Araştırma Makalesi
BibTex RIS Kaynak Göster

Görev Döngüsünün (Duty Cycle) Plazma Nitrürleme Üzerindeki Etkisi

Yıl 2025, , 291 - 300, 19.06.2025
https://doi.org/10.55546/jmm.1661268

Öz

Makine parçalarının mikro yapısını iyileştirmek, aşınmaya karşı dayanıklılığını artırmak, korozyona karşı direnç kazandırmak ve yorulma ömrünü uzatmak için farklı yüzey sertleştirme yöntemleri uygulanmaktadır. Plazma nitrürleme işlemi, elde edilen sertleşmiş tabakaların hassas bir şekilde kontrol edilebilmesi ve diğer sertleştirme tekniklerine kıyasla sunduğu çeşitli avantajlar sayesinde endüstride geniş çapta kullanılmaktadır. Bu araştırmada AISI 5115 çeliğine %50 H2+%50 N2 gaz karışımı ortamında 500 ºC sıcaklıkta 5 saat süreyle DC plazma nitrürleme, %75 ve %50 görev döngüsü ile darbeli (puls) plazma nitrürleme işlemi uygulanmıştır. Plazma nitrürlenmiş numunelerin faz özellikleri XRD ve optik mikroskop ile incelenmiştir. Mikrosertlik ölçümleri ile yüzey sertlikleri belirlenmiştir. Metalografik incelemeler sonucunda beyaz tabakanın oluştuğu, görev döngüsünün azalmasıyla tabaka kalınlığının azaldığı görülmüştür. X-ışınları incelemeleri sonucunda DC plazma nitrürleme ile Fe3N, Fe4N fazlarının oluştuğu %50 görev döngüsü ile yapılan çalışmada ise bu fazlara ek olarak yüzeyde α-Fe ve Fe3O4 fazları görülmüştür. Mikrosertlik incelemeleri sonucunda yüzey sertliğinde işleme bağlı olarak yaklaşık 3-5 kat artış olduğu tespit edilmiştir.

93B1

Destekleyen Kurum

Afyon Kocatepe Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

13.FEN.BİL.45

Teşekkür

Bu çalışma Afyon Kocatepe Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 13.FEN. BİL.45 nolu proje kapsamında desteklenmiştir.

Kaynakça

  • Alves C., Rodrigues J., Martinelli A., The Effect of Pulse Width on the Microstructure of DC-Plasma-Nitrided Layers. Surface and Coatings Technology 122, 112-117, 1999.
  • Anders A., Fundamentals of Pulsed Plasmas for Materials Processing. Surface and Coatings Technology 183, 301–311, 2004.
  • Arul Mozhi Varman J. P., Huchel U., Effect of Pulse Repetition Time on Surface Properties of Pulsed Plasma Nitrided AISI 4340 Steel. Indian Journal of Science and Technology 10 (38), 1-8, 2017.
  • Cai S., Sun J., He Q., Shi T., Wang D., Si J., Yang J., Li F., Xie K., Li M., 16MnCr5 Gear Shaft Fracture Caused by Inclusions and Heat Treatment Process. Engineering Failure Analysis 126, 105458, 1-9, 2021.
  • Cieslik J., Jacquet P., Tlili B., Mulin H., Decrease of Compound Layer Thickness Obtained in Plasma Nitriding of Alloyed Steels by Diffusion Stage. Journal of Materials Science and Engineering A, 1, 974-980, 2011.
  • Chong S O, Kim S J., Corrosion Characteristics of 16Cr-10Ni-2Mo Stainless Steel with Plasma Ion Nitriding Temperatures by Galvanostatic Experiment. Journal of Surface Science and Engineering 50 (2), 91–97, 2017.
  • Conrads H., Schmidt M., Plasma Generation and Plasma Sources. Plasma Sources Science and Technology 9, 441, 2000.
  • Cooke K. E., Hamsphire J., Southall W., Teer D. G., The Industrial Application of Pulsed DC Bias Power Supplies in Closed Field Unbalanced Magnetron Sputter Ion Plating. Surface Engineering 20(3), 189-195, 2004.
  • Çelik A., Karadeniz S., Investigation of Compound Layer Formed During Ion Nitriding of AISI 4140 Steel. Surface and Coatings Technology 80, 283-286, 1996.
  • Díaz-Guillén J. C., Campa-Castilla A., Pérez-Aguilar S. I., Granda-Gutiérrez E. E., Garza-Gómez A., Candelas-Ramírez J., Méndez-Méndez R., Effect of Duty Cycle on Surface Properties of AISI 4340 Using a Pulsed Plasma Nitriding Process. Superficies y Vacío 22(1) 1-4, 2009.
  • Díaz-Guillén J, Vargas-Gutiérrez G, Granda-Gutiérrez E, González M, Díaz-Guillén J, Alvarez-Contreras L, Effects of Pulse Length on Low Frequency Plasma Nitrided 316L Steels. Surface Engineering 31 (8), 2015.
  • Durisic Z., Kunosic A., Trifunovic J., Influence of Process Parameters in Pulse Plasma Nitriding of Plain Carbon Steel. Surface Engineering, 22(2), 147-152, 2006.
  • Esfahani A., Sohi M. H., Rassizadehghani J, Mahboubi F., Effect of Treating Atmosphere in Plasma Post-Oxidation of Nitrocarburized AISI 5115 Steel. Vacuum 82(3), 346-351, 2007.
  • Espinoza R. C., Vera M., Wettlaufer M., Kerl M., Barth S., Garibaldi P.M., Díaz Guillen J.C., García H. M. H., Arroyo R. M., Ortega J. A., Study on the Tribological Properties of DIN 16MnCr5 Steel after Duplex Gas-Nitriding and Pack Boriding. Materials 17(13), 3057, 2024.
  • Fenili C. P., Souzab F.S., Marina G., Probst S. M. H., Binder C., Klein A. N., Corrosion Resistance of Low-Carbon Steel Modified by Plasma Nitriding and Diamond-Like Carbon. Diamond & Related Materials 80, 153-161, 2017.
  • Huchel U., Crummenauer J., Stramke S., Dressler S., Pulsed Plasma Nitriding and Combined Processes, Proceedings of the 5th World Seminar on Heat Treatment and Surface Engineering, Iran, 329–335, 1995.
  • Jeong G. H., Hwang M. S., Jeon B. Y., Kim M. H., Lee C., Effects Of The Duty Factor on The Surface Characteristics of The Plasma Nitrided And Diamond – Like Carbon Coated High Speed Steel. Surface and Coatings Technology 124, 222–227, 2000.
  • Leskovsěk V., Pulse Plasma Ionitriding. Vakuumist 15(2), 4-10, 1995.
  • Luo Q., Oluwafemi O., Kitchen M., Yang S., Tribological Properties and Wear Mechanisms of DC Pulse Plasma Nitrided Austenitic Stainless Steel in Dry Reciprocating Sliding Tests. Wear 376-377, 1640-1651, 2017.
  • Menthe E., Bulak A., Olfe J., Zimmermann A., Rie K. T., Improvement of the Mechanical Properties of Austenitic Stainless Steel after Plasma Nitriding. Surface and Coatings Technology 133-134, 259-263, 2000.
  • Naeem M., Waqas M., Jan I., Zaka-ul-Islam M., Díaz-Guillén J. C., Rehman N. U., Shafiq M., Zakaullah M., Influence of Pulsed Power Supply Parameters on Active Screen Plasma Nitriding. Surface and Coatings Technology 300, 67-77, 2016.
  • Naeem M., Qadeer M., Mujahid Z. İ., Rehman N.U., Díaz-Guill´en J. C., Sousa R. R. M., Shafiq M., Time-Resolved Plasma Diagnostics of Cathodic Cage Plasma Nitriding System with Variable Pulsed Duty Cycle and Surface Modification of Plain Carbon Steel. Surface & Coatings Technology 464, 129542, 2023.
  • Ohtsu N., Miura K., Hirano M., Kodama K., Investigation of Admixed Gas Effect on Plasma Nitriding of AISI 316L Austenitic Stainless Steel. Vacuum 193,110545, 2021.
  • Podgornik B., Vizintin J., Wear Resistance of Plasma and Pulse Plasma Nitrided Gears. Gear Technology 20, 33-37, 2003.
  • Podgornik B., Vižintin J., Wänstrand O., Larsson M., Hogmark S., Ronkainen H., Holmberg K. Tribological Properties of Plasma Nitrided and Hard Coated AISI 4140 Steel, Wear 249, 254-259, 2001.
  • Sharma M., Saikia B., Phukan A., Ganguli B., Plasma Nitriding of Austenitic Stainless Steel in N2 and N2–H2 Dc Pulsed Discharge. Surface and Coatings Technology 201, 2407-2413, 2006.
  • Shen H., Wang L., Influence of Temperature and Duration on The Nitriding Behavior of 40Cr Low Alloy Steel in Mixture of NH3 and N2. Surface and Coatings Technology, 378: 124953, 2019.
  • Sirin S. Y., Sirin K., Kaluc E., Effect of the Ion Nitriding Surface Hardening Process on Fatigue Behavior of AISI 4340 Steel. Materials Characterization 59, 351-358, 2008.
  • Taherkhani K., Mahboubi F., Investigation Nitride Layers and Properties Surfaces on Pulsed Plasma Nitrided Hot Working Steel AISI H13. Iranian Journal of Materials Science & Engineering 10(2), 29-36, 2013.
  • Taktak S., Gunes I., Ulker S., Effect of Pulse Plasma Nitriding on Tribological Properties of AISI 52100 and 440C Steels. International Journal of Surface Science and Engineering, 8(1), 39, 2014.
  • Yasir H R M., Naeem M., Abrar M., Mahmood S., Enhancement of Hardness and Tribological Properties of AISI 321 by Cathodic Cage Plasma Nitriding at Various Pulsed Duty Cycle. Journal of Alloys and Compounds 1002, 175280, 2024.

The Influence of Duty Cycle on Plasma Nitriding

Yıl 2025, , 291 - 300, 19.06.2025
https://doi.org/10.55546/jmm.1661268

Öz

Different surface hardening methods are applied to improve the microstructure of machine parts, increase wear resistance, provide resistance to corrosion and extend fatigue life. Plasma nitriding process is widely used in the industry due to the precise control of the hardened layers obtained and the various advantages it offers compared to other hardening techniques. In this research, DC plasma nitriding and pulsed plasma nitriding with 75% and 50% duty cycles were applied to AISI 5115 steel in a 50% H2+50% N2 gas mixture environment at 500 ºC for 5 hours. The phase properties of plasma nitrided samples were examined by XRD and optical microscope. Surface hardness was determined by microhardness measurements. As a result of metallographic examinations, it was observed that a white layer was formed and the layer thickness decreased with the decrease in duty cycle. As a result of X-ray examinations, Fe3N, Fe4N phases were formed with DC plasma nitriding and in the study carried out with 50% duty cycle, α-Fe and Fe3O4 phases were observed on the surface in addition to these phases. As a result of microhardness examinations, it was determined that there was an increase of approximately 3-5 times in surface hardness depending on the process.

Proje Numarası

13.FEN.BİL.45

Kaynakça

  • Alves C., Rodrigues J., Martinelli A., The Effect of Pulse Width on the Microstructure of DC-Plasma-Nitrided Layers. Surface and Coatings Technology 122, 112-117, 1999.
  • Anders A., Fundamentals of Pulsed Plasmas for Materials Processing. Surface and Coatings Technology 183, 301–311, 2004.
  • Arul Mozhi Varman J. P., Huchel U., Effect of Pulse Repetition Time on Surface Properties of Pulsed Plasma Nitrided AISI 4340 Steel. Indian Journal of Science and Technology 10 (38), 1-8, 2017.
  • Cai S., Sun J., He Q., Shi T., Wang D., Si J., Yang J., Li F., Xie K., Li M., 16MnCr5 Gear Shaft Fracture Caused by Inclusions and Heat Treatment Process. Engineering Failure Analysis 126, 105458, 1-9, 2021.
  • Cieslik J., Jacquet P., Tlili B., Mulin H., Decrease of Compound Layer Thickness Obtained in Plasma Nitriding of Alloyed Steels by Diffusion Stage. Journal of Materials Science and Engineering A, 1, 974-980, 2011.
  • Chong S O, Kim S J., Corrosion Characteristics of 16Cr-10Ni-2Mo Stainless Steel with Plasma Ion Nitriding Temperatures by Galvanostatic Experiment. Journal of Surface Science and Engineering 50 (2), 91–97, 2017.
  • Conrads H., Schmidt M., Plasma Generation and Plasma Sources. Plasma Sources Science and Technology 9, 441, 2000.
  • Cooke K. E., Hamsphire J., Southall W., Teer D. G., The Industrial Application of Pulsed DC Bias Power Supplies in Closed Field Unbalanced Magnetron Sputter Ion Plating. Surface Engineering 20(3), 189-195, 2004.
  • Çelik A., Karadeniz S., Investigation of Compound Layer Formed During Ion Nitriding of AISI 4140 Steel. Surface and Coatings Technology 80, 283-286, 1996.
  • Díaz-Guillén J. C., Campa-Castilla A., Pérez-Aguilar S. I., Granda-Gutiérrez E. E., Garza-Gómez A., Candelas-Ramírez J., Méndez-Méndez R., Effect of Duty Cycle on Surface Properties of AISI 4340 Using a Pulsed Plasma Nitriding Process. Superficies y Vacío 22(1) 1-4, 2009.
  • Díaz-Guillén J, Vargas-Gutiérrez G, Granda-Gutiérrez E, González M, Díaz-Guillén J, Alvarez-Contreras L, Effects of Pulse Length on Low Frequency Plasma Nitrided 316L Steels. Surface Engineering 31 (8), 2015.
  • Durisic Z., Kunosic A., Trifunovic J., Influence of Process Parameters in Pulse Plasma Nitriding of Plain Carbon Steel. Surface Engineering, 22(2), 147-152, 2006.
  • Esfahani A., Sohi M. H., Rassizadehghani J, Mahboubi F., Effect of Treating Atmosphere in Plasma Post-Oxidation of Nitrocarburized AISI 5115 Steel. Vacuum 82(3), 346-351, 2007.
  • Espinoza R. C., Vera M., Wettlaufer M., Kerl M., Barth S., Garibaldi P.M., Díaz Guillen J.C., García H. M. H., Arroyo R. M., Ortega J. A., Study on the Tribological Properties of DIN 16MnCr5 Steel after Duplex Gas-Nitriding and Pack Boriding. Materials 17(13), 3057, 2024.
  • Fenili C. P., Souzab F.S., Marina G., Probst S. M. H., Binder C., Klein A. N., Corrosion Resistance of Low-Carbon Steel Modified by Plasma Nitriding and Diamond-Like Carbon. Diamond & Related Materials 80, 153-161, 2017.
  • Huchel U., Crummenauer J., Stramke S., Dressler S., Pulsed Plasma Nitriding and Combined Processes, Proceedings of the 5th World Seminar on Heat Treatment and Surface Engineering, Iran, 329–335, 1995.
  • Jeong G. H., Hwang M. S., Jeon B. Y., Kim M. H., Lee C., Effects Of The Duty Factor on The Surface Characteristics of The Plasma Nitrided And Diamond – Like Carbon Coated High Speed Steel. Surface and Coatings Technology 124, 222–227, 2000.
  • Leskovsěk V., Pulse Plasma Ionitriding. Vakuumist 15(2), 4-10, 1995.
  • Luo Q., Oluwafemi O., Kitchen M., Yang S., Tribological Properties and Wear Mechanisms of DC Pulse Plasma Nitrided Austenitic Stainless Steel in Dry Reciprocating Sliding Tests. Wear 376-377, 1640-1651, 2017.
  • Menthe E., Bulak A., Olfe J., Zimmermann A., Rie K. T., Improvement of the Mechanical Properties of Austenitic Stainless Steel after Plasma Nitriding. Surface and Coatings Technology 133-134, 259-263, 2000.
  • Naeem M., Waqas M., Jan I., Zaka-ul-Islam M., Díaz-Guillén J. C., Rehman N. U., Shafiq M., Zakaullah M., Influence of Pulsed Power Supply Parameters on Active Screen Plasma Nitriding. Surface and Coatings Technology 300, 67-77, 2016.
  • Naeem M., Qadeer M., Mujahid Z. İ., Rehman N.U., Díaz-Guill´en J. C., Sousa R. R. M., Shafiq M., Time-Resolved Plasma Diagnostics of Cathodic Cage Plasma Nitriding System with Variable Pulsed Duty Cycle and Surface Modification of Plain Carbon Steel. Surface & Coatings Technology 464, 129542, 2023.
  • Ohtsu N., Miura K., Hirano M., Kodama K., Investigation of Admixed Gas Effect on Plasma Nitriding of AISI 316L Austenitic Stainless Steel. Vacuum 193,110545, 2021.
  • Podgornik B., Vizintin J., Wear Resistance of Plasma and Pulse Plasma Nitrided Gears. Gear Technology 20, 33-37, 2003.
  • Podgornik B., Vižintin J., Wänstrand O., Larsson M., Hogmark S., Ronkainen H., Holmberg K. Tribological Properties of Plasma Nitrided and Hard Coated AISI 4140 Steel, Wear 249, 254-259, 2001.
  • Sharma M., Saikia B., Phukan A., Ganguli B., Plasma Nitriding of Austenitic Stainless Steel in N2 and N2–H2 Dc Pulsed Discharge. Surface and Coatings Technology 201, 2407-2413, 2006.
  • Shen H., Wang L., Influence of Temperature and Duration on The Nitriding Behavior of 40Cr Low Alloy Steel in Mixture of NH3 and N2. Surface and Coatings Technology, 378: 124953, 2019.
  • Sirin S. Y., Sirin K., Kaluc E., Effect of the Ion Nitriding Surface Hardening Process on Fatigue Behavior of AISI 4340 Steel. Materials Characterization 59, 351-358, 2008.
  • Taherkhani K., Mahboubi F., Investigation Nitride Layers and Properties Surfaces on Pulsed Plasma Nitrided Hot Working Steel AISI H13. Iranian Journal of Materials Science & Engineering 10(2), 29-36, 2013.
  • Taktak S., Gunes I., Ulker S., Effect of Pulse Plasma Nitriding on Tribological Properties of AISI 52100 and 440C Steels. International Journal of Surface Science and Engineering, 8(1), 39, 2014.
  • Yasir H R M., Naeem M., Abrar M., Mahmood S., Enhancement of Hardness and Tribological Properties of AISI 321 by Cathodic Cage Plasma Nitriding at Various Pulsed Duty Cycle. Journal of Alloys and Compounds 1002, 175280, 2024.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Tasarım ve Davranışları, Makine Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Şükrü Ülker 0000-0002-2561-3044

Proje Numarası 13.FEN.BİL.45
Erken Görünüm Tarihi 15 Haziran 2025
Yayımlanma Tarihi 19 Haziran 2025
Gönderilme Tarihi 20 Mart 2025
Kabul Tarihi 23 Mayıs 2025
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Ülker, Ş. (2025). Görev Döngüsünün (Duty Cycle) Plazma Nitrürleme Üzerindeki Etkisi. Journal of Materials and Mechatronics: A, 6(1), 291-300. https://doi.org/10.55546/jmm.1661268
AMA Ülker Ş. Görev Döngüsünün (Duty Cycle) Plazma Nitrürleme Üzerindeki Etkisi. J. Mater. Mechat. A. Haziran 2025;6(1):291-300. doi:10.55546/jmm.1661268
Chicago Ülker, Şükrü. “Görev Döngüsünün (Duty Cycle) Plazma Nitrürleme Üzerindeki Etkisi”. Journal of Materials and Mechatronics: A 6, sy. 1 (Haziran 2025): 291-300. https://doi.org/10.55546/jmm.1661268.
EndNote Ülker Ş (01 Haziran 2025) Görev Döngüsünün (Duty Cycle) Plazma Nitrürleme Üzerindeki Etkisi. Journal of Materials and Mechatronics: A 6 1 291–300.
IEEE Ş. Ülker, “Görev Döngüsünün (Duty Cycle) Plazma Nitrürleme Üzerindeki Etkisi”, J. Mater. Mechat. A, c. 6, sy. 1, ss. 291–300, 2025, doi: 10.55546/jmm.1661268.
ISNAD Ülker, Şükrü. “Görev Döngüsünün (Duty Cycle) Plazma Nitrürleme Üzerindeki Etkisi”. Journal of Materials and Mechatronics: A 6/1 (Haziran 2025), 291-300. https://doi.org/10.55546/jmm.1661268.
JAMA Ülker Ş. Görev Döngüsünün (Duty Cycle) Plazma Nitrürleme Üzerindeki Etkisi. J. Mater. Mechat. A. 2025;6:291–300.
MLA Ülker, Şükrü. “Görev Döngüsünün (Duty Cycle) Plazma Nitrürleme Üzerindeki Etkisi”. Journal of Materials and Mechatronics: A, c. 6, sy. 1, 2025, ss. 291-00, doi:10.55546/jmm.1661268.
Vancouver Ülker Ş. Görev Döngüsünün (Duty Cycle) Plazma Nitrürleme Üzerindeki Etkisi. J. Mater. Mechat. A. 2025;6(1):291-300.