Research Article
BibTex RIS Cite

DYNAMIC LINKAGES BETWEEN TURKISH ISLAMIC STOCK MARKET AND GLOBAL MACROECONOMIC RISK FACTORS: EVIDENCE FROM DCC-GARCH MODEL

Year 2025, Volume: 12 Issue: 27, 399 - 428, 30.04.2025
https://doi.org/10.58884/akademik-hassasiyetler.1590078

Abstract

Over the past two decades, Islamic finance has gained increasing prominence, with Islamic equities emerging as particularly attractive to investors. This study aims to investigate the volatility transmission between the Turkish Islamic stock market and selected global macroeconomic risk factors, specifically the US Dollar Index, the CBOE Gold Volatility Index, the CBOE Crude Oil Volatility Index, and the CBOE Volatility Index. We use the DCC-GARCH model with the daily data set from April 11, 2013, to April 25, 2024 to examine the dynamic connectiveness between the indexes. The results of the study show that there is a negative interaction between macroeconomic risk factors and the Turkish Islamic stock market. There is a volatility transmission from all macroeconomic risk factors to the Turkish Islamic stock market in the long-term investment period, but there is a volatility transmission only from the US dollar index to the Turkish Islamic stock market in the short-term investment period. Investors view the Turkish Islamic stock market as a safe haven, less susceptible to macroeconomic risk indicators, and less integrated with the international financial system in the short term. According to the findings of the DCC-GARCH model, investments in the Turkish-Islamic equity market should be viewed as riskier over the long term due to the transmission of volatility between selected macroeconomic risk factors and the Turkish-Islamic equity market. This study provides valuable insights for investors and portfolio managers seeking to enhance their portfolio management strategies.

References

  • Adnan, M. (2023). Exploring the role of domestic and foreign factors in Indonesian Islamic mutual funds. Journal of Enterprise and Development (JED), 5(3), 414-430.
  • Akçalı Y., B., Mollaahmetoğlu, E., & Altay, E. (2020). Borsa İstanbul ve küresel piyasa göstergeleri arasındaki volatilite etkileşiminin DCC-GARCH yöntemi ile analizi. Eskişehir Osmangazi Üniversitesi İktisadi ve İdari Bilimler Dergisi, 14(3), 597-614.
  • Al-Khazali, O., Lean, H. H., & Samet, A. (2014). Do Islamic stock indexes outperform conventional stock indexes? A stochastic dominance approach. Pacific-Basin Finance Journal, 28, 29-46. http://dx.doi.org/10.1016/j.pacfin.2013.09.003
  • Arfaoui, M., & Raggad, B. (2021). Do Dow Jones Islamic equity indices undergo speculative pressure? New insights from a nonlinear and asymmetric analysis. International Journal of Finance & Economics.
  • Aziz, T., Marwat, J., Mustafa, S., & Kumar, V. (2020). Impact of economic policy uncertainty and macroeconomic factors on stock market volatility: Evidence from Islamic indices. The Journal of Asian Finance, Economics and Business, 7(12), 683-692
  • Bayram, K., & Othman, A. H. A. (2019). Islamic versus conventional stock market indicates performance: Empirical evidence from Turkey. Iqtishadia: Jurnal Kajian Ekonomi dan Bisnis Islam, 12(1), 74-86. http://dx.doi.org/10.21043/iqtishadia.v12i1.4631
  • Bahloul, S., Mroua, M., & Naifar, N. (2017). The impact of macroeconomic and conventional stock market variables on Islamic index returns under regime switching. Borsa Istanbul Review, 17(1), 62-74. http://dx.doi.org/10.1016/j.bir.2016.09.003
  • Belanes, A., Saâdaoui, F., & Abedin, M. Z. (2024). Potential diversification benefits: A comparative study of Islamic and conventional stock market indexes. Research in International Business and Finance, 67. https://doi.org/10.1016/j.ribaf.2023.102098
  • Bollerslev, T. (1990). Modelling the coherence in short‑run nominal exchange rates: a multivariate generalized arch model. Rev Econ Stat 72(3), 498
  • Bouri, E., Cepni, O., Gabauer, D., & Gupta, R. (2021). Return connectedness across asset classes around the COVID-19 outbreak. International review of financial analysis, 73, 101646.
  • Caporin, M., & McAleer, M. (2013). Ten things you should know about the dynamic conditional correlation representation. Econometrics, 1(1), 115-126.
  • Chang, B. H., Sharif, A., Aman, A., Suki, N. M., Salman, A., & Khan, S. A. R. (2020). The asymmetric effects of oil price on sectoral Islamic stocks: new evidence from quantile-on-quantile regression approach. Resources Policy, 65, 101571.
  • Charfeddine, L., & Al Refai, H. (2019). Political tensions, stock market dependence and volatility spillover: Evidence from the recent intra-GCC crises. The North American Journal of Economics and Finance, 50,
  • Chiang, T. C., Jeon, B. N., & Li, H. (2007). Dynamic correlation analysis of financial contagion: Evidence from Asian markets. Journal of International Money and Finance, 26(7), 1206-1228.v https://doi.org/10.1016/j.najef.2019.101032
  • Chkili, W. (2022). The links between gold, oil prices and Islamic stock markets in a regime switching environment. Eurasian Economic Review, 12(1), 169-186.
  • Cho, J. H., & Parhizgari, A. M. (2009). East Asian financial contagion under DCC-GARCH. International Journal of Banking and Finance, 6(1), 17-30.
  • Dania, A., & Malhotra, D. K. (2013). An empirical examination of the dynamic linkages of faith-based socially responsible investing. The Journal of Wealth Management, 16(1), 65.
  • Danila, N., Azizan, N. A., Suprihadi, E., & Bunyamin, B. (2021). Dynamic co-movement and volatility spillover effect between Sukuk and conventional bonds: A comparison study between ASEAN and GCC. Global Business Review. https://doi.org 10.1177/09721509211026203
  • Dewanti, L. A., Rusmita, S. A., & Abd Samad, K. (2022). Sensitivity Islamic stock return in Asia: The effect of exchange rate volatility. Jurnal Ekonomi & Bisnis Islam, 8(2).
  • Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427–431.
  • Diebold, F. X., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal, 119(534), 158-171.
  • Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57-66. https://doi.org/10.1016/j.ijforecast.2011.02.006
  • Do, A. Powell, R., Yong, J. & Singh, A. (2019). Time-Varying Asymmetric Volatility Spillover between Global Markets and China’s A, B and H-Shares Using EGARCH and DCC-EGARCH models. The North American Journal of Economics and Finance, 54, 10196.
  • Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3), 339-350. https://doi.org/10.1198/073500102288618487
  • Emeç, A. S. (2021). Türkiye’de katılım endeksi, altın fiyatları ve katılım fonları arasındaki ilişki. Journal of Pure Social Sciences, 2(2), 63-75.
  • Essayem, A., Görmüş, Ş., & Güven, M. (2022). Testing the effect of local macroeconomic indicators and global risk factors on the Turkish participation stock market: Evidence from quantile regression approach. Trends in Business and Economics, 36(3). https://doi.org/258-267. 0.5152/TBE.2022.1018360
  • Erdoğan, S., Gedikli, A., & Çevik, E. İ. (2020). Volatility spillover effects between Islamic stock markets and exchange rates: Evidence from three emerging countries. Borsa Istanbul Review, 20(4), 322-333. https://doi.org/10.1016/j.bir.2020.04.003
  • Gamba-Santamaria, S., Gomez-Gonzalez, J. E., Hurtado-Guarin, J. L., & Melo-Velandia, L. F. (2017). Stock market volatility spillovers: Evidence for Latin America. Finance Research Letters, 20, 207-216. http://dx.doi.org/10.1016/j.frl.2016.10.001
  • Gökgöz, H., & Kayahan, C. (2023). Analysis of the interaction of Participation 30 Index with Dow Jones Islamic Markets Index and CBOE Volatility Index. Afyon Kocatepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 25(2), 246-256.
  • Habib, M., & Islam, K. U. (2017). Impact of macroeconomic variables on Islamic stock market returns: Evidence from Nifty 50 Shariah Index. Journal of Commerce and Accounting Research, 6(1), 37.
  • Hachicha, N., Ghorbel, A., Feki, M. C., Tahi, S., & Dammak, F. A. (2022). Hedging Dow Jones Islamic and conventional emerging market indices with CDS, oil, gold and the VSTOXX: A comparison between DCC, ADCC and GO-GARCH models. Borsa Istanbul Review, 22(2), 209-225. https://doi.org/10.1016/j.bir.2021.04.002
  • Haddad, H. B., Mezghani, I., & Al Dohaiman, M. (2020). Common shocks, common transmission mechanisms and time-varying connectedness among Dow Jones Islamic stock market indices and global risk factors. Economic Systems, 44(2). https://doi.org/10.1016/j.ecosys.2020.100760
  • Hamma, W., Ghorbel, A., & Jarboui, A. (2021). Hedging Islamic and conventional stock markets with other financial assets: Comparison between competing DCC models on hedging effectiveness. Journal of Asset Management, 22(3), 179-199.
  • Hammoudeh, S., Mensi, W., Reboredo, J. C., & Nguyen, D. K. (2014). Dynamic dependence of the global Islamic equity index with global conventional equity market indices and risk factors. Pacific-Basin Finance Journal, 30, 189-206. http://dx.doi.org/10.1016/j.pacfin.2014.10.001
  • Hatipoğlu, M., & Sekmen, T. (2018). Seçilmiş bazı risk faktörlerinin islami borsalar üzerindeki etkileri. MANAS Sosyal Araştırmalar Dergisi, 7(4).
  • Hussin, M. Y. M., Muhammad, F., Abu, M. F., & Awang, S. A. (2012). Macroeconomic variables and Malaysian Islamic stock market: a time series analysis. Journal of business studies quarterly, 3(4), 1.
  • Kamışlı, S., & Esen, E. (2020). İslami hisse senedi endeksleri arasındaki oynaklik ilişki yapısı. Journal of Management and Economics Research, 18(1). http://dx.doi.org/10.11611/yead.607940.
  • Kevser, M., & Doğan, M. (2020). The analysis of relationship between participation-30 index in Turkey and commodity markets, national and international indexes. Financial Studies, 24(2 (88)), 38-48.
  • Kumar, K. K., & Sahu, B. (2017). Dynamic linkages between macroeconomic factors and Islamic stock indices in a non-Islamic country India. The Journal of Developing Areas, 51(1), 193-205.
  • Lin, B., & Su, T. (2020). The linkages between oil market uncertainty and Islamic stock markets: Evidence from quantile-on-quantile approach. Energy Economics, 88, 104759. https://doi.org/10.1016/j.eneco.2020.104759
  • Lin, B., Wesseh Jr, P. K., & Appiah, M. O. (2014). Oil price fluctuation, volatility spillover and the Ghanaian equity market: Implication for portfolio management and hedging effectiveness. Energy Economics, 42, 172-182. http://dx.doi.org/10.1016/j.eneco.2013.12.017
  • Ling, S., & McAleer, M. (2003). Asymptotic theory for a vector ARMA-GARCH model. Econometric Theory, 19(2), 280–310.
  • Majid, M. S. A., & Yusof, R. M. (2009). Long‐run relationship between Islamic stock returns and macroeconomic variables: An application of the autoregressive distributed lag model. Humanomics, 25(2), 127-141. http://dx.doi.org/10.1108/08288660910964193
  • Majdoub, J., & Mansour, W. (2014). Islamic equity market integration and volatility spillover between emerging and US stock markets. The North American Journal of Economics and Finance, 29, 452-470. http://dx.doi.org/10.1016/j.najef.2014.06.011
  • Maghyereh, A., & Awartani, B. (2016). Oil price uncertainty and equity returns: Evidence from oil importing and exporting countries in the MENA region. Journal of Financial Economic Policy, 8(1), 64-79.
  • Mandacı, P. E., & Kırkpınar, A. (2022). Oil assets and portfolio diversification: Firm-level analysis for Borsa Istanbul. Borsa Istanbul Review, 22(3), 571-585. https://doi.org/10.1016/j.bir.2021.07.004.
  • Mensi, W., Hammoudeh, S., Al-Jarrah, I. M. W., Sensoy, A., & Kang, S. H. (2017). Dynamic risk spillovers between gold, oil prices and conventional, sustainability and Islamic equity aggregates and sectors with portfolio implications. Energy Economics, 67, 454-475. http://dx.doi.org/10.1016/j.eneco.2017.08.031
  • Mezghani, T., Rabbani, M. R., Trichilli, Y., & Abbes, B. (2024). Revisiting the dynamic connectedness, spillover and hedging opportunities among cryptocurrency, commodities, and Islamic stock markets. Journal of Islamic Monetary Economics and Finance, 10(1), 35-92. https://doi.org/10.21098/jimf.v10i1.1813
  • Naifar, N. (2016). Do global risk factors and macroeconomic conditions affect global Islamic index dynamics? A quantile regression approach. The Quarterly Review of Economics and Finance, 61, 29-39. http://dx.doi.org/10.1016/j.qref.2015.10.004
  • Nazlıoğlu, S., Hammoudeh, S. & Gupta, R. (2015). Volatility transmission between Islamic and conventional equity markets: evidence from causality-in-variance test. Applied Economics, 47 (46), 4996-5011.
  • Paltrinieri, A., Floreani, J., Kappen, J. A., Mitchell, M. C., & Chawla, K. (2019). Islamic, socially responsible, and conventional market comovements: Evidence from stock indices. Thunderbird International Business Review, 61(5), 719-733.
  • Raza, N., Ali, S., Shahzad, S. J. H., Rehman, M. U., & Salman, A. (2019). Can alternative hedging assets add value to Islamic-conventional portfolio mix: Evidence from MGARCH models. Resources Policy, 61, 210-230. https://doi.org/10.1016/j.resourpol.2019.02.013
  • Said, A., & Ouerfelli, C. (2024). Downside risk in Dow Jones equity markets: hedging and portfolio management during COVID-19 pandemic and the Russia–Ukraine war. The Journal of Risk Finance, 25(3), 443-470.
  • Sakarya, Ş., Zeren, F., & Akkuş, H. T. (2018). The relationship between Islamic indices and commodity markets in Turkey: Evidence Fourier-based approaches. Ekonomski horizonti, 20(3), 243-256.
  • Sakti, M. R. P., & Harun, M. Y. (2013). Relationship between Islamic stock prices and macroeconomic variables: Evidence from Jakarta stock exchange Islamic index. Global Review of Islamic Economics and Business, 1(1), 071-084.
  • Sclip, A., Dreassi, A., Miani, S., & Paltrinieri, A. (2016). Dynamic correlations and volatility linkages between stocks and sukuk: Evidence from international markets. Review of Financial Economics, 31, 34-44. http://dx.doi.org/10.1016/j.rfe.2016.06.005
  • Sheikh, S. P., Jamil, S. A., Aysan, A. F., Atif, M., Rabbani, M. R., & Kayani, U. N. (2023). Do implied volatilities of stock and commodity markets affect conventional & shariah indices differently? An evidence by OVX, GVZ and VIX. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e21094
  • Sial, M. S., Cherian, J., Meero, A., Salman, A., Rahman, A. A., Samad, S. & Negrut, C. V. (2022). Determining financial uncertainty through the dynamics of sukuk bonds and prices in emerging market indices. Risks, 10(3), 61.
  • Tsay, R. S. (2013). Multivariate time series analysis: with R and financial applications. ABD: John Wiley & Sons.
  • Yadav, N., Singh, A. B., & Tandon, P. (2023). Volatility spillover effects between Indian stock market and global stock markets: A DCC-GARCH model. FIIB Business Review, 23197145221141186. https://doi.org/10.1177/23197145221141186
  • Yarovaya, L., Elsayed, A. H., & Hammoudeh, S. (2021). Determinants of spillovers between Islamic and conventional financial markets: exploring the safe haven assets during the COVID-19 pandemic. Finance Research Letters, 43.https://doi.org/10.1016/j.frl.2021.101979
  • Zhong, Y., & Liu, J. (2021). Correlations and volatility spillovers between China and Southeast Asian stock markets. The Quarterly Review of Economics and Finance, 81, 57-69. https://doi.org/10.1016/j.qref.2021.04.001
  • Xu, W., Ma, F., Chen, W., & Zhang, B. (2019). Asymmetric volatility spillovers between oil and stock markets: Evidence from China and the United States. Energy Economics, 80, 310-320. https://doi.org/10.1016/j.eneco.2019.01.014
  • Widad, M., & Hadjer, B. (2018). Causal relationship between Islamic bonds, oil price and precious metals: evidence from Asia pacific. Al-Iqtishad Journal of Islamic Economics, 10(2), 285-298.

TÜRKİYE İSLAMİ HİSSE SENEDİ PİYASASI VE KÜRESEL MAKROEKONOMİK RİSK FAKTÖRLERİ ARASINDAKİ DİNAMİK İLİŞKİLER: DCC-GARCH MODELİNDEN KANITLAR

Year 2025, Volume: 12 Issue: 27, 399 - 428, 30.04.2025
https://doi.org/10.58884/akademik-hassasiyetler.1590078

Abstract

Son yirmi yılda İslami finans, özellikle de geniş bir yatırım cazibesine sahip olan İslami hisse senetleri giderek daha önemli hale gelmiştir. Bu çalışmanın amacı, Türk İslami Hisse Senedi Piyasası ile ABD Dolar Endeksi, CBOE Altın Oynaklık Endeksi, CBOE Ham Petrol Oynaklık Endeksi ve CBOE Oynaklık Endeksi gibi seçili küresel makroekonomik risk faktörleri arasındaki oynaklık aktarımını araştırmaktır. Değişkenler arasındaki dinamik ilişkiyi incelemek için 1 Mart 2013 ile 25 Nisan 2024 tarihleri arasındaki günlük veri seti ile DCC-GARCH modeli kullanılmıştır. Çalışmanın sonuçları, makroekonomik risk faktörleri ile Türk İslami hisse senedi piyasası arasında negatif bir etkileşim olduğunu göstermektedir. Uzun vadeli yatırım döneminde tüm makroekonomik risk faktörlerinden Türk İslami hisse senedi piyasasına bir volatilite aktarımı varken, kısa vadeli yatırım döneminde sadece ABD doları endeksinden Türk İslami hisse senedi piyasasına bir volatilite aktarımı vardır. Kısa vadede, Türk İslami hisse senedi piyasası yatırımcılar için güvenli bir liman olarak hizmet vermekte, küresel risklerden daha az etkilenmekte ve küresel finansal sistemle daha az entegrasyona sahiptir. DCC-GARCH modelinin sonuçları ayrıca, seçilen tüm makroekonomik risk faktörleri ile Türk-İslam hisse senedi piyasası arasında uzun vadede bir volatilite aktarımı olduğundan, Türk-İslam hisse senedi piyasasına yapılan yatırımların uzun vadeli yatırım döneminde daha riskli olarak değerlendirilmesi gerektiğini göstermektedir. Bu çalışma, portföy yönetimi stratejilerini geliştirmek isteyen portföy yöneticileri ve yatırımcılar için değerli bilgiler sunmaktadır.

References

  • Adnan, M. (2023). Exploring the role of domestic and foreign factors in Indonesian Islamic mutual funds. Journal of Enterprise and Development (JED), 5(3), 414-430.
  • Akçalı Y., B., Mollaahmetoğlu, E., & Altay, E. (2020). Borsa İstanbul ve küresel piyasa göstergeleri arasındaki volatilite etkileşiminin DCC-GARCH yöntemi ile analizi. Eskişehir Osmangazi Üniversitesi İktisadi ve İdari Bilimler Dergisi, 14(3), 597-614.
  • Al-Khazali, O., Lean, H. H., & Samet, A. (2014). Do Islamic stock indexes outperform conventional stock indexes? A stochastic dominance approach. Pacific-Basin Finance Journal, 28, 29-46. http://dx.doi.org/10.1016/j.pacfin.2013.09.003
  • Arfaoui, M., & Raggad, B. (2021). Do Dow Jones Islamic equity indices undergo speculative pressure? New insights from a nonlinear and asymmetric analysis. International Journal of Finance & Economics.
  • Aziz, T., Marwat, J., Mustafa, S., & Kumar, V. (2020). Impact of economic policy uncertainty and macroeconomic factors on stock market volatility: Evidence from Islamic indices. The Journal of Asian Finance, Economics and Business, 7(12), 683-692
  • Bayram, K., & Othman, A. H. A. (2019). Islamic versus conventional stock market indicates performance: Empirical evidence from Turkey. Iqtishadia: Jurnal Kajian Ekonomi dan Bisnis Islam, 12(1), 74-86. http://dx.doi.org/10.21043/iqtishadia.v12i1.4631
  • Bahloul, S., Mroua, M., & Naifar, N. (2017). The impact of macroeconomic and conventional stock market variables on Islamic index returns under regime switching. Borsa Istanbul Review, 17(1), 62-74. http://dx.doi.org/10.1016/j.bir.2016.09.003
  • Belanes, A., Saâdaoui, F., & Abedin, M. Z. (2024). Potential diversification benefits: A comparative study of Islamic and conventional stock market indexes. Research in International Business and Finance, 67. https://doi.org/10.1016/j.ribaf.2023.102098
  • Bollerslev, T. (1990). Modelling the coherence in short‑run nominal exchange rates: a multivariate generalized arch model. Rev Econ Stat 72(3), 498
  • Bouri, E., Cepni, O., Gabauer, D., & Gupta, R. (2021). Return connectedness across asset classes around the COVID-19 outbreak. International review of financial analysis, 73, 101646.
  • Caporin, M., & McAleer, M. (2013). Ten things you should know about the dynamic conditional correlation representation. Econometrics, 1(1), 115-126.
  • Chang, B. H., Sharif, A., Aman, A., Suki, N. M., Salman, A., & Khan, S. A. R. (2020). The asymmetric effects of oil price on sectoral Islamic stocks: new evidence from quantile-on-quantile regression approach. Resources Policy, 65, 101571.
  • Charfeddine, L., & Al Refai, H. (2019). Political tensions, stock market dependence and volatility spillover: Evidence from the recent intra-GCC crises. The North American Journal of Economics and Finance, 50,
  • Chiang, T. C., Jeon, B. N., & Li, H. (2007). Dynamic correlation analysis of financial contagion: Evidence from Asian markets. Journal of International Money and Finance, 26(7), 1206-1228.v https://doi.org/10.1016/j.najef.2019.101032
  • Chkili, W. (2022). The links between gold, oil prices and Islamic stock markets in a regime switching environment. Eurasian Economic Review, 12(1), 169-186.
  • Cho, J. H., & Parhizgari, A. M. (2009). East Asian financial contagion under DCC-GARCH. International Journal of Banking and Finance, 6(1), 17-30.
  • Dania, A., & Malhotra, D. K. (2013). An empirical examination of the dynamic linkages of faith-based socially responsible investing. The Journal of Wealth Management, 16(1), 65.
  • Danila, N., Azizan, N. A., Suprihadi, E., & Bunyamin, B. (2021). Dynamic co-movement and volatility spillover effect between Sukuk and conventional bonds: A comparison study between ASEAN and GCC. Global Business Review. https://doi.org 10.1177/09721509211026203
  • Dewanti, L. A., Rusmita, S. A., & Abd Samad, K. (2022). Sensitivity Islamic stock return in Asia: The effect of exchange rate volatility. Jurnal Ekonomi & Bisnis Islam, 8(2).
  • Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427–431.
  • Diebold, F. X., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal, 119(534), 158-171.
  • Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57-66. https://doi.org/10.1016/j.ijforecast.2011.02.006
  • Do, A. Powell, R., Yong, J. & Singh, A. (2019). Time-Varying Asymmetric Volatility Spillover between Global Markets and China’s A, B and H-Shares Using EGARCH and DCC-EGARCH models. The North American Journal of Economics and Finance, 54, 10196.
  • Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3), 339-350. https://doi.org/10.1198/073500102288618487
  • Emeç, A. S. (2021). Türkiye’de katılım endeksi, altın fiyatları ve katılım fonları arasındaki ilişki. Journal of Pure Social Sciences, 2(2), 63-75.
  • Essayem, A., Görmüş, Ş., & Güven, M. (2022). Testing the effect of local macroeconomic indicators and global risk factors on the Turkish participation stock market: Evidence from quantile regression approach. Trends in Business and Economics, 36(3). https://doi.org/258-267. 0.5152/TBE.2022.1018360
  • Erdoğan, S., Gedikli, A., & Çevik, E. İ. (2020). Volatility spillover effects between Islamic stock markets and exchange rates: Evidence from three emerging countries. Borsa Istanbul Review, 20(4), 322-333. https://doi.org/10.1016/j.bir.2020.04.003
  • Gamba-Santamaria, S., Gomez-Gonzalez, J. E., Hurtado-Guarin, J. L., & Melo-Velandia, L. F. (2017). Stock market volatility spillovers: Evidence for Latin America. Finance Research Letters, 20, 207-216. http://dx.doi.org/10.1016/j.frl.2016.10.001
  • Gökgöz, H., & Kayahan, C. (2023). Analysis of the interaction of Participation 30 Index with Dow Jones Islamic Markets Index and CBOE Volatility Index. Afyon Kocatepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 25(2), 246-256.
  • Habib, M., & Islam, K. U. (2017). Impact of macroeconomic variables on Islamic stock market returns: Evidence from Nifty 50 Shariah Index. Journal of Commerce and Accounting Research, 6(1), 37.
  • Hachicha, N., Ghorbel, A., Feki, M. C., Tahi, S., & Dammak, F. A. (2022). Hedging Dow Jones Islamic and conventional emerging market indices with CDS, oil, gold and the VSTOXX: A comparison between DCC, ADCC and GO-GARCH models. Borsa Istanbul Review, 22(2), 209-225. https://doi.org/10.1016/j.bir.2021.04.002
  • Haddad, H. B., Mezghani, I., & Al Dohaiman, M. (2020). Common shocks, common transmission mechanisms and time-varying connectedness among Dow Jones Islamic stock market indices and global risk factors. Economic Systems, 44(2). https://doi.org/10.1016/j.ecosys.2020.100760
  • Hamma, W., Ghorbel, A., & Jarboui, A. (2021). Hedging Islamic and conventional stock markets with other financial assets: Comparison between competing DCC models on hedging effectiveness. Journal of Asset Management, 22(3), 179-199.
  • Hammoudeh, S., Mensi, W., Reboredo, J. C., & Nguyen, D. K. (2014). Dynamic dependence of the global Islamic equity index with global conventional equity market indices and risk factors. Pacific-Basin Finance Journal, 30, 189-206. http://dx.doi.org/10.1016/j.pacfin.2014.10.001
  • Hatipoğlu, M., & Sekmen, T. (2018). Seçilmiş bazı risk faktörlerinin islami borsalar üzerindeki etkileri. MANAS Sosyal Araştırmalar Dergisi, 7(4).
  • Hussin, M. Y. M., Muhammad, F., Abu, M. F., & Awang, S. A. (2012). Macroeconomic variables and Malaysian Islamic stock market: a time series analysis. Journal of business studies quarterly, 3(4), 1.
  • Kamışlı, S., & Esen, E. (2020). İslami hisse senedi endeksleri arasındaki oynaklik ilişki yapısı. Journal of Management and Economics Research, 18(1). http://dx.doi.org/10.11611/yead.607940.
  • Kevser, M., & Doğan, M. (2020). The analysis of relationship between participation-30 index in Turkey and commodity markets, national and international indexes. Financial Studies, 24(2 (88)), 38-48.
  • Kumar, K. K., & Sahu, B. (2017). Dynamic linkages between macroeconomic factors and Islamic stock indices in a non-Islamic country India. The Journal of Developing Areas, 51(1), 193-205.
  • Lin, B., & Su, T. (2020). The linkages between oil market uncertainty and Islamic stock markets: Evidence from quantile-on-quantile approach. Energy Economics, 88, 104759. https://doi.org/10.1016/j.eneco.2020.104759
  • Lin, B., Wesseh Jr, P. K., & Appiah, M. O. (2014). Oil price fluctuation, volatility spillover and the Ghanaian equity market: Implication for portfolio management and hedging effectiveness. Energy Economics, 42, 172-182. http://dx.doi.org/10.1016/j.eneco.2013.12.017
  • Ling, S., & McAleer, M. (2003). Asymptotic theory for a vector ARMA-GARCH model. Econometric Theory, 19(2), 280–310.
  • Majid, M. S. A., & Yusof, R. M. (2009). Long‐run relationship between Islamic stock returns and macroeconomic variables: An application of the autoregressive distributed lag model. Humanomics, 25(2), 127-141. http://dx.doi.org/10.1108/08288660910964193
  • Majdoub, J., & Mansour, W. (2014). Islamic equity market integration and volatility spillover between emerging and US stock markets. The North American Journal of Economics and Finance, 29, 452-470. http://dx.doi.org/10.1016/j.najef.2014.06.011
  • Maghyereh, A., & Awartani, B. (2016). Oil price uncertainty and equity returns: Evidence from oil importing and exporting countries in the MENA region. Journal of Financial Economic Policy, 8(1), 64-79.
  • Mandacı, P. E., & Kırkpınar, A. (2022). Oil assets and portfolio diversification: Firm-level analysis for Borsa Istanbul. Borsa Istanbul Review, 22(3), 571-585. https://doi.org/10.1016/j.bir.2021.07.004.
  • Mensi, W., Hammoudeh, S., Al-Jarrah, I. M. W., Sensoy, A., & Kang, S. H. (2017). Dynamic risk spillovers between gold, oil prices and conventional, sustainability and Islamic equity aggregates and sectors with portfolio implications. Energy Economics, 67, 454-475. http://dx.doi.org/10.1016/j.eneco.2017.08.031
  • Mezghani, T., Rabbani, M. R., Trichilli, Y., & Abbes, B. (2024). Revisiting the dynamic connectedness, spillover and hedging opportunities among cryptocurrency, commodities, and Islamic stock markets. Journal of Islamic Monetary Economics and Finance, 10(1), 35-92. https://doi.org/10.21098/jimf.v10i1.1813
  • Naifar, N. (2016). Do global risk factors and macroeconomic conditions affect global Islamic index dynamics? A quantile regression approach. The Quarterly Review of Economics and Finance, 61, 29-39. http://dx.doi.org/10.1016/j.qref.2015.10.004
  • Nazlıoğlu, S., Hammoudeh, S. & Gupta, R. (2015). Volatility transmission between Islamic and conventional equity markets: evidence from causality-in-variance test. Applied Economics, 47 (46), 4996-5011.
  • Paltrinieri, A., Floreani, J., Kappen, J. A., Mitchell, M. C., & Chawla, K. (2019). Islamic, socially responsible, and conventional market comovements: Evidence from stock indices. Thunderbird International Business Review, 61(5), 719-733.
  • Raza, N., Ali, S., Shahzad, S. J. H., Rehman, M. U., & Salman, A. (2019). Can alternative hedging assets add value to Islamic-conventional portfolio mix: Evidence from MGARCH models. Resources Policy, 61, 210-230. https://doi.org/10.1016/j.resourpol.2019.02.013
  • Said, A., & Ouerfelli, C. (2024). Downside risk in Dow Jones equity markets: hedging and portfolio management during COVID-19 pandemic and the Russia–Ukraine war. The Journal of Risk Finance, 25(3), 443-470.
  • Sakarya, Ş., Zeren, F., & Akkuş, H. T. (2018). The relationship between Islamic indices and commodity markets in Turkey: Evidence Fourier-based approaches. Ekonomski horizonti, 20(3), 243-256.
  • Sakti, M. R. P., & Harun, M. Y. (2013). Relationship between Islamic stock prices and macroeconomic variables: Evidence from Jakarta stock exchange Islamic index. Global Review of Islamic Economics and Business, 1(1), 071-084.
  • Sclip, A., Dreassi, A., Miani, S., & Paltrinieri, A. (2016). Dynamic correlations and volatility linkages between stocks and sukuk: Evidence from international markets. Review of Financial Economics, 31, 34-44. http://dx.doi.org/10.1016/j.rfe.2016.06.005
  • Sheikh, S. P., Jamil, S. A., Aysan, A. F., Atif, M., Rabbani, M. R., & Kayani, U. N. (2023). Do implied volatilities of stock and commodity markets affect conventional & shariah indices differently? An evidence by OVX, GVZ and VIX. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e21094
  • Sial, M. S., Cherian, J., Meero, A., Salman, A., Rahman, A. A., Samad, S. & Negrut, C. V. (2022). Determining financial uncertainty through the dynamics of sukuk bonds and prices in emerging market indices. Risks, 10(3), 61.
  • Tsay, R. S. (2013). Multivariate time series analysis: with R and financial applications. ABD: John Wiley & Sons.
  • Yadav, N., Singh, A. B., & Tandon, P. (2023). Volatility spillover effects between Indian stock market and global stock markets: A DCC-GARCH model. FIIB Business Review, 23197145221141186. https://doi.org/10.1177/23197145221141186
  • Yarovaya, L., Elsayed, A. H., & Hammoudeh, S. (2021). Determinants of spillovers between Islamic and conventional financial markets: exploring the safe haven assets during the COVID-19 pandemic. Finance Research Letters, 43.https://doi.org/10.1016/j.frl.2021.101979
  • Zhong, Y., & Liu, J. (2021). Correlations and volatility spillovers between China and Southeast Asian stock markets. The Quarterly Review of Economics and Finance, 81, 57-69. https://doi.org/10.1016/j.qref.2021.04.001
  • Xu, W., Ma, F., Chen, W., & Zhang, B. (2019). Asymmetric volatility spillovers between oil and stock markets: Evidence from China and the United States. Energy Economics, 80, 310-320. https://doi.org/10.1016/j.eneco.2019.01.014
  • Widad, M., & Hadjer, B. (2018). Causal relationship between Islamic bonds, oil price and precious metals: evidence from Asia pacific. Al-Iqtishad Journal of Islamic Economics, 10(2), 285-298.
There are 64 citations in total.

Details

Primary Language English
Subjects Finance
Journal Section Tüm Sayı
Authors

Nehir Balcı 0000-0002-9317-7491

Publication Date April 30, 2025
Submission Date November 23, 2024
Acceptance Date April 29, 2025
Published in Issue Year 2025 Volume: 12 Issue: 27

Cite

APA Balcı, N. (2025). DYNAMIC LINKAGES BETWEEN TURKISH ISLAMIC STOCK MARKET AND GLOBAL MACROECONOMIC RISK FACTORS: EVIDENCE FROM DCC-GARCH MODEL. Akademik Hassasiyetler, 12(27), 399-428. https://doi.org/10.58884/akademik-hassasiyetler.1590078
AMA Balcı N. DYNAMIC LINKAGES BETWEEN TURKISH ISLAMIC STOCK MARKET AND GLOBAL MACROECONOMIC RISK FACTORS: EVIDENCE FROM DCC-GARCH MODEL. Akademik Hassasiyetler. April 2025;12(27):399-428. doi:10.58884/akademik-hassasiyetler.1590078
Chicago Balcı, Nehir. “DYNAMIC LINKAGES BETWEEN TURKISH ISLAMIC STOCK MARKET AND GLOBAL MACROECONOMIC RISK FACTORS: EVIDENCE FROM DCC-GARCH MODEL”. Akademik Hassasiyetler 12, no. 27 (April 2025): 399-428. https://doi.org/10.58884/akademik-hassasiyetler.1590078.
EndNote Balcı N (April 1, 2025) DYNAMIC LINKAGES BETWEEN TURKISH ISLAMIC STOCK MARKET AND GLOBAL MACROECONOMIC RISK FACTORS: EVIDENCE FROM DCC-GARCH MODEL. Akademik Hassasiyetler 12 27 399–428.
IEEE N. Balcı, “DYNAMIC LINKAGES BETWEEN TURKISH ISLAMIC STOCK MARKET AND GLOBAL MACROECONOMIC RISK FACTORS: EVIDENCE FROM DCC-GARCH MODEL”, Akademik Hassasiyetler, vol. 12, no. 27, pp. 399–428, 2025, doi: 10.58884/akademik-hassasiyetler.1590078.
ISNAD Balcı, Nehir. “DYNAMIC LINKAGES BETWEEN TURKISH ISLAMIC STOCK MARKET AND GLOBAL MACROECONOMIC RISK FACTORS: EVIDENCE FROM DCC-GARCH MODEL”. Akademik Hassasiyetler 12/27 (April 2025), 399-428. https://doi.org/10.58884/akademik-hassasiyetler.1590078.
JAMA Balcı N. DYNAMIC LINKAGES BETWEEN TURKISH ISLAMIC STOCK MARKET AND GLOBAL MACROECONOMIC RISK FACTORS: EVIDENCE FROM DCC-GARCH MODEL. Akademik Hassasiyetler. 2025;12:399–428.
MLA Balcı, Nehir. “DYNAMIC LINKAGES BETWEEN TURKISH ISLAMIC STOCK MARKET AND GLOBAL MACROECONOMIC RISK FACTORS: EVIDENCE FROM DCC-GARCH MODEL”. Akademik Hassasiyetler, vol. 12, no. 27, 2025, pp. 399-28, doi:10.58884/akademik-hassasiyetler.1590078.
Vancouver Balcı N. DYNAMIC LINKAGES BETWEEN TURKISH ISLAMIC STOCK MARKET AND GLOBAL MACROECONOMIC RISK FACTORS: EVIDENCE FROM DCC-GARCH MODEL. Akademik Hassasiyetler. 2025;12(27):399-428.

MAKALE DEĞERLENDİRME SÜRECİ

Yazar tarafından gönderilen bir makale, gönderim tarihinden itibaren 10 gün içinde dergi sekreteri tarafından makalenin, telif sözleşmesinin ve benzerlik raporunun (Turnitin programı) eksiksiz ve düzgün bir şekilde gönderilip gönderilmediği yönünden incelenir. İstenilen bu dosyalar eksiksiz ve düzgün bir şekilde gönderilmiş ise makale; ikinci aşamada derginin yayın çizgisine uygun olup olmadığı yönünden değerlendirilir. Bu süreçte makale yayın çizgisine uygun değilse yazara iade edilir. Makale yayın çizgisine uygun ise şablona uygun bir şekilde gönderilip gönderilmediği yönünden değerlendirilir. Şayet makale şablona uyarlanıp gönderilmemiş ise değerlendirme sürecine alınmaz. Bu süreçte yazarın derginin belirlediği şartlara uygun bir şekilde sisteme makale yüklemesi beklenir. Makale şablona uygun bir şekilde hazırlanıp gönderilmiş ise son aşamada makale derginin yayın ilkeleri, yazım kuralları, öz, abstract, extented abstract, kaynakça gösterimi vb. yönlerden incelenir. Bu ayrıntılarda makalede bir sorun varsa yazarın bu hususları tamamlaması istenir ve verilen süre içerisinde eksiksiz bir şekilde yeniden makaleyi göndermesi istenir.
Tüm bu aşamaları geçen makale, editör tarafından bilimsel yeterliliğinin denetlenmesi amacıyla ikinci 7 günlük süre içerisinde çalışmaya uygun iki hakeme değerlendirmeleri için gönderilir. Hakemlerin değerlendirme süreleri 15 gündür. Bu süre zarfında hakemlik görevini tamamlamayan bir hakem olursa ilgili hakeme değerlendirmeyi tamamlaması için 7 günlük ek süre verilebilir. Bu süre zarfında hakem görevini yerine getirmezse yerine yeni bir hakem ataması yapılır. En az iki hakemden gelen raporlar olumlu ise makale yayın aşamasına alınır. Hakem raporlarından birisi olumlu diğeri olumsuz ise makale üçüncü bir hakeme gönderilir. Üçüncü hakem raporu da olumsuz ise makale ret edilir. Üçüncü hakemin değerlendirmesi olumlu ise makaleyle ilgili hakem raporları dergi alan editörlerinden oluşan Editörler Kurulu tarafından incelenir. Makalenin yayınlanmasıyla ilgili nihai karar alan editörlerinden oluşan Editörler Kurulu tarafından verilir. Hakem raporlarının yetersiz ve tatmin etmekten uzak olması veya İngilizce editör tarafından abstract ve extented abstract’ın yetersiz görülmesi hallerinde de yine makaleyle ilgili son karar Editörler Kurulu tarafından verilir. Tüm bu aşamalardan geçen bir makale en yakın sayıya yayınlanmak üzere eklenir. İlgili sayıda yer kalmaması halinde makalenin yayımı bir sonraki sayıya kaydırılır. Bu durumda ve tüm değerlendirme sürecinde yazar isterse makalesini geri çekme hakkına sahiptir. Ancak bu durumu dergiye bildirmesi gerekir. Makale gönderim tarihinden makalenin yayına kabul tarihine kadar tüm bu işlemler için ortalama 3 aylık bir süre öngörülmektedir.