Review
BibTex RIS Cite

Probiyotiklerle Desteklenmiş Gıdalardaki Suşlar ve Şeker İçerikleri

Year 2025, Volume: 23 Issue: 1, 60 - 71, 11.05.2025
https://doi.org/10.24323/akademik-gida.1697268

Abstract

Günümüzde probiyotiklerle desteklenmiş/güçlendirilmiş gıdalara olan ilginin artışı, pandemi, iklim değişikliği ve modern yaşam tarzı gibi faktörlere bağlanabilir. Probiyotiklerin gıdalara dahil edilmesi sürecinde, doğru suşun seçilmesi, bağırsakta hayatta kalma yeteneğinin sağlanması, üretim teknikleri ve saklama koşulları gibi önemli faktörler dikkate alınmalıdır. Bu ürünlerde bulunan şeker miktarı da eşit derecede önemlidir, çünkü probiyotiklerin hayatta kalmasını ve etkinliğini önemli ölçüde etkileyebilir. Piyasadaki bazı ürünler, tüketicilere daha cazip hale gelmesi için aşırı miktarda şeker içerebilmektedir. Bu çalışma, ticari olarak erişilebilir probiyotik ilaveli gıdalardaki spesifik suş çeşitlerini ve şeker içeriğini incelemeyi amaçlamaktadır. Ayrıca, şekerin probiyotikler üzerindeki etkisini araştırarak bu ürünlerdeki şeker seviyelerini önerilen kılavuzlara göre değerlendirmeyi hedeflemektedir. Literatür derlemesi, probiyotiklerle desteklenmiş gıdalarda suş seçimi ve şeker içeriğinin, probiyotiklerin canlılığı ve sağlık üzerindeki etkileri açısından önemli bir rol oynadığını ortaya koymaktadır. Yüksek şeker içeriği, bağırsak mikrobiyota dengesini olumsuz yönde etkileyebilir ve probiyotiklerin hayatta kalmasını azaltabilir, bu da tüketiciler ve gıda üreticileri için toplam ve ilave şeker seviyelerinin dikkatle değerlendirilmesi gerekliliğini vurgulamaktadır. Farklı probiyotik suşları ve şeker türleri arasındaki etkileşimin daha ayrıntılı incelenmesi, ürün formülasyonlarının geliştirilmesi ve probiyotiklerin uzun vadeli sağlık faydalarının sağlanması açısından önerilmektedir.

References

  • [1] Davis, D.R. (2009). Declining fruit and vegetable nutrient composition: what is the evidence? HortScience, 44(1), 15-19.
  • [2] Tungland, B. (2018). Dysbiosis of the Microbiota: Therapeutic Strategies Utilizing Dietary Modification, Pro- and Prebiotics and Fecal Transplant Therapies in Promoting Normal Balance and Local GI Functions. In Human Microbiota in Health and Disease, Edited by B. Tungland, Academic Press, Cambridge, USA, 381-419p.
  • [3] Palanivelu, J., Thanigaivel, S., Vickram, S., Dey, N., Mihaylova, D., Desseva, I. (2022). Probiotics in functional foods: survival assessment and approaches for improved viability. Applied Sciences, 12(1), 455.
  • [4] Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., and Salminen S., Calder, P.C., Sanders, M.E. (2014). The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, 11, 506–514.
  • [5] Jones, P.J., Jew, S. (2007). Functional food development: concept to reality. Trends in Food Science and Technology, 18(7), 387-390.
  • [6] Terpou, A., Papadaki, A., Lappa, I.K., Kachrimanidou, V., Bosnea, L.A., Kopsahelis, N. (2019). Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients, 11(7), 1591.
  • [7] Mortazavian, A.M., Mohammadi, R, Sohrabvandi, S. (2012). Delivery of probiotic microorganisms into gastrointestinal tract by food products. In New Advances in the Basic and Clinical Gastroenterology, Edited by T. Brzozowski, InTech, Rijeka, Croatia, 121-146p.
  • [8] Konuray, G., Erginkaya, Z. (2018). Potential use of Bacillus coagulans in the food industry. Foods, 7(6), 92.
  • [9] Acton, R.B., Vanderlee, L., Hobin, E.P., Hammond, D. (2017). Added sugar in the packaged foods and beverages available at a major Canadian retailer in 2015: a descriptive analysis. Canadian Medical Association Open Access Journal, 5(1), E1-E6.
  • [10] Johnson, R.J., Segal, M.S., Sautin, Y., Nakagawa, T., Feig, D.I., Kang, D.-H., Gersch, M.S., Benner, S., Sánchez-Lozada, L.G. (2007). Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. The American Journal of Clinical Nutrition, 86(4), 899-906.
  • [11] Akın, M., Akın, M., Kırmacı, Z. (2007). Effects of inulin and sugar levels on the viability of yoghurt and probiotic bacteria and the physical and sensory characteristics in probiotic ice-cream. Food Chemistry,104(1), 93-99.
  • [12] Blaiotta, G., La Gatta, B., Di Capua, M., Di Luccia, A., Coppola, R., Aponte, M. (2013). Effect of chestnut extract and chestnut fiber on viability of potential probiotic Lactobacillus strains under gastrointestinal tract conditions. Food Microbiology, 36(2), 161-169.
  • [13] Heidebach, T., Först, P., Kulozik, U. (2012). Microencapsulation of probiotic cells for food applications. Critical Reviews in Food Science and Nutrition, 52(4), 291-311.
  • [14] Kalicka, D., Znamirowska, A., Pawlos, M., Buniowska, M., Szajnar, K. (2019). Physical and sensory characteristics and probiotic survival in ice cream sweetened with various polyols. International Journal of Dairy Technology, 72(3), 456-465.
  • [15] Francavilla, R., Piccolo, M., Francavilla, A., Polimeno, L., Semeraro, F., Cristofori, F., Castellaneta, S., Barone, M., Indrio, F., Gobbetti, M., De Angelis, M. (2019). Clinical and microbiological effect of a multispecies probiotic supplementation in celiac patients with persistent IBS-type symptoms: a randomized, double-blind, placebo-controlled, multicenter trial. Journal of Clinical Gastroenterology, 53(3), e117.
  • [16] Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., Li, Y., Xia, Y., Xie, H., Zhong, H., Khan, M.T., Zhang, J., Li, J., Xiao, L., Al-Aama, J., Zhang, D., Lee, Y.S., Kotowska, D., Colding, C., Tremaroli, V., Yin, Y., Bergman, S., Xu, X., Madsen, L., Kristiansen, K., Dahlgren, J., Wang, J. (2015). Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe, 17(5),690-703.
  • [17] Ciorba, M.A. (2012). A gastroenterologist's guide to probiotics. Clinical Gastroenterology and Hepatology, 10(9), 960-968.
  • [18] Altun, G.K., Erginkaya, Z. (2021). Identification and characterization of Bacillus coagulans strains for probiotic activity and safety. LWT, 151, 112233.
  • [19] Aminlari, L., Shekarforoush, S.S., Hosseinzadeh, S., Nazifi, S., Sajedianfard, J., Eskandari, M.H. (2019). Effect of probiotics Bacillus coagulans and Lactobacillus plantarum on lipid profile and feces bacteria of rats fed cholesterol-enriched diet. Probiotics and Antimicrobial Proteins, 11, 1163-1171.
  • [20] Batra, N., Singh, J., Banerjee, U.C., Patnaik, P.R., Sobti, R.C. (2002). Production and characterization of a thermostable β‐galactosidase from Bacillus coagulans RCS3. Biotechnology and Applied Biochemistry, 36(1), 1-6.
  • [21] Kimmel, M., Keller, D., Farmer, S., Warrino, D. (2010). A controlled clinical trial to evaluate the effect of GanedenBC (30) on immunological markers. Methods and Findings in Experimental and Clinical Pharmacology, 32(2), 129-132.
  • [22] Kobus-Cisowska, J., Szymanowska, D., Maciejewska, P., Szczepaniak, O., Kmiecik, D., Gramza-Michałowska, A., Kulczyński, B., Cielecka-Piontek, J. (2019). Enriching novel dark chocolate with Bacillus coagulans as a way to provide beneficial nutrients. Food and Function, 10(2), 997-1006.
  • [23] Minamida, K., Nishimura, M., Miwa, K., Nishihira J. (2015). Effects of dietary fiber with Bacillus coagulans lilac-01 on bowel movement and fecal properties of healthy volunteers with a tendency for constipation. Bioscience, Biotechnology and Biochemistry, 79(2), 300-306.
  • [24] Ayala, F.R., Bauman, C., Cogliati, S., Leñini, C., Bartolini, M., Grau, R. (2017). Microbial flora, probiotics, Bacillus subtilis and the search for a long and healthy human longevity. Microbial Cell, 4(4), 133.
  • [25] Errington, J., Wu, L.J. (2017). Cell Cycle Machinery in Bacillus subtilis. Subcellular Biochemistry, 84, 67-101.
  • [26] Hong, H.A., Khaneja, R., Tam, N.M., Cazzato, A., Tan, S., Urdaci, M., Brisson, A., Gasbarrini, Barnes, A.I., Cutting, S.M. (2009). Bacillus subtilis isolated from the human gastrointestinal tract. Research in Microbiology, 160(2), 134-143.
  • [27] Jeżewska-Frąckowiak, J., Seroczyńska, K., Banaszczyk, J., Jedrzejczak, G., Żylicz-Stachula, A., Skowron, P.M. (2018). The promises and risks of probiotic Bacillus species. Acta Biochimica Polonica, 65 (4), 509-519.
  • [28] Lefevre, M., Racedo, S.M., Denayrolles, M., Ripert, G., Desfougeres, T., Lobach, A.R., Simon, R., Pélerin, F., Jüsten, P., Urdaci, M.C. (2017). Safety assessment of Bacillus subtilis CU1 for use as a probiotic in humans. Regulatory Toxicology and Pharmacology, 83, 54-65.
  • [29] Lei, K., Li, Y.L, Wang, Y., Wen, J., Wu, H.Z., Yu, D.Y., Li.W. (2015). Effect of dietary supplementation of Bacillus subtilis B10 on biochemical and molecular parameters in the serum and liver of high-fat diet-induced obese mice. Journal of Zhejiang University. Science B, 16(6),487-495.
  • [30] Lu, Z., Guo, W., Liu, C. (2018). Isolation, identification, and characterization of novel Bacillus subtilis. Journal of Veterinary Medical Science, 80(3), 427-433.
  • [31] Olmos, J., Paniagua-Michel. J. (2014). Bacillus subtilis a potential probiotic bacterium to formulate functional feeds for aquaculture. Journal of Microbial and Biochemical Technology, 6(7) ,361-365.
  • [32] Piggot, P. (2009). Bacillus subtilis. In Encyclopedia of Microbiology, Edited by M. Schaechter, Academic Press, Oxford, UK, 45-56p.
  • [33] Su, Y., Liu, C., Fang, H., Zhang, D. (2020). Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials, and medicine. Microbial Cell Factories, 19(1), 1-12.
  • [34] Tompkins, T., Xu, X., Ahmarani, J. (2010). A comprehensive review of post-market clinical studies performed in adults with an Asian probiotic formulation. Beneficial Microbes, 1(1), 93-106.
  • [35] Candela, M., Turroni, S., Centanni, M., Fiori, J., Bergmann, S., Hammerschmidt, S., Brigidi, P. (2011). Relevance of Bifidobacterium animalis subsp. lactis plasminogen binding activity in the human gastrointestinal microenvironment. Applied and Environmental Microbiology, 77(19), 7072-7076.
  • [36] de Souza Oliveira, R.P., Perego, P., de Oliveira, M.N., Converti, A. (2012). Growth, organic acids profile and sugar metabolism of Bifidobacterium lactis in co-culture with Streptococcus thermophilus: The inulin effect. Food Research International, 48(1),21-27.
  • [37] Janer, C., Arigoni, F., Lee, B., Peláez, C., Requena, T. (2005). Enzymatic ability of Bifidobacterium animalis subsp. lactis to hydrolyze milk proteins: identification and characterization of endopeptidase O. Applied and Environmental Microbiology, 71(12), 8460-8465.
  • [38] Jungersen, M., Wind, A., Johansen, E., Christensen, J.E., Stuer-Lauridsen, B., Eskesen, D. (2014). The science behind the probiotic strain Bifidobacterium animalis subsp. lactis BB-12®. Microorganisms, 2(2), 92-110.
  • [39] Kim, N.Y., Ji., G.E. (2012). Effects of probiotics on the prevention of atopic dermatitis. Korean Journal of Pediatrics, 55(6), 193.
  • [40] López, P., Gueimonde, M., Margolles, A., Suárez, A. (2010). Distinct Bifidobacterium strains drive different immune responses in vitro. International Journal of Food Microbiology, 138(1-2), 157-165.
  • [41] Meile, L., Ludwig, W., Rueger, U., Gut, C., Kaufmann, P., Dasen, G., Wenger, S., Teuber, M. (1997). Bifidobacterium lactis sp. nov., a moderately oxygen tolerant species isolated from fermented milk. Systematic and Applied Microbiology, 20(1), 57-64.
  • [42] Shah, N.P., Lankaputhra, W.E.V. (2002). Bifidobacterium spp: Morphology and Physiology. In Encyclopaedia of Dairy Sciences, Edited by H. Roginski, Academic Press, USA, 141-146p.
  • [43] Solano-Aguilar, G., Dawson, H., Restrepo, M., Andrews, K., Vinyard, B., Urban Jr, J.F. (2008). Detection of Bifidobacterium animalis subsp. lactis (Bb12) in the intestine after feeding of sows and their piglets. Applied and Environmental Microbiology, 74(20), 6338-6347.
  • [44] Ku, S., Yang, S., Lee, H.H., Choe, D., Johnston, T.V., Ji, G.E., Park, M.S. (2020). Biosafety assessment of Bifidobacterium animalis subsp. lactis AD011 used for human consumption as a probiotic microorganism. Food Control, 117, 106985.
  • [45] Gharbi Yahyaoui, A., Bouzaiene, T., Aouidi, F., Aydi, A., Hamdi, M. (2017). Traditional cereal food as container of probiotic bacteria “Lb. rhamnosus GG”: optimization by response surface methodology. Journal of Food Quality, 1-12.
  • [46] Gorbach, S., Doron, S., Magro. F. (2017). Lactobacillus rhamnosus GG. In The Microbiota in Gastrointestinal Pathophysiology, Edited by M.H. Floch, Y. Ringel, W.A. Walker, Academic Press, San Diego, USA. 79-88p.
  • [47] Johnston, B.C., Goldenberg, J.Z., Parkin, P.C. (2016). Probiotics and the prevention of antibiotic-associated diarrhea in infants and children. Jama, 316(14), 1484-1485.
  • [48] Kim, S.W., Park, K.Y., Kim, B., Kim, E., Hyun, C.K. (2013). Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochemical and Biophysical Research Communications, 431(2), 258-263.
  • [49] Lazzi, C., Turroni, S., Mancini, A., Sgarbi, E., Neviani, E., Brigidi, P., Gatti, M. (2014). Transcriptomic clues to understand the growth of Lactobacillus rhamnosus in cheese. BMC Microbiology, 14(1), 1-14.
  • [50] Segers, M.E., Lebeer, S. (2014). Towards a better understanding of Lactobacillus rhamnosus GG-host interactions. Microbial Cell Factories, 13(1), 1-16.
  • [51] Zheng, J., Wittouck, S., Salvetti, E., Franz, C.M.A.P, Harris, H.M.B., Mattarelli, P., O’toole, P.W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G.E., Ganzle, M.G., Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782-2858.
  • [52] Mann, J. (2014). The science behind the sweetness in our diets. World Health Organization. Bulletin of the World Health Organization, 92(11), 780.
  • [53] FONA International (2021). Sugar: the voice of the consumer. Accessed November 29, 2023. https://www.fona.com/articles/2021/06/sugar-the-voice-of-the-consumer.
  • [54] Sollid, K., Webster, A.D., Paipongna, M., Smith, K. (2022). Food perceptions, beliefs, and behaviors amid a global pandemic: results of the international food information council 2021 food & health survey. Nutrition Today, 57(1), 26-33.
  • [55] Anastasiou, K., Miller, M., Dickinson, K. (2019). The relationship between food label use and dietary intake in adults: A systematic review. Appetite, 138, 280-291.
  • [56] Food and Drug Administration (2023). Generally recognized as safe (GRAS) determination for the intended use of Bifidobacterium animalis ssp. lactis BB-12®. Accessed July 18, 2023. https://www.fda.gov/media/134330/download.
  • [57] Kunz, S., Haasova, S., Rieß, J., Florack, A. (2020). Beyond healthiness: the impact of traffic light labels on taste expectations and purchase intentions. Foods, 9(2), 134.
  • [58] World Health Organization (2015). In Guideline: sugars intake for adults and children, WHO Press, Geneva, Switzerland,14-26p.
  • [59] Mohammadi, R., Mortazavian, A.M., Khosrokhavar, R., da Cruz, A.G. (2011). Probiotic ice cream: viability of probiotic bacteria and sensory properties. Annals of Microbiology, 61, 411-424.
  • [60] Kalicka, D., Znamirowska, A. Pawlos, M., Buniowska, M., Szajnar, K. (2019). Physical and sensory characteristics and probiotic survival in ice cream sweetened with various polyols. International Journal of Dairy Technology, 72(3), 456-465.
  • [61] Shahsavan, A., Pourahmad, R., Rajaei, P. (2018). Effect of different amounts of sugar and fat on the viability of Lactobacillus casei, physical, chemical and sensory properties of probiotic ice cream. International Journal of Biology and Biotechnology, 15(1), 63-69.
  • [62] Konar, N., Palabiyik, I., Toker, O.S., Polat, D.G., Kelleci, E., Pirouzian, H.R., Akcicek, A., Sagdic, O. (2018). Conventional and sugar-free probiotic white chocolate: Effect of inulin DP on various quality properties and viability of probiotics. Journal of Functional Foods, 43, 206-213.
  • [63] dos Santos Filho, A.L., Freitas, H.V., Rodrigues, S., Abreu, V.K.G., de Oliveira Lemos, T., Gomes, W.F., Narain, N., Pereira, A.L.F. (2019). Production and stability of probiotic cocoa juice with sucralose as sugar substitute during refrigerated storage. LWT, 99, 371-378.
  • [64] Bontsidis, C., Mallouchos, A., Terpou, A., Nikolaou, A., Batra, G., Mantzourani, I., Plessas, S. (2021). Microbiological and chemical properties of chokeberry juice fermented by novel lactic acid bacteria with potential probiotic properties during fermentation at 4ºC for 4 weeks. Foods, 10(4), 768.
  • [65] Hekmat, S., Mcmahon, D.J. (1992). Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in ice cream for use as a probiotic food. Journal of Dairy Science, 75(6), 1415-1422.
  • [66] Gündoğdu, E., Ertem, H., Çakmakçı, S. (2022). Effect of using green tea (Camellia sinensis L.) powder and probiotic bacteria on probiotic shelf life and quality properties of ice cream. Akademik Gıda, 20(2), 138-144.
  • [67] Ashwin, D., Ke, V., Taranath, M., Ramagoni, N.K., Nara, A., Sarpangala, M. (2015). Effect of probiotic containing ice-cream on salivary mutans Streptococci (SMS) levels in children of 6-12 years of age: a randomized controlled double-blind study with six-months follow up. Journal of Clinical abd Diognostic Research: JCDR, 9(2), ZC06-09.

Strains and Sugar Contents of Food Products Fortified with Probiotics

Year 2025, Volume: 23 Issue: 1, 60 - 71, 11.05.2025
https://doi.org/10.24323/akademik-gida.1697268

Abstract

An increasing interest in probiotic-fortified foods today can be attributed to factors such as the pandemic, climate change, and modern lifestyles. In the process of incorporating probiotics into foods, several crucial factors must be considered, including the selection of the appropriate strain, ensuring survival in the gut, production techniques, and storage conditions. The sugar content of these products is equally important, as it can significantly affect the survival and effectiveness of probiotics. Some products in the market may contain excessive amounts of sugar to make them more appealing to consumers. This study aims to determine the specific strains and sugar content in commercially available probiotic-fortified foods. Additionally, it seeks to investigate the impact of sugar on probiotics and evaluate the sugar levels in these products based on recommended dietary guidelines. Literature review indicated that strain selection and sugar content in probiotic-fortified foods could play a crucial role in the viability of probiotics and their health effects. High sugar content could negatively impact gut microbiota balance and reduce probiotic survival, emphasizing the necessity for consumers and food manufacturers to carefully assess total and added sugar levels. Further investigation into the interactions between different probiotic strains and sugar types is highly recommended for improving product formulations and ensuring the long-term health benefits of probiotics.

References

  • [1] Davis, D.R. (2009). Declining fruit and vegetable nutrient composition: what is the evidence? HortScience, 44(1), 15-19.
  • [2] Tungland, B. (2018). Dysbiosis of the Microbiota: Therapeutic Strategies Utilizing Dietary Modification, Pro- and Prebiotics and Fecal Transplant Therapies in Promoting Normal Balance and Local GI Functions. In Human Microbiota in Health and Disease, Edited by B. Tungland, Academic Press, Cambridge, USA, 381-419p.
  • [3] Palanivelu, J., Thanigaivel, S., Vickram, S., Dey, N., Mihaylova, D., Desseva, I. (2022). Probiotics in functional foods: survival assessment and approaches for improved viability. Applied Sciences, 12(1), 455.
  • [4] Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., and Salminen S., Calder, P.C., Sanders, M.E. (2014). The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, 11, 506–514.
  • [5] Jones, P.J., Jew, S. (2007). Functional food development: concept to reality. Trends in Food Science and Technology, 18(7), 387-390.
  • [6] Terpou, A., Papadaki, A., Lappa, I.K., Kachrimanidou, V., Bosnea, L.A., Kopsahelis, N. (2019). Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients, 11(7), 1591.
  • [7] Mortazavian, A.M., Mohammadi, R, Sohrabvandi, S. (2012). Delivery of probiotic microorganisms into gastrointestinal tract by food products. In New Advances in the Basic and Clinical Gastroenterology, Edited by T. Brzozowski, InTech, Rijeka, Croatia, 121-146p.
  • [8] Konuray, G., Erginkaya, Z. (2018). Potential use of Bacillus coagulans in the food industry. Foods, 7(6), 92.
  • [9] Acton, R.B., Vanderlee, L., Hobin, E.P., Hammond, D. (2017). Added sugar in the packaged foods and beverages available at a major Canadian retailer in 2015: a descriptive analysis. Canadian Medical Association Open Access Journal, 5(1), E1-E6.
  • [10] Johnson, R.J., Segal, M.S., Sautin, Y., Nakagawa, T., Feig, D.I., Kang, D.-H., Gersch, M.S., Benner, S., Sánchez-Lozada, L.G. (2007). Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. The American Journal of Clinical Nutrition, 86(4), 899-906.
  • [11] Akın, M., Akın, M., Kırmacı, Z. (2007). Effects of inulin and sugar levels on the viability of yoghurt and probiotic bacteria and the physical and sensory characteristics in probiotic ice-cream. Food Chemistry,104(1), 93-99.
  • [12] Blaiotta, G., La Gatta, B., Di Capua, M., Di Luccia, A., Coppola, R., Aponte, M. (2013). Effect of chestnut extract and chestnut fiber on viability of potential probiotic Lactobacillus strains under gastrointestinal tract conditions. Food Microbiology, 36(2), 161-169.
  • [13] Heidebach, T., Först, P., Kulozik, U. (2012). Microencapsulation of probiotic cells for food applications. Critical Reviews in Food Science and Nutrition, 52(4), 291-311.
  • [14] Kalicka, D., Znamirowska, A., Pawlos, M., Buniowska, M., Szajnar, K. (2019). Physical and sensory characteristics and probiotic survival in ice cream sweetened with various polyols. International Journal of Dairy Technology, 72(3), 456-465.
  • [15] Francavilla, R., Piccolo, M., Francavilla, A., Polimeno, L., Semeraro, F., Cristofori, F., Castellaneta, S., Barone, M., Indrio, F., Gobbetti, M., De Angelis, M. (2019). Clinical and microbiological effect of a multispecies probiotic supplementation in celiac patients with persistent IBS-type symptoms: a randomized, double-blind, placebo-controlled, multicenter trial. Journal of Clinical Gastroenterology, 53(3), e117.
  • [16] Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., Li, Y., Xia, Y., Xie, H., Zhong, H., Khan, M.T., Zhang, J., Li, J., Xiao, L., Al-Aama, J., Zhang, D., Lee, Y.S., Kotowska, D., Colding, C., Tremaroli, V., Yin, Y., Bergman, S., Xu, X., Madsen, L., Kristiansen, K., Dahlgren, J., Wang, J. (2015). Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe, 17(5),690-703.
  • [17] Ciorba, M.A. (2012). A gastroenterologist's guide to probiotics. Clinical Gastroenterology and Hepatology, 10(9), 960-968.
  • [18] Altun, G.K., Erginkaya, Z. (2021). Identification and characterization of Bacillus coagulans strains for probiotic activity and safety. LWT, 151, 112233.
  • [19] Aminlari, L., Shekarforoush, S.S., Hosseinzadeh, S., Nazifi, S., Sajedianfard, J., Eskandari, M.H. (2019). Effect of probiotics Bacillus coagulans and Lactobacillus plantarum on lipid profile and feces bacteria of rats fed cholesterol-enriched diet. Probiotics and Antimicrobial Proteins, 11, 1163-1171.
  • [20] Batra, N., Singh, J., Banerjee, U.C., Patnaik, P.R., Sobti, R.C. (2002). Production and characterization of a thermostable β‐galactosidase from Bacillus coagulans RCS3. Biotechnology and Applied Biochemistry, 36(1), 1-6.
  • [21] Kimmel, M., Keller, D., Farmer, S., Warrino, D. (2010). A controlled clinical trial to evaluate the effect of GanedenBC (30) on immunological markers. Methods and Findings in Experimental and Clinical Pharmacology, 32(2), 129-132.
  • [22] Kobus-Cisowska, J., Szymanowska, D., Maciejewska, P., Szczepaniak, O., Kmiecik, D., Gramza-Michałowska, A., Kulczyński, B., Cielecka-Piontek, J. (2019). Enriching novel dark chocolate with Bacillus coagulans as a way to provide beneficial nutrients. Food and Function, 10(2), 997-1006.
  • [23] Minamida, K., Nishimura, M., Miwa, K., Nishihira J. (2015). Effects of dietary fiber with Bacillus coagulans lilac-01 on bowel movement and fecal properties of healthy volunteers with a tendency for constipation. Bioscience, Biotechnology and Biochemistry, 79(2), 300-306.
  • [24] Ayala, F.R., Bauman, C., Cogliati, S., Leñini, C., Bartolini, M., Grau, R. (2017). Microbial flora, probiotics, Bacillus subtilis and the search for a long and healthy human longevity. Microbial Cell, 4(4), 133.
  • [25] Errington, J., Wu, L.J. (2017). Cell Cycle Machinery in Bacillus subtilis. Subcellular Biochemistry, 84, 67-101.
  • [26] Hong, H.A., Khaneja, R., Tam, N.M., Cazzato, A., Tan, S., Urdaci, M., Brisson, A., Gasbarrini, Barnes, A.I., Cutting, S.M. (2009). Bacillus subtilis isolated from the human gastrointestinal tract. Research in Microbiology, 160(2), 134-143.
  • [27] Jeżewska-Frąckowiak, J., Seroczyńska, K., Banaszczyk, J., Jedrzejczak, G., Żylicz-Stachula, A., Skowron, P.M. (2018). The promises and risks of probiotic Bacillus species. Acta Biochimica Polonica, 65 (4), 509-519.
  • [28] Lefevre, M., Racedo, S.M., Denayrolles, M., Ripert, G., Desfougeres, T., Lobach, A.R., Simon, R., Pélerin, F., Jüsten, P., Urdaci, M.C. (2017). Safety assessment of Bacillus subtilis CU1 for use as a probiotic in humans. Regulatory Toxicology and Pharmacology, 83, 54-65.
  • [29] Lei, K., Li, Y.L, Wang, Y., Wen, J., Wu, H.Z., Yu, D.Y., Li.W. (2015). Effect of dietary supplementation of Bacillus subtilis B10 on biochemical and molecular parameters in the serum and liver of high-fat diet-induced obese mice. Journal of Zhejiang University. Science B, 16(6),487-495.
  • [30] Lu, Z., Guo, W., Liu, C. (2018). Isolation, identification, and characterization of novel Bacillus subtilis. Journal of Veterinary Medical Science, 80(3), 427-433.
  • [31] Olmos, J., Paniagua-Michel. J. (2014). Bacillus subtilis a potential probiotic bacterium to formulate functional feeds for aquaculture. Journal of Microbial and Biochemical Technology, 6(7) ,361-365.
  • [32] Piggot, P. (2009). Bacillus subtilis. In Encyclopedia of Microbiology, Edited by M. Schaechter, Academic Press, Oxford, UK, 45-56p.
  • [33] Su, Y., Liu, C., Fang, H., Zhang, D. (2020). Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials, and medicine. Microbial Cell Factories, 19(1), 1-12.
  • [34] Tompkins, T., Xu, X., Ahmarani, J. (2010). A comprehensive review of post-market clinical studies performed in adults with an Asian probiotic formulation. Beneficial Microbes, 1(1), 93-106.
  • [35] Candela, M., Turroni, S., Centanni, M., Fiori, J., Bergmann, S., Hammerschmidt, S., Brigidi, P. (2011). Relevance of Bifidobacterium animalis subsp. lactis plasminogen binding activity in the human gastrointestinal microenvironment. Applied and Environmental Microbiology, 77(19), 7072-7076.
  • [36] de Souza Oliveira, R.P., Perego, P., de Oliveira, M.N., Converti, A. (2012). Growth, organic acids profile and sugar metabolism of Bifidobacterium lactis in co-culture with Streptococcus thermophilus: The inulin effect. Food Research International, 48(1),21-27.
  • [37] Janer, C., Arigoni, F., Lee, B., Peláez, C., Requena, T. (2005). Enzymatic ability of Bifidobacterium animalis subsp. lactis to hydrolyze milk proteins: identification and characterization of endopeptidase O. Applied and Environmental Microbiology, 71(12), 8460-8465.
  • [38] Jungersen, M., Wind, A., Johansen, E., Christensen, J.E., Stuer-Lauridsen, B., Eskesen, D. (2014). The science behind the probiotic strain Bifidobacterium animalis subsp. lactis BB-12®. Microorganisms, 2(2), 92-110.
  • [39] Kim, N.Y., Ji., G.E. (2012). Effects of probiotics on the prevention of atopic dermatitis. Korean Journal of Pediatrics, 55(6), 193.
  • [40] López, P., Gueimonde, M., Margolles, A., Suárez, A. (2010). Distinct Bifidobacterium strains drive different immune responses in vitro. International Journal of Food Microbiology, 138(1-2), 157-165.
  • [41] Meile, L., Ludwig, W., Rueger, U., Gut, C., Kaufmann, P., Dasen, G., Wenger, S., Teuber, M. (1997). Bifidobacterium lactis sp. nov., a moderately oxygen tolerant species isolated from fermented milk. Systematic and Applied Microbiology, 20(1), 57-64.
  • [42] Shah, N.P., Lankaputhra, W.E.V. (2002). Bifidobacterium spp: Morphology and Physiology. In Encyclopaedia of Dairy Sciences, Edited by H. Roginski, Academic Press, USA, 141-146p.
  • [43] Solano-Aguilar, G., Dawson, H., Restrepo, M., Andrews, K., Vinyard, B., Urban Jr, J.F. (2008). Detection of Bifidobacterium animalis subsp. lactis (Bb12) in the intestine after feeding of sows and their piglets. Applied and Environmental Microbiology, 74(20), 6338-6347.
  • [44] Ku, S., Yang, S., Lee, H.H., Choe, D., Johnston, T.V., Ji, G.E., Park, M.S. (2020). Biosafety assessment of Bifidobacterium animalis subsp. lactis AD011 used for human consumption as a probiotic microorganism. Food Control, 117, 106985.
  • [45] Gharbi Yahyaoui, A., Bouzaiene, T., Aouidi, F., Aydi, A., Hamdi, M. (2017). Traditional cereal food as container of probiotic bacteria “Lb. rhamnosus GG”: optimization by response surface methodology. Journal of Food Quality, 1-12.
  • [46] Gorbach, S., Doron, S., Magro. F. (2017). Lactobacillus rhamnosus GG. In The Microbiota in Gastrointestinal Pathophysiology, Edited by M.H. Floch, Y. Ringel, W.A. Walker, Academic Press, San Diego, USA. 79-88p.
  • [47] Johnston, B.C., Goldenberg, J.Z., Parkin, P.C. (2016). Probiotics and the prevention of antibiotic-associated diarrhea in infants and children. Jama, 316(14), 1484-1485.
  • [48] Kim, S.W., Park, K.Y., Kim, B., Kim, E., Hyun, C.K. (2013). Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochemical and Biophysical Research Communications, 431(2), 258-263.
  • [49] Lazzi, C., Turroni, S., Mancini, A., Sgarbi, E., Neviani, E., Brigidi, P., Gatti, M. (2014). Transcriptomic clues to understand the growth of Lactobacillus rhamnosus in cheese. BMC Microbiology, 14(1), 1-14.
  • [50] Segers, M.E., Lebeer, S. (2014). Towards a better understanding of Lactobacillus rhamnosus GG-host interactions. Microbial Cell Factories, 13(1), 1-16.
  • [51] Zheng, J., Wittouck, S., Salvetti, E., Franz, C.M.A.P, Harris, H.M.B., Mattarelli, P., O’toole, P.W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G.E., Ganzle, M.G., Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782-2858.
  • [52] Mann, J. (2014). The science behind the sweetness in our diets. World Health Organization. Bulletin of the World Health Organization, 92(11), 780.
  • [53] FONA International (2021). Sugar: the voice of the consumer. Accessed November 29, 2023. https://www.fona.com/articles/2021/06/sugar-the-voice-of-the-consumer.
  • [54] Sollid, K., Webster, A.D., Paipongna, M., Smith, K. (2022). Food perceptions, beliefs, and behaviors amid a global pandemic: results of the international food information council 2021 food & health survey. Nutrition Today, 57(1), 26-33.
  • [55] Anastasiou, K., Miller, M., Dickinson, K. (2019). The relationship between food label use and dietary intake in adults: A systematic review. Appetite, 138, 280-291.
  • [56] Food and Drug Administration (2023). Generally recognized as safe (GRAS) determination for the intended use of Bifidobacterium animalis ssp. lactis BB-12®. Accessed July 18, 2023. https://www.fda.gov/media/134330/download.
  • [57] Kunz, S., Haasova, S., Rieß, J., Florack, A. (2020). Beyond healthiness: the impact of traffic light labels on taste expectations and purchase intentions. Foods, 9(2), 134.
  • [58] World Health Organization (2015). In Guideline: sugars intake for adults and children, WHO Press, Geneva, Switzerland,14-26p.
  • [59] Mohammadi, R., Mortazavian, A.M., Khosrokhavar, R., da Cruz, A.G. (2011). Probiotic ice cream: viability of probiotic bacteria and sensory properties. Annals of Microbiology, 61, 411-424.
  • [60] Kalicka, D., Znamirowska, A. Pawlos, M., Buniowska, M., Szajnar, K. (2019). Physical and sensory characteristics and probiotic survival in ice cream sweetened with various polyols. International Journal of Dairy Technology, 72(3), 456-465.
  • [61] Shahsavan, A., Pourahmad, R., Rajaei, P. (2018). Effect of different amounts of sugar and fat on the viability of Lactobacillus casei, physical, chemical and sensory properties of probiotic ice cream. International Journal of Biology and Biotechnology, 15(1), 63-69.
  • [62] Konar, N., Palabiyik, I., Toker, O.S., Polat, D.G., Kelleci, E., Pirouzian, H.R., Akcicek, A., Sagdic, O. (2018). Conventional and sugar-free probiotic white chocolate: Effect of inulin DP on various quality properties and viability of probiotics. Journal of Functional Foods, 43, 206-213.
  • [63] dos Santos Filho, A.L., Freitas, H.V., Rodrigues, S., Abreu, V.K.G., de Oliveira Lemos, T., Gomes, W.F., Narain, N., Pereira, A.L.F. (2019). Production and stability of probiotic cocoa juice with sucralose as sugar substitute during refrigerated storage. LWT, 99, 371-378.
  • [64] Bontsidis, C., Mallouchos, A., Terpou, A., Nikolaou, A., Batra, G., Mantzourani, I., Plessas, S. (2021). Microbiological and chemical properties of chokeberry juice fermented by novel lactic acid bacteria with potential probiotic properties during fermentation at 4ºC for 4 weeks. Foods, 10(4), 768.
  • [65] Hekmat, S., Mcmahon, D.J. (1992). Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in ice cream for use as a probiotic food. Journal of Dairy Science, 75(6), 1415-1422.
  • [66] Gündoğdu, E., Ertem, H., Çakmakçı, S. (2022). Effect of using green tea (Camellia sinensis L.) powder and probiotic bacteria on probiotic shelf life and quality properties of ice cream. Akademik Gıda, 20(2), 138-144.
  • [67] Ashwin, D., Ke, V., Taranath, M., Ramagoni, N.K., Nara, A., Sarpangala, M. (2015). Effect of probiotic containing ice-cream on salivary mutans Streptococci (SMS) levels in children of 6-12 years of age: a randomized controlled double-blind study with six-months follow up. Journal of Clinical abd Diognostic Research: JCDR, 9(2), ZC06-09.
There are 67 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Review Papers
Authors

Bengi Bayer 0009-0009-6864-9459

Nuran Usta 0009-0008-4922-5864

Özlem Üstün Aytekin 0000-0002-1014-9912

Publication Date May 11, 2025
Submission Date March 14, 2024
Acceptance Date March 13, 2025
Published in Issue Year 2025 Volume: 23 Issue: 1

Cite

APA Bayer, B., Usta, N., & Üstün Aytekin, Ö. (2025). Strains and Sugar Contents of Food Products Fortified with Probiotics. Akademik Gıda, 23(1), 60-71. https://doi.org/10.24323/akademik-gida.1697268
AMA Bayer B, Usta N, Üstün Aytekin Ö. Strains and Sugar Contents of Food Products Fortified with Probiotics. Akademik Gıda. May 2025;23(1):60-71. doi:10.24323/akademik-gida.1697268
Chicago Bayer, Bengi, Nuran Usta, and Özlem Üstün Aytekin. “Strains and Sugar Contents of Food Products Fortified With Probiotics”. Akademik Gıda 23, no. 1 (May 2025): 60-71. https://doi.org/10.24323/akademik-gida.1697268.
EndNote Bayer B, Usta N, Üstün Aytekin Ö (May 1, 2025) Strains and Sugar Contents of Food Products Fortified with Probiotics. Akademik Gıda 23 1 60–71.
IEEE B. Bayer, N. Usta, and Ö. Üstün Aytekin, “Strains and Sugar Contents of Food Products Fortified with Probiotics”, Akademik Gıda, vol. 23, no. 1, pp. 60–71, 2025, doi: 10.24323/akademik-gida.1697268.
ISNAD Bayer, Bengi et al. “Strains and Sugar Contents of Food Products Fortified With Probiotics”. Akademik Gıda 23/1 (May 2025), 60-71. https://doi.org/10.24323/akademik-gida.1697268.
JAMA Bayer B, Usta N, Üstün Aytekin Ö. Strains and Sugar Contents of Food Products Fortified with Probiotics. Akademik Gıda. 2025;23:60–71.
MLA Bayer, Bengi et al. “Strains and Sugar Contents of Food Products Fortified With Probiotics”. Akademik Gıda, vol. 23, no. 1, 2025, pp. 60-71, doi:10.24323/akademik-gida.1697268.
Vancouver Bayer B, Usta N, Üstün Aytekin Ö. Strains and Sugar Contents of Food Products Fortified with Probiotics. Akademik Gıda. 2025;23(1):60-71.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).