Araştırma Makalesi
BibTex RIS Kaynak Göster

Development Of Electronically Controlled Dual-Component Continuous Powder Feeder To Build Functional Graded Materials With Additive Manufacturing Process

Yıl 2025, , 274 - 290, 19.06.2025
https://doi.org/10.55546/jmm.1675925

Öz

Directed Energy Deposition methods allow parts to be produced in functional grades with different compositions across distinct regions. For this, there is a need for a powder feeder that allows multiple components to be fed into the process area simultaneously and in an integrated manner. In this study, a dual-component powder feeder was designed and manufactured. This electronically controlled powder feeder can feed two different powder materials at different flow rates at the same time. The performance of the powder feeder was tested with Ti6Al4V (flow rates of 5, 10, and 15 g/min), Zirconium (13, 20, and 30 g/min), and Inconel 625 (20, 50, and 75 g/min) powder materials. Following the calibration process, the minimum deviations were observed as 2.9% for Ti6Al4V at 15 g/min, 11.5% for Zirconium at 30 g/min, and 6.5% for Inconel 625 at 75 g/min. Conversely, the maximum deviations were recorded as 12.3% for Ti6Al4V at 10 g/min, 28.8% for Zirconium at 20 g/min, and 18.4% for Inconel 625 at 20 g/min. Overall, the lowest deviations occurred at the higher end of the examined flow rate range.

Teşekkür

This study was supported by the Scientific Research Projects Unit (BAP) of Kahramanmaraş Sütçü İmam University under the project number 2019/6-12 YLS.

Kaynakça

  • Altus E., Konstantino E., Optimum laser surface treatment of fatigue damaged Ti–6Al–4V alloy. Materials Science and Engineering: A 302(1), 100–105, 2001.
  • Annamalai K., Ruiz M., Vo N., Anand V., Locally fluidizing feeder for powder transport. Powder Technology 73, 181–190, 1992. https://doi.org/10.1016/0032-5910(92)80079-C
  • Aschenbruck J, Adamczuk R, Seume J. R., Recent Progress in Turbine Blade and Compressor Blisk Regeneration, Procedia CIRP 22, 256-262, 2014. https://doi.org/10.1016/j.procir.2014.07.016.
  • Barati Dalenjan M., Jamshidi E., Ale Ebrahim H., A screw-brush feeding system for uniform fine zinc oxide powder feeding and obtaining a homogeneous gas-particle flow. Advanced Powder Technology 26, 303–308, 2015. https://doi.org/10.1016/j.apt.2014.10.010
  • Besenhard M. O., Fathollahi S., Siegmann E., Slama E., Faulhammer E., Khinast J. G., Micro-feeding and dosing of powders via a small-scale powder pump. International Journal of Pharmaceutics 519(1-2), 314–322, 2017. https://doi.org/10.1016/j.ijpharm.2016.12.029
  • Blackshields C. A., Crean A. M., Continuous powder feeding for pharmaceutical solid dosage form manufacture: a short review. Pharmaceutical Development and Technology 23(6), 554–560, 2017. https://doi.org/10.1080/10837450.2017.1339197
  • Bruni S., Martinesi M., Stio M., Treves C., Bacci T., Borgioli F., Effects of surface treatment of Ti–6Al–4V titanium alloy on biocompatibility in cultured human umbilical vein endothelial cells. Acta Biomater 1(2), 223–234, 2005.
  • Burden R. L., Faires, J. D., Numerical Analysis. 9th Edition, Brookscole, Boston, 259-253, 2011.
  • Courant B., Hantzpergue J. J., Benayoun S., Surface treatment of titanium by laser irradiation to improve resistance to dry-sliding friction. Wear 236, 39–46, 1999.
  • Dai Z. D., Pan S. C., Wang M., Yang S. R., Zhang X. S., Xue Q. J., Improving the fretting wear resistance of titanium alloy by laser beam quenching, Wear 213(1-2), 135–139, 1997.
  • Engisch W. E., Muzzio F. J., Feedrate deviations caused by hopper refill of loss-inweight feeders. Powder Technology 283, 389–400, 2015.
  • Ermurat M., Lazerli Doğrudan Metal Parça İmalatı Sisteminin Geliştirilmesi, Üretilen Parça Özelliklerinin İncelenmesi ve Sistem Optimizasyon, Kocaeli Üniveritesi Fen Bilimleri Enstitüsü, Doktora Tezi (Basılmış), 2009.
  • Fu Y. Q., Batchelor A. W., Laser nitriding of pure titanium with Ni, Cr for improved wear performance, Wear 214, 83–90, 1998.
  • Ganesh B. K. C., Sha W., Ramanaiah N., Krishnaiah A., Effect of shotpeening on sliding wear and tensile behavior of titanium implant alloys. Materials & Design, 56, 480–486, 2014.
  • Gu D. D., Meiners W., Wissenbach K., Poprawe R., Laser additive manufacturing of metallic components: materials, processes and mechanisms. International Materials Reviews, 57(3), 133-164, 2012.
  • Hofmann D. C., Kolodziejska J., Roberts S., Otis R., Dillon R. P., Suh J. O., Liu Z-K., Borgonia, J. P., Compositionally graded metals: A new frontier of additive manufacturing, Journal of Materials Research, 29(17), 1899-1910, 2014.
  • Hou P. C. H., Development of a Micro-Feeder for Cohesive Pharmaceutical Powders, PhD.Thesis, Strathclyde Institute of Pharmacy and Biomedical Sciences University of Strathclyde, Glasgow, UK, 2024.
  • Janssen P. H. M., Kulkarni S. S., Torrecillas C. M., Tegel F., Weinekötter R., Meir B., Dickhoff, B. H. J., Effect of batch-to-batch variation of spray dried lactose on the performance of feeders. Powder Technology. 409, 117776, 2022. https://doi.org/10.1016/J.POWTEC.2022.117776
  • Li J., Cheng X., Liu D., Zhang S. Q., Li Z., He B., Wang H. M. Phase evolution of a heat-treatable aluminium alloy during laser additive manufacturing. Materials Letters 214, 56-59, 2018.
  • Li T., Scicolone J. V., Sanchez E., Muzzio F. J., Identifying a Loss-in-Weight Feeder Design Space Based on Performance and Material Properties. Journal of Pharmaceutical Innovation 15, 482–495, 2020.
  • Lin X., Yue T. M., Yang H. O., Huang W. D., Microstructure and phase evolution in laser rapid forming of a functionally graded Ti-Rene88DT alloy. Acta Materialia 54(7), 1901-1915, 2006.
  • Lin X., Yue T. M., Phase formation and microstructure evolution in laser rapid forming of graded ss316L/Rene88DT alloy. Materials Science and Engineering: A 402, 294-306, 2005.
  • Mahamood R. M., Akinlabi E. T., Shukla M., Pityana S., Scanning velocity influence on microstructure, microhardness and wear resistance performance of laser deposited Ti6Al4V/TiC composite. Materials & Design 50, 656–666, 2013.
  • Mazumder J., Voelkel D. D., Method and apparatus for noncontact surface contour measurement. US patent no. 5446549, 1995.
  • Mazumder J., Morgan D., Skszek T. W., Lowney M., Direct metal deposition apparatus utilizing rapid-response diode laser source. US patent no. 7765022, 2010.
  • Mendez R., Velazquez C., Muzzio F. J., Effect of feed frame design and operating parameters on powder attrition, particle breakage, and powder properties, Powder Technology, 229, 253-260, 2012. ISSN 0032-5910
  • Nazir A, Gokcekaya O, Masum Billah K. M, Ertugrul O, Jiang J, Sun J, Hussain S, Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials, Materials & Design 226, 111661, 2023. ISSN 0264-1275, https://doi.org/10.1016/j.matdes.2023.111661.
  • Özdemir A. C., Lens’te 3 Farklı Tozu Aynı Katmana Yığma Kafası Tasarımı, Gebze Yüksek Teknoloji Enstitüsü, Mühendislik ve Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılı), 2009.
  • Pei Y. T., Ocelik V., De Hosson J. T. M., SiCp/Ti6Al4V functionally graded materials produced by laser melt injection. Acta Materialia 50(8), 2035–2051, 2002.
  • Pohořelý M., Svoboda K., Hartman M., Feeding small quantities of particulate solids. Powder Technology 142, 1–6, 2004. https://doi.org/10.1016/j.powtec.2004.03.005
  • Santos E. C., Shiomi M., Osakada K., Laoui T., Rapid manufacturing of metal components by laser forming. International Journal of Machine Tools and Manufacture 46(12-13), 1459–1468, 2006.
  • Singh C., Chandravanshi M. L., Dynamic analysis and performance assessment of a vibratory feeder for different motor positions on trough. Mechanics Based Design of Structures and Machines 51(11), 6453-6470, 2022. https://doi.org/10.1080/15397734.2022.2047720
  • Suri A., Horio M., A novel cartridge type powder feeder, Powder Technology,189(3), 497-507, 2009.
  • Wang H. M., Liu Y. F., Microstructure and wear resistance of laser clad Ti5Si3/NiTi2 intermetallic composite coating on titanium alloy, Materials Science and Engineering: A 338(1-2), 126–132, 2002.
  • Wang Q., Zhang P. Z., Wei D. B., Chen X. H., Wang R. N., Wang H. Y., Microstructure and sliding wear behavior of pure titanium surface modified by double-glow plasma surface alloying with Nb, Materials & Design, 52, 265–73, 2013.
  • Wang H., Wu L., Zhang T., Chen R., Zhang L., Continuous micro-feeding of fine cohesive powders actuated by pulse inertia force and acoustic radiation force in ultrasonic standing wave field. International Journal of Pharmaceutics. 545, 153–162, 2018. https://doi.org/10.1016/j.ijpharm.2018.05.006
  • Wei C., Li L., Zhang X., Chueh Y. H. 3D Printing of multiple metallic materials via modified selective laser melting. CIRP Annals-Manufacturing Tech, 67, 245-248, 2018.
  • Wei C., Sun Z., Chen Q., Liu Z., Li L., Additive Manufacturing of Horizontal and 3D Functionally Graded 316L/Cu10Sn Components via Multiple Material Selective Laser Melting. Journal of Manufacturing Science and Engineering 141(8) 081014, 2019.
  • Wen C. Y., Simons H. P., Flow characteristics in horizontal fluidized solids transport. AIChE Journal, 5(2), 263–267, 1959. https://doi.org/https://doi.org/10.1002/aic.690050225
  • Weng F., Chen C., Yu H., Research status of laser cladding on titanium and its alloys: A review. Materials and Design, 58, 412–425, 2014.
  • Xu W., Brandt M., Sun S., Elambasseril J., Liu Q., Latham K., Qian M., Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in site martensite decomposition. Acta Materialia 85, 74-84, 2015.
  • Yükselen M. A, HM504 Uygulamalı Sayısal Yöntemler Ders Notları, 2008.
  • Zhang Y. Z., Liu Y. T., Zhao X. H., Tang Y. J., The interface microstructure and tensile properties of direct energy deposited TC11/Ti2AlNb dual alloy. Materials and Design 110, 571-580, 2016.
  • Zhu Y. Y., Liu D., Tian X. J., Tang H. B., Wang H. M., Characterization of microstructure and mechanical properties of laser melting deposited Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy. Materials & Design, 56, 445–453, 2014.

EKLEMELİ İMALAT PROSESİ İLE FONKSİYONEL DERECELİ MALZEME ÜRETİLEBİLMESİ İÇİN ELEKTRONİK KONTROLLÜ İKİ BİLEŞENLİ SÜREKLİ TOZ BESLEYİCİ GELİŞTİRİLMESİ

Yıl 2025, , 274 - 290, 19.06.2025
https://doi.org/10.55546/jmm.1675925

Öz

Yönlendirilmiş Enerji Biriktirimi (DED) yöntemleri, parçaların farklı bölümlerinde farklı kompozisyonlara sahip fonksiyonel dereceli malzemeler üretilmesini sağlar. Bunun için, işlem alanına birden fazla bileşenin beslenmesini sağlayan ve bu besleyicinin bileşenler arasında entegre bir şekilde eşzamanlı çalışmasını mümkün kılan bir toz besleyiciye ihtiyaç vardır. Bu çalışmada, iki bileşenli toz besleyici tasarımı ve üretimi gerçekleştirilmiştir. Elektronik olarak kontrol edilen bu toz besleyici, iki farklı toz malzemesini aynı anda, farklı akış hızlarında besleyebilir. Toz besleyicinin performansı, Ti6Al4V, Inconel 625 ve Zirkonyum toz malzemeleriyle test edilmiştir. Kalibrasyon sonrasında, istenen besleme miktarına ulaşılmak istendiğinde elde edilen maksimum farklar, Ti6Al4V malzemesi için %12,3, Inconel 625 malzemesi için %18,4 ve Zirkonyum malzemesi için %28,8 olarak bulunmuştur.

Kaynakça

  • Altus E., Konstantino E., Optimum laser surface treatment of fatigue damaged Ti–6Al–4V alloy. Materials Science and Engineering: A 302(1), 100–105, 2001.
  • Annamalai K., Ruiz M., Vo N., Anand V., Locally fluidizing feeder for powder transport. Powder Technology 73, 181–190, 1992. https://doi.org/10.1016/0032-5910(92)80079-C
  • Aschenbruck J, Adamczuk R, Seume J. R., Recent Progress in Turbine Blade and Compressor Blisk Regeneration, Procedia CIRP 22, 256-262, 2014. https://doi.org/10.1016/j.procir.2014.07.016.
  • Barati Dalenjan M., Jamshidi E., Ale Ebrahim H., A screw-brush feeding system for uniform fine zinc oxide powder feeding and obtaining a homogeneous gas-particle flow. Advanced Powder Technology 26, 303–308, 2015. https://doi.org/10.1016/j.apt.2014.10.010
  • Besenhard M. O., Fathollahi S., Siegmann E., Slama E., Faulhammer E., Khinast J. G., Micro-feeding and dosing of powders via a small-scale powder pump. International Journal of Pharmaceutics 519(1-2), 314–322, 2017. https://doi.org/10.1016/j.ijpharm.2016.12.029
  • Blackshields C. A., Crean A. M., Continuous powder feeding for pharmaceutical solid dosage form manufacture: a short review. Pharmaceutical Development and Technology 23(6), 554–560, 2017. https://doi.org/10.1080/10837450.2017.1339197
  • Bruni S., Martinesi M., Stio M., Treves C., Bacci T., Borgioli F., Effects of surface treatment of Ti–6Al–4V titanium alloy on biocompatibility in cultured human umbilical vein endothelial cells. Acta Biomater 1(2), 223–234, 2005.
  • Burden R. L., Faires, J. D., Numerical Analysis. 9th Edition, Brookscole, Boston, 259-253, 2011.
  • Courant B., Hantzpergue J. J., Benayoun S., Surface treatment of titanium by laser irradiation to improve resistance to dry-sliding friction. Wear 236, 39–46, 1999.
  • Dai Z. D., Pan S. C., Wang M., Yang S. R., Zhang X. S., Xue Q. J., Improving the fretting wear resistance of titanium alloy by laser beam quenching, Wear 213(1-2), 135–139, 1997.
  • Engisch W. E., Muzzio F. J., Feedrate deviations caused by hopper refill of loss-inweight feeders. Powder Technology 283, 389–400, 2015.
  • Ermurat M., Lazerli Doğrudan Metal Parça İmalatı Sisteminin Geliştirilmesi, Üretilen Parça Özelliklerinin İncelenmesi ve Sistem Optimizasyon, Kocaeli Üniveritesi Fen Bilimleri Enstitüsü, Doktora Tezi (Basılmış), 2009.
  • Fu Y. Q., Batchelor A. W., Laser nitriding of pure titanium with Ni, Cr for improved wear performance, Wear 214, 83–90, 1998.
  • Ganesh B. K. C., Sha W., Ramanaiah N., Krishnaiah A., Effect of shotpeening on sliding wear and tensile behavior of titanium implant alloys. Materials & Design, 56, 480–486, 2014.
  • Gu D. D., Meiners W., Wissenbach K., Poprawe R., Laser additive manufacturing of metallic components: materials, processes and mechanisms. International Materials Reviews, 57(3), 133-164, 2012.
  • Hofmann D. C., Kolodziejska J., Roberts S., Otis R., Dillon R. P., Suh J. O., Liu Z-K., Borgonia, J. P., Compositionally graded metals: A new frontier of additive manufacturing, Journal of Materials Research, 29(17), 1899-1910, 2014.
  • Hou P. C. H., Development of a Micro-Feeder for Cohesive Pharmaceutical Powders, PhD.Thesis, Strathclyde Institute of Pharmacy and Biomedical Sciences University of Strathclyde, Glasgow, UK, 2024.
  • Janssen P. H. M., Kulkarni S. S., Torrecillas C. M., Tegel F., Weinekötter R., Meir B., Dickhoff, B. H. J., Effect of batch-to-batch variation of spray dried lactose on the performance of feeders. Powder Technology. 409, 117776, 2022. https://doi.org/10.1016/J.POWTEC.2022.117776
  • Li J., Cheng X., Liu D., Zhang S. Q., Li Z., He B., Wang H. M. Phase evolution of a heat-treatable aluminium alloy during laser additive manufacturing. Materials Letters 214, 56-59, 2018.
  • Li T., Scicolone J. V., Sanchez E., Muzzio F. J., Identifying a Loss-in-Weight Feeder Design Space Based on Performance and Material Properties. Journal of Pharmaceutical Innovation 15, 482–495, 2020.
  • Lin X., Yue T. M., Yang H. O., Huang W. D., Microstructure and phase evolution in laser rapid forming of a functionally graded Ti-Rene88DT alloy. Acta Materialia 54(7), 1901-1915, 2006.
  • Lin X., Yue T. M., Phase formation and microstructure evolution in laser rapid forming of graded ss316L/Rene88DT alloy. Materials Science and Engineering: A 402, 294-306, 2005.
  • Mahamood R. M., Akinlabi E. T., Shukla M., Pityana S., Scanning velocity influence on microstructure, microhardness and wear resistance performance of laser deposited Ti6Al4V/TiC composite. Materials & Design 50, 656–666, 2013.
  • Mazumder J., Voelkel D. D., Method and apparatus for noncontact surface contour measurement. US patent no. 5446549, 1995.
  • Mazumder J., Morgan D., Skszek T. W., Lowney M., Direct metal deposition apparatus utilizing rapid-response diode laser source. US patent no. 7765022, 2010.
  • Mendez R., Velazquez C., Muzzio F. J., Effect of feed frame design and operating parameters on powder attrition, particle breakage, and powder properties, Powder Technology, 229, 253-260, 2012. ISSN 0032-5910
  • Nazir A, Gokcekaya O, Masum Billah K. M, Ertugrul O, Jiang J, Sun J, Hussain S, Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials, Materials & Design 226, 111661, 2023. ISSN 0264-1275, https://doi.org/10.1016/j.matdes.2023.111661.
  • Özdemir A. C., Lens’te 3 Farklı Tozu Aynı Katmana Yığma Kafası Tasarımı, Gebze Yüksek Teknoloji Enstitüsü, Mühendislik ve Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılı), 2009.
  • Pei Y. T., Ocelik V., De Hosson J. T. M., SiCp/Ti6Al4V functionally graded materials produced by laser melt injection. Acta Materialia 50(8), 2035–2051, 2002.
  • Pohořelý M., Svoboda K., Hartman M., Feeding small quantities of particulate solids. Powder Technology 142, 1–6, 2004. https://doi.org/10.1016/j.powtec.2004.03.005
  • Santos E. C., Shiomi M., Osakada K., Laoui T., Rapid manufacturing of metal components by laser forming. International Journal of Machine Tools and Manufacture 46(12-13), 1459–1468, 2006.
  • Singh C., Chandravanshi M. L., Dynamic analysis and performance assessment of a vibratory feeder for different motor positions on trough. Mechanics Based Design of Structures and Machines 51(11), 6453-6470, 2022. https://doi.org/10.1080/15397734.2022.2047720
  • Suri A., Horio M., A novel cartridge type powder feeder, Powder Technology,189(3), 497-507, 2009.
  • Wang H. M., Liu Y. F., Microstructure and wear resistance of laser clad Ti5Si3/NiTi2 intermetallic composite coating on titanium alloy, Materials Science and Engineering: A 338(1-2), 126–132, 2002.
  • Wang Q., Zhang P. Z., Wei D. B., Chen X. H., Wang R. N., Wang H. Y., Microstructure and sliding wear behavior of pure titanium surface modified by double-glow plasma surface alloying with Nb, Materials & Design, 52, 265–73, 2013.
  • Wang H., Wu L., Zhang T., Chen R., Zhang L., Continuous micro-feeding of fine cohesive powders actuated by pulse inertia force and acoustic radiation force in ultrasonic standing wave field. International Journal of Pharmaceutics. 545, 153–162, 2018. https://doi.org/10.1016/j.ijpharm.2018.05.006
  • Wei C., Li L., Zhang X., Chueh Y. H. 3D Printing of multiple metallic materials via modified selective laser melting. CIRP Annals-Manufacturing Tech, 67, 245-248, 2018.
  • Wei C., Sun Z., Chen Q., Liu Z., Li L., Additive Manufacturing of Horizontal and 3D Functionally Graded 316L/Cu10Sn Components via Multiple Material Selective Laser Melting. Journal of Manufacturing Science and Engineering 141(8) 081014, 2019.
  • Wen C. Y., Simons H. P., Flow characteristics in horizontal fluidized solids transport. AIChE Journal, 5(2), 263–267, 1959. https://doi.org/https://doi.org/10.1002/aic.690050225
  • Weng F., Chen C., Yu H., Research status of laser cladding on titanium and its alloys: A review. Materials and Design, 58, 412–425, 2014.
  • Xu W., Brandt M., Sun S., Elambasseril J., Liu Q., Latham K., Qian M., Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in site martensite decomposition. Acta Materialia 85, 74-84, 2015.
  • Yükselen M. A, HM504 Uygulamalı Sayısal Yöntemler Ders Notları, 2008.
  • Zhang Y. Z., Liu Y. T., Zhao X. H., Tang Y. J., The interface microstructure and tensile properties of direct energy deposited TC11/Ti2AlNb dual alloy. Materials and Design 110, 571-580, 2016.
  • Zhu Y. Y., Liu D., Tian X. J., Tang H. B., Wang H. M., Characterization of microstructure and mechanical properties of laser melting deposited Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy. Materials & Design, 56, 445–453, 2014.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular CAD/CAM Sistemleri, Katmanlı Üretim
Bölüm Araştırma Makaleleri
Yazarlar

Mehmet Ermurat 0000-0002-5661-2108

Serhat Ziba 0000-0002-9709-6285

Erken Görünüm Tarihi 15 Haziran 2025
Yayımlanma Tarihi 19 Haziran 2025
Gönderilme Tarihi 14 Nisan 2025
Kabul Tarihi 23 Mayıs 2025
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Ermurat, M., & Ziba, S. (2025). Development Of Electronically Controlled Dual-Component Continuous Powder Feeder To Build Functional Graded Materials With Additive Manufacturing Process. Journal of Materials and Mechatronics: A, 6(1), 274-290. https://doi.org/10.55546/jmm.1675925
AMA Ermurat M, Ziba S. Development Of Electronically Controlled Dual-Component Continuous Powder Feeder To Build Functional Graded Materials With Additive Manufacturing Process. J. Mater. Mechat. A. Haziran 2025;6(1):274-290. doi:10.55546/jmm.1675925
Chicago Ermurat, Mehmet, ve Serhat Ziba. “Development Of Electronically Controlled Dual-Component Continuous Powder Feeder To Build Functional Graded Materials With Additive Manufacturing Process”. Journal of Materials and Mechatronics: A 6, sy. 1 (Haziran 2025): 274-90. https://doi.org/10.55546/jmm.1675925.
EndNote Ermurat M, Ziba S (01 Haziran 2025) Development Of Electronically Controlled Dual-Component Continuous Powder Feeder To Build Functional Graded Materials With Additive Manufacturing Process. Journal of Materials and Mechatronics: A 6 1 274–290.
IEEE M. Ermurat ve S. Ziba, “Development Of Electronically Controlled Dual-Component Continuous Powder Feeder To Build Functional Graded Materials With Additive Manufacturing Process”, J. Mater. Mechat. A, c. 6, sy. 1, ss. 274–290, 2025, doi: 10.55546/jmm.1675925.
ISNAD Ermurat, Mehmet - Ziba, Serhat. “Development Of Electronically Controlled Dual-Component Continuous Powder Feeder To Build Functional Graded Materials With Additive Manufacturing Process”. Journal of Materials and Mechatronics: A 6/1 (Haziran 2025), 274-290. https://doi.org/10.55546/jmm.1675925.
JAMA Ermurat M, Ziba S. Development Of Electronically Controlled Dual-Component Continuous Powder Feeder To Build Functional Graded Materials With Additive Manufacturing Process. J. Mater. Mechat. A. 2025;6:274–290.
MLA Ermurat, Mehmet ve Serhat Ziba. “Development Of Electronically Controlled Dual-Component Continuous Powder Feeder To Build Functional Graded Materials With Additive Manufacturing Process”. Journal of Materials and Mechatronics: A, c. 6, sy. 1, 2025, ss. 274-90, doi:10.55546/jmm.1675925.
Vancouver Ermurat M, Ziba S. Development Of Electronically Controlled Dual-Component Continuous Powder Feeder To Build Functional Graded Materials With Additive Manufacturing Process. J. Mater. Mechat. A. 2025;6(1):274-90.