Araştırma Makalesi
BibTex RIS Kaynak Göster

Fabrication a novel ethylenediamine sulfonamide polymer resin and graphene-modified carbon paste electrodes for simultaneous determination of anti-HBV drugs entecavir and tenofovir in dosage form by differential pulse voltammetry

Yıl 2024, Cilt: 28 Sayı: 3, 579 - 602, 28.06.2025

Öz

The combination of entecavir (ETV) and tenofovir (TEV), nucleos(t)ide analogs (NUCs), is advised as first-line treatment for people suffering from multidrug-resistant hepatitis B due to their favorable safety profile, low side-effect rate, and high genetic barrier. This study reports the fabrication of a novel cross-linked ethylenediamine sulfonamide polymer resin (EDASP) and graphene (Gr)-modified carbon paste electrodes (CPE) for the simultaneous determination of the anti-HBV drugs ETV and TEV in bulk and dosage form by differential pulse voltammetry (DPV). The electrodes were specified through cyclic voltammetry, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and the analytical parameters were optimized. The findings indicate that both drugs displayed clear oxidation peaks on the Gr-CPE and EDASP-CPE electrodes at pH 4.5 and 4.0, respectively, in the Britton-Robinson buffer. The linear dynamic range of ETV and TEV was determined between 1μM and 250μM on both working electrodes by DPV. The limit of detection (LOD) and limit of quantification (LOQ) for ETV were 0.2μM and 0.6μM, respectively, on Gr-CPE. The LOD and LOQ for TEV were 0.2μM and 0.7μM, respectively. The novel EDASP-CPE exhibited improved sensitivity with LOD and LOQ for ETV of 0.2μM and 0.5μM, respectively. The LOD and LOQ for TEV on EDASP CPE were 0.2μM and 0.7μM, respectively. The proposed method was successfully applied to the simultaneous determination of ETV and TEV in a commercial tablet dosage form, exhibiting good accuracy and precision. The results highlight the potential of the novel cross-linked ethylenediamine sulfonamide polymer resin-modified carbon paste electrode for the simultaneous determination of anti-HBV drugs in dosage form by differential pulse voltammetry.

Kaynakça

  • [1] Asran AM, Mohamed MA, Ahmed N, Banks CE,Allam NK. An innovative electrochemical platform for the sensitive determination of the hepatitis B inhibitor Entecavir with ionic liquid as a mediator. J Mol Liq. 2020; 302: 112498. https://doi.org/10.1016/j.molliq.2020.112498
  • [2] Guvenir M, Arikan A.Hepatitis B Virus: From Diagnosis to Treatment. Pol J Microbiol. 2020; 69(4): 391-399. https://doi.org/10.33073/pjm-2020-044
  • [3] Yeh ML, Huang CF, Huang CI, Holmes JA, Hsieh MH, Tsai YS, Liang PC, Tsai PC, Hsieh MY, Lin ZY, Chen SC, Huang JF, Dai CY, Chuang WL, Chung RT, Yu ML. Hepatitis B-related outcomes following direct-acting antiviral therapy in Taiwanese patients with chronic HBV/HCV co-infection. J Hepatol. 2020; 73(1): 62-71. https://doi.org/10.1016/j.jhep.2020.01.027
  • [4] Pawlotsky JM, Negro F, Aghemo A, Berenguer M, Dalgard O, Dusheiko G, Marra F, Puoti M, Wedemeyer H. European Association for the Study of the Liver. EASL recommendations on treatment of hepatitis C: Final update of the series. J Hepatol. 2020; 73(5): 1170-1218. https://doi.org/10.1016/j.jhep.2020.08.018
  • [5] Huang P, Wang Y, Yue M, Ge Z, Xia X, Jeyarajan AJ, Holmes JA, Yu R, Zhu C, Yang S, Lin W, Chung RT. The risk of hepatitis C virus recurrence in hepatitis C virus-infected patients treated with direct-acting antivirals after achieving a sustained virological response: A comprehensive analysis. Liver Int. 2021; 41(10): 2341-2357. https://doi.org/10.1111/liv.14976
  • [6] Chien RN, Liaw YF. Current trend in antiviral therapy for chronic hepatitis B. Viruses. 2022; 14(2):434. https://doi.org/10.3390/v14020434
  • [7] Shiffman ML. Approach to the patient with chronic hepatitis B and decompensated cirrhosis. Liver Int. 2020; 40(S1):22-26. https://doi.org/10.1111/liv.14359
  • [8] Lim YS, Seto WK, Kurosaki M, Fung S, Kao JH, Hou J, Gordon SC, Flaherty JF, Yee LJ, Zhao Y, Agarwal K, Lampertico P. Review article: Switching patients with chronic hepatitis B to tenofovir alafenamide-a review of current data. Aliment Pharmacol Ther. 2022; 55(8): 921-943. https://doi.org/10.3390/v12090998
  • [9] Ma X, Liu S, Wang M, Wang Y, Du S, Xin Y, Xuan S. Tenofovir alafenamide fumarate, tenofovir disoproxil fumarate and entecavir: Which is the most effective drug for chronic hepatitis B? A systematic review and meta-analysis. J Clin Transl Hepatol. 2021; 9(3): 335-344. https://doi.org/10.14218/JCTH.2020.00164
  • [10] Lee IC, Lan KH, Su CW, Li CP, Chao Y, Lin HC, Hou MC, Huang YH. Efficacy and renal safety of prophylactic tenofovir alafenamide for HBV-ınfected cancer patients undergoing chemotherapy. Int J Mol Sci. 2022;23(19):11335. https://doi.org/10.3390/ijms231911335
  • [11] Wang Y, Wang L, Chen X, Sun C, Zhu Y, Kang Y,Zeng S. Chiral detection of entecavir stereoisomeric impurities through coordination with R-besivance and Zn(II) using mass spectrometry. J Mass Spectrom. 2018; 53(3): 247-256. https://doi.org/10.1002/jms.4060
  • [12] Kim YJ. Chapter 27 - Antiviral drugs. In: Ray SD, editor. Side Effects of Drugs Annual, 43th ed., Elsevier, 2021,pp323-328. https://doi.org/10.1016/bs.seda.2021.09.007
  • [13] Marino A, Cosentino F, Ceccarelli M, Moscatt V, Pampaloni A, Scuderi D, D'Andrea F, Rullo EV, Nunnari G, Benanti F, Celesia BM, Cacopardo B. Entecavir resistance in a patient with treatment-naïve HBV: A case report. Mol Clin Oncol. 2021;14(6):113. https://doi.org/10.3892/mco.2021.2275
  • [14] Rizwana BF, Prasana JC, Abraham CS,Muthu S. Spectroscopic investigation, hirshfeld surface analysis and molecular docking studies on anti-viral drug entecavir. J Mol Liq. 2018; 1164:447-458. https://doi.org/10.1016/j.molstruc.2018.03.090
  • [15] Babu NR, Padmavathi Y, Kumar PR, Babu RS, Vijaya DV, Polker A. Development of new spectrometric method for estimation of entecavir monohydrate in formulation using 3-amino phenol as chromogenic reagent. J Pharm Sci Res. 2019; 11(6): 2452-2457.
  • [16] Naz A, Tabish I, Naseer A, Siddiqi AZ, Siddiqui FA,Mirza AZ. Green chemistry approach: Method development and validation for identification and quantification of entecavir using FT-IR in bulk and pharmaceutical dosage form. Futur J Pharm Sci. 2021; 7:75. https://doi.org/10.1186/s43094-021-00211-9
  • [17] Deodhe ST, Dhabarde DM, Kamble MA, Mahapatra DK. Development and validation of a novel stability indicating RP-HPLC method for the estimation of Entecavir in tablet formulation. Eur J Anal Chem. 2017; 12(3): 223-235. https://doi.org/10.12973/ejac.2017.00165a
  • [18] El-Sayed HM, Abdel Fattah LE, Abdellatef HE, Hegazy MA, Abd El-Aziz MM. Selective Determination of entecavir in the presence of its oxidative degradate by spectrophotometric and chromatographic methods. J AOAC Int. 2021; 104(3): 847-853. https://doi.org/10.1093/jaoacint/qsab015
  • [19] Zhang D, Fu Y, Gale JP, Aubry AF, Arnold ME. A sensitive method for the determination of entecavir at picogram per milliliter level in human plasma by solid phase extraction and high-pH LC–MS/MS. J Pharm Biomed Anal. 2009; 49(4): 1027-1033. https://doi.org/10.1016/j.jpba.2009.02.003
  • [20] Challa BR, Awen BZ, Chandu BR, Rihanaparveen S. LC-ESI-MS/MS method for the quantification of entecavir in human plasma and its application to bioequivalence study. J Chromatogr B Analyt Technol Biomed Life Sci. 2011; 879(11-12): 769-776. https://doi.org/10.1016/j.jchromb.2011.02.023
  • [21] Vlckova H, Janak J, Gottvald T, Trejtnar F, Solich P,Novakova L. How to address the sample preparation of hydrophilic compounds: Determination of entecavir in plasma and plasma ultrafiltrate with novel extraction sorbents. J Pharm Biomed Anal. 2014; 88: 337-344. https://doi.org/10.1016/j.jpba.2013.08.034
  • [22] De Nicolo A, Bonifacio G, Boglione L, Cusato J, Pensi D, Tomasello C, Di Perri G,D'Avolio A. UHPLC-MS/MS method with automated on-line solid phase extraction for the quantification of entecavir in peripheral blood mononuclear cells of HBV+ patients. J Pharm Biomed Anal. 2016; 118:64-69. https://doi.org/10.1016/j.jpba.2015.10.017
  • [23] Elqudaby H, Hendawy H,Zayed M. Microdetermination of entecavir drug in its pharmaceuticals forms and in biological fluids using anodic voltammetry. World J Pharm. Res. 2014; 7:1115-1120.
  • [24] Jhankal K, Sharma A,Sharma D. Quantification of antiviral drug entecavir in pharmaceutical formulation by voltammetric techniques. World J Pharm Res. 2015; 7(1): 10.
  • [25] Tandel RD, Naik RS,Seetharamappa J. Electrochemical characteristics and electrosensing of an antiviral drug, entecavir via synergic effect of graphene oxide nanoribbons and ceria nanorods. Electroanalysis. 2017; 29(5): 1301-1309. https://doi.org/10.1002/elan.201600492
  • [26] Pinto Neto LFdS, Bassetti BR, Fraga IHV, Oliveira Santos CR, Ximenes PD,Miranda AE. Nephrotoxicity during tenofovir treatment: A three-year follow-up study in a Brazilian reference clinic. Braz J Infect Dis. 2016; 20(1):14-18. https://doi.org/10.1016/j.bjid.2015.09.004
  • [27] Gennaro A, Remington-The Science and Practice of Pharmacy, 20th ed., Vol. 1., Lippincott Williams and Wilkins, Maryland, USA, 2000.
  • [28] Moffat AC, Osselton MD, Widdop B,Watts J. Clarke's analysis of drugs and poisons, 4th ed., Pharmaceutical press, London, 2011.
  • [29] AbdelHay MH, Gazy AA, Shaalan RA,Ashour HK. Simple Spectrophotometric methods for determination of tenofovir fumarate and emtricitabine in bulk powder and in tablets. J Spectrosc (Hindawi). 2013; 2013: 937409. https://doi.org/10.1155/2013/937409
  • [30] Yunoos M, Praveen TD, Manikanta P, Sai AK, Mounica V, Siva D. A simple validated UV spectrophotometric method for the estimation of tenofovir disoproxil fumarate in bulk and pharmaceutical dosage form. Res J Pharm Technol. 2015; 8(4): 365-368. https://doi.org/10.5958/0974-360X.2015.00061.X
  • [31] Ashour HK,Belal TS. New simple spectrophotometric method for determination of the antiviral mixture of emtricitabine and tenofovir disoproxil fumarate. Arab J Chem. 2017; 10: S1741-S1747. https://doi.org/10.1016/j.arabjc.2013.06.024
  • [32] Pu F, Pandey S, Bushman LR, Anderson PL, Ouyang Z,Cooks RG. Direct quantitation of tenofovir diphosphate in human blood with mass spectrometry for adherence monitoring. Anal Bioanal Chem. 2020; 412: 1243-1249. https://doi.org/10.1007/s00216-019-02304-0
  • [33] Abdelhay M, Gazy A, Shaalan R, Ashour H. Selective RP-HPLC DAD method for determination of tenofovir fumarate and emtricitabine in bulk powder and in tablets. Acta Chromatographica. 2015; 27(1): 41-54. https://doi.org/10.1556/AChrom.27.2015.1.4
  • [34] Ramaswamy A, Dhas ASAG. Development and validation of analytical method for quantitation of emtricitabine, tenofovir, efavirenz based on HPLC. Arab J Chem. 2018; 11(2): 275-281. https://doi.org/10.1016/j.arabjc.2014.08.007
  • [35] Simiele M, Carcieri C, De Nicolò A, Ariaudo A, Sciandra M, Calcagno A, Bonora S, Di Perri G,D’Avolio A. A LC–MS method to quantify tenofovir urinary concentrations in treated patients. J Pharm Biomed Anal. 2015; 114: 8-11. https:/doi.org/10.1016/j.jpba.2015.05.001
  • [36] Prathipati PK, Mandal S,Destache CJ. Simultaneous quantification of tenofovir, emtricitabine, rilpivirine, elvitegravir and dolutegravir in mouse biological matrices by LC–MS/MS and its application to a pharmacokinetic study. J Pharm Biomed Anal. 2016; 129: 473-481. https://doi.org/10.1016/j.jpba.2016.07.040
  • [37] Jain R, Sharma R. Cathodic adsorptive stripping voltammetric detection and quantification of the antiretroviral drug tenofovir in human plasma and a tablet formulation. J Electrochem Soc. 2013; 160(8): H489. https://doi.org/10.1149/2.105308jes
  • [38] Ozcelikay G, Dogan-Topal B,Ozkan SA. Electrochemical characteristics of tenofovir and its determination in dosage form by electroanalytical methods. Rev Roum Chim. 2017; 62(6-7): 569-578.
  • [39] Morawska K, Popławski T, Ciesielski W,Smarzewska S. Electrochemical and spectroscopic studies of the interaction of antiviral drug Tenofovir with single and double stranded DNA. Bioelectrochem. 2018; 123: 227-232. https://doi.org/10.1016/j.bioelechem.2018.06.002
  • [40] Ozcelikay G, Dogan-Topal B,Ozkan SA. An electrochemical sensor based on silver nanoparticles‐benzalkonium chloride for the voltammetric determination of antiviral drug tenofovir. Electroanalysis. 2018; 30(5):943-954. https://doi.org/10.1002/elan.201700753
  • [41] Chihava R, Apath D, Moyo M, Shumba M, Chitsa V,Tshuma P. One-pot synthesized nickel-cobalt sulfide-decorated graphene quantum dot composite for simultaneous electrochemical determination of antiretroviral drugs: lamivudine and tenofovir disoproxil fumarate. J Sens. 2020; 2020: 3124102. https://doi.org/10.1155/2020/3124102
  • [42] Alake J, Nate Z, Adu DK, Ike BW, Chauhan R,Karpoormath R. Facile one-step synthesis of nickel sulphide nanoparticles decorated poly (acrylic acid) coated multi-walled carbon nanotube for detection of tenofovir in human urine. Electrocatalysis. 2022; 14:232-246. https://doi.org/10.1007/s12678-022-00784-w
  • [43] Festinger N, Spilarewicz-Stanek K, Borowczyk K, Guziejewski D,Smarzewska S. Highly sensitive determination of Tenofovir in pharmaceutical formulations and patients urine—Comparative electroanalytical studies using different sensing methods. Molecules. 2022; 27(6): 1992. https://doi.org/10.3390/molecules27061992
  • [44] Zeng W, Xiao J, Yao L, Wei Y, Zuo J, Li W, Ding J,He Q. Lanthanum doped zirconium oxide-nanocomposite as sensitive electrochemical platforms for Tenofovir detection. Microchem J. 2022; 183: 108053. https://doi.org/10.1016/j.microc.2022.108053
  • [45] Mehmandoust M, Soylak M, Erk N. Innovative molecularly imprinted electrochemical sensor for the nanomolar detection of Tenofovir as an anti-HIV drug. Talanta. 2023; 253:123991. https://doi.org/10.1016/j.talanta.2022.123991
  • [46] Altaf H, Ashraf M, Hayat MM, Hussain A, Shahzad N, Ahmad B,Rahman J. HPLC method for simultaneous determination of entecavir and tenofovir in human spiked plasma and pharmaceutical dosage forms. Lat Am J Pharm. 2015; 34(3): 126-130.
  • [47] De Nicolò A, Simiele M, Pensi D, Boglione L, Allegra S, Di Perri G,D’Avolio A. UPLC–MS/MS method for the simultaneous quantification of anti-HBV nucleos (t) ides analogs: Entecavir, lamivudine, telbivudine and tenofovir in plasma of HBV infected patients. J Pharm Biomed Anal. 2015; 114: 127-132. https://doi.org/10.1016/j.jpba.2015.05.016
  • [48] Zhao F-J, Tang H, Zhang Q-H, Yang J, Davey AK, Wang J-P. Salting-out homogeneous liquid–liquid extraction approach applied in sample pre-processing for the quantitative determination of entecavir in human plasma by LC–MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2012; 881: 119-125. https://doi.org/10.1016/j.jchromb.2011.12.003
  • [49] Caldevilla R, Morais SL, Cruz A, Delerue-Matos C, Moreira F, Pacheco JG, Santos M, Barroso MF. Electrochemical chemically based sensors and emerging enzymatic biosensors for antidepressant drug detection: A review. Int J Mol Sci. 2023; 24(10): 8480. https://doi.org/10.3390/ijms24108480
  • [50] Boumya W, Taoufik N, Achak M, Barka N. Chemically modified carbon-based electrodes for the determination of paracetamol in drugs and biological samples. J Pharm Anal. 2021; 11(2): 138-154. https://doi.org/10.1016/j.jpha.2020.11.003
  • [51] Katowah DF, Mohammed GI, Al-Eryani DA, Osman OI, Sobahi TR,Hussein MA. Fabrication of conductive cross‐linked polyaniline/G‐MWCNTS core‐shell nanocomposite: A selective sensor for trace determination of chlorophenol in water samples. Polym Adv Technol. 2020; 31(11): 2615-2631. https:/doi.org/10.1002/pat.4988
  • [52] Biçak N, Şenkal BF. Aldehyde separation by polymer-supported oligo (ethyleneimines). J Polym Sci Part A: Polym Chem. 1997; 35(14):2857-2864. https://doi.org/10.1002/(SICI)1099-0518(199710)35:14<2857::AID-POLA6>3.0.CO;2-N
  • [53] Yavuz E, Turan GT, Alkazan S,Senkal BF. Preparation of crosslinked quaternary amide–sulfonamide resin for removal of mercury ions from aqueous solutions. Desalination Water Treat. 2015; 56(8): 2145-2153. https://doi.org/10.1080/19443994.2014.958539
  • [54] Wang Y, Hsine Z, Sauriat-Dorizon H, Mlika R, Korri-Youssoufi H. Structural and electrochemical studies of functionalization of reduced graphene oxide with alkoxyphenylporphyrin mono- and tetra- carboxylic acid: application to DNA sensors. Electrochim Acta. 2020; 357: 136852. https://doi.org/10.1016/j.electacta.2020.136852
  • [55] Awad MI, Sayqal A, Pashameah RA, Hameed AM, Morad M, Alessa H, Shah RK, Akassem M. Enhanced paracetamol oxidation and its determination using electrochemically activated glassy carbon electrode. Int J Electrochem Sci. 2021; 16(1): 150864. https://doi.org/10.20964/2021.01.12
  • [56] Kissinger P, Heineman WR, Laboratory Techniques in Electroanalytical Chemistry, second ed., CRC press, New York, USA 2018.https://doi.org/10.1201/9781315274263
  • [57] Gaba M,Mohan C. Development of drugs based on imidazole and benzimidazole bioactive heterocycles: recent advances and future directions. Med Chem Res. 2016; 25: 173-210. https://doi.org/10.1007/s00044-015-1495-5
  • [58] Shen H, Choi C, Masa J, Li X, Qiu J, Jung Y, Sun Z. Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design. Chem. 2021; 7(7): 1708-1754. https://doi.org/10.1016/j.chempr.2021.01.009
  • [59] Kamiya H, Kasai H. Formation of 2-hydroxydeoxyadenosine triphosphate, an oxidatively damaged nucleotide, and its incorporation by DNA polymerases. Steady-state kinetics of the incorporation. J Biol Chem. 1995; 270(33): 19446-19450. https://doi.org/10.1074/jbc.270.33.19446
  • [60] Tsurudome Y, Hirano T, Kamiya H, Yamaguchi R, Asami S, Itoh H,Kasai H. 2-Hydroxyadenine, a mutagenic form of oxidative DNA damage, is not repaired by a glycosylase type mechanism in rat organs. Mutat Res. 1998; 408(2): 121-127. https://doi.org/10.1016/s0921-8777(98)00025-1
  • [61] Ferraz BRL, Guimaraes T, Profeti D,Profeti LPR. Electrooxidation of sulfanilamide and its voltammetric determination in pharmaceutical formulation, human urine and serum on glassy carbon electrode. J Pharm Anal. 2018; 8(1): 55-59. https://doi.org/10.1016/j.jpha.2017.10.004
  • [62] Vanoni CR, Winiarski JP, Nagurniak GR, Magosso HA, Jost CL. A novel electrochemical sensor based on silsesquioxane/Nickel (II) phthalocyanine for the determination of sulfanilamide in clinical and drug samples. Electroanalysis. 2019; 31(5): 867-875. https://doi.org/10.1002/elan.201800832
  • [63] Siburian R, Sihotang H, Raja SL, Supeno M, Simanjuntak C. New route to synthesize of graphene nano sheets. Orient J Chem. 2018;34(1): 182-187. http://dx.doi.org/10.13005/ojc/340120
  • [64] Ng, L.L., Development and Validation of Analytical Procedures, Analytical Testing for the Pharmaceutical GMP Laboratory, 2022, pp. 143-167. https://doi.org/10.1002/9781119680475.ch5
  • [65] Horwitz W,Albert R. The Horwitz ratio (HorRat): A useful index of method performance with respect to precision. J AOAC Int. 2006; 89(4): 1095-1109. https:/doi.org/10.1093/jaoac/89.4.1095
  • [66] Xiao J, Shi S, Yao L, Feng J, Zuo J,He Q. Fast and ultrasensitive electrochemical detection for antiviral drug tenofovir disoproxil fumarate in biological matrices. Biosensors. 2022; 12(12): 1123. https:/doi.org/10.3390/bios12121123
  • [67] Jain P, Jagtap S, Chauhan M, Motghare RV.Electrocatalytic behaviour of self-assembled Cu-chitosan/f-MWCNT on glassy carbon electrode for detection of erythromycin in various samples. Sens Bio-Sens Res. 2023; 41: 100568. https://doi.org/10.1016/j.sbsr.2023.100568
Yıl 2024, Cilt: 28 Sayı: 3, 579 - 602, 28.06.2025

Öz

Kaynakça

  • [1] Asran AM, Mohamed MA, Ahmed N, Banks CE,Allam NK. An innovative electrochemical platform for the sensitive determination of the hepatitis B inhibitor Entecavir with ionic liquid as a mediator. J Mol Liq. 2020; 302: 112498. https://doi.org/10.1016/j.molliq.2020.112498
  • [2] Guvenir M, Arikan A.Hepatitis B Virus: From Diagnosis to Treatment. Pol J Microbiol. 2020; 69(4): 391-399. https://doi.org/10.33073/pjm-2020-044
  • [3] Yeh ML, Huang CF, Huang CI, Holmes JA, Hsieh MH, Tsai YS, Liang PC, Tsai PC, Hsieh MY, Lin ZY, Chen SC, Huang JF, Dai CY, Chuang WL, Chung RT, Yu ML. Hepatitis B-related outcomes following direct-acting antiviral therapy in Taiwanese patients with chronic HBV/HCV co-infection. J Hepatol. 2020; 73(1): 62-71. https://doi.org/10.1016/j.jhep.2020.01.027
  • [4] Pawlotsky JM, Negro F, Aghemo A, Berenguer M, Dalgard O, Dusheiko G, Marra F, Puoti M, Wedemeyer H. European Association for the Study of the Liver. EASL recommendations on treatment of hepatitis C: Final update of the series. J Hepatol. 2020; 73(5): 1170-1218. https://doi.org/10.1016/j.jhep.2020.08.018
  • [5] Huang P, Wang Y, Yue M, Ge Z, Xia X, Jeyarajan AJ, Holmes JA, Yu R, Zhu C, Yang S, Lin W, Chung RT. The risk of hepatitis C virus recurrence in hepatitis C virus-infected patients treated with direct-acting antivirals after achieving a sustained virological response: A comprehensive analysis. Liver Int. 2021; 41(10): 2341-2357. https://doi.org/10.1111/liv.14976
  • [6] Chien RN, Liaw YF. Current trend in antiviral therapy for chronic hepatitis B. Viruses. 2022; 14(2):434. https://doi.org/10.3390/v14020434
  • [7] Shiffman ML. Approach to the patient with chronic hepatitis B and decompensated cirrhosis. Liver Int. 2020; 40(S1):22-26. https://doi.org/10.1111/liv.14359
  • [8] Lim YS, Seto WK, Kurosaki M, Fung S, Kao JH, Hou J, Gordon SC, Flaherty JF, Yee LJ, Zhao Y, Agarwal K, Lampertico P. Review article: Switching patients with chronic hepatitis B to tenofovir alafenamide-a review of current data. Aliment Pharmacol Ther. 2022; 55(8): 921-943. https://doi.org/10.3390/v12090998
  • [9] Ma X, Liu S, Wang M, Wang Y, Du S, Xin Y, Xuan S. Tenofovir alafenamide fumarate, tenofovir disoproxil fumarate and entecavir: Which is the most effective drug for chronic hepatitis B? A systematic review and meta-analysis. J Clin Transl Hepatol. 2021; 9(3): 335-344. https://doi.org/10.14218/JCTH.2020.00164
  • [10] Lee IC, Lan KH, Su CW, Li CP, Chao Y, Lin HC, Hou MC, Huang YH. Efficacy and renal safety of prophylactic tenofovir alafenamide for HBV-ınfected cancer patients undergoing chemotherapy. Int J Mol Sci. 2022;23(19):11335. https://doi.org/10.3390/ijms231911335
  • [11] Wang Y, Wang L, Chen X, Sun C, Zhu Y, Kang Y,Zeng S. Chiral detection of entecavir stereoisomeric impurities through coordination with R-besivance and Zn(II) using mass spectrometry. J Mass Spectrom. 2018; 53(3): 247-256. https://doi.org/10.1002/jms.4060
  • [12] Kim YJ. Chapter 27 - Antiviral drugs. In: Ray SD, editor. Side Effects of Drugs Annual, 43th ed., Elsevier, 2021,pp323-328. https://doi.org/10.1016/bs.seda.2021.09.007
  • [13] Marino A, Cosentino F, Ceccarelli M, Moscatt V, Pampaloni A, Scuderi D, D'Andrea F, Rullo EV, Nunnari G, Benanti F, Celesia BM, Cacopardo B. Entecavir resistance in a patient with treatment-naïve HBV: A case report. Mol Clin Oncol. 2021;14(6):113. https://doi.org/10.3892/mco.2021.2275
  • [14] Rizwana BF, Prasana JC, Abraham CS,Muthu S. Spectroscopic investigation, hirshfeld surface analysis and molecular docking studies on anti-viral drug entecavir. J Mol Liq. 2018; 1164:447-458. https://doi.org/10.1016/j.molstruc.2018.03.090
  • [15] Babu NR, Padmavathi Y, Kumar PR, Babu RS, Vijaya DV, Polker A. Development of new spectrometric method for estimation of entecavir monohydrate in formulation using 3-amino phenol as chromogenic reagent. J Pharm Sci Res. 2019; 11(6): 2452-2457.
  • [16] Naz A, Tabish I, Naseer A, Siddiqi AZ, Siddiqui FA,Mirza AZ. Green chemistry approach: Method development and validation for identification and quantification of entecavir using FT-IR in bulk and pharmaceutical dosage form. Futur J Pharm Sci. 2021; 7:75. https://doi.org/10.1186/s43094-021-00211-9
  • [17] Deodhe ST, Dhabarde DM, Kamble MA, Mahapatra DK. Development and validation of a novel stability indicating RP-HPLC method for the estimation of Entecavir in tablet formulation. Eur J Anal Chem. 2017; 12(3): 223-235. https://doi.org/10.12973/ejac.2017.00165a
  • [18] El-Sayed HM, Abdel Fattah LE, Abdellatef HE, Hegazy MA, Abd El-Aziz MM. Selective Determination of entecavir in the presence of its oxidative degradate by spectrophotometric and chromatographic methods. J AOAC Int. 2021; 104(3): 847-853. https://doi.org/10.1093/jaoacint/qsab015
  • [19] Zhang D, Fu Y, Gale JP, Aubry AF, Arnold ME. A sensitive method for the determination of entecavir at picogram per milliliter level in human plasma by solid phase extraction and high-pH LC–MS/MS. J Pharm Biomed Anal. 2009; 49(4): 1027-1033. https://doi.org/10.1016/j.jpba.2009.02.003
  • [20] Challa BR, Awen BZ, Chandu BR, Rihanaparveen S. LC-ESI-MS/MS method for the quantification of entecavir in human plasma and its application to bioequivalence study. J Chromatogr B Analyt Technol Biomed Life Sci. 2011; 879(11-12): 769-776. https://doi.org/10.1016/j.jchromb.2011.02.023
  • [21] Vlckova H, Janak J, Gottvald T, Trejtnar F, Solich P,Novakova L. How to address the sample preparation of hydrophilic compounds: Determination of entecavir in plasma and plasma ultrafiltrate with novel extraction sorbents. J Pharm Biomed Anal. 2014; 88: 337-344. https://doi.org/10.1016/j.jpba.2013.08.034
  • [22] De Nicolo A, Bonifacio G, Boglione L, Cusato J, Pensi D, Tomasello C, Di Perri G,D'Avolio A. UHPLC-MS/MS method with automated on-line solid phase extraction for the quantification of entecavir in peripheral blood mononuclear cells of HBV+ patients. J Pharm Biomed Anal. 2016; 118:64-69. https://doi.org/10.1016/j.jpba.2015.10.017
  • [23] Elqudaby H, Hendawy H,Zayed M. Microdetermination of entecavir drug in its pharmaceuticals forms and in biological fluids using anodic voltammetry. World J Pharm. Res. 2014; 7:1115-1120.
  • [24] Jhankal K, Sharma A,Sharma D. Quantification of antiviral drug entecavir in pharmaceutical formulation by voltammetric techniques. World J Pharm Res. 2015; 7(1): 10.
  • [25] Tandel RD, Naik RS,Seetharamappa J. Electrochemical characteristics and electrosensing of an antiviral drug, entecavir via synergic effect of graphene oxide nanoribbons and ceria nanorods. Electroanalysis. 2017; 29(5): 1301-1309. https://doi.org/10.1002/elan.201600492
  • [26] Pinto Neto LFdS, Bassetti BR, Fraga IHV, Oliveira Santos CR, Ximenes PD,Miranda AE. Nephrotoxicity during tenofovir treatment: A three-year follow-up study in a Brazilian reference clinic. Braz J Infect Dis. 2016; 20(1):14-18. https://doi.org/10.1016/j.bjid.2015.09.004
  • [27] Gennaro A, Remington-The Science and Practice of Pharmacy, 20th ed., Vol. 1., Lippincott Williams and Wilkins, Maryland, USA, 2000.
  • [28] Moffat AC, Osselton MD, Widdop B,Watts J. Clarke's analysis of drugs and poisons, 4th ed., Pharmaceutical press, London, 2011.
  • [29] AbdelHay MH, Gazy AA, Shaalan RA,Ashour HK. Simple Spectrophotometric methods for determination of tenofovir fumarate and emtricitabine in bulk powder and in tablets. J Spectrosc (Hindawi). 2013; 2013: 937409. https://doi.org/10.1155/2013/937409
  • [30] Yunoos M, Praveen TD, Manikanta P, Sai AK, Mounica V, Siva D. A simple validated UV spectrophotometric method for the estimation of tenofovir disoproxil fumarate in bulk and pharmaceutical dosage form. Res J Pharm Technol. 2015; 8(4): 365-368. https://doi.org/10.5958/0974-360X.2015.00061.X
  • [31] Ashour HK,Belal TS. New simple spectrophotometric method for determination of the antiviral mixture of emtricitabine and tenofovir disoproxil fumarate. Arab J Chem. 2017; 10: S1741-S1747. https://doi.org/10.1016/j.arabjc.2013.06.024
  • [32] Pu F, Pandey S, Bushman LR, Anderson PL, Ouyang Z,Cooks RG. Direct quantitation of tenofovir diphosphate in human blood with mass spectrometry for adherence monitoring. Anal Bioanal Chem. 2020; 412: 1243-1249. https://doi.org/10.1007/s00216-019-02304-0
  • [33] Abdelhay M, Gazy A, Shaalan R, Ashour H. Selective RP-HPLC DAD method for determination of tenofovir fumarate and emtricitabine in bulk powder and in tablets. Acta Chromatographica. 2015; 27(1): 41-54. https://doi.org/10.1556/AChrom.27.2015.1.4
  • [34] Ramaswamy A, Dhas ASAG. Development and validation of analytical method for quantitation of emtricitabine, tenofovir, efavirenz based on HPLC. Arab J Chem. 2018; 11(2): 275-281. https://doi.org/10.1016/j.arabjc.2014.08.007
  • [35] Simiele M, Carcieri C, De Nicolò A, Ariaudo A, Sciandra M, Calcagno A, Bonora S, Di Perri G,D’Avolio A. A LC–MS method to quantify tenofovir urinary concentrations in treated patients. J Pharm Biomed Anal. 2015; 114: 8-11. https:/doi.org/10.1016/j.jpba.2015.05.001
  • [36] Prathipati PK, Mandal S,Destache CJ. Simultaneous quantification of tenofovir, emtricitabine, rilpivirine, elvitegravir and dolutegravir in mouse biological matrices by LC–MS/MS and its application to a pharmacokinetic study. J Pharm Biomed Anal. 2016; 129: 473-481. https://doi.org/10.1016/j.jpba.2016.07.040
  • [37] Jain R, Sharma R. Cathodic adsorptive stripping voltammetric detection and quantification of the antiretroviral drug tenofovir in human plasma and a tablet formulation. J Electrochem Soc. 2013; 160(8): H489. https://doi.org/10.1149/2.105308jes
  • [38] Ozcelikay G, Dogan-Topal B,Ozkan SA. Electrochemical characteristics of tenofovir and its determination in dosage form by electroanalytical methods. Rev Roum Chim. 2017; 62(6-7): 569-578.
  • [39] Morawska K, Popławski T, Ciesielski W,Smarzewska S. Electrochemical and spectroscopic studies of the interaction of antiviral drug Tenofovir with single and double stranded DNA. Bioelectrochem. 2018; 123: 227-232. https://doi.org/10.1016/j.bioelechem.2018.06.002
  • [40] Ozcelikay G, Dogan-Topal B,Ozkan SA. An electrochemical sensor based on silver nanoparticles‐benzalkonium chloride for the voltammetric determination of antiviral drug tenofovir. Electroanalysis. 2018; 30(5):943-954. https://doi.org/10.1002/elan.201700753
  • [41] Chihava R, Apath D, Moyo M, Shumba M, Chitsa V,Tshuma P. One-pot synthesized nickel-cobalt sulfide-decorated graphene quantum dot composite for simultaneous electrochemical determination of antiretroviral drugs: lamivudine and tenofovir disoproxil fumarate. J Sens. 2020; 2020: 3124102. https://doi.org/10.1155/2020/3124102
  • [42] Alake J, Nate Z, Adu DK, Ike BW, Chauhan R,Karpoormath R. Facile one-step synthesis of nickel sulphide nanoparticles decorated poly (acrylic acid) coated multi-walled carbon nanotube for detection of tenofovir in human urine. Electrocatalysis. 2022; 14:232-246. https://doi.org/10.1007/s12678-022-00784-w
  • [43] Festinger N, Spilarewicz-Stanek K, Borowczyk K, Guziejewski D,Smarzewska S. Highly sensitive determination of Tenofovir in pharmaceutical formulations and patients urine—Comparative electroanalytical studies using different sensing methods. Molecules. 2022; 27(6): 1992. https://doi.org/10.3390/molecules27061992
  • [44] Zeng W, Xiao J, Yao L, Wei Y, Zuo J, Li W, Ding J,He Q. Lanthanum doped zirconium oxide-nanocomposite as sensitive electrochemical platforms for Tenofovir detection. Microchem J. 2022; 183: 108053. https://doi.org/10.1016/j.microc.2022.108053
  • [45] Mehmandoust M, Soylak M, Erk N. Innovative molecularly imprinted electrochemical sensor for the nanomolar detection of Tenofovir as an anti-HIV drug. Talanta. 2023; 253:123991. https://doi.org/10.1016/j.talanta.2022.123991
  • [46] Altaf H, Ashraf M, Hayat MM, Hussain A, Shahzad N, Ahmad B,Rahman J. HPLC method for simultaneous determination of entecavir and tenofovir in human spiked plasma and pharmaceutical dosage forms. Lat Am J Pharm. 2015; 34(3): 126-130.
  • [47] De Nicolò A, Simiele M, Pensi D, Boglione L, Allegra S, Di Perri G,D’Avolio A. UPLC–MS/MS method for the simultaneous quantification of anti-HBV nucleos (t) ides analogs: Entecavir, lamivudine, telbivudine and tenofovir in plasma of HBV infected patients. J Pharm Biomed Anal. 2015; 114: 127-132. https://doi.org/10.1016/j.jpba.2015.05.016
  • [48] Zhao F-J, Tang H, Zhang Q-H, Yang J, Davey AK, Wang J-P. Salting-out homogeneous liquid–liquid extraction approach applied in sample pre-processing for the quantitative determination of entecavir in human plasma by LC–MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2012; 881: 119-125. https://doi.org/10.1016/j.jchromb.2011.12.003
  • [49] Caldevilla R, Morais SL, Cruz A, Delerue-Matos C, Moreira F, Pacheco JG, Santos M, Barroso MF. Electrochemical chemically based sensors and emerging enzymatic biosensors for antidepressant drug detection: A review. Int J Mol Sci. 2023; 24(10): 8480. https://doi.org/10.3390/ijms24108480
  • [50] Boumya W, Taoufik N, Achak M, Barka N. Chemically modified carbon-based electrodes for the determination of paracetamol in drugs and biological samples. J Pharm Anal. 2021; 11(2): 138-154. https://doi.org/10.1016/j.jpha.2020.11.003
  • [51] Katowah DF, Mohammed GI, Al-Eryani DA, Osman OI, Sobahi TR,Hussein MA. Fabrication of conductive cross‐linked polyaniline/G‐MWCNTS core‐shell nanocomposite: A selective sensor for trace determination of chlorophenol in water samples. Polym Adv Technol. 2020; 31(11): 2615-2631. https:/doi.org/10.1002/pat.4988
  • [52] Biçak N, Şenkal BF. Aldehyde separation by polymer-supported oligo (ethyleneimines). J Polym Sci Part A: Polym Chem. 1997; 35(14):2857-2864. https://doi.org/10.1002/(SICI)1099-0518(199710)35:14<2857::AID-POLA6>3.0.CO;2-N
  • [53] Yavuz E, Turan GT, Alkazan S,Senkal BF. Preparation of crosslinked quaternary amide–sulfonamide resin for removal of mercury ions from aqueous solutions. Desalination Water Treat. 2015; 56(8): 2145-2153. https://doi.org/10.1080/19443994.2014.958539
  • [54] Wang Y, Hsine Z, Sauriat-Dorizon H, Mlika R, Korri-Youssoufi H. Structural and electrochemical studies of functionalization of reduced graphene oxide with alkoxyphenylporphyrin mono- and tetra- carboxylic acid: application to DNA sensors. Electrochim Acta. 2020; 357: 136852. https://doi.org/10.1016/j.electacta.2020.136852
  • [55] Awad MI, Sayqal A, Pashameah RA, Hameed AM, Morad M, Alessa H, Shah RK, Akassem M. Enhanced paracetamol oxidation and its determination using electrochemically activated glassy carbon electrode. Int J Electrochem Sci. 2021; 16(1): 150864. https://doi.org/10.20964/2021.01.12
  • [56] Kissinger P, Heineman WR, Laboratory Techniques in Electroanalytical Chemistry, second ed., CRC press, New York, USA 2018.https://doi.org/10.1201/9781315274263
  • [57] Gaba M,Mohan C. Development of drugs based on imidazole and benzimidazole bioactive heterocycles: recent advances and future directions. Med Chem Res. 2016; 25: 173-210. https://doi.org/10.1007/s00044-015-1495-5
  • [58] Shen H, Choi C, Masa J, Li X, Qiu J, Jung Y, Sun Z. Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design. Chem. 2021; 7(7): 1708-1754. https://doi.org/10.1016/j.chempr.2021.01.009
  • [59] Kamiya H, Kasai H. Formation of 2-hydroxydeoxyadenosine triphosphate, an oxidatively damaged nucleotide, and its incorporation by DNA polymerases. Steady-state kinetics of the incorporation. J Biol Chem. 1995; 270(33): 19446-19450. https://doi.org/10.1074/jbc.270.33.19446
  • [60] Tsurudome Y, Hirano T, Kamiya H, Yamaguchi R, Asami S, Itoh H,Kasai H. 2-Hydroxyadenine, a mutagenic form of oxidative DNA damage, is not repaired by a glycosylase type mechanism in rat organs. Mutat Res. 1998; 408(2): 121-127. https://doi.org/10.1016/s0921-8777(98)00025-1
  • [61] Ferraz BRL, Guimaraes T, Profeti D,Profeti LPR. Electrooxidation of sulfanilamide and its voltammetric determination in pharmaceutical formulation, human urine and serum on glassy carbon electrode. J Pharm Anal. 2018; 8(1): 55-59. https://doi.org/10.1016/j.jpha.2017.10.004
  • [62] Vanoni CR, Winiarski JP, Nagurniak GR, Magosso HA, Jost CL. A novel electrochemical sensor based on silsesquioxane/Nickel (II) phthalocyanine for the determination of sulfanilamide in clinical and drug samples. Electroanalysis. 2019; 31(5): 867-875. https://doi.org/10.1002/elan.201800832
  • [63] Siburian R, Sihotang H, Raja SL, Supeno M, Simanjuntak C. New route to synthesize of graphene nano sheets. Orient J Chem. 2018;34(1): 182-187. http://dx.doi.org/10.13005/ojc/340120
  • [64] Ng, L.L., Development and Validation of Analytical Procedures, Analytical Testing for the Pharmaceutical GMP Laboratory, 2022, pp. 143-167. https://doi.org/10.1002/9781119680475.ch5
  • [65] Horwitz W,Albert R. The Horwitz ratio (HorRat): A useful index of method performance with respect to precision. J AOAC Int. 2006; 89(4): 1095-1109. https:/doi.org/10.1093/jaoac/89.4.1095
  • [66] Xiao J, Shi S, Yao L, Feng J, Zuo J,He Q. Fast and ultrasensitive electrochemical detection for antiviral drug tenofovir disoproxil fumarate in biological matrices. Biosensors. 2022; 12(12): 1123. https:/doi.org/10.3390/bios12121123
  • [67] Jain P, Jagtap S, Chauhan M, Motghare RV.Electrocatalytic behaviour of self-assembled Cu-chitosan/f-MWCNT on glassy carbon electrode for detection of erythromycin in various samples. Sens Bio-Sens Res. 2023; 41: 100568. https://doi.org/10.1016/j.sbsr.2023.100568
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılıkta Analitik Kimya
Bölüm Articles
Yazarlar

Adel Asfoor 0000-0003-3936-7144

Zeynep Aydoğmuş 0000-0001-7784-0129

Bahire Senkal 0000-0002-1616-6828

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 3

Kaynak Göster

APA Asfoor, A., Aydoğmuş, Z., & Senkal, B. (2025). Fabrication a novel ethylenediamine sulfonamide polymer resin and graphene-modified carbon paste electrodes for simultaneous determination of anti-HBV drugs entecavir and tenofovir in dosage form by differential pulse voltammetry. Journal of Research in Pharmacy, 28(3), 579-602.
AMA Asfoor A, Aydoğmuş Z, Senkal B. Fabrication a novel ethylenediamine sulfonamide polymer resin and graphene-modified carbon paste electrodes for simultaneous determination of anti-HBV drugs entecavir and tenofovir in dosage form by differential pulse voltammetry. J. Res. Pharm. Haziran 2025;28(3):579-602.
Chicago Asfoor, Adel, Zeynep Aydoğmuş, ve Bahire Senkal. “Fabrication a Novel Ethylenediamine Sulfonamide Polymer Resin and Graphene-Modified Carbon Paste Electrodes for Simultaneous Determination of Anti-HBV Drugs Entecavir and Tenofovir in Dosage Form by Differential Pulse Voltammetry”. Journal of Research in Pharmacy 28, sy. 3 (Haziran 2025): 579-602.
EndNote Asfoor A, Aydoğmuş Z, Senkal B (01 Haziran 2025) Fabrication a novel ethylenediamine sulfonamide polymer resin and graphene-modified carbon paste electrodes for simultaneous determination of anti-HBV drugs entecavir and tenofovir in dosage form by differential pulse voltammetry. Journal of Research in Pharmacy 28 3 579–602.
IEEE A. Asfoor, Z. Aydoğmuş, ve B. Senkal, “Fabrication a novel ethylenediamine sulfonamide polymer resin and graphene-modified carbon paste electrodes for simultaneous determination of anti-HBV drugs entecavir and tenofovir in dosage form by differential pulse voltammetry”, J. Res. Pharm., c. 28, sy. 3, ss. 579–602, 2025.
ISNAD Asfoor, Adel vd. “Fabrication a Novel Ethylenediamine Sulfonamide Polymer Resin and Graphene-Modified Carbon Paste Electrodes for Simultaneous Determination of Anti-HBV Drugs Entecavir and Tenofovir in Dosage Form by Differential Pulse Voltammetry”. Journal of Research in Pharmacy 28/3 (Haziran 2025), 579-602.
JAMA Asfoor A, Aydoğmuş Z, Senkal B. Fabrication a novel ethylenediamine sulfonamide polymer resin and graphene-modified carbon paste electrodes for simultaneous determination of anti-HBV drugs entecavir and tenofovir in dosage form by differential pulse voltammetry. J. Res. Pharm. 2025;28:579–602.
MLA Asfoor, Adel vd. “Fabrication a Novel Ethylenediamine Sulfonamide Polymer Resin and Graphene-Modified Carbon Paste Electrodes for Simultaneous Determination of Anti-HBV Drugs Entecavir and Tenofovir in Dosage Form by Differential Pulse Voltammetry”. Journal of Research in Pharmacy, c. 28, sy. 3, 2025, ss. 579-02.
Vancouver Asfoor A, Aydoğmuş Z, Senkal B. Fabrication a novel ethylenediamine sulfonamide polymer resin and graphene-modified carbon paste electrodes for simultaneous determination of anti-HBV drugs entecavir and tenofovir in dosage form by differential pulse voltammetry. J. Res. Pharm. 2025;28(3):579-602.