Review
BibTex RIS Cite

Sürdürülebilir Bitki Bazlı Gıdaların Rolü ve Potansiyel Kaynakları: Geleceğe Bir Bakış

Year 2025, Volume: 23 Issue: 2, 164 - 172, 20.07.2025
https://doi.org/10.24323/akademik-gida.1746657

Abstract

Küresel ısınma ve iklim değişikliği gibi çevresel sorunlardan etkilenen gıda endüstrisi, sürdürülebilir bir gıda sistemi oluşturma yolunda önemli bir değişim yaşamaktadır. Bu sistem, doğal kaynaklarımız üzerindeki olumsuz etkiyi azaltırken herkes için yeterli ve besleyici gıda sağlamayı önceliklendirmektedir. Hayvansal kaynaklar yüksek besin içeriğine sahip olmasına rağmen, sürdürülebilirlik konusundaki tüketici endişeleri alternatif kaynak arayışını arttırmaktadır. Sürdürülebilir ve sağlıklı seçimlere olan tüketici ilgisinin artmasıyla birlikte bitkisel gıda kaynaklarına olan talep artış göstermektedir. Bitkisel protein kaynakları genel olarak tohumlar, baklagiller, yağlı tohumlar ve kabuklu yemişler olarak bilinmektedir. Bu bitkisel kaynaklı proteinler gıda olarak tüketilebildiği gibi çeşitli tekno-fonksiyonel özellikleri sebebiyle gıda endüstrisinde de kullanım potansiyeline sahiptir. Bitki bazlı gıdalar sadece protein kaynağı olarak değil, aynı zamanda lif, vitaminler ve mineraller bakımından da zengin kaynaklardır. Bu çalışma, gelişen dünya ve artan popülasyonun bitki bazlı gıdalar üzerindeki etkisi, bitki bazlı gıdaların besin değeri ve potansiyel kullanım alanları üzerine odaklanmıştır.

References

  • [1] Moss, R., LeBlanc, J., Gorman, M., Ritchie, C., Duizer, L., McSweeney, M.B. (2023). A prospective review of the sensory properties of plant-based dairy and meat alternatives with a focus on texture. Foods, 12(8), 1709.
  • [2] Julian, M.D., Grossmann, L. (2021). A brief review of the science behind the design of healthy and sustainable plant-based foods. NPJ Science of Food, 5(1), 17.
  • [3] Pointke, M., Albrecht, E.H., Geburt, K., Gerken, M., Traulsen, I., Pawelzik, E. (2022). A comparative analysis of plant-based milk alternatives part 1: composition, sensory, and nutritional value. Sustainability, 14(13), 7996.
  • [4] Aschemann-Witzel, J., Gantriis, R.F., Fraga, P., Perez-Cueto, F.J. (2021). Plant-based food and protein trend from a business perspective: markets, consumers, and the challenges and opportunities in the future. Critical Reviews in Food Science and Nutrition, 61(18), 3119-3128.
  • [5] Kumar, M., Tomar, M., Punia, S., Dhakane-Lad, J., Dhumal, S., Changan, S., Senapathy, M., Berwal, M.K., Sampathrajan, V., Sayed, A.A.S., Chandran, D., Pandiselvam, R., Rais, N., Mahato, D. K., Udikeri, S.S., Satankar, V., Anitha, T., Reetu, Radha, Singh, S., Amarowicz, R., Kennedy, J.F. (2022). Plant-based proteins and their multifaceted industrial applications. LWT Food Science and Technology, 154, 112620.
  • [6] Schiano, A.N., Harwood, W.S., Gerard, P.D., Drake, M.A. (2020). Consumer perception of the sustainability of dairy products and plant-based dairy alternatives. Journal of Dairy Science, 103(12), 11228-11243.
  • [7] Langyan, S., Yadava, P., Khan, F.N., Dar, Z.A., Singh, R., Kumar, A. (2022). Sustaining protein nutrition through plant-based foods. Frontiers in Nutrition, 8, 772573.
  • [8] Gomes, A., Sobral, P.J.D.A. (2021). Plant protein-based delivery systems: an emerging approach for increasing the efficacy of lipophilic bioactive compounds. Molecules, 27(1), 60.
  • [9] Trautwein, E.A., McKay, S. (2020). The role of specific components of a plant-based diet in management of dyslipidemia and the impact on cardiovascular risk. Nutrients, 12(9), 2671.
  • [10] Baba, G., Bozatlı, S.B., Dikici, A. (2024). Bitkisel süt üretimi ve insan sağlığı üzerine etkisi. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi, 8(1), 80-89.
  • [11] Matar, A.A., Selçuk, K.T., Arslan, S. (2024). Bölüm 5: Bitkisel Kaynaklı Beslenme Modellerinin Sağlık ve Çevresel Sürdürülebilirliğe Etkileri. Sağlık Bilimleri Alanındaki Gelişmeler, Ed. Atik, D., Kaya, H. B. Platanus Publishing, 2024, Ankara, Türkiye, 780s.
  • [12] Nolden, A.A., Forde, C.G. (2023). The nutritional quality of plant-based foods. Sustainability, 15(4), 3324.
  • [13] Cardello, A.V., Llobell, F., Giacalone, D., Chheang, S.L., Jaeger, S.R. (2022). Consumer preference segments for plant-based foods: the role of product category. Foods, 11(19), 3059.
  • [14] Quintieri, L., Nitride, C., De Angelis, E., Lamonaca, A., Pilolli, R., Russo, F., Monaci, L. (2023). Alternative protein sources and novel foods: benefits, food applications and safety issues. Nutrients, 15(6), 1509.
  • [15] Ahnen, R.T., Jonnalagadda, S.S., Slavin, J.L. (2019). Role of plant protein in nutrition, wellness, and health. Nutrition Reviews, 77(11), 735-747.
  • [16] Sá, A.G.A., Moreno, Y.M.F., Carciofi, B.A.M. (2020). Plant proteins as high-quality nutritional source for human diet. Trends in Food Science & Technology, 97, 170-184.
  • [17] Qin, P., Wang, T., Luo, Y. (2022). A review on plant-based proteins from soybean: health benefits and soy product development. Journal of Agriculture and Food Research, 7, 100265.
  • [18] Nasrabadi, M.N., Doost, A.S., Mezzenga, R. (2021). Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 118, 106789.
  • [19] Mattila, P., Mäkinen, S., Eurola, M., Jalava, T., Pihlava, J.M., Hellström, J., Pihlanto, A. (2018). Nutritional value of commercial protein-rich plant products. Plant Foods for Human Nutrition, 73(2), 108-115.
  • [20] Lizarazo, C. I., Lampi, A. M., Liu, J., Sontag‐Strohm, T., Piironen, V., Stoddard, F. L. (2015). Nutritive quality and protein production from grain legumes in a boreal climate. Journal of the Science of Food and Agriculture, 95(10), 2053-2064.
  • [21] Gimenez-Bastida, J. A., Zielinski, H. (2015). Buckwheat as a functional food and its effects on health. Journal of Agricultural and Food Chemistry, 63(36), 7896-7913.
  • [22] Kajla, P., Sharma, A., Sood, D. R. (2015). Flaxseed—a potential functional food source. Journal of Food Science and Technology, 52, 1857-1871.
  • [23] Goyal, A., Sharma, V., Upadhyay, N., Gill, S., Sihag, M. (2014). Flax and flaxseed oil: an ancient medicine & modern functional food. Journal of Food Science and Technology, 51, 1633-1653.
  • [24] Aderibigbe, O. R., Ezekiel, O. O., Owolade, S. O., Korese, J. K., Sturm, B., Hensel, O. (2022). Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: a review. Critical Reviews in Food Science and Nutrition, 62(3), 656-669.
  • [25] Javaid, T., Mahmood, S., Saeed, W., Qamrosh, M. (2019). A critical review in varieties and benefits of almond (Prunus dulcis). Acta Scientific Nutrition Health, 3(11), 70-72.
  • [26] Mandalari, G., Barreca, D., Gervasi, T., Roussell, M. A., Klein, B., Feeney, M. J., Carughi, A. (2021). Pistachio nuts (Pistacia vera L.): production, nutrients, bioactives and novel health effects. Plants, 11(1), 18.
  • [27] Hekmatpour, F., Mozanzadeh, M.T. (2021). Legumes, sustainable alternative protein sources for aquafeeds. In Legumes Research-Volume 2. IntechOpen.
  • [28] Khosravi, A., Razavi, S.H. (2021). Therapeutic effects of polyphenols in fermented soybean and black soybean products. Journal of Functional Foods, 81, 104467.
  • [29] Seyhan, S., Nakilcioğlu, E., Ötleş, S. (2024). Geleceğin alternatif protein kaynakları: bitkiler. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 12(1), 153-174.
  • [30] Boukid, F., Pasqualone, A. (2022). Lupine (Lupinus spp.) proteins: characteristics, safety and food applications. European Food Research and Technology, 248(2), 345-356.
  • [31] Dhull, S.B., Kidwai, M.K., Noor, R., Chawla, P., Rose, P.K. (2022). A review of nutritional profile and processing of faba bean (Vicia faba L.). Legume Science, 4(3), e129.
  • [32] Boukid, F. (2021). Chickpea (Cicer arietinum L.) protein as a prospective plant‐based ingredient: a review. International Journal of Food Science & Technology, 56(11), 5435-5444.
  • [33] Tachie, C., Nwachukwu, I.D., Aryee, A.N. (2023). Trends and innovations in the formulation of plant-based foods. Food Production, Processing and Nutrition, 5(1), 16.
  • [34] Akharume, F.U., Aluko, R.E., Adedeji, A.A. (2021). Modification of plant proteins for improved functionality: a review. Comprehensive Reviews in Food Science and Food Safety, 20(1), 198-224.
  • [35] Ma, K.K., Greis, M., Lu, J., Nolden, A.A., McClements, D.J., Kinchla, A.J. (2022). Functional performance of plant proteins. Foods, 11(4), 594.
  • [36] Aryee, A.N., Boye, J.I. (2017). Comparative study of the effects of processing on the nutritional, physicochemical and functional properties of lentil. Journal of Food Processing and Preservation, 41(1), e12824.
  • [37] Poutanen, K.S., Kårlund, A.O., Gómez-Gallego, C., Johansson, D.P., Scheers, N.M., Marklinder, I.M., Eriksen, A.K., Silventoinen, P.C., Nordlund, E., Sozer, N., Hanhineva, K.J., Kolehmainen, M., Landberg, R. (2022). Grains-a major source of sustainable protein for health. Nutrition Reviews, 80(6), 1648-1663.
  • [38] Hussain, S., Anjum, F.M., Butt, M.S., Alamri, M.S., Khan, M.R. (2012). Biochemical and nutritional evaluation of unleavened flat breads fortified with healthy flaxseed. International Journal of Agriculture and Biology, 14(2), 190–196.
  • [39] Coda, R., Varis, J., Verni, M., Rizzello, C.G., Katina, K. (2017). Improvement of the protein quality of wheat bread through faba bean sourdough addition. LWT-Food Science and Technology, 82, 296-302.
  • [40] Mir, N.A., Riar, C.S., Singh, S. (2018). Nutritional constituents of pseudo cereals and their potential use in food systems: a review. Trends in Food Science & Technology, 75, 170-180.
  • [41] Mota, C., Santos, M., Mauro, R., Samman, N., Matos, A.S., Torres, D., Castanheira, I. (2016). Protein content and amino acids profile of pseudocereals. Food Chemistry, 193, 55-61.
  • [42] López, D.N., Galante, M., Robson, M., Boeris, V., Spelzini, D. (2018). Amaranth, quinoa and chia protein isolates: physicochemical and structural properties. International Journal of Biological Macromolecules, 109, 152-159.
  • [43] Schoenlechner, R., Siebenhandl, S., Berghofer, E. (2008). Pseudocereals. Gluten-free cereal products and beverages. Academic Press, 6, 149-190.
  • [44] Çetiner, M., Bilek, S.E. (2018). Bitkisel protein kaynakları. Çukurova Tarım ve Gıda Bilimleri Dergisi, 33(2), 111-126.
  • [45] Grancieri, M., Martino, H.S.D., Gonzalez de Mejia, E. (2019). Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: a review. Comprehensive Reviews in Food Science and Food Safety, 18(2), 480-499.
  • [46] Kulczyński, B., Kobus-Cisowska, J., Taczanowski, M., Kmiecik, D., Gramza-Michałowska, A. (2019). The chemical composition and nutritional value of chia seeds—Current state of knowledge. Nutrients, 11(6), 1242.
  • [47] McClements, D.J., Grossmann, L. (2021). A brief review of the science behind the design of healthy and sustainable plant-based foods. NPJ Science of Food, 5(1), 17.
  • [48] Massantini, R., Frangipane, M.T. (2022). Progress in almond quality and sensory assessment: An overview. Agriculture, 12(5), 710.
  • [49] Karaosmanoğlu, H. (2022). Lipid characteristics, bioactive properties, and mineral content in hazelnut grown under different cultivation systems. Journal of Food Processing and Preservation, 46(7), e16717.
  • [50] Amaral, J.S., Casal, S., Citová, I., Santos, A., Seabra, R.M., Oliveira, B.P. (2006). Characterization of several hazelnut (Corylus avellana L.) cultivars based in chemical, fatty acid and sterol composition. European Food Research and Technology, 222, 274-280.
  • [51] Campos-Mondragón, M.G., De La Barca, A.C., Durán-Prado, A., Campos-Reyes, L.C., Oliart-Ros, R.M., Ortega-García, J., Medina-Juárez, L.A., Angulo, O. (2009). Nutritional composition of new peanut (Arachis hypogaea L.) cultivars. Grasas y Aceites, 60(2), 161-167.
  • [52] Ravindran, R., Jaiswal, A.K. (2016). Exploitation of food industry waste for high-value products. Trends in Biotechnology, 34(1), 58-69.
  • [53] RedCorn, R., Fatemi, S., Engelberth, A.S. (2018). Comparing end-use potential for industrial food-waste sources. Engineering, 4(3), 371-380.
  • [54] Caner, C., Yüceer, M., Harte, B. (2024). Trends in sustainability and ınnovative food packaging materials: an overview. Akademik Gıda (Yeşil Dönüşüm Özel Sayısı), 65-77.
  • [55] Martins, A.N.A., Pasquali, M.A.D.B., Schnorr, C.E., Martins, J.J.A., de Araújo, G.T., Rocha, A.P.T. (2019). Development and characterization of blends formulated with banana peel and banana pulp for the production of blends powders rich in antioxidant properties. Journal of Food Science and Technology, 56, 5289-5297.
  • [56] Puraikalan, Y. (2018). Characterization of proximate, phytochemical and antioxidant analysis of banana (Musa sapientum) peels/skins and objective evaluation of ready to eat/cook product made with banana peels. Current Research in Nutrition and Food Science Journal, 6(2), 382-391.
  • [57] Carvalho, V.S., Conti‐Silva, A.C. (2018). Cereal bars produced with banana peel flour: evaluation of acceptability and sensory profile. Journal of the Science of Food and Agriculture, 98(1), 134-139.
  • [58] Stragliotto, L.K., Ferrari, G.T., Campagnol, P.C.B., Strasburg, V.J., Zandonadi, R.P., de Oliveira, V.R. (2022). Green banana by-products on the chemical, technological and sensory quality of meat products. International Journal of Gastronomy and Food Science, 30, 100614.
  • [59] Erem, E., Icyer, N.C., Tatlisu, N.B., Kilicli, M., Kaderoglu, G.H., Toker, Ö.S. (2023). A new trend among plant-based food ingredients in food processing technology: aquafaba. Critical Reviews in Food Science and Nutrition, 63(20), 4467-4484.
  • [60] Bird, L.G., Pilkington, C.L., Saputra, A., Serventi, L. (2017). Products of chickpea processing as texture improvers in gluten-free bread. Food Science and Technology International, 23(8), 690-698.
  • [61] Mustafa, R., He, Y., Shim, Y.Y., Reaney, M.J. (2018). Aquafaba, wastewater from chickpea canning, functions as an egg replacer in sponge cake. International Journal of Food Science & Technology, 53(10), 2247-2255.
  • [62] Raikos, V., Hayes, H., Ni, H. (2020). Aquafaba from commercially canned chickpeas as potential egg replacer for the development of vegan mayonnaise: recipe optimisation and storage stability. International Journal of Food Science & Technology, 55(5), 1935-1942.
  • [63] Espinosa-Ramírez, J., Mondragón-Portocarrero, A.C., Rodríguez, J.A., Lorenzo, J.M., Santos, E.M. (2023). Algae as a potential source of protein meat alternatives. Frontiers in Nutrition, 10, 1254300.
  • [64] Ijaola, A.O., Akamo, D.O., George, T.T., Sengul, A., Adediji, M.Y., Asmatulu, E. (2023). Algae as a potential source of protein: a review on cultivation, harvesting, extraction, and applications. Algal Research, 77, 103329.
  • [65] Alcorta, A., Porta, A., Tárrega, A., Alvarez, M.D., Vaquero, M.P. (2021). Foods for plant-based diets: challenges and innovations. Foods, 10(2), 293.
  • [66] Ścieszka, S., Klewicka, E. (2019). Algae in food: a general review. Critical Reviews in Food Science and Nutrition, 59(21), 3538-3547.
  • [67] Kurek, M.A., Onopiuk, A., Pogorzelska-Nowicka, E., Szpicer, A., Zalewska, M., Półtorak, A. (2022). Novel protein sources for applications in meat-alternative products-insight and challenges. Foods, 11(7), 957.
  • [68] Ursu, A.V., Marcati, A., Sayd, T., Sante-Lhoutellier, V., Djelveh, G., Michaud, P. (2014). Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris. Bioresource Technology, 157, 134-139.
  • [69] Ünver Alçay, A., Sağlam, A., Yalçın, S., Bostan, K. (2018). Possible protein sources for the future. Akademik Gıda, 16(2), 197-204.
  • [70] Melina V, Craig W, Levin S (2016). Position of the academy of nutrition and dietetics: vegetarian diets. Journal of the Academy of Nutrition and Dietetics, 116(12), 1970-1980.
  • [71] Macan Schönleben, A., den Ouden, F., Yin, S., Fransen, E., Bosschaerts, S., Andjelkovic, M., Rehman, N., van Nuijs, A. L. N., Covaci, A., Poma, G. (2025). Organophosphorus flame retardant, phthalate, and alternative plasticizer contamination in novel plant-based food: a food safety investigation. Environmental Science & Technology. 59(18), 9209-9220.
  • [72] Mariotti F, Gardner C.D. (2019). Dietary protein and amino acids in vegetarian diets—a review. Nutrients, 11(11), 2661.
  • [73] Lin, X., Duan, N., Wu, J., Lv, Z., Wang, Z., Wu, S. (2023). Potential food safety risk factors in plant-based foods: source, occurrence, and detection methods. Trends in Food Science & Technology, 138, 511-522.
  • [74] Lusk, J. L., Blaustein-Rejto, D., Shah, S., Tonsor, G. T. (2022). Impact of plant-based meat alternatives on cattle inventories and greenhouse gas emissions. Environmental Research Letters, 17, 024035.
  • [75] Kilci, Z. (2023). Bitkisel bazlı diyetler: yenilikçi uygulamalar & karşılaşılan zorluklar (Bölüm 3). Mühendislik Alanında Akademik Analiz ve Tartışmalar (Editörler: M. Bozdemir ve R. Uzun Arslan). Özgür Yayınları, Gaziantep. Sayfa 43-60.

The Role and Potential Sources of Sustainable Plant-Based Foods: A Look to the Future

Year 2025, Volume: 23 Issue: 2, 164 - 172, 20.07.2025
https://doi.org/10.24323/akademik-gida.1746657

Abstract

The food industry, influenced by environmental issues such as global warming and climate change, is undergoing significant changes towards establishing a sustainable food system. This system prioritizes reducing the adverse impacts on our natural resources while ensuring sufficient and nutritious foods. Despite animal sources being rich in nutrients, consumer concerns regarding sustainability are increasing the search for alternative sources. With growing consumer interest in sustainable and healthy choices, there is an increasing demand for plant-based food sources. Plant-based protein sources generally include seeds, legumes, nuts, and oilseeds. Plant-based proteins are not only consumed as a food but also valued for their potential for various techno-functional properties in the food industry. Plant-based foods are both good sources for proteins and high in fiber, vitamins, and minerals. This study focuses upon the impact of a developing world and increasing population on plant-based foods, their nutritional value, and potential applications.

References

  • [1] Moss, R., LeBlanc, J., Gorman, M., Ritchie, C., Duizer, L., McSweeney, M.B. (2023). A prospective review of the sensory properties of plant-based dairy and meat alternatives with a focus on texture. Foods, 12(8), 1709.
  • [2] Julian, M.D., Grossmann, L. (2021). A brief review of the science behind the design of healthy and sustainable plant-based foods. NPJ Science of Food, 5(1), 17.
  • [3] Pointke, M., Albrecht, E.H., Geburt, K., Gerken, M., Traulsen, I., Pawelzik, E. (2022). A comparative analysis of plant-based milk alternatives part 1: composition, sensory, and nutritional value. Sustainability, 14(13), 7996.
  • [4] Aschemann-Witzel, J., Gantriis, R.F., Fraga, P., Perez-Cueto, F.J. (2021). Plant-based food and protein trend from a business perspective: markets, consumers, and the challenges and opportunities in the future. Critical Reviews in Food Science and Nutrition, 61(18), 3119-3128.
  • [5] Kumar, M., Tomar, M., Punia, S., Dhakane-Lad, J., Dhumal, S., Changan, S., Senapathy, M., Berwal, M.K., Sampathrajan, V., Sayed, A.A.S., Chandran, D., Pandiselvam, R., Rais, N., Mahato, D. K., Udikeri, S.S., Satankar, V., Anitha, T., Reetu, Radha, Singh, S., Amarowicz, R., Kennedy, J.F. (2022). Plant-based proteins and their multifaceted industrial applications. LWT Food Science and Technology, 154, 112620.
  • [6] Schiano, A.N., Harwood, W.S., Gerard, P.D., Drake, M.A. (2020). Consumer perception of the sustainability of dairy products and plant-based dairy alternatives. Journal of Dairy Science, 103(12), 11228-11243.
  • [7] Langyan, S., Yadava, P., Khan, F.N., Dar, Z.A., Singh, R., Kumar, A. (2022). Sustaining protein nutrition through plant-based foods. Frontiers in Nutrition, 8, 772573.
  • [8] Gomes, A., Sobral, P.J.D.A. (2021). Plant protein-based delivery systems: an emerging approach for increasing the efficacy of lipophilic bioactive compounds. Molecules, 27(1), 60.
  • [9] Trautwein, E.A., McKay, S. (2020). The role of specific components of a plant-based diet in management of dyslipidemia and the impact on cardiovascular risk. Nutrients, 12(9), 2671.
  • [10] Baba, G., Bozatlı, S.B., Dikici, A. (2024). Bitkisel süt üretimi ve insan sağlığı üzerine etkisi. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi, 8(1), 80-89.
  • [11] Matar, A.A., Selçuk, K.T., Arslan, S. (2024). Bölüm 5: Bitkisel Kaynaklı Beslenme Modellerinin Sağlık ve Çevresel Sürdürülebilirliğe Etkileri. Sağlık Bilimleri Alanındaki Gelişmeler, Ed. Atik, D., Kaya, H. B. Platanus Publishing, 2024, Ankara, Türkiye, 780s.
  • [12] Nolden, A.A., Forde, C.G. (2023). The nutritional quality of plant-based foods. Sustainability, 15(4), 3324.
  • [13] Cardello, A.V., Llobell, F., Giacalone, D., Chheang, S.L., Jaeger, S.R. (2022). Consumer preference segments for plant-based foods: the role of product category. Foods, 11(19), 3059.
  • [14] Quintieri, L., Nitride, C., De Angelis, E., Lamonaca, A., Pilolli, R., Russo, F., Monaci, L. (2023). Alternative protein sources and novel foods: benefits, food applications and safety issues. Nutrients, 15(6), 1509.
  • [15] Ahnen, R.T., Jonnalagadda, S.S., Slavin, J.L. (2019). Role of plant protein in nutrition, wellness, and health. Nutrition Reviews, 77(11), 735-747.
  • [16] Sá, A.G.A., Moreno, Y.M.F., Carciofi, B.A.M. (2020). Plant proteins as high-quality nutritional source for human diet. Trends in Food Science & Technology, 97, 170-184.
  • [17] Qin, P., Wang, T., Luo, Y. (2022). A review on plant-based proteins from soybean: health benefits and soy product development. Journal of Agriculture and Food Research, 7, 100265.
  • [18] Nasrabadi, M.N., Doost, A.S., Mezzenga, R. (2021). Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 118, 106789.
  • [19] Mattila, P., Mäkinen, S., Eurola, M., Jalava, T., Pihlava, J.M., Hellström, J., Pihlanto, A. (2018). Nutritional value of commercial protein-rich plant products. Plant Foods for Human Nutrition, 73(2), 108-115.
  • [20] Lizarazo, C. I., Lampi, A. M., Liu, J., Sontag‐Strohm, T., Piironen, V., Stoddard, F. L. (2015). Nutritive quality and protein production from grain legumes in a boreal climate. Journal of the Science of Food and Agriculture, 95(10), 2053-2064.
  • [21] Gimenez-Bastida, J. A., Zielinski, H. (2015). Buckwheat as a functional food and its effects on health. Journal of Agricultural and Food Chemistry, 63(36), 7896-7913.
  • [22] Kajla, P., Sharma, A., Sood, D. R. (2015). Flaxseed—a potential functional food source. Journal of Food Science and Technology, 52, 1857-1871.
  • [23] Goyal, A., Sharma, V., Upadhyay, N., Gill, S., Sihag, M. (2014). Flax and flaxseed oil: an ancient medicine & modern functional food. Journal of Food Science and Technology, 51, 1633-1653.
  • [24] Aderibigbe, O. R., Ezekiel, O. O., Owolade, S. O., Korese, J. K., Sturm, B., Hensel, O. (2022). Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: a review. Critical Reviews in Food Science and Nutrition, 62(3), 656-669.
  • [25] Javaid, T., Mahmood, S., Saeed, W., Qamrosh, M. (2019). A critical review in varieties and benefits of almond (Prunus dulcis). Acta Scientific Nutrition Health, 3(11), 70-72.
  • [26] Mandalari, G., Barreca, D., Gervasi, T., Roussell, M. A., Klein, B., Feeney, M. J., Carughi, A. (2021). Pistachio nuts (Pistacia vera L.): production, nutrients, bioactives and novel health effects. Plants, 11(1), 18.
  • [27] Hekmatpour, F., Mozanzadeh, M.T. (2021). Legumes, sustainable alternative protein sources for aquafeeds. In Legumes Research-Volume 2. IntechOpen.
  • [28] Khosravi, A., Razavi, S.H. (2021). Therapeutic effects of polyphenols in fermented soybean and black soybean products. Journal of Functional Foods, 81, 104467.
  • [29] Seyhan, S., Nakilcioğlu, E., Ötleş, S. (2024). Geleceğin alternatif protein kaynakları: bitkiler. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 12(1), 153-174.
  • [30] Boukid, F., Pasqualone, A. (2022). Lupine (Lupinus spp.) proteins: characteristics, safety and food applications. European Food Research and Technology, 248(2), 345-356.
  • [31] Dhull, S.B., Kidwai, M.K., Noor, R., Chawla, P., Rose, P.K. (2022). A review of nutritional profile and processing of faba bean (Vicia faba L.). Legume Science, 4(3), e129.
  • [32] Boukid, F. (2021). Chickpea (Cicer arietinum L.) protein as a prospective plant‐based ingredient: a review. International Journal of Food Science & Technology, 56(11), 5435-5444.
  • [33] Tachie, C., Nwachukwu, I.D., Aryee, A.N. (2023). Trends and innovations in the formulation of plant-based foods. Food Production, Processing and Nutrition, 5(1), 16.
  • [34] Akharume, F.U., Aluko, R.E., Adedeji, A.A. (2021). Modification of plant proteins for improved functionality: a review. Comprehensive Reviews in Food Science and Food Safety, 20(1), 198-224.
  • [35] Ma, K.K., Greis, M., Lu, J., Nolden, A.A., McClements, D.J., Kinchla, A.J. (2022). Functional performance of plant proteins. Foods, 11(4), 594.
  • [36] Aryee, A.N., Boye, J.I. (2017). Comparative study of the effects of processing on the nutritional, physicochemical and functional properties of lentil. Journal of Food Processing and Preservation, 41(1), e12824.
  • [37] Poutanen, K.S., Kårlund, A.O., Gómez-Gallego, C., Johansson, D.P., Scheers, N.M., Marklinder, I.M., Eriksen, A.K., Silventoinen, P.C., Nordlund, E., Sozer, N., Hanhineva, K.J., Kolehmainen, M., Landberg, R. (2022). Grains-a major source of sustainable protein for health. Nutrition Reviews, 80(6), 1648-1663.
  • [38] Hussain, S., Anjum, F.M., Butt, M.S., Alamri, M.S., Khan, M.R. (2012). Biochemical and nutritional evaluation of unleavened flat breads fortified with healthy flaxseed. International Journal of Agriculture and Biology, 14(2), 190–196.
  • [39] Coda, R., Varis, J., Verni, M., Rizzello, C.G., Katina, K. (2017). Improvement of the protein quality of wheat bread through faba bean sourdough addition. LWT-Food Science and Technology, 82, 296-302.
  • [40] Mir, N.A., Riar, C.S., Singh, S. (2018). Nutritional constituents of pseudo cereals and their potential use in food systems: a review. Trends in Food Science & Technology, 75, 170-180.
  • [41] Mota, C., Santos, M., Mauro, R., Samman, N., Matos, A.S., Torres, D., Castanheira, I. (2016). Protein content and amino acids profile of pseudocereals. Food Chemistry, 193, 55-61.
  • [42] López, D.N., Galante, M., Robson, M., Boeris, V., Spelzini, D. (2018). Amaranth, quinoa and chia protein isolates: physicochemical and structural properties. International Journal of Biological Macromolecules, 109, 152-159.
  • [43] Schoenlechner, R., Siebenhandl, S., Berghofer, E. (2008). Pseudocereals. Gluten-free cereal products and beverages. Academic Press, 6, 149-190.
  • [44] Çetiner, M., Bilek, S.E. (2018). Bitkisel protein kaynakları. Çukurova Tarım ve Gıda Bilimleri Dergisi, 33(2), 111-126.
  • [45] Grancieri, M., Martino, H.S.D., Gonzalez de Mejia, E. (2019). Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: a review. Comprehensive Reviews in Food Science and Food Safety, 18(2), 480-499.
  • [46] Kulczyński, B., Kobus-Cisowska, J., Taczanowski, M., Kmiecik, D., Gramza-Michałowska, A. (2019). The chemical composition and nutritional value of chia seeds—Current state of knowledge. Nutrients, 11(6), 1242.
  • [47] McClements, D.J., Grossmann, L. (2021). A brief review of the science behind the design of healthy and sustainable plant-based foods. NPJ Science of Food, 5(1), 17.
  • [48] Massantini, R., Frangipane, M.T. (2022). Progress in almond quality and sensory assessment: An overview. Agriculture, 12(5), 710.
  • [49] Karaosmanoğlu, H. (2022). Lipid characteristics, bioactive properties, and mineral content in hazelnut grown under different cultivation systems. Journal of Food Processing and Preservation, 46(7), e16717.
  • [50] Amaral, J.S., Casal, S., Citová, I., Santos, A., Seabra, R.M., Oliveira, B.P. (2006). Characterization of several hazelnut (Corylus avellana L.) cultivars based in chemical, fatty acid and sterol composition. European Food Research and Technology, 222, 274-280.
  • [51] Campos-Mondragón, M.G., De La Barca, A.C., Durán-Prado, A., Campos-Reyes, L.C., Oliart-Ros, R.M., Ortega-García, J., Medina-Juárez, L.A., Angulo, O. (2009). Nutritional composition of new peanut (Arachis hypogaea L.) cultivars. Grasas y Aceites, 60(2), 161-167.
  • [52] Ravindran, R., Jaiswal, A.K. (2016). Exploitation of food industry waste for high-value products. Trends in Biotechnology, 34(1), 58-69.
  • [53] RedCorn, R., Fatemi, S., Engelberth, A.S. (2018). Comparing end-use potential for industrial food-waste sources. Engineering, 4(3), 371-380.
  • [54] Caner, C., Yüceer, M., Harte, B. (2024). Trends in sustainability and ınnovative food packaging materials: an overview. Akademik Gıda (Yeşil Dönüşüm Özel Sayısı), 65-77.
  • [55] Martins, A.N.A., Pasquali, M.A.D.B., Schnorr, C.E., Martins, J.J.A., de Araújo, G.T., Rocha, A.P.T. (2019). Development and characterization of blends formulated with banana peel and banana pulp for the production of blends powders rich in antioxidant properties. Journal of Food Science and Technology, 56, 5289-5297.
  • [56] Puraikalan, Y. (2018). Characterization of proximate, phytochemical and antioxidant analysis of banana (Musa sapientum) peels/skins and objective evaluation of ready to eat/cook product made with banana peels. Current Research in Nutrition and Food Science Journal, 6(2), 382-391.
  • [57] Carvalho, V.S., Conti‐Silva, A.C. (2018). Cereal bars produced with banana peel flour: evaluation of acceptability and sensory profile. Journal of the Science of Food and Agriculture, 98(1), 134-139.
  • [58] Stragliotto, L.K., Ferrari, G.T., Campagnol, P.C.B., Strasburg, V.J., Zandonadi, R.P., de Oliveira, V.R. (2022). Green banana by-products on the chemical, technological and sensory quality of meat products. International Journal of Gastronomy and Food Science, 30, 100614.
  • [59] Erem, E., Icyer, N.C., Tatlisu, N.B., Kilicli, M., Kaderoglu, G.H., Toker, Ö.S. (2023). A new trend among plant-based food ingredients in food processing technology: aquafaba. Critical Reviews in Food Science and Nutrition, 63(20), 4467-4484.
  • [60] Bird, L.G., Pilkington, C.L., Saputra, A., Serventi, L. (2017). Products of chickpea processing as texture improvers in gluten-free bread. Food Science and Technology International, 23(8), 690-698.
  • [61] Mustafa, R., He, Y., Shim, Y.Y., Reaney, M.J. (2018). Aquafaba, wastewater from chickpea canning, functions as an egg replacer in sponge cake. International Journal of Food Science & Technology, 53(10), 2247-2255.
  • [62] Raikos, V., Hayes, H., Ni, H. (2020). Aquafaba from commercially canned chickpeas as potential egg replacer for the development of vegan mayonnaise: recipe optimisation and storage stability. International Journal of Food Science & Technology, 55(5), 1935-1942.
  • [63] Espinosa-Ramírez, J., Mondragón-Portocarrero, A.C., Rodríguez, J.A., Lorenzo, J.M., Santos, E.M. (2023). Algae as a potential source of protein meat alternatives. Frontiers in Nutrition, 10, 1254300.
  • [64] Ijaola, A.O., Akamo, D.O., George, T.T., Sengul, A., Adediji, M.Y., Asmatulu, E. (2023). Algae as a potential source of protein: a review on cultivation, harvesting, extraction, and applications. Algal Research, 77, 103329.
  • [65] Alcorta, A., Porta, A., Tárrega, A., Alvarez, M.D., Vaquero, M.P. (2021). Foods for plant-based diets: challenges and innovations. Foods, 10(2), 293.
  • [66] Ścieszka, S., Klewicka, E. (2019). Algae in food: a general review. Critical Reviews in Food Science and Nutrition, 59(21), 3538-3547.
  • [67] Kurek, M.A., Onopiuk, A., Pogorzelska-Nowicka, E., Szpicer, A., Zalewska, M., Półtorak, A. (2022). Novel protein sources for applications in meat-alternative products-insight and challenges. Foods, 11(7), 957.
  • [68] Ursu, A.V., Marcati, A., Sayd, T., Sante-Lhoutellier, V., Djelveh, G., Michaud, P. (2014). Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris. Bioresource Technology, 157, 134-139.
  • [69] Ünver Alçay, A., Sağlam, A., Yalçın, S., Bostan, K. (2018). Possible protein sources for the future. Akademik Gıda, 16(2), 197-204.
  • [70] Melina V, Craig W, Levin S (2016). Position of the academy of nutrition and dietetics: vegetarian diets. Journal of the Academy of Nutrition and Dietetics, 116(12), 1970-1980.
  • [71] Macan Schönleben, A., den Ouden, F., Yin, S., Fransen, E., Bosschaerts, S., Andjelkovic, M., Rehman, N., van Nuijs, A. L. N., Covaci, A., Poma, G. (2025). Organophosphorus flame retardant, phthalate, and alternative plasticizer contamination in novel plant-based food: a food safety investigation. Environmental Science & Technology. 59(18), 9209-9220.
  • [72] Mariotti F, Gardner C.D. (2019). Dietary protein and amino acids in vegetarian diets—a review. Nutrients, 11(11), 2661.
  • [73] Lin, X., Duan, N., Wu, J., Lv, Z., Wang, Z., Wu, S. (2023). Potential food safety risk factors in plant-based foods: source, occurrence, and detection methods. Trends in Food Science & Technology, 138, 511-522.
  • [74] Lusk, J. L., Blaustein-Rejto, D., Shah, S., Tonsor, G. T. (2022). Impact of plant-based meat alternatives on cattle inventories and greenhouse gas emissions. Environmental Research Letters, 17, 024035.
  • [75] Kilci, Z. (2023). Bitkisel bazlı diyetler: yenilikçi uygulamalar & karşılaşılan zorluklar (Bölüm 3). Mühendislik Alanında Akademik Analiz ve Tartışmalar (Editörler: M. Bozdemir ve R. Uzun Arslan). Özgür Yayınları, Gaziantep. Sayfa 43-60.
There are 75 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Review Papers
Authors

Gamze Çakıtlı 0000-0001-6114-3708

Eda Nurko 0000-0001-9598-7407

Publication Date July 20, 2025
Submission Date March 21, 2025
Acceptance Date June 22, 2025
Published in Issue Year 2025 Volume: 23 Issue: 2

Cite

APA Çakıtlı, G., & Nurko, E. (2025). The Role and Potential Sources of Sustainable Plant-Based Foods: A Look to the Future. Akademik Gıda, 23(2), 164-172. https://doi.org/10.24323/akademik-gida.1746657
AMA Çakıtlı G, Nurko E. The Role and Potential Sources of Sustainable Plant-Based Foods: A Look to the Future. Akademik Gıda. July 2025;23(2):164-172. doi:10.24323/akademik-gida.1746657
Chicago Çakıtlı, Gamze, and Eda Nurko. “The Role and Potential Sources of Sustainable Plant-Based Foods: A Look to the Future”. Akademik Gıda 23, no. 2 (July 2025): 164-72. https://doi.org/10.24323/akademik-gida.1746657.
EndNote Çakıtlı G, Nurko E (July 1, 2025) The Role and Potential Sources of Sustainable Plant-Based Foods: A Look to the Future. Akademik Gıda 23 2 164–172.
IEEE G. Çakıtlı and E. Nurko, “The Role and Potential Sources of Sustainable Plant-Based Foods: A Look to the Future”, Akademik Gıda, vol. 23, no. 2, pp. 164–172, 2025, doi: 10.24323/akademik-gida.1746657.
ISNAD Çakıtlı, Gamze - Nurko, Eda. “The Role and Potential Sources of Sustainable Plant-Based Foods: A Look to the Future”. Akademik Gıda 23/2 (July 2025), 164-172. https://doi.org/10.24323/akademik-gida.1746657.
JAMA Çakıtlı G, Nurko E. The Role and Potential Sources of Sustainable Plant-Based Foods: A Look to the Future. Akademik Gıda. 2025;23:164–172.
MLA Çakıtlı, Gamze and Eda Nurko. “The Role and Potential Sources of Sustainable Plant-Based Foods: A Look to the Future”. Akademik Gıda, vol. 23, no. 2, 2025, pp. 164-72, doi:10.24323/akademik-gida.1746657.
Vancouver Çakıtlı G, Nurko E. The Role and Potential Sources of Sustainable Plant-Based Foods: A Look to the Future. Akademik Gıda. 2025;23(2):164-72.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).