired

with a distance function (metric) that satisfies the following conditions: non-negativity, identity of

indiscernibles, symmetry, and triangle inequality. In the study of metric spaces, understanding how

functions interact with the underlying metric structure is essential for many areas of mathematics,

including topology, analysis, and geometry. When we use of a metric space endowed with a

given metric d , it is often useful to exchange d for a different metric which is more suitable for our

purposes. This possibility is crucial for applications where the integrity of the distance relationships

must be maintained, such as in data analysis, machine learning, and various forms of geometric

transformations. The importance of this concept can be interpreted that a particular property is

fulfilled or not by a subset or a mapping when verifying such a property is a difficult task in the

metric space. Actually, the first studies of this type functions was shown by Wilson [34]. The

notion of metric preserving function (MPF) was given in [7] as follows: f � R�
� R� is called a

MPF if df � U �U � R� by df�u1, u2� � f�d�u1, u2�� for all u1, u2 > U is a metric on U whenever

�U,d� is a metric space. A function f � R�
� R� is said to be amenable if f�u� � 0 � u � 0 .

Also, f is called subadditive if f�u1� � f�u2� C f�u1 � u2� for all u1, u2 > R� . If the topology
∗Correspondence: elif.guner@kocaeli.edu.tr
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generated by transformed metric coincides with the topology generated by original metric to be

transformed, then f is called a strong metric preserving function (S-MPF). The metric preserving

functions have applications in various mathematical and practical contexts such as geometry and

topology, computer graphics and image processing, data analysis and machine learning, physics

and engineering. Some quality research related to this concept in the settings of different views

can be found in [4–6, 12, 13, 15, 18, 21, 23–27, 30].

In the literature, different set theories have been presented after Zadeh [35] introduced the

fuzzy set theory since there are situations that the traditional classical methods do not capable of

solving complex problems, especially including uncertain data, in many fields such as engineering,

economics, environmental sciences, computer sciences, medical sciences, and etc. One of these

theories is the soft set (SS) theory given by Molodtsov [22] and defined as a parameterized family

of sets where the parameter takes value over an arbitrary set. This theory has been applied in

different areas successfully since this notion was initiated [3, 8, 9, 19, 28, 31–33]. Further, Majumdar

and Samanta [20] gave the the idea of soft mappings and studied images and inverse images of

crisp sets and SSs under soft mappings. In 2012, Das and Samanta [10] defined the notion of the

soft element (SE), and in particular, the soft real number which is interpreted as the extension of

fuzzy number in the sense of Dubois and Prade [14].

Classical metric spaces may not be suitable for dealing with problems involving uncertainties,

vagueness, or imprecision, which are common in real-world applications. To overcome these

limitations, the concept of a soft metric space (SMS) has been introduced by the authors of [11] as

an extension of classical metric spaces. SMSs integrate the ideas of SSs and fuzzy sets to handle

uncertainty and imprecision more effectively. SSs provide a flexible mathematical framework for

modeling situations where traditional methods struggle, especially in cases involving incomplete

or partially known data. The primary distinction between classical metric spaces and SMSs lies in

the nature of the metric itself. In classical metric spaces, the distance between any two points is

a single, exact number. In contrast, in SMS we represent this distance as a ”soft value,” which is

effectively a set of possible values or a range that encapsulates the uncertainty or fuzziness inherent

in the measurement. The authors of [11] also study the topological properties of these spaces and

gave Banach’s fixed point theorem and Cantor’s intersection theorem. Some different types of fixed

point theorems in the soft setting for SMSs can be found in [1, 2, 16, 17]. Recently, Taşköprü and

Altıntaş [29] described the soft functions by means of SEs as particular soft mappings in the sense

of [20].

In this paper, we study on the soft mappings given by Taşköprü and Altıntaş [29]. We

introduce the notion of SMPFs that can be taken as soft generalization of the metric preserving
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functions. We study some features of SMPFs and investigate some characterizations that allow us

practical usefulness in the applications. Then, we show that the soft topology generated by soft

metric was not preserved under SMPFs, present the stronger concept for these functions and also

investigate the relationships of this concept with continuity.

2. Preliminaries
In this part, we recall some necessary notions such as SS, SE, soft function, soft metric and soft

topology that will be used in the other sections. Suppose that U is an universal set, A is a non-

empty set of parameters and B�R� is the collection of all non-empty bounded subsets of the set

R .

Definition 2.1 [10, 19, 22] A pair �F,A� is said to be SS over U if F is a mapping of A into

the set of all subsets of U (i.e., F � A� P �U�). We denote SS �F,A� by F shortly.

The complement of SS F is denoted by F c where F c
� A � P �U� is a mapping given by

F c�γ� � U � F �γ� for all γ > A . SS F over U is said to be

(1) A null SS and denoted by Φ if F �γ� � g for all γ > A ,

(2) An absolute SS and denoted by ÇU if F �γ� � U for all γ > A .

We will denote by S�ÇU� the collection of all SSs F for which F �γ� x g for any γ > A .

Also, all mappings ϵ � A � U are said to be SEs of U . SE ϵ is said to belong to SS F and

denoted by ϵÇ>F if ϵ�γ� > F �γ� for all γ > A . Here, we note that any family of SEs of SS can

generate a soft subset of this SS. We will denote SS constructed from a collection B of SEs by

SS�B� . Also, we will denote the collection of SEs of SS F by SE�F � .

Specially, a soft real set is a mapping F � A � B�R� . If F is a single-valued function on

A taking values in R , then F is called SE of R or a soft real number. If F is a single-valued

function on A taking values in R� , then F is said to be a non-negative soft real number. The set

of all non-negative soft real numbers is denoted by R�A�� . Also, the notations ũ , ṽ , w̃ are used

to denote soft real numbers whereas ū , v̄ , w̄ are used to denote a special type of soft real numbers

such as ū�γ� � u for all γ > A which is called a constant soft real number. For instance, 0̄ is the

soft real number where 0̄�γ� � 0 for all γ > A . The collection of all non-negative constant soft real

numbers is denoted by R�A�� .

Definition 2.2 [10] The soft orderings are defined for soft real numbers Çu1 , Çu2 as follows:

(1) Çu1ÇB Çu2 if Çu1�γ� B Çu2�γ� , for all γ > A ,

(2) Çu1ÇC Çu2 if Çu1�γ� C Çu2�γ� , for all γ > A ,

(3) Çu1Ç@ Çu2 if Çu1�γ� @ Çu2�γ� , for all γ > A ,
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(4) Çu1ÇA Çu2 if Çu1�γ� A Çu2�γ� , for all γ > A .

Definition 2.3 [11] Let F,G > S�ÇU� .

(1) The complement of F is denoted by F� and defined by F� � SS�B� where B � � Çu1Ç>ÇU �

Çu1Ç>F
c� .

(2) F is said to be a soft subset of G and denoted by F f G if every SE of F is also SE of

G .

(3) The union of F and G is denoted by F : G and defined by F : G � SS�B� where

B � �ÇuÇ>ÇU � ÇuÇ>F or ÇuÇ>G� , i.e., F :G � SS�SE�F � 8 SE�G�� .

(4) The intersection of F and G is denoted by F ;G and defined by F ;G � SS�B� where

B � �ÇuÇ>ÇU � ÇuÇ>F and ÇuÇ>G� , i.e., F ;G � SS�SE�F � 9 SE�G�� .

Definition 2.4 [29] A soft mapping from U to V with parameter set A is denoted by the mapping

f � SE�ÇU�� SE�ÇV � .

If �fγ � γ > A� is a collection of crisp mapping from U to V , then f � SE�ÇU� � SE�ÇV �

is a soft mapping such that f�Çu��γ� � fγ�Çu�γ�� for all γ > A . Hence, every parameterized family

of crisp mappings can be taken as a soft mapping. However, the converse of this statement is not

satisfied in general as seen in [29].

Theorem 2.5 [29] If the soft mapping f � SE�ÇU�� SE�ÇV � satisfies the following condition (F),

then fγ � U � V defined by fγ�Çu�γ�� � f�Çu��γ� is a function.

(F) f�Çu��γ� � Çu�γ� � u is a single-point set for all u > U and γ > A .

Definition 2.6 [29] A soft mapping f � SE�ÇU� � SE�ÇV � is called a soft function if f satisfies

the condition (F).

A soft function f is called injective if Çu1 � Çu2 whenever f� Çu1� � f� Çu2� and surjective if

f�SE�ÇU�� � SE�ÇV � . It is obvious that a soft function f � SE�ÇU�� SE�ÇV � is injective (surjective)

if and only if fγ � U � V is injective (surjective) for all γ > A .

We also note that a soft function is a special soft mapping in the sense of [20].

Definition 2.7 [11] A soft metric on SS ÇU is a mapping d � SE�ÇU� � SE�ÇU� � R�A�� fulfilling

the following axioms:

(SM1) Çu1 � Çu2 iff d� Çu1, Çu2� � 0̄ ,

(SM2) d� Çu1, Çu2� � d� Çu2, Çu1� ,

(SM3) d� Çu1, Çu2�ÇBd� Çu1, Çu3� � d� Çu3, Çu2� for all Çu1, Çu2, Çu3 > SE�ÇU�.
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SS ÇU with a soft metric d on ÇU is called SMS and denoted by the triplet �ÇU,d,A� or �ÇU,d�

for short. If there exists a k̄ > R�A�� such that d� Çu1, Çu2�ÇBk̄ for all Çu1, Çu2 > R�A�� , then �ÇU,d� is

called a bounded SMS.

Example 2.8 [11] If �dγ , γ > A� is a parameterized family of crisp metrics on a set U , then the

mapping d � SE�ÇU� � SE�ÇU� � R�A�� defined by d� Çu1, Çu2��γ� � dγ� Çu1�γ�, Çu2�γ�� , for all γ > A

and Çu1, Çu2 > SE�ÇU� , is a soft metric on ÇU .

Result 2.9 [11] Let ÇU � R�A�� and define the mapping d � SE�ÇU� � SE�ÇU� � R�A�� by

d�ū1, ū2� � Sū1 � ū2S for all ū1, ū2 > R�A�� . Then, �ÇU,d� is SMS.

Proposition 2.10 [11] If �ÇU,d� is SMS, then the mapping dγ � U � U � R� defined by

dγ� Çu1�γ�, Çu2�γ�� � d� Çu1, Çu2��γ� , for all γ > A , is a metric on U provided that d satisfies the

following condition:

(SM4) �d� Çu1, Çu2��γ� � Çu1�γ� � a, Çu2�γ� � b� is a singelton set for all �a, b� > U � U and

γ > A .

Definition 2.11 [11] Let �ÇU,d� be SMS, Çu > SE�ÇU� and Çr > R�A�� . Then, the subset B�Çu,Çr� �

�Çv > SE�ÇU� � d�Çu,Çv�Ç@Çr � of SE�ÇU� is called an open disc centered at Çu with radius Çr and SS

B�Çu,Çr� is called a soft open disc with the center Çu and radius Çr .

Let B ` SE�ÇU� . Then, B is called open with respect to d if for all Çu > B there exists

Çr > SE�ÇU� such that B�Çu,Çr� ` B . SS F > S�ÇU� is said to be soft open with respect to d if there

exist a collection B of SEs of F such that B is open with respect to d and F � SS�B� .

Proposition 2.12 [11] If �ÇU,d� is SMS satisfying the condition (SM4), then for every open disc

B�Çu,Çr� in SMS �ÇU,d� , SS�B�Çu,Çr���γ� � B�Çu�γ�,Çr�γ�� is an open disc in �U,dγ� for all γ > A .

Proposition 2.13 [11] If �ÇU,d� is SMS satisfying the condition (SM4), then F > S�ÇU� is a soft

open set with respect to d if and only if F �γ� is open in �U,dγ� for all γ > A .

Definition 2.14 [29] Let τ ` S�ÇU� be a family of SSs over U . Then, τ is said to be a soft

topology on ÇU if the following axioms are satisfied:

(ST1) Φ, ÇU > τ .

(ST2) If F,G > τ , then F ;G > τ .

(ST3) If Fi > τ for all i > I , then :i>IFi > τ .

The triplet �ÇU, τ,A� is called a soft topological space.
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Remark 2.15 [11] Let �ÇU,d� be SMS satisfying the condition (SM4). Then, the collection τ of

all soft open sets with respect to d form a soft topology on ÇU , this topology is called soft metric

topology and denoted by τd .

In the following proposition, we note that the condition “F �γ�9G�γ� x g” is not necessary

unlike [29] when we demand a crisp topology τγ on U whenever �ÇU, τ,A� is a soft topology.

Proposition 2.16 If �ÇU, τ,A� is a soft topology, then τγ � �F �γ� � F > τ� , for all γ > A , is a

crisp topology on U .

Proof We have g, U > τγ for all γ > A since Φ, ÇU > τ . Let F1�γ�, F2�γ� > τγ . Then, we have

F1, F2 > τ. Also, if F1�γ� 9 F2�γ� � g , then it is clear that F1�γ� 9 F2�γ� > τγ . Otherwise, if

F1�γ� 9 F2�γ� x g , then we have F1 ; F2 x Φ which follows that �F1 ; F2��γ� � � Çu1�γ� � Çu1�γ� >

F1�γ� and Çu1�γ� > F2�γ�� � F1�γ� 9 F2�γ� . Since F1 ; F2 , then we obtain F1�γ� 9 F2�γ� > τγ .

Finally, let Fi�γ� > τγ for all i > I which means that Fi > τ for all i > I and so, :i>IFi > τ .

Also, we know that �:i>IFi��γ� � �i>I Fi�γ� which concludes the proof since this implies that

�i>I Fi�γ� > τγ . j

3. Soft Metric Preserving Functions

In this part, we introduce the notion of SMPF which let us obtain a new SMS from the existing SMS.

Then, we obtain some features of this type of soft function and so, we give some characterizations

of these functions. Also, we present that the topology generated by soft metric was not preserved

under SMPFs.

Definition 3.1 Let �ÇU,d� be SMS and f � R�A�� � R�A�� be a soft function. Define a mapping

df � SE�ÇU� � SE�ÇU� � R�A�� by df� Çu1, Çu2� � f�d� Çu1, Çu2�� for all Çu1, Çu2 > SE�ÇU� . Then, the

function f is said to be SMPF if the mapping df is a soft metric on SE�ÇU� .

For example, we can obtain a bounded SMS from a given SMS �ÇU,d� such as d� Çu1, Çu2��
d�Èu1,Èu2�

1�d�Èu1,Èu2�

for all Çu1, Çu2 > SE�ÇU� . So, the function f � R�A�� � R�A�� defined by f� Çu1� �
Èu1

1�Èu1
is SMPF.

Let us denote by ÇO the set of all soft functions f � R�A�� � R�A�� satisfy the condition

f� Çu1� � 0̄� Çu1 � 0̄

whenever Çu1 > R�A�� , i.e., ÇO � �f � R�A�� � R�A��Sf�1�0̄� � 0̄� . The elements of ÇO are called

soft amenable functions.

98



Elif Güner and Halis Aygün / FCMS

Proposition 3.2 If f � R�A�� � R�A�� is SMPF, then f > ÇO .

Proof Let f � R�A�� � R�A�� be SMPF and consider SMS �ÇU,d� where

d� Çu1, Çu2��γ� � e� Çu1�γ�, Çu2�γ��

for all Çu1, Çu2 > SE�ÇU� . To show that f� Çu1� � 0̄� Çu1 � 0̄ , first assume f� Çu1� � 0̄ . Then, we can

write

f� Çu1� � f�d� Çu1, 0̄�� � df� Çu1, 0̄� � 0̄� Çu1 � 0̄

since df is a soft metric on ÇU . The other side is obvious. j

Definition 3.3 A function f � R�A�� � R�A�� is called soft subadditive if f satisfies the following

inequality:

f� Çu1 � Çu2� B f� Çu1� � f� Çu2�

for all Çu1, Çu2 > SE�ÇU� .

Proposition 3.4 If f � R�A�� � R�A�� is SMPF, then f is subadditive.

Proof Let f � R�A�� � R�A�� be SMPF and consider SMS �ÇU,d� where

d� Çu1, Çu2��γ� � e� Çu1�γ�, Çu2�γ��

for all Çu1, Çu2 > SE�ÇU� . Then, we have

f� Çu1 � Çu2� � f�d� Çu1 � Çu2, 0̄�� � df� Çu1 � Çu2, 0̄� B df� Çu1 � Çu2, Çu2� � df� Çu2, 0̄�

� f�d� Çu1 � Çu2, Çu2�� � f�d� Çu2, 0̄�� � f� Çu1� � f� Çu2�.

j

Remark 3.5 The converse implication of the above proposition may not be satisfied. Consider the

soft mapping f� Çu1� � 1̄ for all Çu1 > R�A�� . Then, it is obvious that f is soft subadditive but f is

not SMPF since f ¶ ÇO .

Proposition 3.6 If f � R�A�� � R�A�� is soft subadditive, non-decreasing and f > ÇO , then f is

SMPF.

Proof Let �ÇU,d� be SMS. Now, we need to show that df � SE�ÇU� � SE�ÇU� � R�A�� defined

by df� Çu1, Çu2� � f�d� Çu1, Çu2�� is a soft metric on ÇU . Since f is non-decreasing and d� Çu1, Çu2�ÇB0̄ for
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all Çu1, Çu2 > R�A�� , we obtain df� Çu1, Çu2�ÇCf�0̄� � 0̄ . Assume that df� Çu1, Çu2� � 0̄ . Then, we have

d� Çu1, Çu2� � 0̄ which means that Çu1 � Çu2 since d is a soft metric on ÇU . Let Çu1, Çu2, Çu3 > R�A�� .

df� Çu1, Çu2� � f�d� Çu1, Çu2��ÇBf�d� Çu1, Çu3� � d� Çu3, Çu2�� �since f is non � decreasing�

ÇB f�d� Çu1, Çu3�� � f�d� Çu3, Çu2�� � df� Çu1, Çu3� � df� Çu3, Çu2� �since f is subadditive�.

As a result, df is a soft metric on ÇU and so, f is SMPF. j

Example 3.7 Let f � R�A�� � R�A�� defined by

f� Çu1� �
¢̈
¨
¦
¨̈
¤

0̄, Çu1 � 0̄

1̄, Çu1 x 0̄
.

Then, f is SMPF since f is soft subadditive, non-decreasing and f > ÇO .

Remark 3.8 The transferred SMS �ÇU,df� may not satisfy the condition (SM4) even if SMS

�ÇU,d� satisfies the condition (SM4) when f is SPMF.

Example 3.9 Let U � �a, b� , A � �γ,µ� and SE�ÇU� � �Çv1, Çv2, Çv3, Çv4� where Çv1�γ� � a , Çv1�µ� � a ,

Çv2�γ� � a , Çv2�µ� � b , Çv3�γ� � b , Çv3�µ� � a , Çv4�γ� � b and Çv4�µ� � b . Consider the soft metric

d � SE�ÇU� � SE�ÇU� � R�A�� given by d� Çu1, Çu2��γ� � S Çu1�γ� � Çu2�γ�S . Then, it is easily seen that

�ÇU,d� satisfies the condition (SM4). Take SMPF f � R�A�� � R�A�� defined by

f� Çu1� �
¢̈
¨
¦
¨̈
¤

0̄, Çu1 � 0̄

1̄, Çu1 x 0̄
.

Now, we obtain the mapping df � SE�ÇU� � SE�ÇU�� R�A�� as

df� Çu1, Çu2� � f�d� Çu1, Çu2�� �
¢̈
¨
¦
¨̈
¤

0̄, Çu1 � Çu2

1̄, Çu1 x Çu2

which is a discrete soft metric on ÇU . However, for �a, a� > U � U and γ > A , we have

�d� Çu1, Çu2��γ� � Çu1�γ� � a, Çu2�γ� � a� � �0,1� which is not a singelton set. Hence, �ÇU,df� does not

satisfy the condition (SM4).

Proposition 3.10 If SPMF f � SE�ÇU�� SE�ÇU� is surjective, then the transferred SMS �ÇU,df�

satisfies the condition (SM4) when the soft metric �ÇU,d� satisfies the condition (SM4).
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Proof Assume that there exists a point �a, b� > U � U and a parameter γ > A such that

�df� Çu1, Çu2��γ� � Çu1�γ� � a, Çu2�γ� � b� is not a singelton set. Hence, there are k1, k2 �k1 x k2� such

that k1, k2 > �df� Çu1, Çu2��γ� � Çu1�γ� � a, Çu2�γ� � b� . This means that fγ�dγ� Çu1�γ�, Çu2�γ��� � k1

and fγ�dγ� Çu1�γ�, Çu2�γ��� � k2 whenever Çu1�γ� � a and Çu2�γ� � b . We know that fγ is surjective

for all γ > A since f is a soft surjective function. Hence, there exists a point m1,m2 such that

dγ� Çu1�γ�, Çu2�γ�� �m1 and dγ� Çu1�γ�, Çu2�γ�� �m2 . Therefore, we have that there exists SE Çv1 x Çu1

such that Çv1�γ� � Çu1�γ� � a or Çy1 x Çu2 such that Çy1�γ� � Çu2�γ� � b since dγ is a crisp metric on

U . This follows that �d� Çu1, Çu2��γ� � Çu1�γ� � a, Çu2�γ� � b� is not a singelton set and so, we obtain

a contradiction. As a result, �ÇU,df� satisfies the condition (SM4). j

Definition 3.11 Let Çk,Çl, Çm > R�A�� . A triplet �Çk,Çl, Çm� is said to be soft triangular if

ÇkÇBÇl � Çm, ÇlÇBÇk � Çm and ÇmÇBÇk �Çl.

Proposition 3.12 If �ÇU,d� is SMS and Çu1, Çu2, Çu3 > ÇU , then

�d� Çu1, Çu2�, d� Çu2, Çu3�, d� Çu1, Çu3�� is a soft triangular triplet.

Theorem 3.13 Let f > ÇO and Çk,Çl, Çm > SE�ÇU� . Then, the followings are equivalent:

(i) f is SMPF.

(ii) If �Çk,Çl, Çm� is a soft triangular triplet, then �f�Çk�, f�Çl�, f�Çm�� is soft triangular triplet.

Proof �i� � �ii� � Let f be SMPF and �Çk,Çl, Çm� be a soft triangular triplet. Consider SMS

�ÇU,d� where

d� Çu1, Çu2��γ� � e� Çu1�γ�, Çu2�γ��

for all Çu1, Çu2 > SE�ÇU� . Since �Çk,Çl, Çm� is a soft triangular triplet, then we can find Çu,Çv, Çw > R�A��

such that d�Çu,Çv� � Çk , d�Çv, Çw� � Çl and d�Çu, Çw� � Çm . Then, we obtain

f�Çk� � f�d�Çu,Çv�� � df�Çu,Çv�ÇBdf�Çu, Çw� � df�Çw,Çv� � f�Çl� � f�Çm�

and, with similar way, f�Çl�ÇBf�Çk� � f�Çm� and f�Çm�ÇBf�Çk� � f�Çl� . Hence, we conclude that

�f�Çk�, f�Çl�, f�Çm�� is soft triangular triplet.

�ii�� �i� � Let f > ÇO and �ÇU,d� be SMS. Since �d� Çu1, Çu2�, d� Çu1, Çu2�, 0̄� is a soft triangular

triplet, we obtain �f�d� Çu1, Çu2��, f�d� Çu1, Çu2��, f�0̄�� is soft triangular triplet which means that

df� Çu1, Çu2�ÇC0̄ for all Çu1, Çu2 > R�A�� . Also, it is clear that df� Çu1, Çu2� � 0̄� Çu1 � Çu2 since f > ÇO .

Finally, since �d� Çu1, Çu2�, d� Çu2, Çu3�, d� Çu1, Çu3�� is a soft triangular triplet, from hypothesis, we also

obtain that df� Çu1, Çu2�ÇBdf� Çu1, Çu3� � df� Çu3, Çu2� which concludes that f is SMPF. j
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Proposition 3.14 Let f � R�A�� � R�A�� be a soft function associated with the family of

functions �fγ � R�
� R�, γ > A� . If f is SMPF, then fγ is a MPF for all γ > A .

Proof Let us consider SMS �R�A��, d� where d�x̄, ȳ� � Sx̄� ȳS for all x̄, ȳ > R�A�� . We will show

that fγ is amenable, non-decreasing and subadditive function for all γ > A (We refer to [7] for the

notion of metric preserving function).

Let us take γ > A .

(Amenable:) Let x > R� . Then, we have the followings:

fγ�x� � 0 � 0 � fγ�x̄�γ�� � fγ�d�x̄, 0̄��γ�� � f�d�x̄, 0̄���γ�

� f�d�x̄, 0̄�� � 0̄� d�x̄, 0̄� � 0̄� x̄ � 0̄� x � 0.

(Non-decreasing:) Let x B y for any x, y > R� .

fγ�x� � fγ�x̄�γ�� � fγ�d�x̄, 0̄��γ�� � f�d�x̄, 0̄���γ�

B f�d�ȳ, 0̄���γ� � fγ�d�ȳ, 0̄��γ�� � fγ�ȳ�γ�� � fγ�y�.

(Subadditive:) Let x, y > R� .

fγ�x � y� � fγ�x � y�γ�� � fγ�d�x � y, 0̄��γ�� � f�d�x � y, 0̄���γ�

B f�d�x � y, ȳ���γ� � f�d�ȳ, 0̄���γ�

� fγ�d�x � y, ȳ��γ�� � fγ�d�ȳ, 0̄��γ��

� fγ�x̄�γ�� � fγ�ȳ�γ�� � fγ�x� � fγ�y�.

j

Remark 3.15 The converse of the above proposition may not be true. Let us consider the example

given in [11] as follows:

Let U � �a, b� , A � �γ,µ� and SE�ÇU� � �Çv1, Çv2, Çv3, Çv4� where Çv1�γ� � a , Çv1�µ� � a ,

Çv2�γ� � a , Çv2�µ� � b , Çv3�γ� � b , Çv3�µ� � a , Çv4�γ� � b and Çv4�µ� � b . Consider the discrete metric

d � SE�ÇU� � SE�ÇU�� R�A�� given by

d� Çu1, Çu2� �
¢̈
¨
¦
¨̈
¤

0̄, Çu1 � Çu2

1̄, Çu1 x Çu2

.

Take the function fγ � R�
� R� defined by fγ�x� � x

1�x
for all x > R� and γ > A and the soft

function f � R�A�� � R�A�� given by f� Çu1� �
Èu1

1�Èu1
. Here, it is obvious that f� Çu1��γ� � fγ� Çu1�γ��

for all Çu1 > SE�ÇU� and γ > A . Also, fγ is a MPF and f is SMPF. However, the mapping
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df � SE�ÇU� � SE�ÇU�� R�A�� defined by df� Çu1, Çu2� � f�d� Çu1, Çu2�� for all Çu1, Çu2 > SE�ÇU� , is not

a soft metric on ÇU since df� Çv1, Çv1��γ� � fγ�0� , df� Çv1, Çv1��γ� � fγ�1� and fγ�0� x fγ�1� .

Proposition 3.16 If fγ � R�
� R� is a MPF for all γ > A , then the soft function f is SMPF

when SMS �ÇU,d� satisfies the condition (SM4).

Proof Let fγ � R�
� R� be a MPF for all γ > A . Suppose that �ÇU,d� is SMS satisfying the

condition (SM4). Then, we know that the mapping dγ � U �U � R� defined by dγ� Çu1�γ�, Çu2�γ�� �

d� Çu1, Çu2��γ� , for all γ > A , is a metric on U . Now, we show that df � SE�ÇU� � SE�ÇU� � R�A��

defined by df� Çu1, Çu2� � f�d� Çu1, Çu2�� is a soft metric on ÇU .

Let γ > A .

df� Çu1, Çu2��γ� � f�d� Çu1, Çu2���γ� � fγ�d� Çu1, Çu2��γ�� � fγ�dγ� Çu1�γ�, Çu2�γ��� C fγ�0� � 0

. So, we have df� Çu1, Çu2�ÇC0̄ since γ is an arbitrary chosen parameter.

(SM1) Let γ > A and df� Çu1, Çu2� � 0̄ . Then, we have

0 � f�d� Çu1, Çu2���γ� � fγ�dγ� Çu1�γ�, Çu2�γ���� dγ� Çu1�γ�, Çu2�γ�� � 0� Çu1�γ� � Çu2�γ�

which means that Çu1 � Çu2 since γ is an arbitrary parameter. It is clear that df� Çu1, Çu2� � 0̄ when

Çu1 � Çu2 .

(SM2) It is obvious from the definitions.

(SM3) Let Çu1, Çu2, Çu3 > R�A�� . Then, we obtain

df� Çu1, Çu2��γ� � fγ�dγ� Çu1�γ�, Çu2�γ��� B fγ�dγ� Çu1�γ�, Çu3�γ�� � dγ� Çu3�γ�, Çu2�γ���

B fγ�dγ� Çu1�γ�, Çu3�γ��� � fγ�dγ� Çu3�γ�, Çu2�γ���

� f�d� Çu1, Çu3���γ� � f�d� Çu3, Çu2���γ� � df� Çu1, Çu3��γ� � df� Çu3, Çu2��γ�

which follows that df� Çu1, Çu2�ÇBdf� Çu1, Çu3� � df� Çu3, Çu2� as required. j

In the following example, we notice that the topology generated by the transformed SMS

may not be equivalent to the topology generated by SMS to be transformed.

Example 3.17 Consider the soft metric d � R�A�� � R�A�� � R�A�� given by d�x, y��γ� �

Sx�γ� � y�γ�S where A is a non-empty parameter set. Then, it is easily seen that �ÇU,d� satisfies

the condition (SM4). Take SMPF f � R�A�� � R�A�� defined by

f� Çu1� �
¢̈
¨
¦
¨̈
¤

0̄, Çu1 � 0̄

1̄, Çu1 x 0̄
.
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Now, we obtain the mapping df � R�A�� �R�A�� � R�A�� as

df�x, y� � f�d�x, y�� �
¢̈
¨
¦
¨̈
¤

0̄, x � y

1̄, x x y

which is a discrete soft metric on R�A�� satisfying the condition (SM4). Then, we have

Bd�Çk,Çr� � �x � d�x,Çk�Ç@Çr�� SS�Bd�Çk,Çr���γ� � Bdγ �a, r� � �a � r, a � r�

and

Bdf
�Çk,Çr� � �x � df�x,Çk�Ç@Çr�� SS�Bdf

�Çk,Çr���γ� � Bdf γ
�x�γ�, y�γ�� �

¢̈
¨
¦
¨̈
¤

�a�, Çr�γ� B 1

R�, Çr�γ� A 1

which means that �τd�γ x �τdf
�γ and so, we have that τd x τdf

.

Definition 3.18 Let f � R�A�� � R�A�� be a surjective SMPF. f is called strong SMPF (S-

SMPF) if for each soft metric space �ÇU,d� satisfying the condition (SM4), the soft metrics d and

df are topologically equivalent, i.e., τd � τdf
.

Proposition 3.19 If f � R�A�� � R�A�� is S-SMPF, then fγ � R�
� R� is S-MPF for all γ > A .

Proof It is obvious from Proposition 3.14 and Definition 3.18. j

Proposition 3.20 If fγ � R�
� R� is a surjective S-MPF for every γ > A , then f � R�A�� � R�A��

is S-SMPF.

Theorem 3.21 Let f � R�A�� � R�A�� be SMPF. Then, the following assertions are equivalent:

(i) f is S-SMPF.

(ii) f is surjective and continuous.

(iii) f is surjective and continuous at 0̄ .

Proof �i�� �ii� Let f � R�A�� � R�A�� be S-SMPF, then from Proposition 3.19 fγ � R�
� R�

is S-MPF for all γ > A . Since fγ , for all γ > A , is continuous, then we have that f is continuous

over R�A�� .

�ii� � �i� Let f � R�A�� � R�A�� be a surjective and continuous SMPF, then we have

that fγ � R�
� R� is surjective and continuous for all γ > A which means that fγ is S-MPF for all

γ > A . Hence, we conclude that f is S-SMPF.

�ii�� �iii� This observation is clear.
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�iii�� �ii� Let f be surjective and continuous at 0̄ . Then, fγ � R�
� R� is surjective and

continuous at 0 for all γ > A . This implies that fγ is continuous over R� and so, we have that f

is continuous. j

4. Conclusion
Soft metric spaces provide a significant generalization of classical metric spaces by incorporating SS

theory to handle uncertainty and vagueness. They retain the essential properties of metric spaces

while allowing for a more flexible and nuanced representation of distances in situations where precise

measurements are not possible. This makes them a valuable tool in a wide range of theoretical

and practical applications, from decision-making to data analysis and beyond. As research in this

area continues, further refinements and applications of soft metric spaces are likely to emerge,

broadening their impact across multiple domains. On the other hand, metric preserving functions

play a vital role in many areas of mathematics and its applications by ensuring that the metric

structure of spaces is maintained under transformations. Whether in geometry, data analysis, or

physics, these functions help maintain consistency in distance relationships, enabling meaningful

interpretations and reliable results in various domains. Understanding these functions’ properties

and applications provide deeper insight into the structure and behavior of metric spaces and their

transformations. This study includes an introduction to SMPFs and some characterizations of

these types of functions by means of some properties of the soft functions. For future work, we

plan to investigate soft contraction preserving functions which allow us to find the fixed point of

functions on the transferred SMSs and also we research the soft partial metric preserving functions

and their relationships with SMPFs.
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Abstract: Academic achievement is defined as the degree to which a student has achieved a learning

goal. It is typically measured through the utilisation of examinations, continuous assessments and grade

point averages. The student’s apprehension of failure can result in the accumulation of stress over time,

which can consequently lead to a decline in academic achievement. Conversely, factors such as inadequate

cognitive abilities, negative parental influence, familial circumstances and the physical and mental health

of the child have been identified as the primary contributors to academic achievement. The present

study proposes a novel fractional order mathematical model of academic achievement, comprising three

compartments: students with above average achievement (S ), students with average achievement (M )

and students with below average achievement (B ). The Caputo derivative definition was employed as the

fractional derivative and a stability analysis of the fractional model was conducted. Numerical solutions

were obtained via the Generalized Euler Method and their graphs were drawn.

Keywords: Fractional order school academic performance model, mathematical modeling, generalized

Euler method, Caputo derivative, stability analysis.

1. Introduction
A substantial corpus of research has been dedicated to the study of students’ behavior and learning,

with a particular focus on personal characteristics such as intelligence, cognitive style, motivation,

personality, self-concept, and locus of control. It has been noted by several institutions that certain

factors related to students’ behavior are perceived to contribute to academic failure. Consequently,

the management of these institutions has adopted a serious approach to address these issues

[20, 26]. Self-regulated learning strategies are important for individuals to be successful lifelong

learners. It also provides them with the opportunity to manage their own learning processes

[1, 17]. In particular, the impact of self-regulation skills on learners’ acquisition of learning

strategies merits consideration as an indisputable attribute. Self-regulated learning strategies
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refer to the capacity of individuals to exercise definitive control over their own learning processes,

independently managing their learning in the absence of external influences. Consequently, self-

regulation processes represent a subject of paramount significance within the domain of educational

research [2, 4].

The primary issue that was addressed in the studies conducted during the 1980-1990 period

pertains to the relationship between students’ knowledge in a specific academic domain and

their cognitive, meta-cognitive abilities, and motivation. The research undertaken during this

era has yielded significant insights into the components of self-regulated learning. The cognitive

and motivational strategies employed by students, the types of goals adapted for learning tasks

and beliefs concerning the fulfillment of learning tasks, success and failure attributions have

been identified as notable issues. The definition of self-regulatory learning strategies is generally

understood to emphasize the learner’s state of being active in terms of motivation, metacognition

and behavior in the learning process, with the teacher playing a pivotal role in the acquisition of self-

regulated learning strategies, particularly in the context of designing and implementing teaching

activities in the classroom. Teachers can influence students’ self-regulation skills through the

strategies, methods and techniques they employ in the classroom. For instance, the development

of meta-cognitive regulation skills in students who receive continuous teacher support is at a low

level, underscoring the importance of teacher attention to their teaching activities. Additionally,

the classroom atmosphere created by the teacher plays a pivotal role. Teachers who employ

democratic, student-centered and active teaching practices in the classroom can positively influence

students’ motivation levels and their skills related to self-regulatory learning strategies [2, 4, 11].

Mathematical models can be defined as simplified representations of a real system or known

process. They are utilised for the purpose of expressing observations or measurements of events,

interactions and behaviours in a compact form, explaining them, predicting events or outcomes that

have not yet been observed and designing systems that are intended to exhibit certain behaviours.

The developed fractional order mathematical model will facilitate the determination of the main

factors that play a role in determining the academic achievement levels of students. This will

include the determination of the extent to which they are effective and their relations with each

other, the level of academic failure in schools, and the obtaining of important findings on how to

prevent failure [6, 7, 18, 21].

The employment of fractional order derivatives in the control theory of diverse physical

and biological processes and dynamical systems has been shown to yield superior outcomes in

comparison to the utilisation of integer order derivatives. One of the most significant reasons

for this is that fractional order derivatives and integral definitions possess a memory property.

Furthermore, the model remains identical, yet the fractional orders of the equations vary in each
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real-world application, thereby yielding specific and precise results for the pertinent problem.

In population models, for instance, the future state of a population is contingent upon its past

state, a phenomenon referred to as the ‘memory effect’. The incorporation of a delay term or the

utilisation of a fractional derivative within the model facilitates the analysis of the memory effect

of the population. Fractional calculus, incorporating fractional derivatives and fractional integrals,

has recently garnered heightened interest among researchers in the field. It has been determined

that fractional operators offer a more precise and efficient characterisation of system behaviour

in comparison to integer order derivatives. In view of the substantial advantages of fractional

derivatives with regard to memory properties, the present system is modified by substituting the

integer order time derivative with the Caputo fractional derivative [5–8, 11, 12, 18, 21].

The utilisation of fractional derivative operators, particularly non-local fractional deriva-

tives, facilitates a more comprehensive investigation of these intricate systems. The majority of

research domains pertain to supercomplex mechanisms comprising highly intricate and non-linear

differential equations. To enhance comprehension, a range of fractional derivatives, encompassing

singular and non-singular kernels, are employed. Through comparative analysis, the fractional

derivative that yields the optimal result is identified and employed. To ensure the most accurate

determination, real-life data are necessary, as the derivative exhibiting the closest behaviour to

real-life data is determined as the derivative that gives the best result [3, 5, 8–10, 12–16, 19, 22–

25, 27].

This paper is divided into four sections. The initial section outlines the significance of frac-

tional mathematical modeling and the prevailing academic context within educational institutions.

The second part of the paper presents the formation of a fractional order academic achievement

model in schools, together with a mathematical analysis of the existence, uniqueness and non-

negativity of the system, the Generalised Euler Method and a stability analysis of the model. The

third section introduces a new application of the academic achievement model in fractional order

schools, presents the numerical results and draws graphs. The fourth section concludes the paper.

2. Fractional Derivative and Fractional Order School Academic Performance Model
The most commonly used definitions of the fractional derivative are Riemann-Liouville, Caputo,

Atangana-Baleanu and the conformable derivative. In this study, because the classical initial

conditions are easily applicable and provide ease of calculation, the Caputo derivative operator

was preferred and modeling was created. The definition of the Caputo fractional derivative is

given below.

Definition 2.1 [17] Let f(t) be a function that is continuously differentiable n times. The value

of the function f(t) for α satisfying n − 1 < α < n . The Caputo fractional derivative of order α
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of f(t) is defined by

Dα
t f(t) =

1

Γ(n − α) ∫
t

a
(t − x)n−α−1f (n)(x)dx.

Definition 2.2 [17] The Riemann–Liouville (RL) fractional-order integral of a function A(t) ∈ Cn

(n ≥ −1) is given by

JγA(t) = 1

Γ(γ) ∫
t

0
(t − s)γ−1A(s)ds, J0A(t) = A(t).

Definition 2.3 [17] The series expansion of the two-parameter Mittag–Leffler function for a, b > 0

is given by

Ea,b(t) =
∞
∑
i=0

ti

Γ(ai + b)
.

2.1. Fractional Order School Academic Performance Model
The fractional order model of academic achievement in schools basically categorises a class into

three main groups. The first one is students with above average achievement, the second one is

students with average achievement and the third one is students with below average achievement.

The expression of the academic achievement model in schools as a system of fractional differential

equations is as follows:

dαS

dtα
= µN − µS − βS + σS,

dαM

dtα
= βS − µM − γM,

dαB

dtα
= γM − µB − δB.

(1)

Here dα

dtα
is the Caputo fractional derivative with respect to time t and 0 < α ≤ 1 . Initial

values are given as,

S(0) = S0, M(0) =M0, B(0) = B0

it is defined as. Since the society is divided into three compartments, S +M + B = N with the

derivation of all terms according to time

dαN

dtα
= dαS

dtα
+ dαM

dtα
+ dαB

dtα
.

In time-dependent phenomena, fractional order models are more realistic and accurate than integer

order models because they possess a memory feature [3, 5, 8–10, 12–16, 19, 22–25, 27]. For α = 1 in
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system (1), the fractional order differential equation is reduced to a full order differential equation.

The compartment and parameters of the spell are shown in Table 1 and Table 2.

Table 1: Variables used in the systems and their meanings

Variables used in the systems Meaning
S(t) Students with above average achievement at time t
M(t) Students with average achievement at time t
B(t) Students with below average achievement at time t
N(t) Total classroom

Table 2: Parameters and their meanings

Parameters Meaning
β Rate of negative teacher attitude
µ Academic motivation rate
σ Positive family relationship rate
δ Negative family relationship rate
γ Low rate of self-efficacy

The parameters defined in the model do not change with time. The N term was dimen-

sionlessised and the new variables were created as follows:

s = S

N
, m = M

N
, b = B

N
.

It is clear from here that s+m+ b = 1 . Thus, the new form of the academic achievement model in

fractional order schools is written as follows:

Dαs(t) = µ − µs(t) − βs(t) + σs(t),

Dαm(t) = βs(t) − µm(t) − γm(t),

Dαb(t) = γm(t) − µb(t) − δb(t).

(2)

2.2. Existence, Uniqueness and Non-Negativity of the System

We investigate the exintence and uniqueness of the solution of the fractional-order system (1) in

the region C × [t0, T ] where

C = {(S,M,B) ∈ R3
+ ∶max{∣ S ∣, ∣M ∣, ∣ B ∣} ≤ Ψ,min{∣ S ∣, ∣M ∣ ∣ B ∣ ≥ Ψ0} (3)

and T < +∞ .

Theorem 2.4 For each H0 = (S0,M0,B0) ∈ C , there exists a unique solution H(t) ∈ C of the

fractional-order system (1) with intial condition H0 , which is defined for all t ≥ 0 .
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Proof We denote H = (S,M,B) and H̄ = (S̄, M̄ , B̄) . Consider a mapping

X(H) = (X1(H),X2(H),X3(H)) and

X1(H) = µN − µS − βS + σS,

X2(H) = βS − µM − γM,

X3(H) = γM − µB − δB.

(4)

For any H, H̄ ∈ C , it follows from (4) that

∥X(H) −X(H̄) ∥=∣X1(H) −X1(H̄) ∣ + ∣X2(H) −X2(H̄) ∣ + ∣X3(H) −X3(H̄) ∣ (5)

and

∣X1(H) −X1(H̄) ∣=∣ µN − µS − βS + σS − µN + µS̄ + βS̄ − σS̄ ∣

=∣ −µ(S − S̄) − β(S − S̄) + σ(S − S̄) ∣

≤ µ ∣ S − S̄ ∣ +β ∣ S − S̄ ∣ +σ ∣ S − S̄ ∣,

∣X2(H) −X2(H̄) ∣=∣ βS − µM − γM − βS̄ + µM̄ + γM̄ ∣

=∣ β(S − S̄) − µ(M − M̄) − γ(M − M̄) ∣

≤ β ∣ S − S̄ ∣ +µ ∣M − M̄ ∣ +γ ∣M − M̄ ∣,

∣X3(H) −X3(H̄) ∣=∣ γM − µB − δB − γM̄ + µB̄ + δB̄ ∣

=∣ γ(M − M̄) − µ(B − B̄) − δ(B − B̄) ∣

≤ γ ∣M − M̄ ∣ +µ ∣ B − B̄ ∣ +δ ∣ B − B̄ ∣ .

Then, (4) becomes,

113



Zafer Öztürk / FCMS

∥X(H) −X(H̄)∥ ≤ µ∣S − S̄∣ + β∣S − S̄∣ + σ∣S − S̄∣ + β∣S − S̄∣

+ µ∣M − M̄ ∣ + γ∣M − M̄ ∣ + γ∣M − M̄ ∣

+ µ∣B − B̄∣ + δ∣B − B̄∣

≤ (µ + σ + 2β)∣S − S̄∣ + (µ + 2γ)∣M − M̄ ∣ + (µ + γ)∣B − B̄∣,

∥X(H) −X(H̄) ∥≤ L ∥H − H̄ ∥ ,

where L =max(µ + σ + 2β,µ + 2γ,µ + γ).

Therefore, X(H) obeys Lipschitz condition which implies the existence and uniqueness of

solution of the fractional-order system (1). ◻

Theorem 2.5 For all t ≥ 0 , S(0) = S0 ≥ 0 , M(0) = M0 ≥ 0 , B(0) = B0 ≥ 0 , the solution of the

system (1) with initial conditions (S(t),M(t),B(t)) ∈ R3
+ are not negative.

Proof (Generalized Mean Value Theorem) Let f(x) ∈ C[a, b] and Dαf(x) ∈ C[a, b] for 0 < α ≤ 1 .

Then, we have

f(x) = f(α) + 1

Γ(α)
Dαf(ϵ)(x − a)α (6)

with 0 ≤ ϵ ≤ x for all x ∈ (a, b] .

The existence and and uniqueness of the solution of the system (1) in (0,∞) can be obtained via

Generalized Mean Value Theorem. We need to show that the domain R3
+ is positively invariant.

Since
DαS = µN − µS − βS + σS ≥ 0,

DαM = βS − µM − γM ≥ 0,

DαB = γM − µB − δB ≥ 0

on each hyperplane bounding the nonnegative orthant, the vector field points into R3
+ . ◻

2.3. Stability Analysis of the Fractional Order School Academic Performance Model

Definition 2.6 That the equilibrium point of the first-order difference equation system given as

Xt+1 = F (Xt) (7)

is the point X̄ that satisfies the equations X̄ = F (X̄) . Also, let us consider J(X̄) to be the

Jacobian matrix calculated at this equilibrium point. If the eigenvalues obtained from the equation
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det(J(X̄)−λI) = 0 satisfy the conditions λi ≠ 1 for i = 1,2, . . . , n then this point is called hyperbolic

equilibrium, otherwise it is called non-hyperbolic equilibrium [18].

In order to find the equilibrium point in the system (2), Dαs = 0 , Dαm = 0 , Dαb = 0 it is

considered to be.

E0 = (s0,m0, b0) including,

E0 = (
µ

β + µ + σ
,

µβ

(β + µ + σ)(µ + γ)
,

µβγ

(β + µ + σ)(µ + γ)(µ + δ)
) (8)

the equilibrium point of the system is obtained. Jacobian matrix of the system at the equilibrium

point

J(E0) =
⎡⎢⎢⎢⎢⎢⎣

−β − µ + σ 0 0
β −µ − γ 0
0 γ −µ − δ

⎤⎥⎥⎥⎥⎥⎦
(9)

it is obtained. The eigenvalues obtained from the Jacobian matrix (9) are given below:

λ1 = −β − µ + σ,

λ2 = −µ − γ,

λ3 = −µ − δ

where β,µ, δ, σ, γ are the parameters of positively defined real numbers. It is clear that λ2 < 0 and

λ3 < 0 . If λ1 < 0 , the equilibrium point of the system is locally asymptotically stable. If λ1 > 0 ,

the equilibrium point of the system is unstable. If −β − µ + σ < 0 , σ < β + µ is.

R0 = σ
β+µ is the basic threshold rate, was determined. If R0 < 1 , academic achievement

in schools will increase over time. If R0 > 1 , academic achievement in schools will decrease

over time. The success level of students can be taken into consideration when planning studies.

In the mathematical model developed for this study, the R0 value is affected by parameters

such as individual reasons (self-efficacy, self-esteem, motivation, etc.), and family-related reasons

(parents’ attitudes and behaviours, their participation in education, parents’ education level, family

socioeconomic level, etc.).

2.4. Generalized Euler Method
Generalised Euler Method was used to solve the initial value problem with Caputo fractional

derivative. A significant proportion of mathematical models comprise non-linear systems, which

can present a considerable challenge in terms of identifying solutions. In the majority of cases, an-

alytical solutions cannot be obtained, necessitating the use of a numerical approach. One such ap-

proach is the Generalised Euler Method [24]. Let Dαy(t) = f(t, y(t)), y(0) = y0,0 < α ≤ 1,0 < t < α
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be the initial value problem. Let [0, a] the interval over which we want to find the solution of

the problem. For convenience, subdivide the [0, a] into n subintervals [tj , tj+1] . Suppose that

y(t),Dαy(t) and D2αy(t) are continuous in range [0, a] and using the generalized Taylor’s for-

mula, the following equality is obtained [24]:

y(t1) = y(t0) +
hα

Γ(α + 1)
f(t0, y(t0))

where h = a
n

for j = 0,1, . . . , n − 1 .

This process will be repeated to create an array. Let tj = tj+1 + h such that

y(tj+1) = y(tj) +
hα

Γ(α + 1)
f(tj , y(tj)

for j = 0,1, .., n − 1 the generalized formula in the form is obtained. For each k = 0,1, . . . , n − 1

with step size h ,

DαS(t) = µN − µS(k) − βS(k) + σS(k),

DαM(t) = βS(k) − µM(k) − γM(k),

DαB(t) = γM(k) − µB(k) − δB(k).

(10)

For t ∈ [0, h) , t
h
∈ [0,1) , we have

DαS(t) = µN − µS(0) − βS(0) + σS(0),

DαM(t) = βS(0) − µM(0) − γM(0),

DαB(t) = γM(0) − µB(0) − δB(0).

(11)

The solution of (11) reduces to

S(1) = S(0) + hα

Γ(α + 1)
(µN − µS(0) − βS(0) + σS(0)),

M(1) =M(0) + hα

Γ(α + 1)
(βS(0) − µM(0) − γM(0)),

B(1) = B(0) + hα

Γ(α + 1)
(γM(0) − µB(0) − δB(0)).

(12)

For t ∈ [h,2h) , t
h
∈ [1,2) , we get
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S(2) = S(1) + hα

Γ(α + 1)
(µN − µS(1) − βS(1) + σS(1)),

M(2) =M(1) + hα

Γ(α + 1)
(βS(1) − µM(1) − γM(1)),

B(2) = B(1) + hα

Γ(α + 1)
(γM(1) − µB(1) − δB(1)).

(13)

Repeating the process n times, we obtain

S(n + 1) = S(n) + hα

Γ(α + 1)
(µN − µS(n) − βS(n) + σS(n)),

M(n + 1) =M(n) + hα

Γ(α + 1)
(βS(n) − µM(n) − γM(n)),

B(n + 1) = B(n) + hα

Γ(α + 1)
(γM(n) − µB(n) − δB(n)).

(14)

3. Numerical Simulation of Fractional Order School Academic Performance Model
In this section, numerical simulation and graphs of the academic achievement model in fractional

order schools will be presented. Let us obtain the numerical simulation of the fractional order

academic achievement model in schools using the generalized Euler Method. According to the

data in [22], let us consider the following parameters.

Let S = 10, M = 10, B = 0, β = 0.001, µ = 0.002, γ = 0.021, σ = 0.047, δ = 0.05 and let the step

size be h = 0.1 . Using the Euler method, the following Table 3 is obtained [22].

Table 3: The values of S , M and B at the
moment t for α = 1

t S(t) M(t) B(t)
0 10,00 10,00 0,00
1 10,04 9,97 0,02
2 10,09 9,95 0,04
3 10,14 9,93 0,06
4 10,19 9,91 0,08
5 10,24 9,89 0,10
6 10,29 9,86 0,12
7 10,34 9,84 0,14
8 10,38 9,82 0,16
9 10,43 9,80 0,18
10 10,48 9,78 0,20
11 10,53 9,76 0,22
12 10,59 9,73 0,24
13 10,64 9,71 0,26
14 10,69 9,69 0,28

Table 4: The values of S , M and B at the
moment t for α = 0.9

t S(t) M(t) B(t)
0 10,00 10,00 0,00
1 10,06 9,97 0,02
2 10,12 9,94 0,05
3 10,18 9,91 0,08
4 10,25 9,88 0,10
5 10,31 9,85 0,13
6 10,38 9,82 0,16
7 10,44 9,80 0,18
8 10,51 9,77 0,21
9 10,57 9,74 0,23
10 10,64 9,71 0,26
11 10,71 9,68 0,28
12 10,77 9,66 0,31
13 10,84 9,63 0,33
14 10,91 9,60 0,36
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Table 5: The values of S , M and B at the moment t for α = 0.8

t S(t) M(t) B(t)
0 10,00 10,00 0,00
1 10,08 9,96 0,03
2 10,16 9,92 0,07
3 10,24 9,88 0,10
4 10,33 9,85 0,14
5 10,41 9,81 0,17
6 10,49 9,77 0,20
7 10,58 9,74 0,24
8 10,67 9,70 0,27
9 10,75 9,66 0,30
10 10,84 9,63 0,33
11 10,93 9,59 0,36
12 11,02 9,56 0,40
13 11,11 9,52 0,43
14 11,20 9,49 0,46

Figure 1: The graph of change of the S compartment model

Figure 2: The graph of change of the M compartment model
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Figure 3: The graph of change of the B compartment model

Table 3, Table 4 and Table 5 show the changes of S , M and B are observed for different

states of α .

By the above figures, we observe the following highlights:

* It is observed that the number of students with above average achievement progresses slowly

over time (see Figure 1).

* It is observed that the average number of successful students is slowly decreasing over time

(see Figure 2).

* It is observed that the number of students with below average achievement increases slowly

over time (see Figure 3).

4. Conclusions and Comments
It is of great importance that students succeed academically, as this ensures that they are ade-

quately prepared for the professional world and also has a significant impact on their social lives

and future prospects. In the event of academic failure, students frequently encounter a range of

emotional, cognitive and behavioural challenges. This study yielded a novel fractional order model

that elucidates the factors influencing students’ academic achievement levels. The model was then

implemented numerically, and graphs were constructed using the numerical results obtained. The

existence, uniqueness and non-negativity of the system were analysed mathematically. A stabil-

ity analysis was performed by obtaining the equilibrium point of the fractional order model of

Academic Achievement in Schools, and the number R0 , which is the basic threshold ratio, was

found. The graphs obtained revealed that the number of students above the average achievement

decreased slowly over time, the number of students with average achievement decreased slowly

and the number of students below the average achievement increased slowly over time. In the

subsequent models, novel characters may be incorporated into the existing framework of academic
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achievement, with the adjustment of grade point average score intervals. Furthermore, the variables

influencing actors encompass learning speed, intelligence, gender, interests, personality traits, and

readiness, among others. The mathematical model can be augmented with additional components.

It is imperative to acknowledge the potential contributions of each study focusing on academic

achievement, as they contribute unique values to the existing literature and lay the foundation for

the development of new concepts.
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Abstract: In this study, we showed that the spherical indicator curve frames can correspond to a Bishop

frame according to the Serret-Frenet frame of a regular curve.
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1. Introduction and Preliminaries

Curves are one of the critical areas of differential geometry. Space curves were defined as the

intersection of two surfaces by Clairaut in the first quarter of the 18th century [9]. Frenet (1847)

and Serret, without knowing each other, defined a frame using the derivatives of a regular curve.

This frame was called the Serret-Frenet frame, referring to the two. Sometimes it is simply called

the Frenet frame. The Frenet frame [7] in Euclidean space E3 is a frame obtained using the velocity

and acceleration vectors of a regular curve. Let the velocity and acceleration vectors of the curve

π � I Ð� E3 be π� and π�� , respectively. Accordingly, the orthonormal frame �t, n, b� obtained
as

t �
π�

Yπ�Y , b �
π�

, π��

Yπ�
, π��Y , n � b , t

is the Frenet frame. Here, the vector fields t , n and b are called the tangent vector field, the

principal normal vector field and the binormal vector field of the curve π , respectively. If the curve

π is unit speed ( Yπ�Y � 1), then

t � π�, n �
π��

Yπ��Y , b � t , n.
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Derivative changes of the frame �t, n, b�are

t�
� κn,

n�
� �κt � τb,

b�
� �τn.

Here κ and τ are called the first and second curvatures of the curve π , respectively, such that

κ �
Yπ�

, π��YYπ��Y3 and τ �
det �π�, π��, π����Yπ�

, π��Y2 � (1)

The quintet �t, n, b, κ, τ� are called Frenet apparatus. Many studies have been done on this frame

in geometry, physics and engineering. These studies have also been advanced in non-Euclidean

spaces. Some of these studies are spherical indicators of curves. If Xπ�s� �X�π �s�� > Tππ �s� the

unit vector field X is said to be constrained to the curve π . If we take X �
Ð�

PQ , while the point

P flows on the curve π , the curve drawn by the unit sphere of the point Q is called the spherical

indicator on the unite vector field X . Bilici [3] obtained spherical indicators of involute evolute

curves with the help of the Frenet frame. Şenyurt and Çalışkan [10] studied the spherical indicators

of timelike Bertrand curve pairs. Şenyurt and Demet [11] calculated the geodesic curvatures and

natural lifts of the spherical indicators of timelike-spacelike Mannheim curve pairs. Ateş et al.

[1] gave tubular surfaces obtained with spherical indicators. Çapın [5] calculated the arc lengths

and geodesic curvatures of the spherical indices of curves in the Minkowski space E3
1 . Kula and

Yaylı [8] examined slant helices and their spherical indicators. Erkan and Yüce [6] studied the

roles of Bézier curves in E2 and E3 with the help of Serret-Frenet and curvatures, both using and

not using algorithms used in applied mathematics and computer engineering. Frenet frames on

Riemannian manifolds have been also investigated, [1, 12].

Many frames can be obtained from one curve. One of them is the Bishop frame. A Bishop

frame [4] �t, n1, n2� on the curve π that rotates about the tangent vector t by an angle x is

t � t,

n � n1 cosx � n2 sinx,

b � �n1 sinx � n2 cosx.
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The derivative change of this frame is

t�
� k1n1 � k2n2,

n�

1 � �k1t,

n�

2 � �k2t,

k1 � κ cosx,

k2 � κ sinx,

τ � x�.

Here, the quintet �t, n1, n2, k1, k2� are called Bishop apparatus.

In this study, we examined the spherical indicator curve frames using angles according to the

Serret-Frenet frame of a regular curve. We showed that these frames can correspond to a Bishop

frame. We expressed and proved the results. We reinforced the study with an example.

2. According to the Frenet Frame Spherical Indicators and Results

Let �t, n, b, κ x 0, τ x 0� be the Frenet apparatus of a unit speed curve

π � J z� E3

s z� π �s� .
The Darboux vector and the pol vector of this curve are

w � τt � κb,

c �
1YwYw � t sinϕ � b cosϕ,

respectively. Here

cosϕ �
κº

κ2
� τ2

, (2)

sinϕ �
τº

κ2
� τ2

(3)

and ϕ are the angles between the pole vector c and the binormal vector b .

From now on, unless we state otherwise, we will consider a curve π as a curve with a unit

speed and curvatures κ x 0, τ x 0 .

Theorem 2.1 Let the Frenet apparatuses of a curve π � J Ð� E3 be �t, n, b, κ, τ� and the
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tangents indicator curve πt � t be the Frenet apparatuses �tt,nt,bt,κt, τt� . Therefore

tt � n,

nt � �t cosϕ � b sinϕ,

bt � t sinϕ � b cosϕ,

κt � secϕ,

τt �
ϕ�

κ
�

Here, ϕ�
�

dϕ
ds

.

Proof On condition that dπt

ds
�

dt
ds

� π�

t ,

π�

t � κn,

π��

t � �κ2t � κ�n�κτb,

π���

t � �3κκ�t � �κ��
� κ3

� κτ2�n�2 �κ�τ � κτ ��κτb.
Using Equation (1), we obtain the first and second curvatures of the curve πt � t is

κt �
Yπ�

t , π��

t YYπ��

t Y3 � secϕ

and

τt �
det �π�

t, π
��

t , π
���

t �Yπ�

t , π��

t Y2 �
ϕ�

κ
,

respectively. If we take the derivative of the curve πt � t with respect to its arc parameter st ,

dπt

dst
�

dt
dst

�
dt
ds

ds
dst

�
ds
dst

κn.

If so,

dπt

dst
� tt � n

and
ds
dst

�
1

κ
� (4)

On the other hand, if we use (2), (3) and (4), we have

nt �

dtt
dst
\dtt

dst
\ � �t cosϕ � b sinϕ,
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and
bt � tt , nt � t sinϕ � b cosϕ.

According to these, the proof ends. j

Corollary 2.2 On the tangent indicator curve πt � t , there is a Bishop frame �n,�t,b� that

rotates about the tangent vector tt � n by an angle ϕ and the following equations exist

dn
dst

� a1 ��t� � a2b,

d ��t�
dst

� �a1n,

db
dst

� �a2n,

a1 � 1,

a2 � tanϕ,

where a1and a2 are the first and second curvatures of the Bishop frame�n,�t,b� , respectively.

Proof It is seen from Theorem 2.1 that the frame �n,�t,b� is a Bishop frame. We have

dn
dst

�
dn

ds

ds

dst
� ��κt � τb� 1

κ

� �t � � τ
κ
�b,

d ��t�
dst

�
d ��t�

ds
ds
dst

� �κn
1

κ
� �n,

db
dst

�
db
ds

ds
dst

� �

τ

κ
n.

Therefore

a1 � �1,

a2 �
τ

κ
� tanϕ.

If so, the proof ends. j

Theorem 2.3 For a curve π � J Ð� E3 , let apparatuses of the tangents indicator curve πt � t

be �tt,nt,bt,κt, τt� and let apparatuses of the principal normal indicator curve πt � t be

127



Abdullah Yıldırım and Ali Toktimur / FCMS

�tn, nn, bn, κn, τn� . There are the following equations

tn � nt,

nn � bt cosω � tt sinω,

bn � bt sinω � tt cosω,

κn �

¿ÁÁÀ1 � � ϕ�

YwY�
2

,

τn � �

ω�

YwY ,

where cosω �

»
κ2
n � 1

κn
, sinω �

1

κn
and the angle ω is the angle between vectors bt and nn .

Proof On condition that dπn

ds
�

dn
ds

� π�

n ,

π�

n � �κt�τb,

π��

n � �κ�t � �κ2
� τ2�n�τ �b,

π���

n � ��κ��
� �κ2

� τ2�κ� t � 3 �κ�τ � κτ ��n � �τ ��
� �κ2

� τ2�κ�b.
Using Equation (1), the first and second curvatures of the curve πn � n are obtained as

κn �
Yπ�

n , π��

nYYπ��

nY3 �

¿ÁÁÀ1 � � x�

YwY�
2

(5)

and

τn �
det �π�

n, π
��

n, π
���

n �Yπ�

n , π��

nY2 � �

ω�

YwY , (6)

respectively. If we take the derivative of the curve πn � n with respect to its arc parameter sn ,

dπn

dsn
�

dn

dsn
�

dn
ds

ds
dsn

�
ds
dsn

��κt � τb�
and

ds
dsn

�
1º

κ2
� τ2

�
1YwY . (7)

If so,

dπn

dsn
� tn � �t cosϕ � b sinϕ � nt.
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On the other hand, if we use (5), (6) and (7), we have

nn �

dtn
dsn
\dtn

dsn
\ �

»
κ2
n � 1

κn
�t sinϕ � b cosϕ� � 1

κn
n.

If we say cosω �

»
κ2
n � 1

κn
, sinω �

1

κn
, we get

nn � bt cosω � tt sinω,

and
bn � tn , nn � bt sinω � tt cosω.

j

Corollary 2.4 The frame �tt, nt, bt� is a Bishop frame rotating about the tangent vector tn � nt

by an angle �ω on the principal normals indicator curve πn � n . We have the following equations

dnt

dsn
� b1bt � b2tt,

dbt

dsn
� �b1nt,

dtt
dsn

� b2nt,

b1 �
ϕ�

YwY ,
b2 � �1,

where b1and b2 , �tt, nt, bt� are the first and second Bishop curvatures of the Bishop frame,

respectively.

Proof It is seen from Theorem 2.3 that the frame �tt, nt, bt� is a Bishop frame. We have

dnt

dsn
�

dtn
dsn

� κnnn

� κn �bt cosω � tt sinω�
� κnbt cosω � κntt sinω,

dbt

dsn
�

d �t sinϕ � b cosϕ�
ds

ds
dsn

� �

ϕ�

YwYnt,

dtt
dsn

�
dn
ds

ds
dsn

� nt.

129



Abdullah Yıldırım and Ali Toktimur / FCMS

Therefore

b1 � κn cos �ω� � κn

»
κ2
n � 1

κn
�

ϕ�

YwY ,
b2 � �κn sin �ω� � �κn

1

κn
� �1.

Thus, the proof is completed. j

Theorem 2.5 Let the Frenet apparatuses of a curve π � J Ð� E3 be �t, n, b, κ, τ� and the

Frenet apparatuses of the binormal indicator curve πb � b be �tb, nb, bb, κb, τb� . We have

tb � �n,

nb � t cosϕ � b sinϕ,

bb � t sinϕ � b cosϕ,

κb � cscϕ,

τb � �

ϕ�

τ
�

Here, the angle ϕ is the angle between vectors t and nb .

Proof If we take the derivative of the curve πb � b with respect to its arc parameter sb ,

dπb

dsb
�

db
ds

ds
dsb

� �τn
ds
dsb

�

For this reason

tb � �n ve ds
dsb

�
1

τ
� (8)

Accordingly

κb � cscϕ,

and
nb � t cosϕ � b sinϕ.

On the other hand, we obtain

bb � tb , nb � t sinϕ � b cosϕ.

Also, if we consider Equation (8),

τb �
d ��ϕ�

dsc
�

d ��ϕ�
ds

ds
dsc

� �

ϕ�

τ
�

j
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Corollary 2.6 The frame � t, � n, b� is a Bishop frame rotating about the tangent vector πb � b

by an angle �ϕ on the binormals indicator curve πn � n . We have the following equations

d ��n�
dsb

� c1t � c2b,

dt
dsb

� �c1 ��n� ,
db
dsb

� c2 ��n� ,
c1 � cotϕ,

c2 � �1,

where c1and c2 , � t, � n, b� are the first and second Bishop curvatures of the Bishop frame,

respectively.

Proof It is seen from Theorem 2.5 that the frame � t, � n, b� is a Bishop frame. We have

d ��n�
dsb

�
d ��n�

ds
ds
dsb

� �κt � τb� 1
τ
,

� �κ
τ
� t � b,

dt
dsb

�
dt
ds

ds
dsb

� � ��n� cotϕ,

db
dsb

�
db
ds

ds
dsb

� �n.

If so,

c1 �
κ

τ
� cotϕ,

c2 � �1.

On the other hand, if we consider (8),

τb �
dϕ
dsb

�
dϕ
ds

ds
dsb

� ϕ�
1

τ
�

j

Theorem 2.7 Let the Frenet apparatuses of a curve π � J Ð� E3 be �t, n, b, κ, τ� and let the

Frenet apparatuses of the spherical indicator curve of the pol vector πc � c be �tc, nc, bc, κc, τc� .
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We have

tc � t cosϕ � b sinϕ,

nc � n cos θ � �t sinϕ � b cosϕ� sin θ,
bc � n sin θ � �t sinϕ � b cosϕ� cos θ,
κc �

¿ÁÁÀ1 � �YwY
ϕ�

�2,
τc � �

θ�

ϕ�
, ϕ x 0.

Here, the angle θ is the angle between vectors n and nc, and cos θ �
YwY¼�ϕ��2 � YwY2 , sin θ �

ϕ�¼�ϕ��2 � YwY2 �

Proof If we take the derivative of the curve πc � c � t sinϕ � b cosϕ with respect to its arc

parameter sc ,

dπc

dsc
�

dc
ds

ds
dsc

� ϕ� �t cosϕ � b sinϕ� ds
dsc

and provided that ϕ�
x 0 ,

tc � t cosϕ � b sinϕ ve ds
dsc

�
1

ϕ�
� (9)

Since

dtc
dsc

� κcnc � �

d �t cosϕ � b sinϕ�
ds

ds
dsb

� � �t sinϕ � b cosϕ� � YwY
ϕ�

n,

κc �

¿ÁÁÀ1 � �YwY
ϕ�

�2,
nc � n cos θ � �t sinϕ � b cosϕ� sin θ, (10)

and

bc � tc , nc � n sin θ � �t sinϕ � b cosϕ� cos θ. (11)

On the other hand, if we consider (9),

τc �
d ��θ�

dsc
�

d ��θ�
ds

ds
dsc

� �

θ�

ϕ�
�

j
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Corollary 2.8 The frame

v1 � t cosϕ � b sinϕ,

v2 � n,

v3 � t sinϕ � b cosϕ

is the pol vector field indicator curve πc � c , a Bishop frame rotating about the tangent vector

v1 � t cosϕ � b sinϕ by an angle �θ . We have

dv1

dsc
� d1v2 � d2v3,

dv2

dsc
� �d1v1,

dv3

dsc
� d2v1,

d1 �
YwY
ϕ�

,

d2 � �1,

where d1and d2 are the first and second Bishop curvatures of the Bishop frame �v1,v2,v3� ,

respectively.

Proof If we use the following equations

v1 � t cosϕ � b sinϕ,

v2 � n,

v3 � t sinϕ � b cosϕ,

with (9), (10) and (11), we obtain

tc � v1,

nc � v2 cos θ � v3 sin θ,

bc � v2 sin θ � v3 cos θ.
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This shows that �v1,v2,v3� is a Bishop frame. Accordingly,

dv1

dsc
�

dv1

ds
ds
dsc

�
d �t cosϕ � b sinϕ�

ds
1

ϕ�

�
YwY
ϕ�

n � �t sinϕ � b cosϕ�
�

YwY
ϕ�

v2 � v3,

dv2

dsc
�

dn
ds

ds
dsc

� �

YwY
ϕ�

v1,

dv3

dsc
�

dv3

ds
ds
dsc

� v1.

Therefore

d1 �
YwY
ϕ�

,

d2 � �1.

j

Example 2.9 Let a curve π be defined as

π � J z� E3

t z� π �t� � �2t3
3

, t2, t�
in E3 . The Frenet apparatuses of the curve π are

t �
1

2t2 � 1
�2t2,2t,1� ,

n �
1

2 �2t2 � 1�2 �8t3 � 4t,�8t4 � 2,�8t3 � 4t� ,
b �

1

2 �2t2 � 1� ��2,4t,�4t2� ,
κ �

2�2t2 � 1�2 ,
τ �

�2�2t2 � 1�2 �
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From (2) and (3), it is obtained that

cosϕ �
κº

κ2
� τ2

�
1º
2
,

sinϕ �
τº

κ2
� τ2

� �

1º
2
.

Accordingly, we can easily calculate the following apparatuses:

If the Frenet apparatuses of the tangent indicator curve πt � t are �tt,nt,bt,κt, τt� , then

from Theorem 2.1

tt � n �
1

2 �2t2 � 1�2 �8t3 � 4t,�8t4 � 2,�8t3 � 4t� ,
nt � �t cosϕ � b sinϕ � �

1

2
º
2 �2t2 � 1� �4t2 � 2,8t,�4t2 � 2� ,

bt � t sinϕ � b cosϕ � �� 1º
2
,0,�

1º
2
� ,

κt � secϕ �

º
2,

τt �
ϕ�

κ
� 0.

If the Frenet apparatuses of the tangent indicator curve πn � n are �tn, nn, bn, κn, τn� ,

then from Theorem 2.3

tn � nt � �

1

2
º
2 �2t2 � 1� �4t2 � 2,8t,�4t2 � 2� ,

nn � bt cosω � tt sinω � �

1

2 �2t2 � 1�2 �8t3 � 4t,�8t4 � 2,�8t3 � 4t� ,

bn � bt sinω � tt cosω � �� 1º
2
,0,�

1º
2
� ,

κn �

¿ÁÁÀ1 � � ϕ�

YwY�
2

� 1,

τn � �

ω�

YwY � 0.

If the Frenet apparatuses of the tangent indicator curve πb � b are �tb, nb, bb, κb, τb� ,
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then from Theorem 2.5

tb � �n � �

1

2 �2t2 � 1�2 �8t3 � 4t,�8t4 � 2,�8t3 � 4t� ,
nb � t cosϕ � b sinϕ �

1

2
º
2 �2t2 � 1� �4t2 � 2,8t,�4t2 � 2� ,

bb � t sinϕ � b cosϕ � �� 1º
2
,0,�

1º
2
� ,

κb � cscϕ � �

º
2,

τb � 0.

Since πc � c � t sinϕ � b cosϕ � �� 1º
2
,0,� 1º

2
� , the spherical indicator of the pole vector πc � c is

a point.

�50
0

50 0
10

20

�5

0

5

Figure 1: The curve π

Conclusion
Curves are a subject that is used in many fields such as science, engineering, computer design,

astronomy studies, and geography. Examining curves means examining the changes in curves.

These changes are called the differential geometry of curves. The characterization of curves can be

examined with the differential of curves. A lot of work has been done on this subject so far. We

have given the sources related to these in the previous sections. Sometimes it is easier to give an

idea about a curve with the help of spherical indicators. In this way, spherical indicators of curves

are also important. In the studies so far, spherical indicators have been examined with the help

of the curvatures of their curves. In this study, we examined spherical indicators depending on

the angle between the tangent vector field of a curve and the Darboux vector field. We saw that

with this technique, operations and calculations become simpler. In addition, in this study, we

showed that spherical indicators (tangent spherical indicators, primary normal spherical indicators,

binormal spherical indicators) correspond to a Bishop frame according to the Frenet frame of a
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Tangents indicator curve πt � t

Principal normal indicator curve πn � n

Binormal indicator curve πb � b

Figure 2: Spherical indicators

regular curve. We could not fully achieve our goals with this study due to lack of time. We could

not examine the indicators of a regular curve according to the Darboux frame and the Sabban

conflict. These will be addressed in other studies later.
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Abstract: Fixed point theory in convex modular metric spaces has seen significant advancements due to

its broad applicability in various fields. In 2020, Chaira et al. [5] extended fixed point theorems for weak

contraction mappings within partially ordered modular metric spaces. Subsequently, in 2023, Mithun et

al. [14] established fixed point theorems for integral-type weak contraction mappings in modular metric

spaces. Building on these foundational results, this paper investigates fixed point results for four mappings

under integral-type contraction conditions in convex modular metric spaces.

Keywords: Fixed point, ∆2 -condition, convex modular metric spaces.

1. Introduction

Let �X,d� be a metric space, and let T � X � X be a mapping. A point x > X is called a fixed

point of T if Tx � x . A mapping T � X � X is said to be a contraction if there exists a constant

α > �0,1� such that d�Tu,Tv� B αd�u, v� for all u, v > X . The Banach Contraction Principle,

introduced by Banach in 1922, asserts that such a mapping has a unique fixed point in X if X

is a complete metric space. This principle is foundational in fixed point theory and has inspired

extensive research, leading to numerous extensions and generalizations under various contractive

conditions. One significant generalization is the concept of modular metric spaces, which extends

the traditional notion of metric spaces. Modular spaces on linear spaces were first introduced by

Nakano in 1950 [11]. Later, in 2010, Chistyakov [6] developed the framework of modular metric

spaces, also known as parameterized metric spaces, by incorporating a time parameter. More

recently, Khamsi and Kozlowski [9] introduced a fixed point theorem in modular function spaces

in 2015, further advancing this field. To continue exploring fixed point theorem in metric modular

space, follow those articles [2, 3, 8, 10, 13].
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In this paper, we present new fixed point results for four mappings satisfying integral-type

contraction conditions in convex modular metric spaces.

2. Preliminaries

Let X be a non-empty set and ω � �0,ª� �X �X � �0,ª� a function defined by:

ωτ�x, y� � ω�τ, x, y�

for all x, y >X and τ A 0 .

Definition 2.1 [1, 7, 9] A function ω � �0,ª� �X �X � �0,ª� is said to be modular metric on

X if it satisfies the following conditions:

(1) ωτ�x, y� � 0 if and only if x � y for all x , y in X and for all τ A 0 ;

(2) ωτ�x, y� � ωτ�y, x� for all x , y in X and for all τ A 0 ;

(3) ωτ�ν�x, y� B ωτ�x, z� � ων�z, y� for all x, y, z >X , for all τ, ν A 0 .

The pair �X,ω� is said to be modular metric space.

Proposition 2.2 If the condition �1� is satisfy for some τ A 0 , then ω is called regular modular
space.

Proposition 2.3 [14] If ωτ�ν�x, y� B
τ

τ�ν
ωτ�x, z� � ν

τ�ν
ων�z, y� for all x, y, z > X and for all

τ, ν A 0 , then ω is said to be a convex modular metric.

If 0 @ ν @ τ , then for the modular metric ω on a set X , the function τ � ωτ�x, y� is

non-increasing on �0,ª� since, for any x, y >X ,

ωτ�x, y� B ωτ�ν�x,x� � ων�x, y� � ων�x, y�.

Definition 2.4 [12] Let �X,ω� be a modular metric space and fix z0 >X . Set

Xω �Xω�z0� � �z >X � ωτ�z, z0�� 0 as τ �ª�,

X�

ω �X�

ω�z0� � �z >X � ωτ�z, z0� @ª for τ A 0�;

then the two linear spaces Xω and X�

ω are called modular spaces centered at z0 .

Proposition 2.5 In case of some metric modular ω on X , if ωτ�x, y� � ων�x, y� @ ª for all

x, y >X and for all τ, ν A 0 , then there exists a function ρ�x, y� defined by ρ�x, y� � ωτ�x, y� is a

metric on X .

140



Jayanta Das and Ashoke Das / FCMS

Definition 2.6 [1] Let ω be a modular metric on a set X . Then

(1) A sequence �xn� `Xω is called ω -convergent to some x >Xω if and only if lim
n�ª

ω1�xn, x� � 0

and x is called the ω -limit of �xn� .

(2) A sequence �xn� `Xω is ω -Cauchy if for m,n > N such that lim
m,n�ª

ω1�xm, xn� � 0 .

(3) A set W `Xω is ω -closed if ω -limit of any ω -convergent sequence of W is in W .

(4) A subset W `Xω is ω -complete if any ω -Cauchy sequence in W is ω -convergent in W .

Definition 2.7 [7] Let ω is a modular metric on X , then ω satisfies ∆2 -condition or simply ω is

∆2 if for a given sequence �xn� `Xω and for x >Xω , for some τ A 0 , lim
n�ª

ωτ�xn, x� � 0 implies

lim
n�ª

ωτ�xn, x� � 0 for all τ A 0 .

Definition 2.8 [5] Let ω is a modular metric on X , then ω satisfies the ∆2 -type condition if

there exists a positive number k1 such that ω τ
2
�x, y� B k1ωτ�x, y� for all x, y > Xω and for all

τ A 0 .

Lemma 2.9 [5] If ω satisfies the ∆2 -type condition, then ω satisfies ∆2 -condition.

Lemma 2.10 [5] Let �xn� be a sequence in Xω and τ A 0 . If ω satisfies ∆2 -type condition, then

�xn� is ω -Cauchy if and only if lim
m,n�ª

ωτ�xm, xn� � 0 .

Lemma 2.11 [5] If ω holds ∆2 -type condition, then ω is regular.

Lemma 2.12 [5] Let ω be a modular metric on X . If a sequence �xn� ` X is not ω -Cauchy,

then there exists ϵ A 0 and two sub-sequence of integers �mk� and �nk� such that

for mk A nk C k, ω1�xnk
, xmk

� C ϵ and ω1�xnk
, xmk�1� @ ϵ.

Lemma 2.13 [5] Let �X,ω� be a modular metric space and r, s > N� such that ω holds ∆2 -type

condition. If a sequence �xn� is not ω -Cauchy in X , then there exists ϵ A 0 and two sub-sequence

of integers �mk� and �nk� such that

for mk A nk C k, ω2r�xnk
, xmk

� C ϵ and ω 1
2s

�xnk
, xmk�1� @ ϵ.

Lemma 2.14 [5] Let ω be a modular metric on X such that ω satisfies ∆2 -condition. If a

sequence �xn� `X such that lim
n�ª

ω1�xn, xn�1� � 0 then, �xn� is said to be a ω -Cauchy .
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Theorem 2.15 [14] Let �X,ω� be a convex modular space and F be a non-empty complete subset

of X such that ω satisfies the ∆2 -type condition. Let f , g � �F,ω� � �F,ω� be two functions

satisfying the following:

S
γ1�ω1�fx,gy��

0
λ�t�dt B S

υ�Ω�x,y��

0
λ�t�dt � S

ϕ�Ω�x,y��

0
λ�t�dt; (1)

with

S
γ1�t�

0
λ�z�dz � S

υ�t�

0
λ�z�dz � S

ϕ�t�

0
λ�z�dz A 0;

for all

r A 0, lim
t�r

S
γ1�t�

0
λ�z�dz � lim

t�r
S

υ�t�

0
λ�z�dz � lim

t�r
inf S

ϕ�t�

0
λ�z�dz A 0;

where γ1 > Γ , υ > Υ , ϕ > Φ and λ > Λ , and

Ω�x, y� �max�ω1�x, fx�, ω1�y, gy�, ω1�x, y�, ω2�fx, y�, ω2�x, gy��. (2)

Then f and g have a unique fixed point in F .

3. Main Results

From reference [4], we consider Λ � �λSλ � R� � R�� which is Lebesgue integrable, summable on

each compact subset of R� such that

(a) R ϵ
0 λ�t�dt A 0 for each ϵ A 0 ,

(b) R a�b
0 λ�t�dt B R a

0 λ�t�dt � R b
0 λ�t�dt .

Lemma 3.1 [4] Let λ > Λ and �sn� be a non-negative sequence with lim
n�ª

sn � s , then

lim
n�ª

S
sn

0
λ�t�dt � S

s

0
λ�t�dt.

Lemma 3.2 [4] Let λ > Λ and �sn� be a non-negative sequence. Then

lim
n�ª

S
sn

0
λ�t�dt � 0 if and only if lim

n�ª
sn � 0.

Consider three classes of functions Γ , Υ and Φ are as follows:

(a) Γ � �γ � �0,ª� � �0,ª� such that (i)γ is strictly increasing; (ii) lim
t�r

γ�t� A 0 for r A 0 and

lim
t�0�

γ�t� � 0 ; (iii)γ�t� � 0 if and only if t � 0� .
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(b) Υ � �υ � �0,ª� � �0,ª� such that (i) υ is non-decreasing; (ii) lim
t�r

υ�t� A 0 for r A 0 and

lim
t�0�

υ�t� � 0 ; (iii) υ�t� � 0 if and only if t � 0� .

(c) Φ � �ϕ � �0,ª� � �0,ª� such that (i) lim
t�r

infϕ�t� A 0 for all r A 0 ; (ii)ϕ�t� � 0� t � 0 ; (iii)

ϕ�t� � 0 if and only if t � 0� .

Theorem 3.3 Let �X,ω� be a convex modular space and F be a non-empty complete subset of X

such that ω satisfies the ∆2 -type condition. Let P , Q , R , S � �F,ω� � �F,ω� be four functions

satisfying the following:

S
γ1�ω1�Rx,Sy��

0
λ�t�dt B S

υ�Ω�x,y��

0
λ�t�dt � S

ϕ�Ω�x,y��

0
λ�t�dt; (3)

with

S
γ1�t�

0
λ�z�dz � S

υ�t�

0
λ�z�dz � S

ϕ�t�

0
λ�z�dz A 0;

for all

r A 0, lim
t�r

S
γ1�t�

0
λ�z�dz � lim

t�r
S

υ�t�

0
λ�z�dz � lim

t�r
inf S

ϕ�t�

0
λ�z�dz A 0;

where γ1 > Γ , υ > Υ , ϕ > Φ and λ > Λ , and

Ω�x, y� �max�ω1�Px,Rx�, ω1�Qy,Sy�, ω1�Qy,Rx�, ω2�Px,Sy�, ω2�Px,Qy�� .

Also,

(a) R b Q and S b P ,

(b) �P,R� and �Q,S� is weakly compatible; either P or R is continuous.

Then P , Q , R and S have a unique common fixed point in F .

Proof. Let x0 be any arbitrary element in X . From condition (a), there exist two elements

x1 and x2 in X such that Rx0 � Qx1 � y0 and Sx1 � Px2 � y1 . Proceeding inductively we can

construct a sequences �xn� and �yn� in X such that

y2n � Rx2n � Qx2n�1 and y2n�1 � Sx2n�1 � Px2n�2

for all n > N .

Case-1: For some n > N , yn � yn�1 � yn�1 � yn�2 .
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If n is even, i.e., n � 2k , k > N , we have

y2k � y2k�1. (4)

If y2k�1 x y2k�2 , then ω1�y2k�1, y2k�2� A 0 .

Now,

Ω�y2k�2, y2k�1� � max�ω1�Px2k�2,Rx2k�2�, ω1�Qx2k�1, Sx2k�1�, ω1�Qx2k�1,Rx2k�2�,

ω2�Px2k�2, Sx2k�1�, ω2�Px2k�2,Qx2k�1��

� max�ω1�y2k�1, y2k�2�, ω1�y2k, y2k�1�, ω1�y2k, y2k�2�,

ω2�y2k�1, y2k�1�, ω2�y2k�1, y2k��

� max�ω1�y2k�1, y2k�2�, ω1�y2k, y2k�2��

� max�ω1�y2k�1, y2k�2�, ω1�y2k�1, y2k�2��

� ω1�y2k�1, y2k�2�.

Hence, Ω�y2k�2, y2k�1� � ω1�y2k�1, y2k�2� .

Now,

S
γ1�ω1�y2k�2,y2k�1��

0
λ�t�dt � S

γ1�ω1�Rx2k�2,Sx2k�1��

0
λ�t�dt

B S
υ�Ω�x2k�2,x2k�1��

0
λ�t�dt � S

ϕ�Ω�x2k�2,x2k�1��

0
λ�t�dt

� S
υ�Ω�y2k�1,y2k�2��

0
λ�t�dt � S

ϕ�Ω�y2k�1,y2k�2��

0
λ�t�dt

@ S
γ�Ω�y2k�2,y2k�1��

0
λ�t�dt

which is a contradiction.
Hence,

y2k � y2k�1 � y2k�1 � y2k�2. (5)

If, n is odd, i.e., for n � 2k � 1 , k > N 8 �0� , we have

y2k�1 � y2k�2 (6)

and

Ω�x2k�2, x2k�3� � ω1�x2k�2, x2k�3�. (7)
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Now,

Ω�x2k�2, x2k�3� � max�ω1�Px2k�2,Rx2k�2�, ω1�Qx2k�3, Sx2k�3�, ω1�Qx2k�3,Rx2k�2�,

ω2�Px2k�2, Sx2k�3�, ω2�Px2k�2,Qx2k�3��

� max�ω1�y2k�1, y2k�2�, ω1�y2k�2, y2k�3�, ω1�y2k�2, y2k�2�, ω2�y2k�1, y2k�3�,

ω2�y2k�1, y2k�2��

B max�ω1�y2k�2, y2k�3�, ω2�y2k�1, y2k�3��

B max�ω1�y2k�2, y2k�3�, ω1�y2k�1, y2k�2� � ω1�y2k�2, y2k�3�
2

�

� ω1�y2k�2, y2k�3�.

Hence, Ω�x2k�2, x2k�3� � ω1�y2k�2, y2k�3� .

Now,

S
γ1�ω1�y2k�2,y2k�3��

0
λ�t�dt � S

γ1�ω1�Rx2k�2,Sx2k�3��

0
λ�t�dt

B S
υ�Ω�x2k�2,x2k�3��

0
λ�t�dt � S

ϕ�Ω�x2k�2,x2k�3��

0
λ�t�dt

� S
υ�Ω�y2k�2,y2k�3��

0
λ�t�dt � S

ϕ�Ω�y2k�2,y2k�3��

0
λ�t�dt

@ S
γ�Ω�y2k�2,y2k�3��

0
λ�t�dt

which is a contradiction.
Hence,

y2k�1 � y2k�2 � y2k�2 � y2k�3.

If we continue thus process, then we obtain yn � yn�1 � yn � yn�k for k � 1,2,� . Therefore

�yn� is a constant sequence and hence ω -Cauchy sequence in F .

Case-2: Let yn x yn�1 for all n > N . If n is even, i.e., n � 2k , k > N , we have

Ω�x2k, x2k�1� � max�ω1�Px2k,Rx2k�, ω1�Qx2k�1, Sx2k�1�, ω1�Qx2k�1,Rx2k�, ω2�Px2k, Sx2k�1�,

ω2�Px2k,Qx2k�1��

� max�ω1�y2k�1, y2k�, ω1�y2k, y2k�1�, ω1�y2k, y2k�, ω2�y2k�1, y2k�1�, ω2�y2k�1, y2k��

B max�ω1�y2k�1, y2k�, ω1�y2k, y2k�1�, ω1�y2k�1, y2k� � ω1�y2k, y2k�1�
2

, ω2�y2k�1, y2k��
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If Ω�x2k, x2k�1� � ω�y2k, y2k�1� , then

S
γ1�ω1�y2k,y2k�1��

0
λ�t�dt � S

γ1�ω1�Rx2k,Sx2k�1��

0
λ�t�dt

B S
υ�Ω�x2k,x2k�1��

0
λ�t�dt � S

ϕ�Ω�x2k,x2k�1��

0
λ�t�dt

� S
υ�Ω�y2k,y2k�1��

0
λ�t�dt � S

ϕ�Ω�y2k,y2k�1��

0
λ�t�dt

@ S
γ�Ω�y2k,y2k�1��

0
λ�t�dt

which is a contradiction. Hence,

Ω�x2k, x2k�1� � ω1�y2k�1, y2k�. (8)

Now from (1)

S
γ1�ω1�y2k,y2k�1��

0
λ�t�dt � S

γ1�ω1�Rx2k,Sx2k�1��

0
λ�t�dt

B S
υ�Ω�x2k,x2k�1��

0
λ�t�dt � S

ϕ�Ω�x2k,x2k�1��

0
λ�t�dt

� S
υ�ω1�y2k�1,y2k��

0
λ�t�dt � S

ϕ�Ω�y2k�1,y2k��

0
λ�t�dt

@ S
γ1�Ω�y2k�1,y2k��

0
λ�t�dt

Since γ1 is strictly increasing, so we have

ω1�y2k, y2k�1� @ ω1�y2k�1, y2k�. (9)

If n is odd, i.e., n � 2k � 1 , k > N 8 �0� , we have

Ω�x2k�1, x2k�2� � max�ω1�Px2k�1,Rx2k�1�, ω1�Qx2k�2, Sx2k�2�, ω1�Qx2k�2,Rx2k�1�,

ω2�Px2k�1, Sx2k�2�, ω2�Px2k�1,Qx2k�2��

� max�ω1�y2k, y2k�1�, ω1�y2k�1, y2k�2�, ω1�y2k�1, y2k�1�,

ω2�y2k, y2k�2�, ω2�y2k, y2k�1��

B max�ω1�y2k, y2k�1�, ω1�y2k�1, y2k�2�,

ω1�y2k, y2k�1� � ω1�y2k�1, y2k�2�
2

, ω2�y2k, y2k�1��.
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If Ω�x2k�1, x2k�2� � ω1�y2k�1, y2k�2� , then

S
γ1�ω1�y2k�1,y2k�2��

0
λ�t�dt � S

γ1�ω1�Rx2k�1,Sx2k�2��

0
λ�t�dt

B S
υ�Ω�x2k�1,x2k�2��

0
λ�t�dt � S

ϕ�Ω�x2k�1,x2k�2��

0
λ�t�dt

� S
υ�ω1�y2k�1,y2k�2��

0
λ�t�dt � S

ϕ�ω1�y2k�1,y2k�2��

0
λ�t�dt

@ S
γ�ω1�y2k�1,y2k�2��

0
λ�t�dt

which is a contradiction.
Hence,

Ω�x2k�1, x2k�2� � ω1�x2k, x2k�1� (10)

Now, from (1)

S
γ1�ω1�y2k,y2k�1��

0
λ�t�dt � S

γ1�ω1�Rx2k,Sx2k�1��

0
λ�t�dt

B S
υ�Ω�x2k,x2k�1��

0
λ�t�dt � S

ϕ�Ω�x2k,x2k�1��

0
λ�t�dt

� S
υ�ω1�y2k�1,y2k��

0
λ�t�dt � S

ϕ�Ω�y2k�1,y2k��

0
λ�t�dt

@ S
γ1�ω1�y2k�1,y2k��

0
λ�t�dt.

Since γ1 is strictly increasing, so we have

ω1�y2k, y2k�1� @ ω1�y2k�1, y2k�. (11)

From (9) and (11) we conclude that

ω1�yn, yn�1� @ ω1�yn�1, yn�foralln � 1,2,3,�. (12)

Therefore �ω1�yn, yn�1�� is monotone decreasing and bounded below, so convergent.

Let

lim
n�ª

ω1�yn, yn�1� � l and lim
n�ª

S
γ1�ω1�yn,yn�1��

0
λ�t�dt � l�,

where l and l� C 0 .

Claim: l � 0 .

If not, then l A 0 . Then lim
k�ª

ω1�y2k, y2k�1� � l and lim
n�ª

R γ1�ω1�y2k,y2k�1��
0 �λ�t�dt � l� .
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Now, from (1) we have

S
γ1�ω1�y2k,y2k�1��

0
λ�t�dt � S

γ1�ω1�Rx2k,Sx2k�1��

0
λ�t�dt

B S
υ�Ω�x2k,x2k�1��

0
λ�t�dt � S

ϕ�Ω�x2k,x2k�1��

0
λ�t�dt

� S
υ�ω1�y2k�1,y2k��

0
λ�t�dt � S

ϕ�ω1�y2k�1,y2k��

0
λ�t�dt

Taking limit as k �ª in the above inequalities, we have

lim
k�ª

R γ1�ω1�y2k,y2k�1��
0 λ�t�dt B lim

k�ª
R υ�ω1�y2k�1,y2k��
0 λ�t�dt � lim

k�ª
inf R ϕ�ω�y2k�1,y2k��

0 λ�t�dt

This implies

lim
k�ª

R γ1�ω1�y2k,y2k�1��
0 λ�t�dt B lim

k�ª
R γ1�ω1�y2k�1,y2k��
0 λ�t�dt ,

i.e., l� B l� which is a contradiction. Hence, l � 0 , i.e.,

lim
n�ª

ω1�yn, yn�1� � 0. (13)

Since �X,ω� be a convex modular space and F is a ω -complete subset of X satisfying ∆2 -type

condition and lim
n�ª

ω1�yn, yn�1� � 0 , so by Lemma 2.14 �yn� is ω -Cauchy in F . Since F is ω -

complete, there exists z > F such that lim
n�ª

ω�yn, z� � 0.

Therefore

lim
n�ª

ω1�y2n, z� � lim
n�ª

ω1�Rx2n, z� � lim
n�ª

ω1�Qx2n�1, z� � 0

and

lim
n�ª

ω1�y2n�1, z� � lim
n�ª

ω1�Sx2n�1, z� � lim
n�ª

ω1�Px2n�2, z� � 0.

Since the mappings P and R are compatible, so lim
k�ª

RPx2k � lim
k�ª

PRx2k .
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We assume that Pz � z . If not, then we will arrives a contradiction.

Ω�Px2k, x2k�1� � max�ω1�P 2x2k,RPx2k�, ω1�Qx2k�1, Sx2k�1�, ω1�Qx2k�1,RPx2k�,

ω2�P 2x2k, Sx2k�1�, ω2�P 2x2k,Qx2k�1��

� max�ω1�P 2x2k, PRx2k�, ω1�Qx2k�1, Sx2k�1�, ω1�Qx2k�1, PRx2k�,

ω2�P 2x2k, Sx2k�1�, ω2�P 2x2k,Qx2k�1��

� max�ω1�Py2k�1, Py2k�, ω1�y2k, y2k�1�, ω1�y2k, Py2k�,

ω2�Py2k�1, y2k�1�, ω2�Py2k�1, y2k��.

Taking limit as k �ª ,

lim
k�ª

Ω�Px2k, x2k�1� � max�ω1�Pz,Pz�, ω1�z, z�, ω1�z,Pz�, ω2�Pz, z�, ω2�Pz, z��

� ω1�Pz, z�

Now,

S
γ1�ω1�Py2k,y2k�1��

0
λ�t�dt � S

γ1�ω1�PRx2k�,Sx2k�1�

0
λ�t�dt

� S
γ1�ω1�R�Px2k�,Sx2k�1��

0
λ�t�dt

B S
υ�Ω�Px2k,x2k�1��

0
λ�t�dt � S

ϕ�Ω�Px2k,x2k�1��

0
λ�t�dt

� S
γ1�ω1�Pz,z��

0
λ�t�dt @ S

γ1�ω1�Pz,z��

0
λ�t�dt

which is a contradiction. Hence, Pz � z .

We assume that Rz � z . If not, then we will arrive a contradiction.

Ω�z, x2k� � max�ω1�Pz,Rz�, ω1�Qx2k, Sx2k�, ω1�Qx2k,Rz�,

ω2�Pz, z�, ω2�Pz,Qx2k��.

Taking limit as k �ª ,

lim
k�ª

Ω�z, x2k� � max�ω1�z,Rz�, ω1�z, z�, ω1�z,Rz�,

ω2�Pz, z�, ω2�Pz, z��

� ω1�z,Rz�.
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Now,

S
γ1�ω1�Rz,y2k��

0
λ�t�dt � S

γ1�ω1�Rz,Sx2k�

0
λ�t�dt

B S
υ�Ω�z,x2k��

0
λ�t�dt � S

ϕ�Ω�z,x2k��

0
λ�t�dt

� S
γ1�ω1�Pz,z��

0
λ�t�dt @ S

γ1�ω1�Pz,z��

0
λ�t�dt

which is a contradiction. Hence, Rz � z .

We assume that Qz � z . If not, then we will arrive a contradiction. Since the mappings S

and Q are compatible, so SQx2k�2 � QSx2k�2 .

Ω�x2k�1,Qx2k�2� � max�ω1�Px2k�1,Rx2k�1�, ω1�Q2x2k�2, SQx2k�2�, ω1�Q2x2k�2,Rx2k�1�,

ω2�Px2k�1, SQx2k�2�, ω2�Px2k�1,Q
2x2k�2��

� max�ω1�y2k, y2k�1�, ω1�Q2x2k�2,QSx2k�2�, ω1�Q2x2k�2,Rx2k�1�,

ω2�Px2k�1,QSx2k�2�, ω2�Px2k�1,Q
2x2k�2��.

Taking limit as k �ª , we have

lim
k�ª

Ω�x2k�1,Qx2k�2� � max�ω1�z, z�, ω1�Qz,Qz�, ω1�Qz, z�, ω2�z,Qz�, ω2�z,Qz��

� ω1�z,Qz�.

Now,

S
γ1�ω1�y2k�1,Qy2k�2��

0
λ�t�dt � S

γ1�ω1�Rx2k�1,Q�Sx2k�2���

0
λ�t�dt

B S
υ�Ω�x2k�1,Qx2k�2��

0
λ�t�dt � S

ϕ�Ω�x2k�1,Qx2k�2��

0
λ�t�dt

� S
υ�Ω�x2k�1,Qx2k�2��

0
λ�t�dt.

In both side taking limit as k �ª , we have

S
γ1�ω1�z,Qz��

0
λ�t�dt @ S

γ1�ω1�z,Qz��

0
λ�t�dt

which is a contradiction. Hence Qz � z .
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We assume that Sz � z . If not, then we will arrive a contradiction.

Ω�x2k�1, z� � max�ω1�Px2k�1,Rx2k�1�, ω1�Qz,Sz�, ω1�Qz,Rx2k�1�,

ω2�Px2k�1, Sz�, ω2�Px2k�1,Qz��

� max�ω1�Px2k�1,Rx2k�1�, ω1�z, Sz�, ω1�z,Rx2k�1�,

ω2�Px2k�1, Sz�, ω2�Px2k�1, z��

Taking limit as k �ª

lim
k�ª

Ω�x2k�1, z� � max�ω1�z, z�, ω1�z, Sz�, ω1�z, z�, ω2�z, Sz�, ω2�z, z��

� ω1�z, Sz�.

Now,

S
γ1�ω1�y2k�1,Sz��

0
λ�t�dt � S

γ1�ω1�Rx2k�1,Sz�

0
λ�t�dt

B S
υ�Ω�x2k�1,z��

0
λ�t�dt � S

ϕ�Ω�x2k�1,z��

0
λ�t�dt.

Taking limit as k �ª , we have

lim
k�ª

S
γ1�ω1�y2k�1,Sz��

0
λ�t�dt B lim

k�ª
S

υ�Ω�x2k�1,z��

0
λ�t�dt � lim

k�ª
inf S

ϕ�Ω�x2k�1,z��

0
λ�t�dt

� S
γ1�ω1�z,Sz��

0
λ�t�dt @ S

γ1�ω1�z,Sz��

0
λ�t�dt

which is a contradiction. Hence, Sz � z .

Therefore z is a common fixed point of P , Q , R and S .

To prove the uniqueness, we assume that w�x z� is also a fixed point of P , Q , R and S .

Then Pz � Qz � Rz � Sz � z and Pw � Qw � Rw � Sw � w .

Now,

Ω�z,w� � max�ω1�Pz,Rz�, ω1�Qw,Sw�, ω1�Qw,Rz�, ω2�Pz,Sw�, ω2�Pz,Qw��

� max�ω1�z, z�, ω1�w,w�, ω1�w, z�, ω2�z,w�, ω2�z,w��

� ω1�w, z�.
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From (1) we have,

S
γ1�ω1�z,w��

0
λ�t�dt � S

γ1�ω1�Rz,Sw�

0
λ�t�dt

B S
υ�Ω�z,w��

0
λ�t�dt � S

ϕ�Ω�z,w��

0
λ�t�dt

B S
υ�ω�z,w��

0
λ�t�dt � S

ϕ�ω�z,w��

0
λ�t�dt

@ S
γ�ω�z,w��

0
λ�t�dt

which contradicts our hypothesis. Hence, z � w . This completes the proof.

4. Conclusion
This study contributes to the ongoing development of fixed point theory by establishing new results

for four mappings that satisfy integral-type contraction conditions within the framework of convex

modular metric spaces. These findings not only extend classical results like the Banach Contraction

Principle but also build upon recent advancements in modular metric and function spaces. Given

the rich structure and flexibility of modular frameworks, there remains substantial potential for

further exploration in this direction. Future work may focus on broader classes of contractive

conditions, additional structural generalizations, and and examine practical applications across

diverse mathematical and applied contexts within the modular framework.
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Abstract: In this paper, we study ξ(Ric) -vector fields on sequential warped products. Assuming that a

vector field is a ξ(Ric) -vector field on the sequential product, we investigate the necessary conditions under

which its components are also ξ(Ric) -vector fields on the factor manifolds. We also examine the conditions

in which a vector field on a sequential warped product could be a ξ(Ric) -vector field. Furthermore, we

examine ξ(Ric) -vector fields on a sequential warped space-times.

Keywords: Sequential warped product manifold, ξ(Ric) - vector field, generalized Robertson-Walker

space-times, standard static space-times.

1. Introduction

In the literature, various special types of smooth vector fields have been studied, such as Killing,

concircular, and conformal vector fields. Each of these types carries important geometric properties;

for instance, concircular vector fields preserve concircularity of geodesics, while torse-forming vector

fields satisfy a specific covariant derivative structure involving the metric tensor. These special

vector fields are deeply connected to the underlying geometry of the manifold (see [2, 3, 6, 13, 14]).

The concept of ξ(Ric) -vector fields, first introduced by Hinterleitner and Kiosak in [9], Tgeneralizes

the notion of torse-forming and concircular vector fields by incorporating the Ricci tensor into the

defining condition. These vector fields have recently attracted significant attention due to their

rich geometric behavior and potential relevance in physical models (see [5, 7, 8, 10–12]).

Warped product manifolds, originally introduced by O’Neill and Bishop in [1], were de-

veloped as a method for constructing manifolds with prescribed curvature properties-particularly

those of negative curvature. Beyond pure geometry, warped products and their generalizations

(such as doubly and multiply warped products) have found substantial applications in general

relativity, where they are used to model spacetime geometries under various physical assumptions
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[4, 15, 16].

In this paper, we focus on ξ(Ric) -vector fields on sequential warped product manifolds which

are a recently introduced generalization of the warped product construction. These manifolds al-

low a richer and more flexible geometric framework, suitable for both theoretical and applied

investigations. Our main goal is to obtain necessary and sufficient conditions for the existence

of ξ(Ric) -vector fields on sequential warped product manifolds and their factor spaces. Further-

more, we explore the structure of these vector fields in the context of sequential warped product

spacetimes, highlighting their potential geometric and physical significance.

2. Preliminaries

Consider the Riemannian manifolds (Mi, gi) for 1 ≤ i ≤ 3 along with the smooth functions

f ∶M1 Ð→ R+ and h ∶M1 ×M2 Ð→ R+ . The sequential warped product manifold M is defined as

the manifold M = (M1 ×f M2) ×hM3 endowed with the metric tensor g = (g1 ⊕ f
2g2)⊕ h

2g3 [4].

From now on, (M,g) will be regarded as sequential warped product where Mn = (Mn1

1 ×f

Mn2

2 ) ×hM
n3

3 with the metric g = (g1 ⊕ f
2g2)⊕ h

2g3 .

The following lemmas are needed to prove our results.

Lemma 2.1 [4] Assume that (M,g) be a sequential warped product and Yi, Zi ∈ X(Mi) for

1 ≤ i ≤ 3 . Then

i. ∇Y1Z1 = ∇
1
Y1
Z1 ,

ii. ∇Y1Y2 = ∇Y2Y1 = Y1(lnf)Y2 ,

iii. ∇Y2Z2 = ∇
2
Y2
Z2 − fg2(Y2, Z2)∇

1f ,

iv. ∇Y3Y1 = ∇Y1Y3 = Y1(lnh)Y3 ,

v. ∇Y2Y3 = ∇Y3Y2 = Y2(lnh)Y3 ,

vi. ∇Y3Z3 = ∇
3
Y3
Z3 − hg3(Y3, Z3)∇h .

Lemma 2.2 [4] Assume that (M,g) be a sequential warped product and Yi, Zi ∈ X(Mi) for

1 ≤ i ≤ 3 . The following conditions are satisfied:

i. Ric(Y1, Z1) = Ric1(Y1, Z1) −
n2

f
Hess1f(Y1, Z1) −

n3

h
Hessh(Y1, Z1) ,

ii. Ric(Y2, Z2) = Ric
2
(Y2, Z2) − f

♯g2 (Y2, Z2) −
n3

h
Hessh(Y2, Z2) ,

iii. Ric(Y3, Z3) = Ric
3
(Y3, Z3) − h

♯g3 (Y3, Z3) ,
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iv. Ric(Yi, Zj) = 0 when i ≠ j, where f ♯ = (f∆1f + (n2 − 1) ∥∇
1f∥

2
) and h♯ = (h∆h + (n3 − 1) ∥∇h∥

2
) .

3. Main Results

In this section, we investigate the properties of ξ(Ric) -vector fields on sequential warped product

manifolds.

Firstly, we state the following tensor:

D(X,Y ) = g(∇Xξ, Y ) − µRic(X,Y ). (1)

When D ≡ 0, the vector field ξ is said to be a ξ(Ric) -vector field with scalar µ .

Theorem 3.1 Assume that (M,g) be sequential warped product. If ξ = ξ1 + ξ2 + ξ3 is a ξ(Ric)-

vector field on M , in this case one of the following cases is true:

(i) f and h are constants and hence ξi , ξi(Ric)-vector field on Mi , i = 1,2,3 .

(ii) ξ2 = 0 and ξ3 = 0 and therefore M2 and M3 are Einstein manifolds if Hessh = φg and ξ1 ,

ξ1(Ric)-vector field on M1 if n2µ
f

Hessf(X1, Y1) +
n3µ
h

Hessh(X1, Y1) = 0 .

Proof Assume that (M,g) is a sequential warped product manifold and ξ = ξ1 + ξ2 + ξ3 is a

vector field on M . The vector field ξ is a ξ(Ric) vector field with scalar µ if and only if D = 0.

Hence from the (1), we get

g(∇Xξ, Y ) − µRic(X,Y ) = 0

for all X,Y ∈ χ(M) .

Let X =X1 and Y = Y1 . Using Lemma 2.1 and Lemma 2.2, we have

0 =D(X1, Y1) = g(∇X1
ξ, Y1) − µRic(X1, Y1)

= g(∇X1
ξ1 +∇X1ξ2 +∇X1ξ3, Y1)

−µ(Ric1(X1, Y1) −
n2
f
Hess1f(Y1, Z1) −

n3
h
Hessh(Y1, Z1))

= g1(∇
1
X1
ξ1, Y1) − µRic

1
(X1, Y1) +

µn2
f

Hess1f(X1, Y1) +
µn3
h

Hessh(X1, Y1)).

Here, ξ1 is a ξ1(Ric) -vector field on M1 if one of the following conditions holds:

(a) f and h are constants, or

(b) µn2

f
Hess1f(Y1, Z1) +

µn3

h
Hessh(Y1, Z1) = 0
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Now, let X =X2 and Y = Y2 . Then

0 =D(X2, Y2) = g(∇X2ξ, Y2) − µRic(X2, Y2)

= fξ1(f)g2(X2, Y2) + f
2g2(∇

2
X2
ξ2, Y2)

−µ(Ric2(X2, Y2) + f
♯g2(X2, Y2) −

n3
h
Hessh(X2, Y2)).

Here, if f and h are constants, then ξ2 is a ξ2(Ric) -vector field on M2 or ξ2 = 0 which implies

that M2 is an Einstein manifold.

For X = X3 and Y = Y3 , by using the same pattern, we have h is constant and then ξ3 is

a ξ3(Ric) -vector field on M3 or ξ3 = 0 and M3 is an Einstein manifold.

For 1 ≤ i, j ≤ 3 and i ≠ j , when X =Xi and Y = Yj , f and h are constants or ξ2 = ξ3 = 0.

Hence the proof is completed.

◻

The following theorem provides the required criterion for the vector field ξ to be a ξ(Ric)

vector field.

Theorem 3.2 Assume that (M,g) be a sequential warped product. If one of the conditions below

is satisfied:

(i) f and h are constants and ξi , ξi(Ric)-vector field on Mi , i = 1,2,3 with scalars µ , µ
f2 and

µ
h2 respectively, or

(ii) ξ2 = 0 , ξ3 = 0 and

µRic1(X1, Y1) = g1(∇
1
X1
ξ1, Y1) +

µn2
f

Hessf(X1, Y1) +
µn3
h

Hessh(X1, Y1),

µRic2(X2, Y2) = [fξ1(f) + µf
♯]g2(X2, Y2) +

µn3
h

Hessh(X2, Y2),

µRic3(X3, Y3) = [hξ1(h) + µh
♯]g3(X3, Y3),

then ξ = ξ1 + ξ2 + ξ3 is a ξ(Ric)-vector field on M .

Proof Since the tensor D is linear, one might easily conclude the following equalities:

� D(X1, Y1) = g1(∇
1
X1
ξ1, Y1) − µRic

1
(X1, Y1) +

µn2

f
Hess1f(X1, Y1) +

µn3

h
Hessh(X1, Y1),

� D(X2, Y2) = f
2g2(∇

2
X2
ξ2, Y2) + fξ1(f)g2(X2, Y2) − µRic

2
(X2, Y2)

+ µf ♯g2(X2, Y2) −
µn3

h
Hessh(X2, Y2),
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� D(X3, Y3) = h
2g3(∇

3
X3
ξ3, Y3) + h(ξ1 + ξ2)(h)g3(X3, Y3) − µRic

3
(X3, Y3)

+ µh♯g3(X3, Y3),

� D(X1, Y2) = fX1(f)g2(ξ2, Y2) ,

� D(X1, Y3) = hX1(h)g3(ξ3, Y3) ,

� D(X2, Y1) = −fg2(X2,ξ2)g1(∇f, Y1) ,

� D(X2, Y3) = hX2(h)g3(ξ3, Y3) ,

� D(X3, Y1) = −hg3(X3, ξ3)g1((∇h)
T , Y1) ,

� D(X3, Y2) = −hg3(X3, ξ3)f
2g2((∇h)

⊥, Y2) .

If the above equalities vanish, then the tensor D vanishes. Assume that the functions f

and h are constants. Then we get

D(X1, Y1) = g1(∇
1
X1
ξ1, Y1) − µRic

1
(X1, Y1) ,

D(X2, Y2) = f
2g2(∇

2
X2
ξ2, Y2) − µRic

2
(X2, Y2) ,

D(X3, Y3) = h
2g3(∇

3
X3
ξ3, Y3) − µRic

3
(X3, Y3) ,

D(Xi, Yj) = 0, 1 ≤ i, j ≤ 3, i ≠ j.

Hence if ξi is ξi(Ric) -vector fields on Mi for any i = 1,2,3 with scalars µ , µ
f2 and µ

h2

respectively, then ξ is ξ(Ric) -vector field on M since all components of D would be zero.

Now, assume that ξ2 = ξ3 = 0. Then we have

D(X1, Y1) = g1(∇
1
X1
ξ1, Y1) − µRic

1
(X1, Y1)

+
µn2
f

Hess1f(X1, Y1) +
µn3
h

Hessh(X1, Y1),

D(X2, Y2) = fξ1(f)g2(X2, Y2) − µRic
2
(X2, Y2)

+µf ♯g2(X2, Y2) −
µn3
h

Hessh(X2, Y2),

D(X3, Y3) = hξ1(h)g3(X3, Y3) − µRic
3
(X3, Y3)

+µh♯g3(X3, Y3),

D(Xi, Yj) = 0,1 ≤ i, j ≤ 3, i ≠ j.

Here, if we use the conditions in the hypothesis, then we have D = 0 which implies that ξ

is a ξ(Ric) -vector field on M . ◻
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4. Applications

In this section, we will characterize the ξ(Ric) -vector fields on sequential standard static space-

times and sequential generalized Robertson-Walker space-times.

Consider (Mi, gi) as Riemannian manifolds for 1 ≤ i ≤ 2, along with f ∶ M1 Ð→ R+,

h ∶M1×M2 Ð→ R+ . The (n1+n2+1) -dimensional sequential standard static space-time (sequential

SSS-T) M is defined as the product manifold M = (M1 ×f M2) ×h I equipped with the metric

tensor g = (g1 ⊕ f
2g2) ⊕ h

2(−dt2) [4]. Here I represents a connected, open subinterval of R and

dt2 denotes the standard Euclidean metric tensor on I .

Proposition 4.1 [4] Assume that (M,g) be a sequential SSS-T and Yi, Zi ∈ X(Mi) for 1 ≤ i ≤ 2 .

In this case, the following conditions hold:

i. ∇Y1Z1 = ∇
1
Y1
Z1 ,

ii. ∇Y1Y2 = ∇Y2Y1 = Y1(ln f)Y2 ,

iii. ∇Y2Z2 = ∇
2
Y2
Z2 − fg2(Y2, Z2)∇

1f ,

iv. ∇Yi∂t = ∇∂tYi = Yi(lnh)∂t , i = 1,2 ,

v. ∇∂t∂t = h∇h .

Proposition 4.2 [4] Assume that (M,g) be a sequential SSS-T and Yi, Zi ∈ X(Mi) for 1 ≤ i ≤ 2 .

In this case, the following conditions are satisfied:

i. Ric(Y1, Z1) = Ric1(Y1, Z1) −
n2

f
Hess1f(Y1, Z1) −

1
h
Hessh(Y1, Z1) ,

ii. Ric(Y2, Z2) = Ric
2
(Y2, Z2) − f

♯g2 (Y2, Z2) −
1
h
Hessh(Y2, Z2) ,

iii. Ric(∂t, ∂t) = h∆h ,

iv. Ric(Yi, Zj) = 0 when i ≠ j, where f ♯ = (f∆1f + (n2 − 1) ∥∇
1f∥

2
) .

Remark 4.3 A vector field of the form ω∂t on (I,−dt2) is ξ1(Ric)-vector field if and only if

ω̇ = 0 on I .

Hence we could state the following corollary:

Corollary 4.4 Assume that (M,g) be a sequential SSS-T and Xi, Yi ∈ χ(Mi) for 1 ≤ i ≤ 2. In

this case, the following conditions hold:
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i. D(X1, Y1) = g1(∇
1
X1
ξ1, Y1) − µRic

1
(X1, Y1) +

µn2

f
Hess1f(X1, Y1)

+
µ
h
Hessh(X1, Y1),

ii. D(X2, Y2) = f
2g2(∇

2
X2
ξ2, Y2) − µRic

2
(X2, Y2) + fξ1(f)g2(X2, Y2)

+ µf ♯g2(X2, Y2) −
µ
h
Hessh(X2, Y2),

iii. D(∂t, ∂t) = −h(ξ1 + ξ2)(h) − ω̇h
2 − µh∆h ,

iv. D(X1, Y2) = fX1(f)g2(ξ2, Y2) ,

v. D(X1, ∂t) = −ωhX1(h) ,

vi. D(X2, Y1) = −fY1(f)g2(X2, ξ2) ,

vii. D(X2, ∂t) = −ωhX2(h) ,

viii. D(∂t, Y1) = ωhY1(h) ,

ix. D(∂t, Y2) = ωf
2hY2(h).

Now, based on Theorem 3.1, we can obtain the following result:

Theorem 4.5 Assume that (M,g) be a sequential SSS-T. If ξ = ξ1 + ξ2 + ω∂t is a ξ(Ric)-vector

field on M , then one of the conditions below holds:

(i) w = c for some c ∈ R , where f and h are constant and ξi , ξi(Ric)-vector field on Mi ,

i = 1,2 with factor µ and µ
f2 respectively.

(ii) ω = 0 and ξ2 = 0 where

ξ1(h) = −µ∆h ,

µRic1(X1, Y1) = g1(∇
1
X1
ξ1, Y1) +

µn2

f
Hessf(X1, Y1) +

µ
h
Hessh(X1, Y1),

µRic2(X2, Y2) = [fξ1(f) + µf ♯]g2(X2, Y2) +
µ
h
Hessh(X2, Y2).

Proof Assume that (M,g) be a sequential warped product manifold and ξ = ξ1 + ξ2 + ω∂t a

ξ(Ric) - vector field on M . Then D(X,Y ) = 0 for all X,Y ∈ χ(M) . Since the tensor D is linear

in each component, by Corollary 4.4, the proof is clear. ◻

We now delve into the structure of sequential generalized Robertson-Walker (GRW) space-

times, beginning with a brief review of their definition.

Consider (Mi, gi) to be Riemannian manifolds for 2 ≤ i ≤ 3 and let f ∶ I Ð→ R+, h ∶

I×M2 Ð→ R+ be smooth functions. The sequential GRW space-time M of dimension (n2+n3+1) -
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is constructed as the triple product manifold M = I ×f M2 ×hM3 equipped with the metric tensor

g = (−dt2 ⊕ f2g2) ⊕ h
2g3 . Here I represents a connected, open subinterval of R and dt2 denotes

the standard Euclidean metric tensor on I [4].

Proposition 4.6 [4] Assume that (M,g) be a sequential GRW space-time and Yi, Zi ∈ X(Mi) for

2 ≤ i ≤ 3 . In this case, the following conditions are satisfied:

i. ∇∂t∂t = 0 ,

ii. ∇∂tYi = ∇Yi∂t =
ḟ
f
Yi , i = 2,3 ,

iii. ∇Y2Z2 = ∇
2
Y2
Z2 − fḟg2(Y2, Z2)∂t ,

iv. ∇Y2Y3 = ∇Y3Y2 = Y2(lnh)Y3 ,

v. ∇Y3Z3 = ∇
3
Y3
Z3 − hg3(Y3, Z3)∇h .

Proposition 4.7 [4] Assume that (M,g) be a sequential GRW space-time and Yi, Zi ∈ X(Mi) for

2 ≤ i ≤ 3 . Then

i. Ric(∂t, ∂t) =
n2

f
f̈ + n3

h
∂2h
∂t2

,

ii. Ric(Y2, Z2) = Ric
2
(Y2, Z2) − f

◇g2 (Y2, Z2) −
n3

h
Hessh(Y2, Z2) ,

iii. Ric(Y3, Z3) = Ric3(Y3, Z3) − h♯g3(Y3, Z3) ,

iv. Ric(Yi, Zj) = 0 when i ≠ j, where f◇ = −ff̈ + (n2 − 1)ḟ
2 and h♯ = h∆h + (n3 − 1) ∥∇h∥

2
.

Corollary 4.8 Let (M,g) be a sequential GRW space-time and Xi, Yi ∈ χ(Mi) for 1 ≤ i ≤ 2.

Then the following conditions hold:

i. D(∂t, ∂t) = ω̇ −
µn2
f
f̈ +

µn3
h

∂2h

∂t2
,

ii. D(X2, Y2) = f
2g2(∇

2
X2
ξ2, Y2) − µRic

2
(X2, Y2) + ωfḟg2(X2, Y2)

+ µf◇g2(X2, Y2) −
µn3

h
Hessh(X2, Y2),

iii. D(X3, Y3) = h
2g3(∇

3
X3
ξ3, Y3) − µRic

3
(X3, Y3) + hξ2(h)g3(X3, Y3)

+ ωh2 ḟ
f
g3(X3, Y33) + µf ♯g3(X3, Y3),

iv. D(∂t, Y2) = fḟg2(ξ2, Y2) ,
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v. D(∂t, Y3) = h
2 ḟ
f
g3(ξ3, Y3) ,

vi. D(X2, ∂t) = −X2(ω) + fḟg2(X2, ξ2),

vii. D(X2, Y3) = hX2(h)g3(ξ3, Y3),

viii. D(X3, ∂t) = −X3(ω) + h
∂h
∂t
g3(X3,ξ3) ,

ix. D(X3, Y2) = −hf
2Y2(h)g3(ξ3, Y3) .

As an application of Theorem 3.1, we give the following theorem.

Theorem 4.9 Let (M,g) be a sequential GRW space-time. If ξ = ω∂t + ξ2 + ξ3 is a ξ(Ric)-vector

field on M , then one of the following conditions holds:

(i) f and h are constants and hence ω is constant and

µRic2(X2, Y2) = f
2g2(∇

2
X2
ξ2, Y2) + µf

◇g2(X2, Y2) +
µn3

h
Hessh(X2, Y2),

µRic3(X3, Y3) = h
2g3(∇

2
X3
ξ3, Y3) + µh♯g3(X3, Y3) + hξ2(h)g3(X3, Y3), or

(ii) ξ2 = ξ3 = 0 where

ω̇ = µn2

f
f̈ + µn3

h
∂2h
∂t2

,

M2 is Einstein if Hessh = ψg,

M3 is Einstein.

Proof Let (M,g) be a sequential warped product manifold and ξ = ω∂t + ξ2 + ξ3 a ξ(Ric) -

vector field on M . Then D(X,Y ) = 0 for all X,Y ∈ χ(M) . Since the tensor D is linear in each

component, by Corollary 4.8, the proof is clear.

◻

5. Conclusion

In this study, we investigated ξ(Ric) -vector fields on sequential warped product manifolds and

their associated space-times. We derived necessary and sufficient conditions for the existence of

such vector fields on the total manifold and analyzed when their components satisfy the ξ(Ric) -

condition on the factor spaces. These findings clarify how the geometry of sequential warping

interacts with curvature-based vector fields, thereby extending prior results on torse-forming and

concircular vector fields in a Ricci-related setting.

To the best of our knowledge, these directions have not yet been extensively studied in the

context of sequential warped products and may provide a fruitful avenue for further research. In
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particular, exploring the behavior of ξ(Ric) -vector fields under broader curvature constraints or

in physically motivated space-time models could deepen the understanding of their geometric and

physical significance.
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Abstract: The objective of this paper is to determine the eigenvalue intervals for which positive solutions

are guaranteed for the iterative system of the 3rd -order impulsive boundary value problem. The existence of

solutions is established by applying the well-known Guo-Krasnosel’skii fixed point theorem. An illustrative

example is provided to demonstrate the applicability of the theoretical results.

Keywords: Fixed point, impulsive BVP, iterative systems, eigenvalue interval.

1. Introduction

Boundary value problems (BVPs) serve as fundamental tools for modeling complex phenomena

in physics, biology, and engineering. A specific subclass, impulsive boundary value problems (IB-

VPs), offers a robust framework for analyzing systems subject to sudden, discontinuous changes.

Foundational contributions by Lakshmikantham [12], Bainov [5] and Simeonov [4] established the

core theory of impulsive differential equations, extending to higher-order systems. Subsequently,

advanced mathematical techniques-such as fixed point theorems and variational methods-have been

employed to address more complex formulations [3, 12]. In addition to their theoretical strength,

IBVPs are widely applicable across various scientific and engineering domains. For instance, in

mechanical engineering, they are used to analyze structural vibrations under sudden loads, such as

during seismic events affecting bridges [17]. In biomedical modeling, they support the optimization

of oscillatory behavior in drug delivery systems [30]. In control theory, they aid in investigating the

controllability of impulsive dynamic systems [1]. Furthermore, they find meaningful applications

in population dynamics [26] and financial market modeling [27]. Moreover, the study by Zhang et

al. [33] in the references demonstrates significant potential for applications in autonomous robot
∗Correspondence: dondu.oz@ege.edu.tr
2020 AMS Mathematics Subject Classification: 34B18, 34B37

This Research Article is licensed under a Creative Commons Attribution 4.0 International License.
Also, it has been published considering the Research and Publication Ethics.
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swarms, drone fleets, distributed sensor networks, and intelligent transportation systems.

Determining eigenvalue intervals is crucial for analyzing the existence and uniqueness of

solutions to boundary value problems, as eigenvalues characterize the spectral properties of differ-

ential operators and thus dictate the system’s stability and behavior [16]. These intervals reveal

the parameter values (typically denoted by λ) at which nontrivial solutions arise, which is vital

for various applications-including vibration analysis in mechanical systems to determine resonance

frequencies in beams [34], estimation of energy levels in quantum mechanics via Schrödinger equa-

tions [8]. Recent studies have also emphasized their significance in fractional and nonlinear BVPs,

thereby enhancing system design and optimization across disciplines [9].

Although extensive research has been conducted on third-order impulsive boundary value

problems (BVPs) [6, 10, 11] and iterative systems [13, 18, 19, 22, 24], the literature still lacks

focused investigations on eigenvalue intervals for third-order impulsive systems with iterative

structures. Addressing this gap, the present study is, to the best of our knowledge, the first

to explore eigenvalue intervals in this specific context. By employing the Guo–Krasnosel’skii fixed

point theorem [12], we establish the existence of positive solutions and identify the corresponding

eigenvalue intervals.

Compared to previous studies, this work significantly advances the field by unifying third-

order dynamics, impulsive effects, iterative structures, and eigenvalue intervals into a single frame-

work. In contrast to earlier studies-for instance, Zhang and Yao [31], who investigated solution

multiplicity for second-order p-Laplacian impulsive equations using variational methods, or Oz

and Karaca [19], who examined eigenvalue intervals for second-order m-point impulsive BVPs via

fixed-point theory-our study focuses on third-order systems. Likewise, although Zhang and Ao [32]

studied some third-order BVPs with eigenparameter-dependent boundary conditions on specific

time scales, they did not consider iterative systems. Other works, such as those by Bi and Liu [6],

Feliz and Rui [10], primarily addressed the existence of solutions, without investigating the role of

eigenvalue intervals. In 2022, Bouabdallah et al. [7] studied eigenvalue boundary value problem

with impulsive conditions, but the problem they considered is neither of third order nor does it

involve an iterative system. Therefore, our study not only fills a significant gap in the existing

literature but also provides a novel and comprehensive perspective for future research on com-

plex impulsive systems. Based on the above-mentioned results and the importance of theoretical

solutions to contribute to the application areas, in this work, we handle the following nonlinear
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3rd -order with p-Laplacian impulsive boundary value problem (IBVP)’s iterative system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ϕp(κ′′i (t)))′ + µiqi(t)hi(κi+1(t)) = 0, t ∈ I = [0,1], t ≠ tm, i ∈ {1,2,3,⋯, n}

κn+1(t) = κ1(t)

△κi∣t=tm = µiIim(κi+1(tm)), m ∈ {1,2,⋯..., k}

△κ′i∣t=tm = −µiJim(κi+1(tm)), m ∈ {1,2,⋯..., k}

a1κi(0) − a2κ′i(0) = 0

a3κi(1) + a4κ′i(1) = 0

κ′′i (0) = 0,

(1)

where t ≠ tm , m ∈ {1,2,3,⋯ . . . , k} such that 0 < t1 < t2 < ⋯... < tk < 1. Furthermore, for

i ∈ {1,2,3,⋯..., n}, the functions △κi and △κ′i at the point t = tm stand for the jump of κi(t)

and κ′i(t) at the point t = tm , i.e.,

△κi∣t=tm = κi(t+m) − κi(t−m), △κ′i∣t=tm = κ′i(t+m) − κ′i(t−m),

where the values κi(t+m) , κ′i(t+m) state the right-hand limit of κi(t) and κ′i(t) at the point t = tm ,

m ∈ {1,2,3,⋯, k} , and similarly κi(t−m) , κ′i(t−m) state left-hand limit of κi(t) and κ′i(t) at the

point t = tm , m ∈ {1,2,3,⋯, k} . In addition, the function ϕp(s) is a p-Laplacian operator, i.e.,

ϕp(s) = ∣s∣p−2s for p > 1.

In this paper, we assume that the following conditions are given:

(C1) a1, a2, a3, a4 are positive real constants.

(C2) For i = 1,⋯, n, hi is a continuous function from the set R+ to R+ .

(C3) For i ∈ {1,2,3,⋯, n}, qi ∈ C(I,R+) and on any closed subinterval of I, qi does not vanish

identically.

(C4) For i ∈ {1,2,3,⋯, n}, Iim ∈ C(R,R+) and Jim ∈ C(R,R+) are bounded functions and the

inequality [a4 + a3(1 − tm)]Jim(η) > a3Iim(η), t < tm, m ∈ {1,2,3,⋯, k} is satisfied, where

η be any nonnegative number.

(C5) Each of the following expressions is a positive real number:

h0
i = lim

κ→0+

hi(κ)
κp−1 , I0im = lim

κ→0+

Iim(κ)
κ

.

J0
im = lim

κ→0+

Jim(κ)
κ

, and h∞i = lim
κ→∞

hi(κ)
κp−1 , i ∈ {1,2,3, ..., n},
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where positive solutions of the nonlinear 3rd -order IBVP (1)’s iterative system with p-Laplacian

exist for µi , i ∈ {1,2,3,⋯, n} .

The primary structure of this manuscript unfolds as follows. Section 2 introduces several

definitions and fundamental lemmas, which serve as key tools for establishing our main result.

Section 3 determines the eigenvalue intervals that ensure the existence of positive solutions in

the 3rd -order IBVP (1)’s iterative system with the p -Laplacian operator. Section 4 provides an

illustrative example to demonstrate the applicability of the main results.

2. Preliminaries

In this section, we introduce fundamental definitions in Banach spaces and supply several supple-

mentary lemmas that will be utilized later.

Define I ′ = I/{t1, t2,⋯, tk} . The space C(I) denotes the Banach space of all continuous

mappings κ ∶ I → R equipped with the norm ∥κ∥ = sup
t∈I
∣κ(t)∣ . The space PC(I) consists of func-

tions κ ∶ I → R such that κ ∈ C(I ′) , κ(t+m) and κ(t−m) exist and κ(t−m) = κ(tm) for m ∈ {1,2,⋯, k} .

PC(I) is also a Banach space with the norm ∥κ∥PC = sup
t∈I
∣κ(t)∣ . Additionally, The space C2(I ′)

consists of all twice continuously differentiable functions defined on an interval I ′ to R .

Let B = PC(I) ∩ C2(I ′) . A function (κ1,⋯, κn) ∈ Bn is considered a solution of the 3rd -

order IBVP (1)’s iterative system if it satisfies the conditions of the 3rd -order IBVP (1)’s iterative

system.

We first consider the case i = 1 in the 3rd -order IBVP (1). Accordingly, the solution κ1 of the

3rd -order IBVP (2) is obtained. Once κ1 is determined, we proceed to compute κn . Continuing

in this manner, we successively determine κn−1, κn−2, . . . , until we reach κ2 . In this way, the

complete solution (κ1, . . . , κn) of the iterative system associated with the 3rd -order IBVP (1) is

constructed.

Assume that x(t) ∈ C(I), then we deal with the following 3rd -order IBVP:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ϕp(κ′′1(t)))′ + x(t) = 0, t ∈ I = [0,1], t ≠ tm

△κ1∣t=tm = µ1I1m(κ2(tm)), m ∈ {1,2,⋯, k}

△κ′1∣t=tm = −µ1J1m(κ2(tm)), m ∈ {1,2,⋯, k}

a1κ1(0) − a2κ′1(0) = 0

a3κ1(1) + a4κ′1(1) = 0

κ′′1(0) = 0.

(2)
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The following homogeneous equation’s solutions are specified via τ and η .

ϕp(κ′′i (t))′ = 0, t ∈ I (3)

under the initial conditions

⎧⎪⎪⎪⎨⎪⎪⎪⎩

τ(0) = a2, τ ′(0) = a1

η(1) = a4, η′(1) = −a3.
(4)

Using the initial conditions (4), we can deduce from (3) for τ and η the following equations:

τ(t) = a2 + a1t, and η(t) = a4 + a3(1 − t). (5)

Set

δ ∶= a1a4 + a1a3 + a2a3. (6)

Lemma 2.1 Assume that the conditions (C1)-(C5) are satisfied. If κ1 , which is belonging to set

B , is a solution of the following equation

κ1(t) = ∫
1

0
G(t, s)ϕ−1p (∫

s

0
x(ω)dω)ds +

k

∑
m=1

H1m(t, tm), (7)

where

G(t, s) = 1

δ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(a2 + a1s)[a4 + a3(1 − t)], s ≤ t

(a2 + a1t)[a4 + a3(1 − s)], t ≤ s
(8)

and

H1m(t, tm) =
1

δ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(a2 + a1t)[−a3µ1I1m(κ2(tm)) + (a4 + a3(1 − tm))µ1J1m(κ2(tm))], t < tm

(a4 + a3(1 − t))[a1µ1I1m(κ2(tm)) + (a2 + a1tm)µ1J1m(κ2(tm))], tm ≤ t,
(9)

then κ1 is a solution of the 3rd -order IBVP (2).

Proof Let κ1 satisfy (7), then we will show that y is a solution of the IBVP (2). Because κ1

satisfies (7), then we obtain

κ1(t) = ∫
1

0
G(t, s)ϕ−1p (∫

s

0
x(ω)dω)ds +

k

∑
m=1

H1m(t, tm),
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i.e.,

κ1(t) = 1

δ
∫

t

0
(a2 + a1s)[a4 + a3(1 − t)]ϕ−1p (∫

s

0
x(ω)dω)ds

+1
δ
∫

1

t
(a2 + a1t)[a4 + a3(1 − s)]ϕ−1p (∫

s

0
x(ω)dω)ds

+1
δ
∑

0<tm<t
(a4 + a3(1 − t))[a1µ1I1m(κ2(tm)) + (a2 + a1tm)µ1J1m(κ2(tm))]

+1
δ
∑

t<tm<1
(a2 + a1t)[−a3µ1I1m(κ2(tm)) + (a4 + a3(1 − tm))µ1J1m(κ2(tm))],

κ′1(t) = 1

δ
∫

t

0
(−a3)(a2 + a1s)ϕ−1p (∫

s

0
x(ω)dω)ds

+1
δ
∫

1

t
(a1)[a4 + a3(1 − s)]ϕ−1p (∫

s

0
x(ω)dω)ds

+1
δ
∑

0<tm<t
(−a3)[a1µ1I1m(κ2(tm)) + (a2 + a1tm)µ1J1m(κ2(tm))]

+1
δ
∑

t<tm<1
(a1)[−a3µ1I1m(κ2(tm)) + (a4 + a3(1 − tm))µ1J1m(κ2(tm))].

Thus,

κ′′1(t) =
1

δ
[−a3(a2 + a1t) − a1(a4 + a3(1 − t))]ϕ−1p (∫

t

0
x(ω)dω)

= −ϕ−1p (∫
t

0
x(ω)dω)

and

κ
′′

1(0) = 0.

So that

(ϕp(κ′′1(t)))′ = −x(t),

i.e.,

(ϕp(κ′′1(t)))′ + x(t) = 0.
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Since

κ1(0) = 1

δ
∫

1

0
a2[a4 + a3(1 − s)]ϕ−1p (∫

s

0
x(ω)dω)ds

+1
δ

k

∑
m=1

a2[−a3µ1I1m(κ2(tm)) + (a4 + a3(1 − tm))µ1J1m(κ2(tm))]

and

κ′1(0) = 1

δ
∫

1

0
(a1)[a4 + a3(1 − s)]ϕ−1p (∫

s

0
x(ω)dω)ds

+1
δ

k

∑
m=1

a1[−a3µ1I1m(κ2(tm)) + (a4 + a3(1 − tm))µ1J1m(κ2(tm))],

we get

a1κ1(0) − a2κ′1(0) = 0.

Since

κ1(1) = 1

δ
∫

1

0
(a2 + a1s)(a3 + a4)ϕ−1p (∫

s

0
x(ω)dω)ds

+1
δ

k

∑
m=1
(a3 + a4)[a1µ1I1m(κ2(tm)) + (a2 + a1tm)µ1J1m(κ2(tm))]

and

κ′1(1) = 1

δ
∫

1

0
(−a3)(a2 + a1s)ϕ−1p (∫

s

0
x(ω)dω)ds

+1
δ

k

∑
m=1
(−a3)[a1µ1I1m(κ2(tm)) + (a2 + a1tm)µ1J1m(κ2(tm))],

we have

a3κ1(1) + a4κ′(1) = 0.

◻

Lemma 2.2 Let (C1)-(C5) hold. For κ1 ∈ B with x(t) ≥ 0 for t ∈ I, the solution κ1 of the

3rd -order IBVP (2) satisfies, for t ∈ I , κ1(t) ≥ 0 .
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Proof Initially, for t, s ∈ I × I , it is apparent from the description that Green’s function G is

positive. In addition, since the functions I1m and J1m are positive, we have the positivity of H1m.

Consequently, for t ∈ I , κ1(t) is positive. ◻

Lemma 2.3 [13] Assume that (C1)-(C5) are satisfied. For t ∈ I , the 3rd -order IBVP (2)’s

solution, i.e., κ1 ∈ B satisfy the inequality κ′1(t) ≥ 0 .

Lemma 2.4 Suppose that the conditions (C1)-(C5) are satisfied. Therefore, for any t, s ∈ I, we

get the following inequality

G(s, s) ≥ G(t, s) ≥ 0, (10)

where the function G(t, s) defined as in (8).

Proof The claimed inequality can be easily obtained from (8). ◻

Lemma 2.5 [13] Assume that the conditions (C1)-(C5) are fulfilled. Let σ ∈ (0, 1
2
). Therefore,

for any t, s ∈ I , we get

G(s, s) ≤ 1

γ
G(t, s), (11)

where γ ∶=min{a2 + a1σ
a2 + a1

,
a4 + a3σ
a4 + a3

} .

The set P defined as P = {κ1 ∈ PC(I) ∶ κ1(t) is nonnegative, nondecreasing and concave

on I} is a cone of the set PC(I) .

Lemma 2.6 Assume that the conditions (C1)-(C5) are satisfied and κ1(t) ∈ P . Then, the

following inequality is satisfied,

min
t∈[σ,1−σ]

κ1(t) ≥ σ∥κ1∥PC , (12)

where σ ∈ (0, 1
2
) and ∥κ1∥PC = sup

t∈I
∣κ1(t)∣ .

Proof Since κ1 is an element of P , we can say that κ1(t) is concave on I . As a consequence of

this, ∥κ1∥PC = sup
t∈I
∣κ1(t)∣ = κ1(1) and min

t∈[σ,1−σ]
κ1(t) = κ1(σ) . As κ1 ’s graph is concave downward

on the interval I , we achieve

κ1(1) − κ1(0)
1 − 0

≤ κ1(σ) − κ1(0)
σ − 0

,
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i.e., κ1(σ) ≥ σκ1(1) + (1 − σ)κ1(0). Thus, κ1(σ) ≥ σκ1(1) . ◻

If and only if

κ1(t) =∫
1

0
G(t, s1)ϕ−1p

⎛
⎝
µ1 ∫

s1

0
q1(ω1)h1

⎛
⎝
⋯hn−1

⎛
⎝∫

sn

0
G(ωn−1, sn)ϕ−1p

⎛
⎝
µn ∫

sn

0
qn(ωn)hn(κ1(ωn))dωn

⎞
⎠
dsn

+
k

∑
m=1

Hnm(ωn−1, tm)
⎞
⎠
⋯
⎞
⎠
dω1

⎞
⎠
ds1 +

k

∑
m=1

H1m(t, tm)

where for i = 1,2,⋯, n

κi(t) =∫
1

0
G(t, s)ϕ−1p (µi ∫

s

0
qi(ω)hi(κi+1(ω))dω)ds +

k

∑
m=1

Him(t, tm), t ∈ I,

κn+1(t) = κ1(t),

Him(t, tm) =
1

δ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(a2 + a1t)[−a3µiIim(κi+1(tm)) + (a4 + a3(1 − tm))µiJim(κi+1(tm))], t < tm

(a4 + a3(1 − t))[a1µiIim(κi+1(tm)) + (a2 + a1tm)µ1Jim(κi+1(tm))], tm ≤ t.

We state that an n -tuple (κ1(t), κ2(t),⋯, κn(t)) is a solution of the 3rd -order IBVP (1)’s

iterative system. We will employ a fixed point theorem called Guo-Krasnosel’skii [12] to determine

the eigenvalue intervals wherein the 3rd -order IBVP (1)’s iterative system possesses at least one

positive solution within a cone.

Theorem 2.7 [12] Let X denote a Banach space and P ⊂ X be a cone within X . Suppose

Ω1 and Ω2 are two bounded open subsets of X such that 0 ∈ Ω1 and Ω̄1 ⊂ Ω2 . Consider

A ∶ P ∩ (Ω̄2 ∖ Ω1) → P as a completely continuous operator, satisfying either of the following

conditions:

i. For all x ∈ P ∩ ∂Ω1 , ∥Ax∥ ≤ ∥x∥ , and for all x ∈ P ∩ ∂Ω2 , ∥Ax∥ ≥ ∥x∥ ,

ii. For all x ∈ P ∩ ∂Ω1 , ∥Ax∥ ≥ ∥x∥ , and for all x ∈ P ∩ ∂Ω2 , ∥Ax∥ ≤ ∥x∥ .

Under these conditions, the operator A possesses at least one fixed point in P ∩ (Ω̄2 ∖Ω1) .

3. Main Result
In this section, we establish the conditions necessary to identify the eigenvalues for which the

iterative system associated with the third-order impulsive boundary value problem (2) has at least

one positive solution in a cone. Then, we define an integral operator T ∶ P → B for κ1 ∈ P , where
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Tκ1(t) =∫
1

0
G(t, s1)ϕ−1p (µ1 ∫

s1

0
q1(ω1)h1(⋯hn−1(∫

sn

0
G(ωn−1, sn)ϕ−1p (µn ∫

sn

0
qn(ωn)hn(κ1(ωn))dωn)dsn

+
k

∑
m=1

Hnm(ωn−1, tm))⋯)dω1)ds1 +
k

∑
m=1

H1m(t, tm),

(13)

thereby setting the foundation for analyzing the behavior of the solutions within this framework.

From conditions (C1)–(C5), Lemmas 2.2 and 2.3, and the definition of T , it follows that for

κ1 ∈ P , the following hold: Tκ1(t) ≥ 0 , (Tκ1)′(t) ≥ 0 , and (Tκ1)′(t) is concave on I . Therefore,

T (P) ⊂ P . Moreover, one can show that the operator T is completely continuous by applying the

Arzelà–Ascoli Theorem.
We now explore the relevant fixed points of T within the cone P . For convenience, we

introduce the following notation. Let

N1 ∶= max
1≤i≤n

{[ϕp (γσ∫
1−σ

σ
G(s, s) (∫

s

0
qi(ω)dω)ds)h∞i ]

−1

}

and

N2 = min
1≤i≤n

{[µ
2−p
p−1
i (∫

1

0
G(s, s) (∫

s

0
qi(ω)dω)ds+

k

δ
(2a1+a2)(a3+a4))⋅(max{ϕ−1p (h0

i ), I0im, J0
im})]

−1

}.

Theorem 3.1 Suppose that the conditions (C1)-(C5) are met. Therefore, for each µ1, µ2,⋯, µn

satisfying

N1 < µi < N2, i = 1,2,⋯, n (14)

an n-tuple (κ1, κ2,⋯, κn) exists, satisfying (1), with each κi(t) > 0 for i ∈ {1,2,3, ..., n} on I .

Proof Assume µr , for 1 ≤ r ≤ n , be as defined in (14). Choose ε > 0 such that

max
1≤i≤n

{[ϕp (γσ∫
1−σ

σ
G(s, s)ϕ−1p (∫

s

0
qi(ω)dω)ds) (h∞i − ε)]

−1

} ≤ min
1≤r≤n

µr

and

max
1≤r≤n

µr ≤ min
1≤i≤n

{[(µ
2−p
p−1
i ∫

1

0
G(s, s)ϕ−1p (∫

s

0
qi(ω)dω)ds +

k

δ
(2a1 + a2)(a3 + a4))

⋅ (max{ϕ−1p (h0
i + ε), I0im + ε, J0

im + ε})]
−1

}.
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We investigate the fixed points of the completely continuous operator T ∶ P → P , as defined

in (13). Utilizing the definitions of h0
i , I

0
im, J0

im , there exists a constant K1 > 0 such that, for each

i ∈ {1,2,3,⋯, n} and 1 ≤m ≤ k ,

hi(κ) ≤ (h0
i + ε)κp−1, Iim(κ) ≤ (I0im + ε)κ, Jim(κ) ≤ (J0

im + ε)κ, 0 < κ <K1.

Suppose that κ1 ∈ P with ∥κ1∥ =K1 . We begin by verifying that κn ≤K1 holds in the case

when i = n . For 0 ≤ sn−1 ≤ 1 , by applying Lemma 2.4 and the choice of ε , we obtain

∫
1

0
G(sn−1, sn)ϕ−1p (µn ∫

sn

0
qn(ωn)hn(κ1(ωn))dωn)dsn +

k

∑
m=1

Hnm(sn−1, tm)

≤ µn[(µ
2−p
p−1
n ∫

1

0
G(sn, sn)ϕ−1p (∫

sn

0
qn(ωn)dωn)dsn +

k

δ
(2a + b)(c + d))

⋅ (max{ϕ−1p (h0
n + ε), I0nm + ε, J0

nm + ε})]∥κ1∥

≤K1.

Proceeding with the case i = n − 1 , we now demonstrate that κn−1 is also less than K1 .

This pattern persists with Lemma 2.4, where, for 0 ≤ sn−2 ≤ 1 , it holds that

∫
1

0
G(sn−2, sn−1)ϕ−1p

⎛
⎝
µn−1 ∫

sn−1

0
qn−1(ωn−1)hn−1

⎛
⎝∫

1

0
G(ωn−1, sn)ϕ−1p

⎛
⎝
µn ∫

sn

0
qn(ωn)hn(κ1(ωn))dωn

⎞
⎠
dsn

+
k

∑
m=1

Hnm(ωn−1, tm)
⎞
⎠
dωn−1

⎞
⎠
dsn−1 +

k

∑
m=1

Hn−1,m(sn−2, tm)

≤ µn−1

⎡⎢⎢⎢⎢⎣

⎛
⎝
µ

2−p
p−1
n−1 ∫

1

0
G(sn−1, sn−1)ϕ−1p (∫

sn−1

0
qn−1(ωn−1)dωn−1)dsn−1 +

k

δ
(2a1 + a2)(a3 + a4)

⎞
⎠

⋅
⎛
⎝
max{ϕ−1p (h0

n−1 + ε), I0n−1,m + ε, J0
n−1,m + ε}

⎞
⎠

⎤⎥⎥⎥⎥⎦
∥κ1∥

≤ ∥κ1∥ =K1.

Proceeding with this argument, we obtain

∫
1

0
G(t, s1)ϕ−1p (µ1 ∫

s1

0
q1(ω1)h1(µ2⋯)dω1)ds1 +

k

∑
m=1

H1m(t, tm)

≤ µ1[(µ
2−p
p−1
1 ∫

1

0
G(s1, s1)ϕ−1p (∫

s1

0
q1(ω1)dω1)ds1 +

k

δ
(2a1 + a2)(a3 + a4))

⋅ (max{ϕ−1p (h0
1 + ε), I01m + ε, J0

1m + ε})]K1

≤K1 = ∥κ1∥.
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Thereby, ∥Tκ1∥ ≤K1 = ∥κ1∥ . If we define Ω1 = {κ ∈ B ∶ ∥κ∥ <K1} , then the inequality

∥Tκ1∥ ≤ ∥κ1∥ holds for κ1 ∈ P ∩ ∂Ω1. (15)

From the definitions of h∞i , i = 1,2,⋯, n, there is a K̄2 > 0 such that, for each 1 ≤ i ≤ n,

hi(κ) ≥ (h∞i − ε)κp−1, κ ≥ K̄2. Let K2 = max{2K1,
K̄2

σ
}. Let κ1 ∈ P and ∥κ1∥ = K2. Therefore,

min
t∈[σ,1−σ]

κ1(t) ≥ σ∥κ1∥ ≥ K̄2 is gained with the help of the Lemmas 2.5 and 2.6. We begin by

verifying that κn ≥K2 holds in the case when i = n .

Consequently, utilizing Lemmas 2.5 and 2.6, and given the selection of ε , we obtain

∫
1

0
G(sn−1, sn)ϕ−1p (µn ∫

sn

0
qn(ωn)hn(κ1(ωn))dωn)dsn +

k

∑
m=1

Hnm(sn−1, tm)

≥ γ ∫
1−σ

σ
G(sn, sn)ϕ−1p (µn ∫

sn

0
qn(ωn)hn(κ1(ωn))dωn)dsn

≥ ϕ−1p (µn)ϕ−1p (h∞n − ε)γ ∫
1−σ

σ
G(sn, sn)ϕ−1p (∫

sn

0
qn(ωn)dωn)κ1(sn)dsn

≥ ϕ−1p (µn)ϕ−1p (h∞n − ε)γσ∫
1−σ

σ
G(sn, sn)ϕ−1p (∫

sn

0
qn(ωn)dωn)dsn∥κ1∥

≥ ∥κ1∥ =K2 for 0 ≤ sn−1 ≤ 1.

We now consider the case i = n − 1 and show that κn−1 >K2 . Following the approach used

in Lemmas 2.5 and 2.6, and using the selected ε , we obtain

∫
1

0
G(sn−2, sn−1)ϕ−1p (µn−1 ∫

sn−1

0
qn−1(ωn−1)hn−1(∫

1

0
G(ωn−1, sn)ϕ−1p (µn ∫

sn

0
qn(ωn)hn(κ1(ωn))dωn)dsn

+
k

∑
m=1

Hnm(ωn−1, tm))dωn−1)dsn−1 +
k

∑
m=1

Hn−1,m(sn−2, tm)

≥ ϕ−1p (h∞n−1 − ε)γ ∫
1−σ

σ
G(sn−2, sn−1)ϕ−1p (µn−1 ∫

sn−1

0
qn−1(ωn−1)dωn−1)dsn−1K2

≥ ϕ−1p (µn−1)ϕ−1p (h∞n−1 − ε)γσ∫
1−σ

σ
G(sn−1, sn−1)ϕ−1p (∫

sn−1

0
qn−1(ωn−1)dωn−1)dsn−1K2

≥K2 for 0 ≤ sn−2 ≤ 1.

Once more, employing a bootstrapping argument leads us to conclude that

∫
1

0
G(t, s1)ϕ−1p (µ1 ∫

s1

0
q1(ω1)h1 (∫

1

0
⋯)dω1)ds1 +

k

∑
m=1

H1m(t, tm) ≥K2.

Thus, Tκ1(t) ≥K2 = ∥κ1∥.
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Therefore, ∥Tκ1∥ ≥ ∥κ1∥ . Putting Ω2 = {κ ∈ B ∶ ∥κ∥ <K2}, then

∥Tκ1∥ ≥ ∥κ1∥, κ1 ∈ P ∩ ∂Ω2. (16)

Applying Lemma 2.1 to (15) and (16), we can conclude that T has a fixed point κ1 ∈

P ∩ (Ω̄2/Ω1) . In conclusion, setting κn+1 = κ1 yields a positive solution (κ1, κ2,⋯, κn) for the

3rd -order IBVP (1)’s iterative system, where iteratively,

κr(t) = ∫
1

0
G(t, s)ϕ−1p (µr ∫

s

0
qr(ω)hr(κr+1(ω))dω)ds +

k

∑
m=1

Hrm(t, tm), r ∈ {n,n − 1,⋯,1}.

◻

Example 3.2 Assume that k = 4, n = 4 and p = 2, qi(t) = 1 for 1 ≤ i ≤ 4, a1 = a3 = 4, a2 = a4 =

2, σ = 1

4
in the IBVP (1)’s iterative system, i.e.,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ϕ1(κ′′i (t)))′ + µihi(κi+1(t)) = 0, t ≠ tm, t ∈ I = [0,1], t ≠ tm, i ∈ {1,2,3,4}
κn+1(t) = κ1(t)
△κi∣t=tm = µiIim(κi+1(tm)), m = 1,2
△κ′i∣t=tm = −µiJim(κi+1(tm)), m = 1,2
3κi(0) − 2κ′i(0) = 0
3κi(1) + 2κ′i(1) = 0
κ′′i (0) = 0,

(17)

where

h1(κ2) = κ2(3 ⋅ 104 −
29999

ln(e + κ2)
) , h2(κ3) = 2κ3(104 − 9999e−5κ3) ,

h3(κ4) = κ4(4 ⋅ 104 − 39999
e−4κ4

ln(e + κ4)
) , h4(κ1) =

κ1

5
κ1(105 − (99995)e−κ1) ,

I1m(κ2) =
6κ2

2 + 4κ2

3 + κ2
, I2m(κ3) =

2κ3
3 + 4κ3

8 + κ2
3

, I3m(κ4) =
8κ3

4 + 4κ4

7 + 4κ2
4

, I4m(κ1) =
10κ2

1 + 2κ1

11 + κ1
,

J1m(κ2) =
9κ2

2 + 6κ2

2 + κ2
, J2m(κ3) =

3κ3
3 + 6κ3

5 + κ2
3

, J3m(κ4) =
12κ3

4 + 6κ4

5 + 4κ2
4

, J4m(κ1) =
15κ2

1 + 3κ1

8 + κ1
.

Using the definitions of the functions hi, Iim and Jim for i ∈ {1,2,3,4} , we achieve the

following numbers:

h0
1 = 1 , h0

2 = 2 , h0
3 = 1 and h0

4 = 1 , h∞1 = 3 ⋅ 104 , h∞2 = 2 ⋅ 104 , h∞3 = 4 ⋅ 104 and h∞4 = 2 ⋅ 104 ,

I01m =
4

3
, I02m =

1

2
, I03m =

4

7
and I04m =

2

11
, J0

1m = 3 , J0
2m =

6

5
, J0

3m =
6

5
and J0

4m =
3

8
.

It is easy to see that conditions (C1)-(C5) are satisfied. With the help of some basic
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computations, for 1 ≤ i ≤ 4 , we obtain ρ = 21, γ = 11

20
and

G(t, s) = 1

21

⎧⎪⎪⎨⎪⎪⎩

(2 + 3s)(5 − 3t), s ≤ t
(2 + 3t)(5 − 3s), t ≤ s.

Additionally, if we use descriptions, we get N1 = 0,025322 and N2 = 0,081632. With the help of

the Theorem 3.1, we determine that the optimal eigenvalue interval is

0,025322 < µi < 0,081632 for i = 1,2,3,4

ensuring a positive solution of the 3rd -order IBVP (17)’s iterative system.

4. Conclusion

This study explores eigenvalue intervals for third-order impulsive boundary value problems (IBVPs)

with p -Laplacian and iterative structures, addressing a previously underexplored area. By applying

the Guo–Krasnosel’skii fixed point theorem [12], we establish the existence of positive solutions

for the iterative system (1) and determine the eigenvalue intervals of parameters µ1, µ2,⋯, µn .

Beginning with the initial solution κ1(t) of the third-order IBVP (2), the iterative construction of

the solution set (κ1(t),⋯, κn(t)) provides a robust analytical framework for understanding such

systems’ dynamics.

Beyond theoretical contributions, this work has significant practical implications. In me-

chanical engineering, it aids in analyzing vibrational modes of structures subjected to impulsive

forces (e.g., seismic events or explosions), contributing to safer designs [17, 32]. In biological model-

ing, these intervals reveal oscillatory patterns in drug delivery systems, optimizing dosing strategies

[30]. For control theory, they enhance stability algorithms in robotics and signal processing where

abrupt changes occur [1, 15].

Our study advances the field by unifying third-order impulsive systems with iterative

structures-a gap in existing literature. Unlike prior work on second-order impulsive BVPs [19, 31]

or non-iterative third-order systems [6, 32], we incorporate eigenvalue intervals and higher-order

dynamics, offering novel perspectives for complex impulsive systems.

Future research could extend this framework to higher-order systems or complex boundary

conditions – for instance, the boundary parameters a′is could be generalized from positive constants

to functions. Furthermore, combining numerical solution methods may enhance computational

efficiency, stability analyses under parameter variations [15, 16, 23] will provide critical insights for

engineering applications.

In summary, this study comprehensively advances the theory and applications of third-order
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iterative IBVPs. By elucidating eigenvalue intervals and their cross-disciplinary relevance, we pave

the way for mathematical and practical breakthroughs.
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Abstract: Let Ω be a ring with ℘ a semiprime ideal of Ω, I an ideal of Ω, ∆ ∶ Ω × Ω → Ω a

symmetric bi-derivation and δ be the trace of ∆. In the present paper, we shall prove that δ is a

℘ -commuting map on I if any one of the following holds: i. δ(σ) ○ κ ∈ ℘ , ii. δ([σ,κ]) ± [δ(σ), κ] ∈ ℘ , iii.

δ(σ○κ)±(δ(σ)○κ) ∈ ℘ , iv. δ([σ,κ])±δ(σ)○κ ∈ ℘ , v. δ(σ○κ)±[δ(σ), κ] ∈ ℘ , vi. δ(σ)○κ±[δ(κ), σ] ∈ ℘ , vii.

δ([σ,κ]) ± δ(σ) ○ κ − [δ(κ), σ] ∈ ℘ , viii. δ([σ,κ]) ± [δ(σ), κ] + [δ(κ), σ] ∈ ℘ , ix. ∆(σ,κκ3) ±∆(σ,κ)κ3 ∈ ℘ ,

x. ∆(δ(σ), σ) ∈ ℘ , xi. δ(δ(σ)) = g(σ) , xii. δ(σ)κ ± σg(κ) ∈ ℘ , xiii. [δ(σ), κ] ± [g(κ), σ] ∈ ℘ , xiv.

δ(σ) ○ κ ± (σ ○ g(κ)) ∈ ℘ , xv. [δ(σ), κ] ± (σ ○ g(κ)) ∈ ℘ , xvi. δ(σ) ○ κ ± [g(κ), σ] ∈ ℘ for all σ,κ ∈ I where

G ∶ ℵ × ℵ→ ℵ is a symmetric bi-derivation such that g is the trace of G .

Keywords: Rings, ideals, semiprime ideals, derivations, symmetric bi-derivations.

1. Introduction

Let Ω be an associative ring with center Z. A proper ideal ℘ of Ω is termed prime if for any

elements σ,κ ∈ Ω, the inclusion σΩκ ⊆ ℘ implies that either σ ∈ ℘ or κ ∈ ℘. Equivalently, the ring

Ω is said to be prime if (0) , the zero ideal, is a prime ideal. In addition to prime ideals, the concept

of semiprime ideals is also fundamental in ring theory. A proper ideal ℘ is semiprime if for any

σ ∈ Ω, the condition σΩσ ⊆ ℘ implies σ ∈ ℘ . The ring Ω is semiprime if (0) is a semiprime ideal.

While every prime ideal is semiprime, the converse is not generally true. For any σ,κ ∈ Ω, the

symbol [σ,κ] stands for the commutator σκ−κσ and the symbol σ ○κ stands for the commutator

σκ + κσ . An additive mapping δ ∶ Ω → Ω is called a derivation if δ(σκ) = δ(σ)κ + σδ(κ) holds for

all σ,κ ∈ Ω. A mapping ∆(., .) ∶ Ω × Ω → Ω is said to be symmetric if ∆(σ,κ) = ∆(κ,σ) for all

σ,κ ∈ Ω. A mapping δ ∶ Ω → Ω is called the trace of ∆(., .) if δ(σ) = ∆(σ,σ) for all σ ∈ Ω.It is

obvious that if ∆(., .) is bi-additive (i.e., additive in both arguments), then the trace δ of ∆(., .)

*Correspondence: emine.kocsogutcu@kilis.edu.tr

2020 AMS Mathematics Subject Classification: 16U80, 16W10, 16W25
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satisfies the identity δ(σ + κ) = δ(σ) + δ(κ) + 2∆(σ,κ) for all σ,κ ∈ Ω. If ∆(., .) is bi-additive and

satisfies the identities

∆(σκ, ς) =∆(σ, ς)κ + σ∆(κ, ς)

and

∆(σ,κς) =∆(σ,κ)ς + κ∆(σ, ς)

for all σ,κ, ς ∈ Ω, then ∆(., .) is called a symmetric bi-derivation.

Example 1.1 Suppose the ring

Ω = {(
a b
0 0

) ∣ a, b ∈ R} .

Define maps ∆ ∶ Ω ×Ω→ Ω as follows:

∆((
a b
0 0

) ,(
c δ
0 0

)) = ((
0 ac
0 0

)) .

Then it is easy to verify that ∆ is a symmetric bi-derivation on Ω . Also, the trace of ∆ is

δ(
a b
0 0

) = (
0 a2

0 0
) .

Let S be a nonempty subset of Ω. A mapping T from Ω to Ω is called commuting on S

if [T (σ), σ] = 0 for all σ ∈ S . This definition has been generalized such as: A map T ∶ Ω → Ω is

called a U -commuting map on S if [T (σ), σ] ∈ U for all σ ∈ S and some U ⊆ Ω. In particular,

if U = 0, then T is called a commuting map on S if [T (σ), σ] = 0. Note that every commuting

map is a U−commuting map (put 0 = U ). But the converse is not true in general. Take U some

a set of Ω has no zero such that [T (σ), σ] ∈ U , then T is a U−commuting map but it is not a

commuting map. The notion of additive commuting mapping is closely connected with the notion

of bi-derivation. Every additive commuting mapping T ∶ Ω → Ω gives rise to a bi-derivation on

Ω. Namely, linearizing [T (σ), σ] ∈ ℘ , we get [T (σ), κ] = [σ,T (κ)] and we note that the map

(σ,κ) z→ [T (σ), κ] is a bi-derivation. The concept of bi-derivation was introduced by Maksa

in [8]. It is shown in [9] that symmetric bi-derivations are related to general solution of some

functional expressions.

The property of interchangeability of prime or semiprime rings with derivation was first

discussed by Posner [10]. Later, many authors studied the commutativity conditions in prime and

semiprime rings. In recent years, the effects of these conditions on the derivation of prime and

semiprime ideals have begun to be examined.
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In 1992, Daif and Bell showed that if the derivativon δ on a semiprime ring Ω satisfies

the condition σκ ± δ(σκ) = κσ ± δ(κσ) for each σ,κ ∈ Ω, then the ring Ω is commutative [5].

In 1999, Ashraf considered the same condition for the symmetric bi-derivation on a prime ring

[1]. In 2015, Reddy, Rao, and Reddy generalized this theorem for semiprime rings [11]. In 2001,

Ashraf and Rehman showed that if the derivation δ on an ideal I of a prime ring Ω satisfies one

of the conditions δ(σκ) − σκ ∈ ς or δ(σκ) − κσ ∈ ς for each σ,κ ∈ Ω, then I is commutative [2].

These conditions were investigated by Koç Sögütcü and Gölbaşı in 2021 for inverse bi-derivation

Lie ideals [6].

On the other hand, Vukman proved in 1990 that if Ω is a semiprime ring, ∆ is the symmetric

bi-derivation on the ring Ω and δ, ∆ is the trace of the symmetric bi-derivation, then ∆ = 0 if

∆(δ(σ), σ) = 0 and δ(δ(σ)) = g(σ) for all σ ∈ Ω [12]. In 2017, Reddy and Naik considered the

above conditions for the symmetric reverse bi-derivation. It was investigated by Koç Sögütcü and

Gölbaşı in 2021 for reverse bi-derivation Lie ideals on the semiprime ring [7].

Ashraf et al. in 2005 studied the commutativity of a prime ring Ω, which allows a generalized

derivation T and the associated derivation δ , satisfying any of these properties: δ(σ) ○ T (κ) = 0

or [δ(σ), T (κ)] = 0 for all σ,κ ∈ Ω [3]. In 2024, Çelik and Koç Sögütcü considered these conditions

for multiplicative derivation with semiprime ideal [4].

In this paper, we investigate the algebraic identities mentioned above for symmetric bi-

derivation acting on a semiprime ideal without making any assumptions on the ideal of the ring.

We will make some extensive use of the basic commutator identities: 1) [σ,κς] = κ[σ, ς] + [σ,κ]ς ,

2) [σκ, ς] = [σ, ς]κ + σ[κ, ς] ,

3) σκ ○ ς = (σ ○ ς)κ + σ[κ, ς] = σ(κ ○ ς) − [σ, ς]κ ,

4) σ ○ κς = κ(σ ○ ς) + [σ,κ]ς = (σ ○ κ)ς + κ[ς, σ].

2. Main Results

Lemma 2.1 Let Ω be a ring with ℘ a semiprime ideal of R, I an ideal of Ω, char(Ω/℘) ≠ 2 and

∆ ∶ Ω ×Ω → Ω a symmetric bi-derivation and δ be the trace of ∆ . If δ (σ) ○ κ ∈ ℘ for all σ,κ ∈ I,

then δ is ℘−commuting map on I.

Proof By the hypothesis, we get

δ (σ) ○ κ ∈ ℘, for all σ,κ ∈ I.

Taking κ by κς in the last expression, we obtain that

κ(δ(σ) ○ ς) + [δ(σ), κ]ς ∈ ℘ for all σ,κ, ς ∈ I.

184
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Using the hypothesis, we have

[δ(σ), κ]ς ∈ ℘ for all σ,κ, ς ∈ I.

Taking ς by t[δ(σ), κ], t ∈ Ω in the above expression, we get

[δ(σ), κ]t[δ(σ), κ] ∈ ℘ for all σ,κ ∈ I, t ∈ Ω.

Since ℘ is a semiprime ideal of Ω, we conclude that

[δ(σ), κ] ∈ ℘ for all σ,κ ∈ I.

Replacing κ by σ in the last expression, we get

[δ(σ), σ] ∈ ℘ for all σ ∈ I.

Hence we conclude that δ is ℘−commuting on I . ◻

Theorem 2.2 Let Ω be a ring with ℘ a semiprime ideal of Ω, I an ideal of Ω, char(Ω/℘) ≠ 2

and ∆ ∶ Ω × Ω → Ω a symmetric bi-derivation and δ be the trace of ∆. If any of the following

conditions is satisfied for all σ,κ ∈ Ω , then δ is ℘−commuting map on I.

i) δ (σ ○ κ) ± (δ(σ) ○ κ) ∈ ℘,

ii) δ ([σ,κ]) ± (δ(σ) ○ κ) ∈ ℘ ,

iii) δ (σ ○ κ) ± [δ(σ), κ] ∈ ℘ ,

iv) δ(σ) ○ κ ± [δ(κ), σ] ∈ ℘ .

Proof i) By the hypothesis, we get

δ (σ ○ κ) ± (δ(σ) ○ κ) ∈ ℘ for all σ,κ ∈ I.

Taking κ by κ + ς, ς ∈ I, we have

δ (σ ○ κ) + δ(σ ○ ς) + 2∆(σ ○ κ,σ ○ ς) ± δ(σ) ○ κ ± δ(σ) ○ ς ∈ ℘.

Using the hypothesis, we arrive at

2∆(σ ○ κ,σ ○ ς) ∈ ℘.

Since char(Ω/℘) ≠ 2, we have

∆(σ ○ κ,σ ○ ς) ∈ ℘.

Replacing ς by κ in this expression, we find that

∆(σ ○ κ,σ ○ κ) ∈ ℘ for all σ,κ ∈ I
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and so

δ(σ ○ κ) ∈ ℘ for all σ,κ ∈ I.

Again using the hypothesis, we obtain that

δ(σ) ○ κ ∈ ℘ for all σ,κ ∈ I.

We see that δ is ℘−commuting map on I by Lemma 2.1.

ii) By the hypothesis, we have

δ ([σ,κ]) ± (δ(σ) ○ κ) ∈ ℘ for all σ,κ ∈ I.

Taking κ by κ + ς, ς ∈ I in the hypothesis, we get

δ ([σ,κ]) + δ([σ, ς]) + 2∆([σ,κ], [σ, ς]) ± δ(σ) ○ κ ± δ(σ) ○ ς ∈ ℘.

Using the hypothesis and char(Ω/℘) ≠ 2, we find that

∆([σ,κ], [σ, ς]) ∈ ℘.

Replacing ς by κ in the last expression, we see that

∆([σ,κ], [σ,κ]) ∈ ℘ for all σ,κ ∈ I.

That is

δ ([σ,κ]) ∈ ℘ for all σ,κ ∈ I.

Using this expression in our hypothesis, we get

δ(σ) ○ κ ∈ ℘ for all σ,κ ∈ I.

By Lemma 2.1, we obtain that δ is ℘−commuting on I.

iii) By the hypothesis, we have

δ (σ ○ κ) ± [δ(σ), κ] ∈ ℘ for all σ,κ ∈ I.

Taking κ by κ + ς, ς ∈ I, we get

δ (σ ○ κ) + δ (σ ○ ς) + 2∆(σ ○ κ,σ ○ ς) ± [δ(σ), κ] ± [δ(σ), ς] ∈ ℘.

Using the hypothesis, we see that

∆(σ ○ κ,σ ○ ς) ∈ ℘.

Replacing ς by κ in the last expression, we get

∆(σ ○ κ,σ ○ κ) ∈ ℘ for all σ,κ ∈ I
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and so

δ (σ ○ κ) ∈ ℘ for all σ,κ ∈ I.

Using the hypothesis, we have

[δ(σ), κ] ∈ ℘ for all σ,κ ∈ I.

Replacing κ by σ in the last expression, we obtain that δ is ℘−commuting on I .

iv) We have

δ(σ) ○ κ ± [δ(κ), σ] ∈ ℘ for all σ,κ ∈ I.

Replacing κ by κ + ς, ς ∈ I, we get

δ(σ) ○ κ + δ(σ) ○ ς ± 2[∆(κ, ς), σ] ± [δ(κ), σ] ± [δ(ς), σ] ∈ ℘.

By the hypothesis, we have

2[∆(κ, ς), σ] ∈ ℘.

Using char(Ω/℘) ≠ 2, we find that

[∆(κ, ς), σ] ∈ ℘.

Replacing ς by κ in this expression, we get

[∆(κ,κ), σ] ∈ ℘ for all σ,κ ∈ I

and so

[δ(κ), σ] ∈ ℘ for all σ,κ ∈ I.

Using the hypothesis, we have

δ(σ) ○ κ ∈ ℘ for all σ,κ ∈ I.

By Lemma 2.1, we conclude that δ is ℘−commuting on I. ◻

Theorem 2.3 Let Ω be a ring with ℘ a semiprime ideal of Ω, I an ideal of Ω, char(Ω/℘) ≠ 2

and ∆ ∶ Ω × Ω → Ω a symmetric bi-derivation and δ be the trace of ∆. If any of the following

conditions is satisfied for all σ,κ ∈ Ω , then δ is ℘−commuting map on I.

i) δ([σ,κ]) ± (δ(σ) ○ κ) + [δ(κ), σ] ∈ ℘,

ii) δ([σ,κ]) ± [δ(σ), κ] + [δ(κ), σ] ∈ ℘.

Proof i) By the hypothesis, we obtain that

δ([σ,κ]) ± (δ(σ) ○ κ) + [δ(κ), σ] ∈ ℘ for all σ,κ ∈ I.

Replacing κ by κ + ς, ς ∈ I in the last expression, we get

δ ([σ,κ]) + δ([σ, ς]) + 2∆([σ,κ], [σ, ς]) ± δ(σ) ○ κ ± δ(σ) ○ ς + [δ(κ), σ] + [δ(ς), σ] + 2[∆(κ, ς), σ] ∈ ℘.
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Using the hypothesis and char(Ω/℘) ≠ 2, we have

∆([σ,κ], [σ, ς]) + [∆(κ, ς), σ] ∈ ℘.

Replacing κ by ς in the above expression, we see that

∆([σ,κ], [σ,κ]) + [∆(κ,κ), σ] ∈ ℘ for all σ,κ ∈ I.

That is

δ([σ,κ]) + [δ(κ), σ] ∈ ℘ for all σ,κ ∈ I.

We can write this expression such as

δ([σ,κ]) + [δ(κ), σ] ± δ(κ) ○ σ ∓ δ(κ) ○ σ ∈ ℘.

Using the hypothesis, we arrive at

δ(κ) ○ σ ∈ ℘ for all σ,κ ∈ I.

By Lemma 2.1, we conclude that δ is ℘−commuting on I.

ii) By the hypothesis, we get

δ([σ,κ]) ± [δ(σ), κ] + [δ(κ), σ] ∈ ℘ for all σ,κ ∈ I.

Writing κ by κ + ς, ς ∈ I in this expression , we obtain that

δ([σ,κ])+ δ([σ, ς])+2∆([σ,κ], [σ, ς])± [δ(σ), κ]± [δ(σ), ς]+ [δ(κ), σ]+ [δ(ς), σ]+2[∆(κ, ς), σ] ∈ ℘.

Using the hypothesis and char(Ω/℘) ≠ 2, we see that

∆([σ,κ], [σ, ς]) + [∆(κ, ς), σ] ∈ ℘ for all σ,κ, ς ∈ I.

Replacing ς by κ in the last expression, we have

δ([σ,κ]) + [δ(κ), σ] ∈ ℘ for all σ,κ ∈ I.

The rest of the proof is the same as above. This completes proof. ◻

Theorem 2.4 Let Ω be a ring with ℘ a semiprime ideal of Ω, char(Ω/℘) ≠ 2 and ∆ ∶ Ω×Ω→ Ω

a symmetric bi-derivation, δ be the trace of ∆. If ∆(σ,κς) −∆(σ,κ)ς ∈ ℘ for all σ,κ, ς ∈ Ω, then

δ is ℘−commuting on Ω.

Proof By the hypothesis, we get

∆(σ,κς) −∆(σ,κ)ς ∈ ℘ for all σ,κ, ς ∈ Ω.
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Since ∆ is a bi-derivation, we can write

∆(σ,κς) =∆(σ,κ)ς + κ∆(σ, ς).

Using the hypothesis, we obtain that

κ∆(σ, ς) ∈ ℘ for all σ,κ, ς ∈ Ω.

Replacing κ by ∆(σ, ς)κ in the last expression, we get

∆(σ, ς)κ∆(σ, ς) ∈ ℘ for all σ,κ, ς ∈ Ω.

Since ℘ is semiprime ideal of Ω, we obtain that ∆(σ, ς) ∈ ℘ for all σ, ς ∈ Ω. Replacing ς by σ, we

get δ(σ) ∈ ℘, and so [δ(σ), σ] ∈ ℘ for all σ ∈ I. Hence we conclude that δ is ℘−commuting map.

◻

Theorem 2.5 Let Ω be a ring with ℘ a semiprime ideal of Ω, char(Ω/℘) ≠ 2 and ∆ ∶ Ω×Ω→ Ω

a symmetric bi-derivation, δ be the trace of ∆. If ∆(δ(σ), σ) ∈ ℘, for all σ ∈ Ω, then δ is

℘−commuting on Ω.

Proof By the hypothesis, we have

∆(δ(σ), σ) ∈ ℘ for all σ ∈ Ω.

Replacing σ by σ + κ, κ ∈ Ω in the last expression, we get

∆(δ(σ), σ) +∆(δ(σ), κ) +∆(δ(κ), σ) +∆(δ(κ), κ) + 2∆(∆(σ,κ), σ) + 2∆(∆(σ,κ), κ) ∈ ℘.

Using our hypothesis, we see that

∆(δ(σ), κ) +∆(δ(κ), σ) + 2∆(∆(σ,κ), σ) + 2∆(∆(σ,κ), κ) ∈ ℘.

Replacing σ by −σ in the above expression, we obtain that

∆(δ(σ), κ) −∆(δ(κ), σ) + 2∆(∆(σ,κ), σ) − 2∆(∆(σ,κ), κ) ∈ ℘.

We obtained from the last two expressions

∆(δ(σ), κ) + 2∆(∆(σ,κ), σ) ∈ ℘. (1)

Taking κ by σκ in (1) and using the hypothesis, we get

σ∆(δ(σ), κ) + 2δ(σ)∆(σ,κ) + 2σ∆(∆(σ,κ), σ) + 2δ(σ)∆(κ,σ) ∈ ℘. (2)

Multipliying in (1) by σ on left hand side, we see that

σ∆(δ(σ), κ) + 2σ∆(∆(σ,κ), σ) ∈ ℘. (3)
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Subtracting (2) from (3), we arrive at

4δ(σ)∆(σ,κ) ∈ ℘.

Using char(Ω/℘) ≠ 2, we get

δ(σ)∆(σ,κ) ∈ ℘.

Replacing κ by κσ in the last expression, we have

δ(σ)κδ(σ) ∈ ℘ for all σ,κ ∈ Ω.

Since ℘ is semiprime ideal of R, we get δ(σ) ∈ ℘, and so [δ(σ), σ] ∈ ℘ for all σ ∈ I. Hence we

conclude that δ is ℘−commuting map. ◻

Theorem 2.6 Let Ω be a ring with ℘ a semiprime ideal of Ω char(Ω/℘) ≠ 2, , charΩ/℘ ≠ 3 and

∆ ∶ Ω×Ω→ Ω, G ∶ Ω×Ω→ Ω two symmetric reverse bi-derivations where δ is the trace of ∆ and

g is the trace of G . If δ(δ(σ)) ± g(σ) ∈ ℘ for all σ ∈ Ω, then g is ℘−commuting on Ω .

Proof By our hypothesis, we have

δ(δ(σ)) ± g(σ) ∈ ℘ for all σ ∈ Ω.

Replacing σ by σ + κ, κ ∈ Ω, we get

δ(δ(σ)) + δ(δ(κ)) + 2∆(δ(σ), δ(κ)) + 4δ(∆(σ,κ)) + 4∆(δ(σ),∆(σ,κ)) + 4∆(δ(κ),∆(σ,κ))
±g(σ) ± g(κ) ± 2G(σ,κ) ∈ ℘.

Using the hypothesis and char(Ω/℘) ≠ 2, we obtain that

∆(δ(σ), δ(κ)) + 2δ(∆(σ,κ)) + 2∆(δ(σ),∆(σ,κ)) + 2∆(δ(κ),∆(σ,κ)) ±G(σ,κ) ∈ ℘. (4)

Replacing σ by −σ in the above expression, we see that

∆(δ(σ), δ(κ)) + 2δ(∆(σ,κ)) − 2∆(δ(σ),∆(σ,κ)) − 2∆(δ(κ),∆(σ,κ)) ∓G(σ,κ) ∈ ℘. (5)

Subtracting (4) from (5), we arrive at

4∆(δ(σ),∆(σ,κ)) + 4∆(δ(κ),∆(σ,κ)) ± 2G(σ,κ) ∈ ℘.

Since char(Ω/℘) ≠ 2, we get

2∆(δ(σ),∆(σ,κ)) + 2∆(δ(κ),∆(σ,κ)) ±G(σ,κ) ∈ ℘ for all σ,κ ∈ Ω. (6)

Replacing σ by 2σ in the last expression, we see that

16∆(δ(σ),∆(σ,κ)) + 4∆(δ(κ),∆(σ,κ)) ± 2G(σ,κ) ∈ ℘. (7)
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Using (6), we have

4∆(δ(σ),∆(σ,κ)) + 4∆(δ(κ),∆(σ,κ)) ± 2G(σ,κ) ∈ ℘ for all σ,κ ∈ Ω. (8)

Subtracting (7) from (8), we arrive at

12∆(δ(σ),∆(σ,κ)) ∈ ℘.

Using char(Ω/℘) ≠ 2 and charΩ/℘ ≠ 3, we get

∆(δ(σ),∆(σ,κ)) ∈ ℘ for all σ,κ ∈ Ω.

Replacing κ by σ in the above expression, we see that

∆(δ(σ),∆(σ,σ)) ∈ ℘.

That is

δ(δ(σ)) ∈ ℘ for all σ ∈ Ω.

Returning our hypothesis and using this, we get g(σ) ∈ ℘, and so [g(σ), σ] ∈ ℘ for all σ ∈ I. Hence

we conclude that g is ℘−commuting map. This completes proof. ◻

Theorem 2.7 Let Ω be a ring with ℘ a semiprime ideal of Ω, I an ideal of Ω, char(Ω/℘) ≠ 2

and ∆ ∶ Ω×Ω→ Ω, G ∶ Ω×Ω→ Ω two symmetric bi-derivations where δ is the trace of ∆ and g

is the trace of G . If δ (σ)κ ± σg(κ) ∈ ℘ for all σ,κ ∈ I, then δ is ℘−commuting map.

Proof Let assume that

δ (σ)κ ± σg(κ) ∈ ℘ for all σ,κ ∈ I.

Writing κ by κ + ς, ς ∈ I, we have

δ (σ)κ + δ (σ) ς ± σg(κ) ± σg(ς) ± 2σG(κ, ς) ∈ ℘.

Using the hypothesis, we get

2σG(κ, ς) ∈ ℘.

Since char(Ω/℘) ≠ 2 and replacing ς by κ , we see that

σG(κ,κ) ∈ ℘ for all σ,κ ∈ I.

That is

σg(κ) ∈ ℘ for all σ,κ ∈ I.

By the hypothesis, we get

δ (σ)κ ∈ ℘ for all σ,κ ∈ I.

Thus we can write δ (σ)σ ∈ ℘ for all σ ∈ I, and so [δ(σ), σ] ∈ ℘ for all σ ∈ I. Hence we conclude

that δ is ℘−commuting map. ◻
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Theorem 2.8 Let Ω be a ring with ℘ a semiprime ideal of Ω, I an ideal of Ω, char(Ω/℘) ≠ 2

and ∆ ∶ Ω × Ω → Ω, G ∶ Ω × Ω → Ω two symmetric bi-derivations where δ is the trace of ∆

and g is the trace of G . If any of the following conditions is satisfied for all σ,κ ∈ Ω , then δ is

℘−commuting map on I.

i) [δ(σ), κ] ± [g(κ), σ] ∈ ℘,

ii) δ(σ) ○ κ ± (σ ○ g(κ)) ∈ ℘,

iii) [δ(σ), κ] ± (σ ○ g(κ)) ∈ ℘,

iv) δ(σ) ○ κ ± [g(κ), σ] ∈ ℘.

Proof i) By the hypothesis, we have

[δ(σ), κ] ± [g(κ), σ] ∈ ℘ for all σ,κ ∈ I.

Taking κ by κ + ς, ς ∈ I, we get

[δ(σ), κ] + [δ(σ), ς] ± [g(κ), σ] ± [g(ς), σ] ± 2[G(κ, ς), σ] ∈ ℘.

Using the hypothesis, we have

2[G(κ, ς), σ] ∈ ℘.

Since Ω/℘ is characteristic not two ring, we obtain that

[G(κ, ς), σ] ∈ ℘.

Replacing ς by κ in the last expression, we have

[G(κ,κ), σ] ∈ ℘ for all σ,κ ∈ I.

That is,

[g(κ), σ] ∈ ℘ for all σ,κ ∈ I.

Using this in our hypothesis, we obtain that [δ(σ), κ] ∈ ℘, and so [δ(σ), σ] ∈ ℘ for all σ ∈ I. Hence

δ is ℘−commuting on I .

ii) By the hypothesis, we get

δ(σ) ○ κ ± (σ ○ g(κ)) ∈ ℘ for all σ,κ ∈ I.

Replacing κ by κ + ς, ς ∈ I, we obtain that

δ(σ) ○ κ + δ(σ) ○ ς ± (σ ○ g(κ)) ± (σ ○ g(ς)) ± 2(σ ○G(κ, ς)) ∈ ℘ for all σ,κ, ς ∈ I.

Using the hypothesis and char(Ω/℘) ≠ 2, we see that

(σ ○G(κ, ς)) ∈ ℘ for all σ,κ, ς ∈ I.
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Taking ς by κ in this expression, we have

σ ○ g(κ) ∈ ℘ for all σ,κ ∈ I.

Hence we get from our hypothesis,

δ(σ) ○ κ ∈ ℘ for all σ,κ ∈ I.

Replacing κ by κς, ς ∈ I, we find that

κ[ς, δ(σ)] ∈ ℘ for all σ,κ, ς ∈ I.

Replacing κ by [ς, δ(σ)]Ω in the last expression, we have

[ς, δ(σ)]t[ς, δ(σ)] ∈ ℘ for all σ, ς ∈ I, t ∈ Ω.

Since ℘ is semiprime ideal of Ω, we get

[ς, δ(σ)] ∈ ℘ for all σ, ς ∈ I.

In particular we have [σ, δ(σ)] ∈ ℘ for all σ ∈ I, and so δ is ℘−commuting on I .

iii) By the hypothesis, we have

[δ(σ), κ] ± σ ○ g(κ) ∈ ℘ for all σ,κ ∈ I.

Taking κ by κ + ς, ς ∈ I, we get

[δ(σ), κ] + [δ(σ), ς] ± (σ ○ g(ς)) ± 2(σ ○G(κ, ς)) ∈ ℘.

Using char(Ω/℘) ≠ 2, we see that

(σ ○G(κ, ς)) ∈ ℘ for all σ,κ, ς ∈ I.

Taking ς by κ in this expression, we have

σ ○ g(κ) ∈ ℘ for all σ,κ ∈ I.

Hence we get from our hypothesis,

δ(σ) ○ κ ∈ ℘ for all σ,κ ∈ I.

By Lemma 2.1, we conclude that δ is ℘−commuting on I.

iv) By the hypothesis, we get

δ(σ) ○ κ ± [g(κ), σ] ∈ ℘, for all σ,κ ∈ I.
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Taking κ by κ + ς, ς ∈ I, we get

δ(σ) ○ κ + δ(σ) ○ ς ± [g(κ), σ] ± [g(ς), σ] ± 2[G(κ, ς), σ] ∈ ℘.

Using the hypothesis, we have

2[G(κ, ς), σ] ∈ ℘.

Since Ω/℘ is characteristic not two ring, we obtain that

[G(κ, ς), σ] ∈ ℘.

Replacing ς by κ in the last expression, we have

[G(κ,κ), σ] ∈ ℘ for all σ,κ ∈ I.

That is,

[g(κ), σ] ∈ ℘ for all σ,κ ∈ I.

Using this in our hypothesis, we obtain that [δ(σ), κ] ∈ ℘, and so [δ(σ), σ] ∈ ℘ for all σ ∈ I. Hence

δ is ℘−commuting on I . ◻

3. Conclusion

In this study, the subject of symmetric bi-derivations of a ring under the influence of a semiprime

ideal is considered without imposing a condition on the ring. Here, the conditions used in the

literature to prove that a ring is commutative are examined for symmetric bi-derivations and

semiprime ideals. The results obtained provide a new perspective on the structural properties of

rings with derivations. Based on this research, further research can be conducted by considering

different algebraic structures such as generalized derivations instead of symmetric bi-derivations,

homoderivations and alternating rings instead of rings, near rings, operator algebras, Banach

algebras and other areas where ring theory plays a fundamental role.
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Abstract: In this article, spherical indicatrices of a curve and helices are re-examined using both

the algebraic structure and the geometric structure of non-Newtonian (multiplicative) Euclidean space.

Indicatrices of a multiplicative curve on the multiplicative sphere in multiplicative space are obtained. In

addition, multiplicative general helix, multiplicative slant helix and multiplicative clad and multiplicative

g-clad helix characterizations are provided. Finally, examples and drawings are given.

Keywords: Non-Newtonian calculus, spherical indicatrices, helices, multiplicative differential geometry.

1. Introduction
Classical analysis, which is a widely used mathematical theory today, was defined by Gottfried

Leibniz and Isaac Newton in the second half of the 17th century based on the concepts of derivatives

and integrals. Constructed upon algebra, trigonometry, and analytic geometry, the classical

analysis consists of concepts such as limits, derivatives, integrals, and series. These concepts

are regarded as simple versions of addition and subtraction, leading to the designation of this

analysis as summational analysis. Classical analysis finds applications in various fields, including

natural sciences, computer science, statistics, engineering, economics, business, and medicine,

where mathematical modeling is required, and optimal solution methods are sought. However,

there are situations in some mathematical models where classical analysis falls short. Therefore,

alternative analyses have been defined based on different arithmetic operations while building upon

classical analysis. For instance, in 1887, Volterra developed an approach known as Volterra-type

analysis or multiplicative analysis since it is founded on the multiplication operation [30]. In

multiplicative analysis, the roles of addition and subtraction operations in classical analysis are

assumed by the multiplication and division operations, respectively. Following the definition of

Volterra analysis, Grossman and Katz conducted some new studies between 1972 and 1983. This

led to the development of the non-Newtonian analysis, which also involves fundamental definitions
∗Correspondence: ahas@ksu.edu.tr
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and concepts [14, 15]. These analyses have been referred to as geometric analysis, bigeometric

analysis, and anageometric analysis. Multiplicative analysis has emerged as an alternative approach

to classical analysis and has become a significant area of research and development in the field of

mathematics. These new analyses may allow for a more effective resolution of various problems

by examining different mathematical structures. Furthermore, these studies contribute to the

expansion of the boundaries of mathematical analysis and find applications in various disciplines.

Arithmetic is an integer field which is a subset of the real numbers. An arithmetic system

is the structure obtained by algebraic operations defined in this field. In fact, this field can be

considered as a different interpretation of the real number field such that a countable number of

infinitely ordered objects can be formed and these structures are equivalent or isomorphic to each

other. The generator function, which is used to create arithmetic systems, is a one-to-one and

bijective transformation whose domain is real numbers and whose value set is a subset of positive

real numbers. The unit function I and the function ex are examples of generator functions. Just

as each generator produces a single arithmetic, each arithmetic can be produced with the help of

a single generator. Multiplicative analysis has its own multiplicative space. In this special space,

the classical number system has turned into a multiplicative number system consisting of positive

real numbers, denoted by R� . Likewise, the basic mathematical operations in classical analysis

have also turned into their purely multiplicative versions. This is clearly shown in the table below.

Table 1. Basic multiplicative operations

a �� b eloga�log b ab

a �� b eloga�log b a
b

a �� b eloga log b alog b

a~�b eloga~ log b a
1

log b , b x 1

Multiplicative analysis, contrast to not a completely new topic, has recently started to

be explored and discovered more in today’s context. The main reason behind this lies in the

successful modeling of problems that cannot be addressed using classical analysis, achieved through

the application of multiplicative analysis. This characteristic has led many mathematicians to

prefer multiplicative analysis for solving challenging problems that are otherwise difficult to model

within their respective fields. Stanley took the lead in this regard and re-announced geometric

analysis as multiplicative analysis [27]. On this subject, fractal growths of fatigue defects in

materials are studied by Rybaczuk and Stoppel [24] and the physical and fractional dimension

concepts are studied by Rybaczuk and Zielinski [25]. In addition, there are many studies on

multiplicative analysis in the field of pure mathematics. For example, the non-Newtonian efforts

in complex analysis are [6, 29], in numerical analysis [1, 7, 34], in differential equations [5, 31, 33].
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Also, Bashirov et al. reconsider multiplicative analysis with some basic definitions, theorems,

propositions, properties and examples [4]. The multiplicative Dirac system and multiplicative

time scale are studied by Emrah et al. [13, 16].

Georgiev brought a completely different perspective to multiplicative analysis with the books

titled Multiplicative Differential Calculus, Multiplicative Differential Geometry and Multiplicative

Analytic Geometry published in 2022 [10–12]. Unlike previous studies, Georgiev used operations as

purely multiplicative operations and almost reconstructed the multiplicative space. These books

have been recorded as the initial studies in particular for multiplicative geometry. Georgiev’s

book [10] serves as a guide for researchers in this field by encompassing numerous fundamental

definitions and theorems pertaining to curves, surfaces, and manifolds. The book elucidates how

to associate basic geometric objects such as curves, surfaces, and manifolds with multiplicative

analysis, shedding light on their properties in multiplicative spaces. Additionally, it emphasizes

the connections between multiplicative geometry and other mathematical domains, making it a

valuable resource for researchers working in various branches of mathematics. Afterward, Nurkan

et al. tried to construct geometry with geometric calculus. In addition, Gram-Schmidt vectors are

obtained [23]. On the other hand, Aydın et al. studied rectifying curves in multiplicative Euclidean

space. The multiplicative rectifying curves are fully classified and visualized through multiplicative

spherical curves and they studied multiplicative submanifolds and of multiplicative Euclidean space

[2, 3]. Has and Yılmaz constructed multiplicative conics using multiplicative arguments [17] and

in another study they investigated multiplicative magnetic curves [18]. Has , Yılmaz and Yıldırım

have worked on the multiplicative Lorentz-Minkowski space [19]. Ceyhan et al. performed optical

fiber examined with multiplicative quaternions [8].

A helix curve is the curve that a point follows as it rotates around a fixed axis in a three-

dimensional space. The helix curve is formed as a result of this rotational movement, and the

rotation time around the axis determines the stability of the curve. While the helix curve is

important in terms of geometry, it is also increasing in different branches of science. For example,

helix is a term used for the connections of DNA. The double helix structure of DNA is called an
image helix [32]. In computer graphics and 3D applications, helix curves are used in sections of

complex surfaces and their results [9]. The helix is used in blades and aerospace engineering for

the design and performance analysis of propellers and rotor blades [26]. In addition, helices have

been traditionally studied by many researchers with their different properties [20–22, 28, 35].

In this study, spherical indicatrices and helix curves, which are important for differential

geometry, are examined in multiplicative space. Spherical indicatrices, general helix, slant helix,

clad helix and g-clad helix are rearranged with reference to multiplicative operations. Moreover, in

the multiplicative Euclidean space, basic concepts such as orthogonal vectors, orthogonal system,
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curves, Frenet frame, etc. are mentioned. In addition, it is aimed to make these basic concepts

more memorable by visualizing them.

2. Multiplicative Calculus and Multiplicative Space

The definitions and theorems that will be presented in this section are taken from the works of

Georgiev [10–12].

Since the multiplicative space has an exponential structure, the sets of multiplicative real

numbers are we have

R� � �ex � x > R� � R�, R�

�
� �ex � x > R�� � �1,ª� and R�

�
� �ex � x > R� � �0,1�. (1)

The basic multiplicative operations for all m,n > R� , are

m �� n � elogm�logn
�mn, m �� n � elogm�logn

�m~n,

m �� n � elogm logn
�mlogn, m~�n � elogm~ logn

�m
1

logn , n x 1.

According to the multiplicative addition operation, the multiplicative neutral and unit element are

0� � 1 and 1� � e , respectively.

The inverse elements of multiplicative addition and multiplicative multiplication operations

for all m > R� are as follows, respectively:

��m � 1~m, m�1�
� e

1
logm .

Absolute value function in multiplicative space, we have

SmS
�
�

¢̈̈̈
¦̈̈̈
¤
m, m C 0�

��m, m @ 0�.

With the help of multiplicative arguments, the multiplicative power function can be given as for

all m > R� and k > N

mk�
� e�logm�k , m

1
2 � �

�

º
m � e

»
logm.

A vector whose components are elements of the space R� is called a multiplicative vector

and satisfies the following properties Ð�r � �r1, r2,�, rn�,Ð�s � �s1, s2,�, sn� > Rn
�

multiplicative

vectors and λ > R� , as follows

Ð�r ��
Ð�s � �r1 �� s1,�, rn �� sn� � �r1s1,�, rnsn�,

λ ��
Ð�r � �λ �� r1,�, λ �� rn� � �rlogλ1 ,�, rlogλn � � elogÐ�r logλ,
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where logÐ�r � �log r1, log r2,�, log rn� . Let Ð�r � �r1, r2,�, rn� and Ð�s � �s1, s2,�, sn� > Rn
�

be two

multiplicative vectors in the multiplicative vector space Rn
�

. Thus the multiplicative inner product

of two multiplicative vectors is follow

`Ð�r ,Ð�s e� � r1 �� s1 �� ��� rn �� sn � e`logÐ�r ,logÐ�s e.

If the multiplicative vectors Ð�r and Ð�s are multiplicative orthogonal to each other, they are denoted

by Ð�r Ù� Ð�s and this relation is as follows

`Ð�r ,Ð�s e� � 0�.

In Figure 1, we present the graph of the multiplicative orthogonal vectors.

Figure 1: Multiplicative orthogonal vectors Ð�r � �e 1
2 , e�

3
4 , e

3
2 � and Ð�s � �e 3

4 , e, e
1
4 �

The multiplicative norm of the multiplicative vector Ð�r > Rn
�

is given by the multiplicative

inner product is defined as follows:

YÐ�r Y� � e`logÐ�r ,logÐ�r e 12 .

Let Ð�r � �r1, r2, r3� and Ð�s � �s1, s2, s3� be 3D multiplicative vectors, and the multiplicative cross

products of Ð�r and Ð�s , we have

Ð�r ��
Ð�s � �elog r2 log s3�log r3 log s2 , elog r3 log s1�log r1 log s3 , elog r1 log s2�log r2 log s1�.

Multiplicative cross product preserves the properties of traditional cross product with its

arguments. For example, cross products of multiplicative vectors Ð�r and Ð�s are multiplicative

orthogonal to both Ð�r and Ð�s . We give this visually in Figure 2 The multiplicative angle between

the multiplicative unit direction vectors Ð�r ,Ð�s > Rn
�

is given by

ϕ � arccos��e`logÐ�r ,logÐ�s e�.
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Figure 2: Multiplicative orthogonal system Ð�r � �e 1
2 , e�

3
4 , e

3
2 � , Ð�s � �e 3

4 , e, e
1
4 � and Ð�r ��

Ð�s � �e� 27
16 , e, e

17
16 �

Multiplicative trigonometric functions with the help of multiplicative angles

sin� ϕ � esin logϕ, cos� ϕ � ecos logϕ,

tan� ϕ � etan logϕ, cot� ϕ � ecot logϕ.

Multiplicative trigonometric functions provide the same algebraic properties as traditional trigono-

metric functions, but with their own arguments. For example, there is the equality sin2�
�
θ ��

cos2�
�
θ � 1� . For other relations, see [11].

The multiplicative derivative of the multiplicative function f�t� ` R� for t > I ` R� is as

follows

f��t� � lim
h�0�

��f �t �� h� �� f �t�� ~�h�

� lim
h�1

exp � log f �th� � log f �t�
log �h� 	

� lim
h�1

exp � thf � �th�
f �th� 	

� et
f ��t�
f�t� .

Multiplicative differentiation realizes many properties provided in classical differentiation, such

as linearity, Leibniz rule, chain rules, etc., based on multiplicative arguments. For examples

�f�x� �� g�x��� � f��x� �� g�x� �� g��x� �� f�x� . It can also be stated as f��x� � d�f~�d�x .

For other relations, see [11].

The multiplicative integral of the multiplicative function f�t� ` R� is as follows for t > I ` R�

S
�

f�x� �� d�x � eR 1
x log f�x�dx, x > R�.
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The geometric location of points with equal multiplicative distances from a point in multiplicative

space is called a multiplicative sphere. The equation of the sphere with centered at C�a, b, c� and

radius r is
YP �� CY� � r,

where P � �x, y, z� is the representation point of the multiplicative sphere, so

e�logx�loga�2��log y�log b�2��log z�log c�2 � e�log r�2 .

In Figure 3 we show the multiplicative sphere with centered at multiplicative origin O�0�,0�,0��
and radius 1�

Figure 3: A multiplicative sphere with centered at multiplicative origin O�0�,0�,0�� and radius 1�

3. Differential Geometry of Curves in Multiplicative Space

A multiplicative parametrization of class Ck
�

(k C 1� ) for a curve x in R3
�

(i.e., the component-

functions of x are k -times continuously multiplicative differentiable), is a multiplicative vector

valued function x � I ` R� � E3
�

, where s is mapped to x�s� � �x1�s�, x2�s�, x3�s�� . In particular,

a parametric multiplicative curve x is regular if and only if Yx��s�Y� x 0� for any s > I . Looking

at it dynamically, the multiplicative vector x��s� represents the multiplicative velocity of the

multiplicative curve at time s . For a multiplicative curve x to have multiplicative naturally

parameters, the necessary and sufficient condition is that the curve is from the class Ck
�

and

Yx��s�Y� � 1� for each s > I .

Given s0 > I , the multiplicative arc length of a multiplicative regular parameterized curve

x�s� from the point s0 , is by definition

h�s� � S s

�s0
Yx��t�Y� �� d�t. (2)
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As an example, the multiplicative circle curve in multiplicative plane with center �0�,0�,0�� and

radius r � e�2 is given by the equation x�s� � e�2 �� �e 1
2 cos� 2s, e

1
2 �� sin� 2s, e

º
3� in R3

�
. It can be

plotted as in Figure 4.

Figure 4: A multiplicative circle in the plane z � e
º

3
2 with centered at �0�,0�,0�� , radius r � 1~e2

and 0� @ s @ e
2π

The multiplicative Frenet trihedron of a naturally parameterized multiplicative curve x�s�
are

t�s� � x��s�, n�s� � x���s�~�Yx���s�Y�, b�s� � t�s� �� n�s�.
The vector field t�s� (resp. n�s� and b�s�) along x�s� is said to be multiplicative tangent

(resp. multiplicative principal normal and multiplicative binormal). It is direct to prove that

�t�s�,n�s�,b�s�� is mutually multiplicative orthogonal and n�s���b�s� � t�s� and b�s��� t�s� �
n�s� . We also point out that the arc length parameter and multiplicative Frenet frame are

independent from the choice of multiplicative parametrization [10].

To give an example, the multiplicative Frenet vectors of the multiplicative curve

x�s� � ��e3~�e5� �� cos� s, �e3~�e5� �� sin� s, e4~�e5 �� es�
are

t�s� � ����e3~�e5� �� sin� s, �e3~�e5� �� cos� s, e4~�e5�,
n�s� � ��� cos� s,�� sin� s,0��,
b�s� � ��e4~�e5� �� sin� s,���e4~�e5� �� cos� s, e3~�e5�.

In Figure 5, we present the graph of the multiplicative Frenet frame on the multiplicative curve

x�s� .
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Figure 5: Multiplicative curve and its multiplicative Frenet frame

The multiplicative Frenet formulae of x are given by

t� � κ �� n,

n�
� ��κ �� t �� τ �� b,

b�
� ��τ �� n,

where κ � κ�s� and τ � τ�s� are the curvature and the torsion functions of x , calculated by

κ�s� � Yx���s�Y� � e`logx��,logx��e 12 , (3)

τ�s� � `n��s�,b�s�e� � e`logn��s�,logb�s�e. (4)

4. Main Results
4.1. Multiplicative Spherical Indicatries

Consider a multiplicative curve x�s� > R3
�

. The multiplicative Frenet vectors of x also evolve along

the curve as a multiplicative vector field. The thing to note here is that since the multiplicative

Frenet vectors of the multiplicative curve x are multiplicative unit vectors, they form a curve on

the multiplicative sphere. In this section, such curves will be examined.

The multiplicative curve x�s� is associated with multiplicative Frenet vectors �t,n,b� .

Now, let us consider the unit multiplicative tangent vectors along x�s� . These vectors collectively

form another curve, denoted by xt � t . This new curve resides on the surface of a multiplicative

sphere with a radius of 1� and centered at the multiplicative origin O � �0�,0�,0�� . The

multiplicative curve xt is often referred to as the multiplicative spherical indicatrix associated with

the unit multiplicative tangent vector t . We will call this curve multiplicative tangent indicatrix
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of the original multiplicative curve x , in line with the more conventional notation. With similar

thought, we will call multiplicative curves xn � n and xb � b as multiplicative normal indicatrix

and multiplicative binormal indicatrix of x , respectively.

Proposition 4.1 Let xt be the multiplicative tangent indicatrix of a multiplicative naturally

parameterized curve x . The multiplicative naturally parameter st of xt is given by

st � eR
s 1

uκ�u�du,

where s is multiplicative naturally parameter of x and κ�s� is multiplicative curvature of x .

Proof Let x�s� be the multiplicative naturally parameterized curve. Also, let xt�s� � t�s� be

the multiplicative tangent indicatrix of x�s� . Considering (2), we get the multiplicative naturally

parameter of xt as follows

st � S
s

�

Yt��u�Y� �� d�u.
Then from the definition of multiplicative curvature, we get

st � S
s

�

κ�u� �� d�u

or equivalently

st � eR
s 1

uκ�u�du.
j

Theorem 4.2 Let xt be the multiplicative tangent indicatrix of a multiplicative naturally param-

eterized curve x with κ x 0� on I . The multiplicative Frenet vectors �Tt,Nt,Bt� of xt satisfy

Tt � n,

Nt � ���t �� f �� b�~�e�1��log f�s��2� 1
2
,

Bt � �f �� t �� b�~�e�1��log f�s��2� 1
2
,

where f � f�s� and f � τ~�κ .

Proof Since xt is the multiplicative tangent indicatrix of x , we have

xt � t.

Taking the multiplicative derivative of both sides of the above equation with respect to s ,

�d�xt~�d�st� �� �d�st~�d�s� � κ �� n.
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Using Proposition 4.1 and putting Tt � d�xt~�d�st , we get

Tt � n. (5)

If we take the multiplicative derivative of (5) with respect to s and apply multiplicative Frenet

formulas, we have

κ �� �d�Tt~�d�st� � ��κ �� t �� τ �� b
and

d�Tt~�d�st � ��t �� �τ~�κ� �� b.
Considering the multiplicative norm, the following equation is obtained:

Yd�Tt~�d�stY� � e�`� log t,� log te�� log τ
logκ �2`logb,logbe� 1

2

� e
¼�1�� log τ

logκ �2�. (6)

In that case, we can see that

Nt � �d�Tt~�d�st�~�Yd�Tt~�d�stY� � ���t �� �τ~�κ� �� b�~�e�1�� log τ
logκ �2� 1

2
.

Setting τ~�κ � f ,

Nt � ���t �� f �� b�~�e�1��log f�s��2� 1
2
. (7)

On the other hand, if we take into account (5) and (7) along with the multiplicative Frenet

formulas, we obtain the final Frenet vector as

Bt � �n �� ���t �� f �� b��~�e�1��log f�s��2� 1
2
.

When we organize the multiplicative operations, we obtain

Bt � �f �� t �� b�~�e�1��log f�s��2� 1
2
. (8)

j

Proposition 4.3 Let xt be the multiplicative tangent indicatrix of a multiplicative naturally

parameterized curve x with κ x 0� on I . The multiplicative curvatures of xt are

κt � e
�1��log f�s��2� 1

2 and τt � σ �� e
�1��log f�s��2� 1

2
,

where σ � f�~��elogκ�1��log f�s��2� 3
2 �.
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Proof The first equality follows by (6),

κt � e
`logx��

t ,logx��

t e 12
� e�1��log f�s��2�

1
2
.

Next considering calculate the multiplicative derivative of Nt with respect to st , considering (7).

Also, is chosen e�1��log f�s��2�
1
2
� λ in (7), so

�d�Nt~�d�st� �� �d�st~�d�s� � ����κ �� n �� f� �� b �� f �� τ �� n� �� λ �� λ �� ���t �� f �b��~�λ2�.
After this we can write

N�

t �� κ � �λ� �� t �� λ �� �κ �� f �� τ� �� n �� �λ �� f� �� λ� �� f� �� b�~�λ2�

and so

N�

t � �λ� �� t �� λ �� �κ �� f �� τ� �� n �� �λ �� f� �� λ� �� f� �� b�~�λ2� �� κ. (9)

Then from (8) and (9), we obtain

τt � `logN�

t , logBte� � �f �� λ��~�λ3� �� κ �� �λ �� f� �� λ� �� f�~�λ3� �� κ
� �f� �� λ�~�λ3� �� κ.

Here again let’s consider the choice e�1��log f�s��2�
1
2
� λ , so we get

�f�~��e�1��log f�s��2� 3
2
�� κ�� �� e�1��log f�s��2� 1

2
.

Finally, if a choice is made in the form σ � f�~��elogκ�1��log f�s��2� 3
2
��κ� , the above-mentioned

equation becomes

τt � σ �� e
�1��log f�s��2� 1

2
.

j

Using similar arguments, we may have the following results.

Proposition 4.4 Let xn be the multiplicative normal indicatrix of a multiplicative naturally

parameterized curve x . The multiplicative arc parameter sn of the multiplicative curve xn provides

sn � S
�

κ�s� �� e�1��log f�s��2� 1
2
�� d�s, (10)

where f � f�s� and f � τ~�κ .
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Theorem 4.5 Let xn be the multiplicative normal indicatrix of a multiplicative naturally param-

eterized curve x . The multiplicative Frenet vectors �Tn,Nn,Bn� of xn as follows

Tn � ���t �� f �� b�~�e�1��log f�s��2� 1
2
,

Nn � �σ~�e�1��logσ�s��2� 1
2 � �� ���f �� t �� b�~�e�1��log f�s��2� 1

2 � �� n~�σ�,
Bn � �e~�e�1��logσ�s��2� 1

2 � �� ���f �� t �� b�~�e�1��log f�s��2� 1
2
�� n �� σ�,

where σ � f�~��elogκ�1��log f�s��2� 3
2 �.

Proposition 4.6 Let xn be the multiplicative normal indicatrix of the multiplicative curve x .

The multiplicative curvatures of the normal indicatrix xn are described as follows

κn � e�1��logσ�s��2� and τn � Γ �� e
�1��log f�s��2�, (11)

where Γ � σ�~��elogκ�1��log f�s��2��1��logσ�s��2� 3
2 .

Proposition 4.7 Let xb be the multiplicative binormal indicatrix of a multiplicative naturally

parameterized curve x . The multiplicative arc parameter sb of the multiplicative curve xb provides

sb � S
�

τ�s�d�s.

Theorem 4.8 Let xb be the multiplicative binormal indicatrix of a multiplicative naturally pa-

rameterized curve x . The multiplicative Frenet vectors �Tb,Nb,Bb� of xb satisfy

Tb � ��n,

Nb � �t �� f �� b�~�e�1��log f�s��2� 1
2
,

Bb � �f �� t �� b�~�e�1��log f�s��2� 1
2
,

where f � f�s� and f � τ~�κ .

Proposition 4.9 Let the multiplicative curve, denoted as xb , be the binormal indicatrix of the

multiplicative curve x . Then, the multiplicative curvatures of the xb are described as follows

κb � e
�1��log f�s��2� 1

2 ~�f and τb � ���σ �� e�1��logσ�s��2� 1
2 �~�f,

where σ � f�~��κ �� �e1��log f�s��2� 3
2��.
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Example 4.10 Let x � I ` R� � E3
�

be multiplicative naturally parametrized curve in R3
�

parameterized by

x�s� � �es, e e2

2 , e
e3

6 � .
In Figure 6, we present the graph of the multiplicative spherical indicatrices of x .

Figure 6: Multiplicative spherical indicatrices

4.2. Multiplicative Helices

Definition 4.11 Consider the multiplicative curve x � I ` R� � E3
�

with κ x 0� . If the multi-

plicative tangent vector field of the curve x makes a constant multiplicative angle with a constant

multiplicative vector, then the curve x is referred to as a multiplicative general helix [10].

Theorem 4.12 Let x � I ` R� � E3
�

be a multiplicative curve with κ x 0� . The multiplicative

space curve x is a multiplicative general helix if and only if the multiplicative ratio of multiplicative

torsion and multiplicative curvature is constant. In other words, it is

κ~�τ � c, c > R�.

Proof The proof of the theorem is explained by Georgiev (see [10]). j

Example 4.13 Let x � I ` R� � E3
�

be multiplicative naturally parametrized general helix curve

in R3
�

parameterized by

x�s� � �e3~�e5 �� cos� s, e3~�e5 �� sin� s, e4~�e5 �� es� .
With the help of multiplicative curvature formulas from (4), we give

κ�s� � e3~�e5 and τ � e4~�e5.
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Since

τ~�κ � e�log e4~ log e5�~�log e3~ log e5� � e4~�e3
is a multiplicative constant, x is a multiplicative helix. In Figure 7, we present the graph of the

multiplicative general helix.

Figure 7: Multiplicative general helix

Definition 4.14 Let x � I ` R� � E3
�

be the multiplicative curve with κ x 0� . If the multi-

plicative normal vector field of the curve x makes a constant multiplicative angle with a constant

multiplicative vector, then the curve x is referred to as a multiplicative slant helix.

Theorem 4.15 Let x � I ` R� � E3
�

be multiplicative curve with κ x 0� . The multiplicative curve

x is a multiplicative slant helix if and only if the following equality is a multiplicative constant

function

σ�s� � �κ2��s�~��κ2��s� �� τ2��s�� 3
2�� �� �τ�s�~�κ�s���. (12)

Proof Suppose that multiplicative naturally parametrized curve s ( x�s� is a multiplicative

slant helix. Since the multiplicative normal vector field of the multiplicative curve x makes a

constant multiplicative angle with v , which is a constant multiplicative vector, we have

`n,ve� � cos� θ, (13)

where θ constant multiplicative angle. Taking a multiplicative derivative of (13), we get

`n�,ve� � 0� (14)

and
��κ �� `t,ve� �� τ �� `b,ve� � 0�.
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As can be seen from the elements of multiplicative Frenet frame and (13), there is a constant

angle between n and fixed direction v and there is also a constant angle between b and fixed

direction v . Then the following equations are provided,

`t,ve� � �c �� τ�~�κ, (15)

`b,ve� � c, c > R�. (16)

In terms of the multiplicative Frenet frame, we can write the decomposition for v as

v � e`log t,logve log t�`logn,logve logn�`logb,logve logb

� `t,ve� �� t �� `n,ve� �� n �� `b,ve� �� b.
The constant direction v from (13), (15) and (16) is obtained as follows

v � �c �� τ�~�κ �� t �� cos� θ �� n �� c �� b. (17)

Since v is the multiplicative unit vector, taking the multiplicative norm of both sides of the above

equation, we get

e`logv,logve
1
2

� ��c �� τ�~�κ�2� �� e`log t,log te 12 �� cos2�� θ �� e
`logn,logne 12

�� c2� �� e
`logb,logbe 12

or

c2� �� �τ2�~�κ2� �� e� � sin2�
�
θ.

If the necessary algebraic operations are performed here, we obtain

c � �κ~��κ2� �� τ2�� 1
2� �� sin� θ.

Therefore, we can easily write v as

v � τ~��κ2� �� τ2�� 1
2� �� sin�θ �� t �� cos� θ �� n �� κ~��κ2� �� τ2�� 1

2� �� sin�θ �� b. (18)

Take the multiplicative derivative of (14), we get

`n��,ve� � 0�. (19)

From multiplicative Frenet frame and (18) and (19), we have

`��κ� �� t �� �κ2� �� τ2�� �� n �� τ�b, τ~��κ2� �� τ2�� 1
2� �� sin�θ �� t

�� cos� θ �� n �� κ~��κ2� �� τ2�� 1
2� �� sin�θ �� be� � 0�.
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Here the following equation exists

�κ �� τ� � τ �� κ��~��κ2� �� τ2�� 3
2� �� tan� θ � e � 0�

and finally, we get

tan� θ � �κ �� τ� � τ �� κ��~��κ2� �� τ2�� 3
2�.

Since the multiplicative angle θ is constant, after the necessary adjustments, we obtain that

κ2�~��κ2� �� τ2�� 3
2� �� �τ~�κ�� � c, c > R�.

j

Example 4.16 Let x � I ` R� � E3
�

be multiplicative naturally parametrized slant helix curve in

R3
�

as

x�s� � �x1�s�, x2�s�, x3�s�� ,
where

x1�s� � e9~�e400 �� esin log 25s
�� e

25~�e144 �� esin log 9s,

x2�s� � ��e
9~�e400 �� ecos log 25s �� e25~�e144 �� ecos log 9s,

x3�s� � e15~�e136 �� esin log 17s.

In Figure 8, we present the graph of the multiplicative slant helix.

Figure 8: Multiplicative slant helix
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Definition 4.17 Let a regular multiplicative curve x be given in the multiplicative space with κ x

0� . The multiplicative curve x is called the multiplicative clad helix if the multiplicative spherical

image of the multiplicative principal normal vector n � I � S2
�

(S2
�

denotes the multiplicative sphere)

of the curve x is part of the multiplicative cylindrical helix in S2
�

.

Therefore we remark that a multiplicative slant helix is a multiplicative clad helix. We have

the following characterization of clad helices.

Theorem 4.18 Let x be a multiplicative naturally parametrized curve with κ x 0� . Then x is a

multiplicative clad helix if and only if

Γ � σ�~��κ �� �e �� f2�� �� �e �� σ2�� 3
2��

is a constant function. Here, f � τ~�κ and σ � f�~��κ �� �e �� f2�� 3
2��.

Proof With the multiplicative normal indicatrix of the multiplicative curve x being xn , we

know from (11) that the multiplicative curvatures of xn are as follows

κn � �e �� σ2�� 1
2�,

τn � Γ �� �e �� σ2�� 1
2�.

It follows that Γ � τn~�κn . For a part of xn to be a multiplicative cylindrical helix, τn~�κn must

be a multiplicative constant. This means that Γ is a multiplicative constant. j

Definition 4.19 Let a regular multiplicative curve x be given in the multiplicative space with

κ x 0� . The multiplicative curve x is called the multiplicative g-clad helix if the multiplicative

spherical image of the multiplicative principal normal vector n � I � S2
�

of the curve x is part of

the multiplicative slant helix in S2
�

.

We have the following characterization of g-clad helices.

Theorem 4.20 Let x be a multiplicative naturally parametrized curve with κ x 0� . Then x is a

multiplicative g-clad helix if and only if

ψ�s� � Γ��s�~� ��κ2��s� �� τ2��s�� 1
2� �� �e �� σ2��s�� 1

2� �� �e �� Γ2��s�� 3
2��

is a constant function.
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Proof With the multiplicative normal indicatrix of the multiplicative curve x being xn , from

(11) the multiplicative curvatures of xn are as follows

κn � �e �� σ2�� 1
2�,

τn � Γ �� �e �� σ2�� 1
2�.

If the necessary algebraic operations are performed here, we get

κ2�n �� τ
2�
n � �e �� σ2�� �� �e �� Γ2��.

From (12), we know that

�κ2�n ~��κ2�n �� τ
2�
n � 3

2�� �� �τn~�κn�� � c, c > R�.

So, we can easily see that

Γ�~� ��κ2� �� τ2�� 1
2� �� �e �� σ2�� 1

2� �� �e �� Γ2�� 3
2�� . (20)

If the normal indicatrix of the multiplicative curve x is a slant helix, (20) is a constant function.

This completes the proof. j

Proposition 4.21 Considering Theorems 4.18 and 4.20 that a multiplicative slant helix is a

multiplicative helix with the condition σ � 0� , a multiplicative clad helix is a multiplicative slant

helix with the condition Γ � 0� and a multiplicative g-clad helix is a multiplicative clad helix with

the condition ψ � 0� . Hence, we have the following relation

¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤

the family of

multiplicative

helices

£̈̈̈̈
¨̈§̈̈̈
¨̈̈¥
`

¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤

the family of

multiplicative

slant helices

£̈̈̈̈
¨̈§̈̈̈
¨̈̈¥
`

¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤

the family of

multiplicative

clad helices

£̈̈̈̈
¨̈§̈̈̈
¨̈̈¥
`

¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤

the family of

multiplicative

g-clad helices

£̈̈̈̈
¨̈§̈̈̈
¨̈̈¥
.

Example 4.22 Let x � I ` R� � E3
�

be multiplicative naturally parametrized clad helix curve in

R3
�

parameterized by

x�s� � �x1�s�, x2�s�, x3�s�� ,
where

x1�s� � e18 �� cos� 3s �� cos��e6 �� cos� 3s�,
x2�s� � e�18 �� cos� 3s �� sin��e6 �� cos� 3s�,
x3�s� � sin� 2s.
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In Figure 9, we present the graph of the multiplicative clad helix

Figure 9: Multiplicative clad helix.

5. Conclusion
In this article, helices were examined using multiplicative arguments. The key point of this study

is that the concept of metric, which is very important for geometry, is different from the traditional

Euclidean metric. The metric here is a metric of multiplicative space based on proportional

difference. Thanks to the multiplicative metric, helices, which are an important field of study

in differential geometry, have been re-characterized and this change has been supported with

examples. In this way, some applications of multiplicative space in differential geometry have been

introduced and will be an example for other researchers.
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Abstract: This paper aims to investigate the Kairat-X equation in the context of the ferromagnetic

materials, optical fibers, differential geometry of curves, and equivalence aspects. Two efficient techniques

are used to obtain new solutions: the modified extended tanh expansion method and the ( G′

G2 ) -expansion

function method. By applying these methods, the nonlinear ordinary differential form of the analyzed

equation is obtained using the appropriate wave transform. The effective application of the proposed

approaches has yielded a substantial number of analytical solutions for the model, including hyperbolic,

bright-dark soliton, W-shaped soliton, and mixed-type trigonometric, rational, and trigonometric solutions.

These methods are advantageous in deriving a wide variety of exact solutions; however, they can also

present limitations in terms of computational complexity and the scope of applicable equations. Various

graphical representations are given to enhance the understanding of the obtained solutions. To the best

of our knowledge, all derived solutions are novel. Furthermore, the correctness of each solution has been

verified using Maple software.

Keywords: Kairat-X equation, the modified extended tanh expansion method, the ( G′

G2 ) -expansion

function method.

1. Introduction

Nonlinear partial differential equations (NLPDEs) are used to model complex physical phenomena

in physics, mechanics, biology, chemistry, and engineering [8, 10, 26, 30]. The study of nonlinear

wave phenomena has attracted significant attention in recent years, including breathing waves,

rogue waves, and solitons. The derivation of soliton solutions for NLPDEs has become an extremely

fascinating and active field of research for many scientists working in engineering and applied

sciences. Solitons, which are widely used in science and engineering, play a crucial technological

role in enabling the transmission of digital information through optical fibers. In electromagnetics,
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solitons are also studied, such as transverse electromagnetic waves between two superconducting

metal strips. Optical solitons are an important area of study in nonlinear optics, covering a wide

range of topics such as metasurfaces, crystals, birefringence, magneto-optics, optical fibers, and

optical couplers [27]. Optical solitons, also known as soliton wave packets, are characterized by

their stability over long propagation distances. High-speed data transmission over optical fibers

and the operation of technologies such as all-optical switches depend on this property. For modern

telecommunications to be reliable and efficient, optical solitons and their stability are crucial

[31]. Researchers are increasingly recognizing the significant contributions that mathematical

approaches and computational technologies make to science, especially in areas where technological

advancements and real-world applications are involved [28].

In recent years, finding exact solutions to NLPDEs has become crucial. Many direct and

effective approaches have been developed to help engineers and physicists better understand the

mechanisms governing these physical models, as well as the associated challenges and potential

applications. Several efficient methods have been proposed for determining the implicit soliton

solutions of nonlinear equations, including the tanh-function method [19], the modified simplest

equation approach [18], the sine-cosine method [5, 29], the complete discriminant system method

[3], the Jacobi elliptic function method [12, 14, 15], the first integral method [6], the modified sub-

equation method [11, 24], the modified expansion rational function method [7] and the sub-equation

method [1, 22].

This paper focuses on the Kairat-X equation (K-XE), a NLPDE that emerges in contexts

such as nonlinear optics, ferromagnetic media, and optical fiber systems. The K-XE is given by

[13, 23]:

ρtt + ρxxxt − 3 (ρxρt)x = 0, (1)

where ρ = ρ(x, t) denotes the real wave function, with the nonlinear interaction and dispersion ef-

fects represented by the terms (ρxρt)x and ρxxxt , respectively. The K-XE was initially formulated

by Myrzakulova, who studied its Lax pair representation in order to demonstrate its integrable

properties [23]. Faridi et al. employed the new auxiliary equation method to derive new soliton

solutions for the same equation [13]. In their study, numerous soliton solutions with diverse char-

acteristics such as complex waves, plane waves, shock waves, and exponential wave forms were

obtained. Iqbal et al. investigated the fractional form of this equation and applied the extended

simple equation method to obtain various solutions in trigonometric, exponential, and rational

forms [17]. Ahmad et al. utilized the unified method to derive several exact analytical solutions

for the same model [2]. Samina et al. used the generalized auxiliary equation method to obtain

soliton solutions of the (1) and also performed a detailed analysis of its bifurcation structure,
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chaotic dynamics, and sensitivity characteristics [25].

The aim of this work is to improve wave behavior through study and enhance its practical

applications, particularly in the field of telecommunications [9]. It takes an interdisciplinary

approach by combining physics, computer science, and mathematics, emphasizing the role of active

scientific research in solving real-world problems and advancing technology.

The existence of a Lax pair implies that the model possesses infinitely many conservation

laws and can admit soliton-type solutions. This feature justifies the use of powerful analytical

techniques such as the modified extended tanh expansion method (METEM) and the ( G′
G2 ) -

expansion function method, as applied in this study. By utilizing different solution prototypes for

the considered model, new approaches are presented to improve data transmission rates, optimize

optical systems, and advance nonlinear optics toward more reliable and efficient communication

technologies.

2. Methodology

Suppose that the presence of a NLPDE of the form:

N(ρ, ρx, ρt, ρxx, ρxt, ρtt,⋯) = 0, (2)

in which ρ = ρ(x, t) is an arbitrary function of x and t with its partial derivatives.

Applying the next wave transformation

ρ(x, t) = V (ξ), ξ = (κx − ηt), (3)

then (2) reduces to the following form:

O(V,V ′, V ′′, V ′′′,⋯) = 0. (4)

Here, η and κ are real constants different from zero.

2.1. Basic Steps of the METEM

This section presents the fundamental steps of the METEM approach [20].

Step 1: Consider the general solution of (4) in the form:

V (ξ) =M0 +
R

∑
s=1
(MsΦ

s(ξ) +LsΦ
−s(ξ)) (MR ≠ 0 or LR ≠ 0), (5)

where Φ(ξ) defined as follows:

dΦ(ξ)
dξ

= Θ + (Φ(ξ))
2

, (6)
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in which Θ is arbitrary constant. The following expressions represent the general solutions of (6):

Case 1: When Θ < 0, the corresponding hyperbolic solutions can be written as follows:

Φ1(ξ) = −
√
−Θtanh (

√
−Θ (ξ + ξ0)) , (7)

Φ2(ξ) = −
√
−Θcoth (

√
−Θ (ξ + ξ0)) , (8)

Φ3(ξ) = −
√
−Θ (tanh (2

√
−Θ (ξ + ξ0)) + iε sech (2

√
−Θ (ξ + ξ0))) , (9)

Φ4(ξ) =
−
√
−Θtanh (

√
−Θ (ξ + ξ0)) +Θ√

−Θtanh (
√
−Θ (ξ + ξ0)) + 1

, (10)

Φ5(ξ) =
√
−Θ (−4 cosh (2

√
−Θ (ξ + ξ0)) + 5)

4 sinh (2
√
−Θ (ξ + ξ0)) + 3

, (11)

Φ6(ξ) =
ε
√
−Θ (c2 + d2) − c

√
−Θcosh (2

√
−Θ (ξ + ξ0))

c sinh (2
√
−Θ (ξ + ξ0)) + d

, (12)

Φ7(ξ) = ε
√
−Θ
⎡⎢⎢⎢⎢⎣
1 − 2c

c + cosh (2
√
−Θ (ξ + ξ0)) − ε sinh (2

√
−Θ (ξ + ξ0))

⎤⎥⎥⎥⎥⎦
. (13)

Case 2: If Θ > 0, the desired trigonometric solutions can be expressed as follows:

Φ8(ξ) =
√
Θtan (

√
Θ (ξ + ξ0)) , (14)

Φ9(ξ) = −
√
Θcot (

√
Θ (ξ + ξ0)) , (15)

Φ10(ξ) =
√
Θ (tan (2

√
Θ (ξ + ξ0)) + ε sec (2

√
Θ (ξ + ξ0))) , (16)

Φ11(ξ) = −
√
Θ (1 − tan (

√
Θ (ξ + ξ0)))

1 + tan (
√
Θ (ξ + ξ0))

, (17)

Φ12(ξ) =
√
Θ (−5 cos (2

√
Θ (ξ + ξ0)) + 4)

5 sin (2
√
Θ (ξ + ξ0)) + 3

, (18)

Φ13(ξ) =
ε
√
Θ (c2 + d2) − c

√
Θcos (2

√
Θ (ξ + ξ0))

c sin (2
√
Θ (ξ + ξ0)) + d

, (19)

Φ14(ξ) = iε
√
Θ

⎡⎢⎢⎢⎢⎣
1 − 2c

c + cos (2
√
Θ (ξ + ξ0)) − iε sin (2

√
Θ (ξ + ξ0))

⎤⎥⎥⎥⎥⎦
. (20)

Case 3: For Θ = 0, the relevant rational solution can be derived as follows:
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Φ15(ξ) = −
1

ξ + ξ0
. (21)

Here, ε = ±1, c ≠ 0, d, Θ, ξ0 are real arbitrary parameters.

Step 2: By taking the homogeneous balance between the highest order derivative and the most

considerable nonlinear term in (4), the value of R is obtained.

Step 3: Inserting (5) and its derivatives into (4), with respect to (6), we obtain a polynomial in

terms of V (ξ) . By setting the coefficients of each power of V (ξ) to zero, we obtain a system of

equations involving the unknown parameters Θ, Ms, Ls (s = 1,2, . . . ,R) . By solving this system,

we derive the analytical solutions of (4).

Step 4: Lastly, the application of the transformation in (3) to the solutions of (4) enables the

construction of several analytical solutions for (2). Under three distinct cases, the corresponding

solutions to (6) have been obtained.

2.2. Description of the ( G′
G2 )Expansion Function Method

The principal steps of the ( G′
G2 ) -expansion function method is specified in this subsection [21].

To solve (1), we assume a solution of the form:

H (ξ) =m0 +
K

∑
i=1

⎛
⎝
mi (

G′

G2
)
i

+ ni (
G′

G2
)
−i⎞
⎠
(mi ≠ 0 or ni ≠ 0) , (22)

where G = G(ξ) defined as follows:

(G
′

G2
)
′
= τ + φ(G

′

G2
)
2

. (23)

Here, the constants φ ≠ 0 and τ ≠ 1 are assumed, and the unknown constants m0, mi, ni

(i = 1,2,3,⋯,K) will be defined later. The corresponding three families of solutions to (22) are as

follows:

When τφ > 0, we have the following trigonometric solution:

(G
′

G2
) =
√

τ

φ

⎛
⎝
A1 cos (

√
τφξ) +A2 sin (

√
τφξ)

A2 cos (
√
τφξ) −A1 sin (

√
τφξ)

⎞
⎠
. (24)

When τφ < 0, we derive the subsequent hyperbolic solution:

(G
′

G2
) = −

√
τφ

φ

⎛
⎝
A1 sinh (2

√
τφξ) +A1 cosh (2

√
τφξ) +A2

A1 sinh (2
√
τφξ) +A1 cosh (2

√
τφξ) −A2

⎞
⎠
. (25)
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When φ ≠ 0, τ = 0, we have the next rational solution:

(G
′

G2
) = (− A1

φ (A1ξ +A2)
) . (26)

Here, A1, A2 are constants. Substituting (22) and (23) into (4), and equating the coefficients

of like powers of ( G′
G2 ) to zero, yields a system of algebraic equations solved via Maple software

program.

3. Application of the Offered Methods

Consider the wave transformation given by:

ρ(x, t) = V (ξ), ξ = κx − ηt. (27)

Substituting (3) into (1), then we reach

ηV ′′ (ξ) − κ3V (ξ)′′′′ + 3κ2 (V ′2 (ξ))′ = 0. (28)

When integrating (28) with respect to ξ , we obtain

ηV ′ (ξ) − κ3V (ξ)′′′ + 3κ2 (V ′2 (ξ)) + c0 = 0. (29)

where suppose that the integration constant c0 is zero. Assuming V ′(ξ) = S , where S(ξ) is

real-valued, (1) reduces to the following ODE:

ηS (ξ) − κ3S (ξ)′′ + 3κ2S2 (ξ) = 0. (30)

3.1. The Solutions to the Proposed Model Using the METEM

Applying the equilibrium principle to (30) yields n = 2. Therefore, the (5) turns into

S (ξ) =M0 +M1Φ (ξ) +M2Φ
2 (ξ) + L1

Φ (ξ) +
L2

Φ2 (ξ) . (31)

In this case, M0 , M1 , M2 , L1 and L2 are parameters. Adhering to the suggested method,
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then we reach the subsequent equation system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηM0 − κ3 (2M2Θ
2 + 2L2) + 3κ2 (2L2M2 + 2L1M1 +M2

0 ) = 0,

ηL2 − 8κ3L2Θ + 3κ2 (L2
1 + 2L2M0) = 0,

ηL1 − 2κ3L1Θ + 3κ2 (2L1M0 + 2L2M1) = 0,

6κ2M1M2 − 2κ3M1 = 0,

3κ2M2
2 − 6κ3M2 = 0,

ηM2 − 8κ3M2Θ + 3κ2 (2M0M2 +M2
1 ) = 0,

ηM1 − 2κ3M1Θ + 3κ2 (2L1M2 + 2M1M0) = 0,

− 6κ3L2Θ
2 + 3κ2L2

2 = 0,

− 2κ3L1Θ
2 + 6κ2L2L1 = 0.

Solving the above system of algebraic equation, we obtain the following sets:

Set 1:

M0 = −
4κΘ

3
, M1 = 0, M2 = 2κ, L1 = 0, L2 = 2κΘ2, η = 16κ3Θ. (32)

Set 2:

M0 =
2κΘ

3
, M1 = 0, M2 = 2κ, L1 = 0, L2 = 0, η = 4κ3Θ. (33)

By using Set 1, we get the following solutions:

Case 1: If Θ < 0, then the kink type solution obtained as

ρ1,1(x, t) = −
4κΘ

3
− 2κΘtanh (

√
−Θ (κx − ηt))

2
− 2κΘ

tanh (
√
−Θ (κx − ηt))2

. (34)

The solitary wave solution reached as

ρ1,2(x, t) = −
4κΘ

3
− 2κΘcoth (

√
−Θ (κx − ηt))

2
− 2κΘ

coth (
√
−Θ (κx − ηt))2

. (35)

The mixed complex bright-dark soliton solution attained as

ρ1,3(x, t) = −
4κΘ

3
− 2κΘ(tanh (2

√
−Θ (κx − ηt)) + i sech (2

√
−Θ (κx − ηt)))

2

− 2κΘ

(tanh (2
√
−Θ (κx − ηt)) + i sech (2

√
−Θ (κx − ηt)))2

. (36)

224



Fatma Nur Kaya Sağlam / FCMS

The kink type solution reached as

ρ1,4(x, t) = −
4κΘ

3
+
2κ(−Θ +

√
−Θtanh (

√
−Θ (κx − ηt)))2

(1 +
√
−Θtanh (

√
−Θ (κx − ηt)))2

+
2κΘ2(1 +

√
−Θtanh (

√
−Θ (κx − ηt)))2

(−Θ +
√
−Θtanh (

√
−Θ (κx − ηt)))2

. (37)

The solitary wave solutions obtained as

ρ1,5(x, t) = −
4κΘ

3
−
2κΘ(5 − 4 cosh (2

√
−Θ (κx − ηt)))2

(3 + 4 sinh (2
√
−Θ (κx − ηt)))2

−
2κΘ(3 + 4 sinh (2

√
−Θ (κx − ηt)))2

(5 − 4 cosh (2
√
−Θ (κx − ηt)))2

, (38)

ρ1,6(x, t) = −
4κΘ

3
+
2κ(
√
−Θ (c2 + d2) − c

√
−Θcosh (2

√
−Θ (κx − ηt)))

2

(c sinh (2
√
−Θ (κx − ηt)) + d)2

+
2κΘ2(c sinh (2

√
−Θ (κx − ηt)) + d)2

(
√
−Θ (c2 + d2) − c

√
−Θcosh (2

√
−Θ (κx − ηt)))

2
, (39)

ρ1,7(x, t) = −
4κΘ

3
−
2κΘ(−c + cosh (2

√
−Θ (κx − ηt)) − sinh (2

√
−Θ (κx − ηt)))2

(c + cosh (2
√
−Θ (κx − ηt)) − sinh (2

√
−Θ (κx − ηt)))2

−
2κΘ(c + cosh (2

√
−Θ (κx − ηt)) − sinh (2

√
−Θ (κx − ηt)))2

(−c + cosh (2
√
−Θ (κx − ηt)) − sinh (2

√
−Θ (κx − ηt)))2

. (40)

Case 2: If Θ > 0, then we reached the following singular periodic wave solutions:

ρ1,8(x, t) = −
4κΘ

3
+ 2κΘtan (

√
Θ (κx − ηt))

2
+ 2κΘ

tan (
√
Θ (κx − ηt))2

, (41)

ρ1,9(x, t) = −
4κΘ

3
+ 2κΘcot (

√
Θ (κx − ηt))

2
+ 2κΘ

cot (
√
Θ (κx − ηt))2

. (42)

The mixed type trigonometric soliton solutions attained as

ρ1,10(x, t) = −
4κΘ

3
+ 2κΘ(tan (2

√
Θ (κx − ηt)) + sec (2

√
Θ (κx − ηt)))

2

+ 2κΘ

(tan (2
√
Θ (κx − ηt)) + sec (2

√
Θ (κx − ηt)))2

. (43)

225



Fatma Nur Kaya Sağlam / FCMS

The explicit periodic type solution reached as

ρ1,11(x, t) = −
4κΘ

3
+
2κΘ(1 − tan (

√
Θ (κx − ηt)))2

(1 + tan (
√
Θ (κx − ηt)))2

+
2κΘ(1 + tan (

√
Θ (κx − ηt)))2

(1 − tan (
√
Θ (κx − ηt)))2

, (44)

ρ1,12(x, t) = −
4κΘ

3
+
2κΘ(4 − 5 cos (2

√
Θ (κx − ηt)))2

(3 + 5 sin (2
√
Θ (κx − ηt)))2

+
2κΘ(3 + 5 sin (2

√
Θ (κx − ηt)))2

(4 − 5 cos (2
√
Θ (κx − ηt)))2

, (45)

ρ1,13(x, t) = −
4κΘ

3
+
2κ(
√
Θ (c2 − d2) − c

√
Θcos (2

√
Θ (κx − ηt)))

2

(c sin (2
√
Θ (κx − ηt)) + d)2

+
2κΘ2(c sin (2

√
Θ (κx − ηt)) + d)2

(
√
Θ (c2 − d2) − c

√
Θcos (2

√
Θ (κx − ηt)))

2
, (46)

ρ1,14(x, t) = −
4κΘ

3
− 2κΘ

⎛
⎝
1 − 2c

c + cos (2
√
Θ (κx − ηt)) − i sin (2

√
Θ (κx − ηt))

⎞
⎠

2

− 2κΘ

(1 − 2c

c+cos(2√Θ(κx−ηt))−i sin(2√Θ(κx−ηt)))
2
. (47)

Case 3: If Θ = 0, then we get the rational solution as below:

ρ1,15(x, t) =
2κ

(κx − ηt)2
. (48)

For Set 2, we reach the next solutions:

Case 1: If Θ < 0, then the kink type solution obtained as

ρ2,1(x, t) = −
2κΘ

3
(3 tanh (

√
−Θ (κx − ηt))

2
− 1) . (49)

The solitary wave solution obtained as

ρ2,2(x, t) = −
2κΘ

3
(3 coth (

√
−Θ (κx − ηt))

2
− 1) . (50)
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The mixed complex bright-dark soliton solution attained as

ρ2,3(x, t) =
2κΘ

3
− 2κΘ(tanh (2

√
−Θ (κx − ηt)) + i sech (2

√
−Θ (κx − ηt)))

2
. (51)

The kink type solution reached as

ρ2,4(x, t) =
2κΘ

3
+
2κ(−Θ +

√
−Θtanh (

√
−Θ (κx − ηt)))2

(1 +
√
−Θtanh (

√
−Θ (κx − ηt)))2

. (52)

The mixed type hyperbolic solutions obtained as

ρ2,5(x, t) =
2κΘ

3
−
2κΘ(5 − 4 cosh (2

√
−Θ (κx − ηt)))2

(3 + 4 sinh (2
√
−Θ (κx − ηt)))2

, (53)

ρ2,6(x, t) =
2κΘ

3
+
2κ(
√
−Θ (c2 + d2) − c

√
−Θcosh (2

√
−Θ (κx − ηt)))

2

(c sinh (2
√
−Θ (κx − ηt)) + d)2

, (54)

ρ2,7(x, t) =
2κΘ

3
−
2κΘ(−c + cosh (2

√
−Θ (κx − ηt)) − sinh (2

√
−Θ (κx − ηt)))2

(c + cosh (2
√
−Θ (κx − ηt)) − sinh (2

√
−Θ (κx − ηt)))2

. (55)

Case 2: If Θ > 0, then we get as follows:

The singular periodic wave solutions obtained as

ρ2,8(x, t) =
2κΘ

3
(3 tan (

√
Θ (κx − ηt))

2
+ 1) , (56)

ρ2,9(x, t) =
2κΘ

3
(3 cot (

√
Θ (κx − ηt))

2
+ 1) . (57)

The combo trigonometric soliton solution attained as

ρ2,10(x, t) =
2κΘ

3
+ 2κΘ(tan (2

√
Θ (κx − ηt)) + sec (2

√
Θ (κx − ηt)))

2
. (58)

The explicit periodic type solution reached as

ρ2,11(x, t) =
2κΘ

3
+
2κΘ(−1 + tan (

√
Θ (κx − ηt)))2

(1 + tan (
√
Θ (κx − ηt)))2

. (59)

The combo trigonometric soliton solution obtained as

ρ2,12(x, t) =
2κΘ

3
+
2κΘ(4 − 5 cos (2

√
Θ (κx − ηt)))2

(3 + 5 sin (2
√
Θ (κx − ηt)))2

, (60)
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ρ2,13(x, t) =
2κΘ

3
+
2κ(
√
Θ (c2 − d2) − c

√
Θcos (2

√
Θ (κx − ηt)))

2

(c sin (2
√
Θ (κx − ηt)) + d)2

. (61)

The complex trigonometric wave solutions attained as

ρ2,14(x, t) =
2κΘ

3
− 2κΘ

⎛
⎝
1 − 2c

c + cos (2
√
Θ (κx − ηt)) − i sin (2

√
Θ (κx − ηt))

⎞
⎠

2

. (62)

Case 3: If Θ = 0, then we have the following rational solution:

ρ2,15(x, t) =
2κ

(κx − ηt)2
. (63)

3.2. Utilizing the ( G′
G2 )Expansion Function Method

Using the homogenous balance principle, (22) is as follows:

H (ξ) =m0 +m1 (
G′

G2
) +m2 (

G′

G2
)
2

+ n1 (
G′

G2
)
−1
+ n2 (

G′

G2
)
−2
. (64)

When (64) is inserted into (30) with all coefficients set to zero, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2κ3n2φ
2 − 2κ3m2τ

2 + 3κ2m2
0 + 6κ2m1n1 + 6κ2m2n2 + ηm0 = 0,

− 8κ3φτm2 + 6κ2m0m2 + 3κ2m2
1 + ηm2 = 0,

− 2κ3φτm1 + 6κ2m0m1 + 6κ2m2n1 + ηm1 = 0,

− 2κ3τφn1 + 6κ2m0n1 + 6κ2m1n2 + ηn1 = 0,

− 8κ3φτn2 + 6κ2m0n2 + 3κ2n2
1 + ηn2 = 0,

− 2κ3φ2m1 + 6κ2m1m2 = 0,

− 2κ3τ2n1 + 6κ2n1n2 = 0,

− 6κ3φ2m2 + 3κ2m2
2 = 0,

− 6κ3τ2n2 + 3κ2n2
2 = 0.

By solving above the algebraic system, we get the following solution sets:

Set 1:

η = 4κ3φτ, m0 =
2κφτ

3
, m1 = 0, m2 = 2κφ2, n1 = 0, n2 = 0.

Set 2:

η = 16κ3φτ, m0 = −
4κφτ

3
, m1 = 0, m2 = 2κφ2, n1 = 0, n2 = 2κτ2.
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By using Set 1, we have the following soliton solutions:

If τφ > 0, then the trigonometric solution is given by the following form:

ρ1 (x, t) =
2κτφ

3
+
2κτφ(A1 cos (

√
τφξ) +A2 sin (

√
τφξ))2

(A2 cos (
√
τφξ) −A1 sin (

√
τφξ))2

. (65)

If τφ < 0, then the hyperbolic solution is found as follow:

ρ2 (x, t) =
2κτφ

3
−
2κτφ(A1 sinh (2

√−τφξ) +A1 cosh (−
√
τφξ) +A2)

2

(A1 sinh (2
√−τφξ) +A1 cosh (2

√−τφξ) −A2)
2

. (66)

If τ = 0, φ ≠ 0, then the rational solution is given by the following form:

ρ3 (x, t) =
2κA2

1

(ξA1 +A2)2
. (67)

For Set 2, we reach the following solutions:

If τφ > 0, then the trigonometric solution is given by the following form:

ρ1,0 (x, t) = −
4κτφ

3
+
2κτφ(A1 cos (

√
τφξ) +A2 sin (

√
τφξ))2

(A2 cos (
√
τφξ) −A1 sin (

√
τφξ))2

+
2κτφ(A2 cos (

√
τφξ) −A1 sin (

√
τφξ))2

(A1 cos (
√
τφξ) +A2 sin (

√
τφξ))2

. (68)

If τφ < 0, then the hyperbolic solution is found as below:

ρ2,0 (x, t) = −
2κτφ

3
−
2κτφ(A1 sinh (2

√−τφξ) +A1 cosh (
√−τφξ) +A2)

2

(A1 sinh (2
√−τφξ) +A1 cosh (2

√−τφξ) −A2)
2

−
2κτφ(A1 sinh (2

√−τφξ) +A1 cosh (
√−τφξ) −A2)

2

(A1 sinh (2
√−τφξ) +A1 cosh (2

√−τφξ) +A2)
2

. (69)

If τ = 0, φ ≠ 0, then the rational solution is given by the following form:

ρ3,0 (x, t) =
2κA2

1

(ξA1 +A2)2
. (70)

4. Graphical Explanation

This section demonstrates the structural properties of the obtained soliton solutions using various

graphical representations. Specifically, 3D, contour, and 2D graphs corresponding to analytical

solutions derived in previous sections are presented. These visualizations help demonstrate the
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localization, amplitude, and wave propagation properties of the solutions more intuitively and

comprehensively.

Figure 1. 3D, 2D, and contour plots of the bright soliton solution for ρ1,1(x, t) are pre-

sented when Θ = −0.5, κ = 0.5.

Figure 2. The W-shaped soliton solution of ∣ρ1,3(x, t)∣ is illustrated using 3D, 2D, and

contour plots for Θ = −0.5, κ = 0.5.

Figure 3. The singular solitary wave structure of ρ1,8(x, t) is depicted through 3D, 2D,

and contour plots for Θ = 1, κ = 1.

Figure 4. The dark soliton solution of ρ2,1(x, t) is illustrated using 3D, 2D, and contour

plots for Θ = −0.5, κ = 1.

The solutions in this study have characteristic graphical properties of nonlinear wave sys-

tems. These solutions are bright, dark, W-shaped soliton and singular solitary wave solutions.

A bright soliton is a smooth, bell-shaped peak that does not change as it moves. In contrast, a

W-shaped soliton has two peaks, meaning the wave amplitude differs between the peak and trough,

forming a profile that resembles the letter “W”. A singular solitary wave solution differs in that

it has infinite or undefined amplitude at certain points, resulting in sharp discontinuities or sin-

gularities in the wave profile. Conversely, a dark soliton appears as a localized notch (or trough)

on a smooth background wave with a phase shift and stable motion. Dark and bright solitons

have smooth, localized forms at the graphical level, while W-shaped soliton and singular solitary

wave introduce more complex dynamics into the wave profile. This impacts applications in fluid

dynamics, optics, and Bose-Einstein condensates.

(a) 3D (b) Contour (c) 2D

Figure 1: Graphs of ρ1,1(x, t)
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(a) 3D (b) Contour (c) 2D

Figure 2: Graphical representations of ∣ρ1,3(x, t)∣

(a) 3D (b) Contour (c) 2D

Figure 3: Graphical representations of ρ1,8(x, t)

(a) 3D (b) Contour (c) 2D

Figure 4: Graphical representations of ρ2,1(x, t) .

5. Conclusion

In this study, METEM and the ( G′
G2 ) -expansion function method were used to derive new analytical

solutions of nonlinear K-XE. The results include a wide range of exact solutions, such as W-

shaped solitons, singular solitary waves, bright and dark solitons, as well as rational, hyperbolic,
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and trigonometric forms. Several of these solutions were visualized using 3D, contour, 2D plots

generated via Maple software. These graphical representations effectively capture the physical

behavior of the solutions and validate their consistency. According to the obtained results, these

two approaches provide highly accurate analytical solutions for K-XE. Another advantage of these

methods is their proven ability to efficiently generate solutions. These solutions are crucial for

understanding the wave dynamics of the model. All solutions have been verified using software

programs. In the future, the study will be expanded to include the fractional and variable-

coefficient forms of the K-XE. These efforts are expected to further enhance the model’s physical

interpretability and applicability in nonlinear science.
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[16] Isah M.A., Külahçı M.A., Special curves according to bishop frame in minkowski 3-space, Applied

Mathematics and Nonlinear Sciences, 5(1), 237-248, 2020.

[17] Iqbal M., Lu D., Seadawy A.R., Alomari F.A., Umurzakhova Z., Myrzakulov R., Constructing the

soliton wave structure to the nonlinear fractional Kairat-X dynamical equation under computational

approach, Modern Physics Letters B, 39(02), 2450396, 2025.

[18] Murad M.A.S., Hamasalh F.K., Malik S., Arnous A.H., Iqbal M., Analysis of soliton solutions to the

nonlinear conformable Schrödinger equation in weakly non-local media using two analytic algorithms,

Nonlinear Dynamics, 113(10), 11881-11892, 2025.

[19] Parkes E.J., Duffy B.R., An automated tanh-function method for finding solitary wave solutions to

non-linear evolution equations, Computer Physics Communications, 98(3), 288-300, 1996.
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