Research Article
BibTex RIS Cite

ENERGY OPTIMIZATION FOR NEARLY ZERO ENERGY BUILDINGS (NZEB) CONCEPT

Year 2025, Volume: 3 Issue: 1, 112 - 121

Abstract

Airports have a critical importance in the international air transportation system, as they provide the connection of the region to other points and most importantly, because of the contribution they make to the development of the region in which they are located. Airports no longer consist solely of aviation-related functions (e.g. passenger, cargo and aircraft handling facilities); It has developed to include shopping and hotel complexes, conference facilities, industrial zones, logistics centres and public transportation centres. With this complex and mega structure, studies on reducing harmful emissions, clean and green energy concepts, reducing carbon footprint, meeting the requirements of green building certifications such as NZEB, LEED, BREEAM have become critical. In addition to these concepts, the Airport Carbon Accreditation (ACA) program, specific only to airport structures, can also be preferred for airports.
All these concepts and areas of influence aim to make a positive contribution to global climate change. The aim of this thesis is to reduce the current carbon footprint by turning to cleaner and greener energy in an airport operation with a significant volume of real-time energy consumption and production, and to obtain LEED and BREEAM certification, and NZEB architecture so that the consumed energy can be met from clean energy sources produced or planned to be produced within the scope of the project. It aims to carry out an optimization study based on the requirements. Consumption analyses, architectural structure, window and glass areas, energy use and CO2 amount, heating, cooling, domestic water installation, air conditioning and ventilation and wastewater treatment systems, domestic water systems, electricity and energy centre systems will be examined, and designs will be made after the current situation analysis, and suggestions will be presented. A hybrid machine learning model predicting future energy consumption has been developed, and impact analyses of the proposed recommendations have been carried out.

References

  • [1] https://www.usgbc.org/leed, [Son Erişim Tarihi: 22.04.2024]
  • [2] https://breeam.com/, [Son Erişim Tarihi: 01.03.2024]
  • [3] https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/nearly-zero-energy-buildings, [Son Erişim Tarihi: 15.05.2024]
  • [4] https://www.airportcarbonaccreditation.org/, [Son Erişim Tarihi: 01.05.2024]
  • [5] Natalia Shushunova, Liubov Lisienkova, Irina Mitrofanov, Rimma Karimova. Application of LEED Green Rating Systems in In-frastructure of Airport Complexes. 2023 February E3S Web of Conferences 371. https://doi.org/10.1051/e3sconf/202337106002
  • [6] Fesanghary, M.; Asadi, S.; Geem, Z.W. Design of low-emission and energy-efficient residential buildings using a multi-objective optimization algorithm. Build. Environ. 2012, 49, 245–250
  • [7] Harish VSKV, Kumar A. A review on modeling and simulation of building energy systems. Renew Sustain Energy Rev 2015;56:1272–92. https://doi.org/10.1016/j. rser.2015.12.040.
  • [8] Kneifel J. Life-cycle carbon and cost analysis of energy efficiency measures in new commercial buildings. Energy Build 2010;42:333–40. https://doi.org/10.1016/j. enbuild.2009.09.011.
  • [9] Konis, K.; Gamas, A.; Kensek, K. Passive performance and building form: An optimization framework for early-stage design support. Sol. Energy 2016, 125, 161–179.
  • [10] Lartigue, B.; Lasternas, B.; Loftness, V. Multi-objective optimization of building envelope for energy consumption and daylight. Indoor Built Environ. 2014, 23, 70–80.
  • [11] Lin H-W, Hong T. On variations of space-heating energy use in office buildings. Appl Energy 2013;111:515–28. https://doi.org/10.1016/j.apenergy.2013.05.040.
  • [12] Méndez Echenagucia, T.; Capozzoli, A.; Cascone, Y.; Sassone, M. The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis. Appl. Energy 2015, 154, 577–591.
  • [13] Rahmani Asl, M.; Zarrinmehr, S.; Bergin, M.; Yan, W. BPOpt: A framework for BIM-based performance optimization. Energy Build. 2015, 108, 401–412.
  • [14] Ruparathna R, Hewage K, Sadiq R. Improving the energy efficiency of the existing building stock: a critical review of commercial and institutional buildings. Renew Sustain Energy Rev 2015;53:1032–45. https://doi.org/10.1016/j. rser.2015.09.084.
  • [15] Santos-Herrero JM, Lopez-Guede JM, Flores I, Sala JM. An ongoing review on building energy efficiency improvement systems. Istanbul: IV European Conference on Renewable Energy Systems; 2016.
  • [16] Susorova I, Tabibzadeh M, Rahman A, Clack HL, Elnimeiri M. The effect of geometry factors on fenestration energy performance and energy savings in office buildings. Energy Build 2013;57:6–13. https://doi.org/10.1016/j. enbuild.2012.10.035.
  • [17] Toutou, A.; Fikry, M.; Mohamed, W. The parametric based optimization framework daylighting and energy performance in residential buildings in hot arid zone. Alex. Eng. J. 2018, 57, 3595–3608.
  • [18] Tuhus-Dubrow, D.; Krarti, M. Genetic-algorithm based approach to optimize building envelope design for residential buildings. Build. Environ. 2010, 45, 1574–1581.
  • [19] Zhang, A.; Bokel, R.; van den Dobbelsteen, A.; Sun, Y.; Huang, Q.; Zhang, Q. Optimization of thermal and daylight performance of school buildings based on a multi-objective genetic algorithm in the cold climate of China. Energy Build. 2017, 139, 371–384.

SIFIR ENERJİ KONSEPTLİ BİNALARDA ENERJİ OPTİMİZASYON

Year 2025, Volume: 3 Issue: 1, 112 - 121

Abstract

Havalimanları, uluslararası hava taşımacılığı sisteminde, bulunduğu bölgenin başka noktalara bağlantısını sağlamak için ve en önemlisi bulunduğu bölgenin gelişimine sağladığı katkı sebebi ile kritik bir öneme sahiptir. Havalimanları artık sadece havacılıkla ilgili işlevlerden (örneğin yolcu, kargo ve uçak taşıma tesisleri) oluşmuyor; alışveriş ve otel komplekslerini, konferans tesislerini, sanayi bölgelerini, lojistik merkezlerini ve toplu taşıma merkezlerini de içerecek şekilde gelişmiştir. Bu kompleks ve mega yapısıyla zararlı emisyonların azaltılmasına yönelik çalışmalar, temiz ve yeşil enerji kavramları, karbon ayak izinin azaltılması, NZEB, LEED, BREEAM gibi yeşil bina sertifikasyonlarının gerekliliklerin sağlanması kritik öneme sahip hale gelmiştir. Bu kavramların yanı sıra sadece havalimanı yapılarına özel Havalimanı Karbon Akreditasyon (ACA) programı da havalimanları için tercih edilebilir.
Tüm bu kavramlar ve etki alanları küresel iklim değişikliğine olumlu katkı sağlamayı hedeflemektedir. Bu çalışmanın amacı, gerçek zamanlı enerji tüketimi ve üretimi olarak önemli bir hacme sahip bir havalimanı işletmesinde, daha temiz ve yeşil enerjiye yönelerek, mevcut karbon ayak izini azaltmak ve tüketilen enerjinin üretilen ya da proje kapsamında üretilmesi planlanan temiz enerji kaynaklarından karşılanabilmesi için LEED ve BREEAM sertifikasyon gereklilikleri ve NZEB mimarisi baz alınarak bir optimizasyon çalışması gerçekleştirilmesi hedeflemektedir. Tüketim analizleri, mimari yapı, pencere ve cam alanları, enerji kullanımı ve CO2 miktarı, ısıtma ve soğutma, kullanma suyu tesisatı, iklimlendirme ve havalandırma ve atık su arıtma sistemleri, kullanma suyu sistemleri, elektrik ve enerji merkezi sistemleri incelenerek, mevcut durum analizleri sonrası tasarılar yapılmış ve öneriler sunulmuştur. Geleceğe yönelik enerji tüketimi tahmini yapan hibrit makine öğrenimi modeli oluşturularak, sunulan önerilerin etki analizleri gerçekleştirilmiştir.

References

  • [1] https://www.usgbc.org/leed, [Son Erişim Tarihi: 22.04.2024]
  • [2] https://breeam.com/, [Son Erişim Tarihi: 01.03.2024]
  • [3] https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/nearly-zero-energy-buildings, [Son Erişim Tarihi: 15.05.2024]
  • [4] https://www.airportcarbonaccreditation.org/, [Son Erişim Tarihi: 01.05.2024]
  • [5] Natalia Shushunova, Liubov Lisienkova, Irina Mitrofanov, Rimma Karimova. Application of LEED Green Rating Systems in In-frastructure of Airport Complexes. 2023 February E3S Web of Conferences 371. https://doi.org/10.1051/e3sconf/202337106002
  • [6] Fesanghary, M.; Asadi, S.; Geem, Z.W. Design of low-emission and energy-efficient residential buildings using a multi-objective optimization algorithm. Build. Environ. 2012, 49, 245–250
  • [7] Harish VSKV, Kumar A. A review on modeling and simulation of building energy systems. Renew Sustain Energy Rev 2015;56:1272–92. https://doi.org/10.1016/j. rser.2015.12.040.
  • [8] Kneifel J. Life-cycle carbon and cost analysis of energy efficiency measures in new commercial buildings. Energy Build 2010;42:333–40. https://doi.org/10.1016/j. enbuild.2009.09.011.
  • [9] Konis, K.; Gamas, A.; Kensek, K. Passive performance and building form: An optimization framework for early-stage design support. Sol. Energy 2016, 125, 161–179.
  • [10] Lartigue, B.; Lasternas, B.; Loftness, V. Multi-objective optimization of building envelope for energy consumption and daylight. Indoor Built Environ. 2014, 23, 70–80.
  • [11] Lin H-W, Hong T. On variations of space-heating energy use in office buildings. Appl Energy 2013;111:515–28. https://doi.org/10.1016/j.apenergy.2013.05.040.
  • [12] Méndez Echenagucia, T.; Capozzoli, A.; Cascone, Y.; Sassone, M. The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis. Appl. Energy 2015, 154, 577–591.
  • [13] Rahmani Asl, M.; Zarrinmehr, S.; Bergin, M.; Yan, W. BPOpt: A framework for BIM-based performance optimization. Energy Build. 2015, 108, 401–412.
  • [14] Ruparathna R, Hewage K, Sadiq R. Improving the energy efficiency of the existing building stock: a critical review of commercial and institutional buildings. Renew Sustain Energy Rev 2015;53:1032–45. https://doi.org/10.1016/j. rser.2015.09.084.
  • [15] Santos-Herrero JM, Lopez-Guede JM, Flores I, Sala JM. An ongoing review on building energy efficiency improvement systems. Istanbul: IV European Conference on Renewable Energy Systems; 2016.
  • [16] Susorova I, Tabibzadeh M, Rahman A, Clack HL, Elnimeiri M. The effect of geometry factors on fenestration energy performance and energy savings in office buildings. Energy Build 2013;57:6–13. https://doi.org/10.1016/j. enbuild.2012.10.035.
  • [17] Toutou, A.; Fikry, M.; Mohamed, W. The parametric based optimization framework daylighting and energy performance in residential buildings in hot arid zone. Alex. Eng. J. 2018, 57, 3595–3608.
  • [18] Tuhus-Dubrow, D.; Krarti, M. Genetic-algorithm based approach to optimize building envelope design for residential buildings. Build. Environ. 2010, 45, 1574–1581.
  • [19] Zhang, A.; Bokel, R.; van den Dobbelsteen, A.; Sun, Y.; Huang, Q.; Zhang, Q. Optimization of thermal and daylight performance of school buildings based on a multi-objective genetic algorithm in the cold climate of China. Energy Build. 2017, 139, 371–384.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering (Other)
Journal Section Research Articles
Authors

Hacer Gediz Taşkın 0000-0001-6495-9593

Hamza Feza Carlak 0000-0002-8561-4591

Early Pub Date April 16, 2025
Publication Date
Submission Date January 9, 2025
Acceptance Date January 28, 2025
Published in Issue Year 2025 Volume: 3 Issue: 1

Cite

APA Gediz Taşkın, H., & Carlak, H. F. (n.d.). SIFIR ENERJİ KONSEPTLİ BİNALARDA ENERJİ OPTİMİZASYON. Akdeniz Mühendislik Dergisi, 3(1), 112-121.
AMA Gediz Taşkın H, Carlak HF. SIFIR ENERJİ KONSEPTLİ BİNALARDA ENERJİ OPTİMİZASYON. AKUJE. 3(1):112-121.
Chicago Gediz Taşkın, Hacer, and Hamza Feza Carlak. “SIFIR ENERJİ KONSEPTLİ BİNALARDA ENERJİ OPTİMİZASYON”. Akdeniz Mühendislik Dergisi 3, no. 1 n.d.: 112-21.
EndNote Gediz Taşkın H, Carlak HF SIFIR ENERJİ KONSEPTLİ BİNALARDA ENERJİ OPTİMİZASYON. Akdeniz Mühendislik Dergisi 3 1 112–121.
IEEE H. Gediz Taşkın and H. F. Carlak, “SIFIR ENERJİ KONSEPTLİ BİNALARDA ENERJİ OPTİMİZASYON”, AKUJE, vol. 3, no. 1, pp. 112–121.
ISNAD Gediz Taşkın, Hacer - Carlak, Hamza Feza. “SIFIR ENERJİ KONSEPTLİ BİNALARDA ENERJİ OPTİMİZASYON”. Akdeniz Mühendislik Dergisi 3/1 (n.d.), 112-121.
JAMA Gediz Taşkın H, Carlak HF. SIFIR ENERJİ KONSEPTLİ BİNALARDA ENERJİ OPTİMİZASYON. AKUJE.;3:112–121.
MLA Gediz Taşkın, Hacer and Hamza Feza Carlak. “SIFIR ENERJİ KONSEPTLİ BİNALARDA ENERJİ OPTİMİZASYON”. Akdeniz Mühendislik Dergisi, vol. 3, no. 1, pp. 112-21.
Vancouver Gediz Taşkın H, Carlak HF. SIFIR ENERJİ KONSEPTLİ BİNALARDA ENERJİ OPTİMİZASYON. AKUJE. 3(1):112-21.